动点问题
动点问题练习(含答案)
动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t= 时,四边形是平行四边形;6当t= 时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为 53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC=23. ∴AO=12AC=3.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.OE CDAαlOCA(备用图)CBAED图1NMA BCDEMACBEDNM(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ; (2)当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明. 解:(1)① ∵∠ACD=∠ACB=90° ∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB② ∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90° ∴∠ACD=∠CBE , 又∵AC=BC , ∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=o,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. 解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°. CF Q 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°. AME ECF ∴∠=∠. 90AEB BAE ∠+∠=Q °,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. Q 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=.6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD FC G E B 图1 AD FG B 图3A D FC GE B 图2A D F C GB M A D FC G B N7、如图1,在等腰梯形ABCD中,AD BC∥,E是AB的中点,过点E作EF BC∥交CD于点F.46AB BC==,,60B=︒∠.求:(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过P作PM EF⊥交BC于点M,过M作MN AB∥交折线ADC 于点N,连结PN,设EP x=.①当点N在线段AD上时(如图2),PMN△的形状是否发生改变?若不变,求出PMN△的周长;若改变,请说明理由;②当点N在线段DC上时(如图3),是否存在点P,使PMN△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由解(1)如图1,过点E作EG BC⊥于点G.∵E为AB的中点,∴122BE AB==.在Rt EBG△中,60B=︒∠,∴30BEG=︒∠.∴22112132BG BE EG===-=,.A DEBFC图4(备用)A DEBFC图5(备用)A DEBFC图1 图2A DEBFCPNM图3A DEBFCPNM(第25题)即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,, ∴PM EG ∥. ∵EF BC ∥, ∴EP GM =,PM EG == 同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM == ∴3cos302MH PM =︒=g . 则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=.当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-= 当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠. 因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=g . 此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动图3A D E BFCPN M 图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG图1A D EBF CG 图2A D EBFCPNMG H①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米, ∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘米/秒。
动点问题的解题技巧
动点问题的解题技巧动点问题,又称为运动学问题,是数学中的一个经典问题,通常涉及在不同时间点上研究物体的位置、速度、加速度等信息。
在解动点问题时,需要注意一些技巧,确保得到正确的答案。
1. 给出问题的初始条件解决动点问题,最重要的是给出问题的初始条件。
这些条件通常包括物体的速度、加速度、位置等信息。
这些信息可以通过问题的呈现方式、提问方式以及问题的背景来了解。
例如,一道经典的动点问题可能是“一个小球从15米的高度自由落下,经过多长时间能够到达地面?”我们可以得知初速度为零,重力加速度为9.8米每秒平方,以及物体的初始位置等信息。
2. 根据公式进行计算解决动点问题通常需要大量的计算。
在大多数情况下,需要使用物理公式来计算物体的位置、速度以及加速度等信息。
例如,我们可以使用以下公式计算物体的速度:v = v0 + at其中,v是物体的速度,v0是物体的初始速度,a是物体的加速度,t是时间。
还有其他的公式可以用来计算其他信息。
3. 平衡问题,找到关键点在解决动点问题时,有时需要找到关键点,以便理解问题的本质。
例如,如果一个物体在垂直向下运动,并且与一个斜面发生碰撞,我们需要找到斜面与水平线交汇的那个点。
这个点对于解决问题非常重要。
4. 审查答案一旦得到答案,需要审查答案是否合理。
答案应该与问题的预期相符,且符合物理原理;如果与问题的预期不符,应重新计算。
此外,还应检查答案是否有意义。
如果答案不合理或不具有实际意义,则需要重新计算。
综上所述,以上是解决动点问题的一些技巧。
在解决动点问题时,需要先明确问题的初始条件,然后使用物理公式进行计算,找到关键点,并最终审查答案。
掌握这些技巧,将能够有效地解决动点问题,提高数学解题能力。
动点问题的解题口诀
动点问题的解题口诀
动点问题是指在几何中,通过对一个点进行平移、旋转、对称或缩放来求解几何问题的问题。
解决动点问题时,可以使用以下解题口诀:
平移:将点向某个方向平移一定距离后,其坐标会发生相应的变化。
旋转:将点绕某个中心点旋转一定角度后,其坐标会发生相应的变化。
对称:将点绕某个中心对称后,其坐标会发生相应的变化。
缩放:将点绕某个中心放大或缩小一定比例后,其坐标会发生相应的变化。
使用这些口诀可以帮助我们快速掌握动点问题的解题方法,从而解决几何问题。
动点问题练习(含标准答案)
动点问题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想数形结合思想转化思想1、如图1,梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=18cm,BC=21cm,点P从A开始沿AD边以1cm/秒的速度移动,点Q从C开始沿CB向点B以2 cm/秒的速度移动,如果P,Q分别从A,C同时出发,设移动时间为t秒。
当t=时,四边形是平行四边形;6当t=时,四边形是等腰梯形. 82、如图2,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为53、如图,在Rt ABC△中,9060ACB B∠=∠=°,°,2BC=.点O是AC的中点,过点O的直线l从与AC重合的位置开始,绕点O作逆时针旋转,交AB边于点D.过点C作CE AB∥交直线l于点E,设直线l的旋转角为α.(1)①当α=度时,四边形EDBC是等腰梯形,此时AD的长为;②当α=度时,四边形EDBC是直角梯形,此时AD的长为;(2)当90α=°时,判断四边形EDBC是否为菱形,并说明理由.解:(1)①30,1;②60,1.5;(2)当∠α=900时,四边形EDBC是菱形.∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC是平行四边形在Rt△ABC中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴AB=4,AC∴AO=12AC.在Rt△AOD中,∠A=300,∴AD=2.∴BD=2. ∴BD=BC. 又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形4、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E. (1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.(备用图)CBED图1NMA BCDEMACBEDNM解:(1)①∵∠ACD=∠ACB=90°∴∠CAD+∠ACD=90° ∴∠BCE+∠ACD=90° ∴∠CAD=∠BCE ∵AC=BC ∴△ADC ≌△CEB②∵△ADC ≌△CEB ∴CE=AD ,CD=BE ∴DE=CE+CD=AD+BE (2) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE 又∵AC=BC ∴△ACD ≌△CBE ∴CE=AD ,CD=BE ∴DE=CE-CD=AD-BE(3) 当MN 旋转到图3的位置时,DE=BE-AD(或AD=BE-DE ,BE=AD+DE 等) ∵∠ADC=∠CEB=∠ACB=90°∴∠ACD=∠CBE , 又∵AC=BC ,∴△ACD ≌△CBE , ∴AD=CE ,CD=BE , ∴DE=CD-CE=BE-AD.5、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.解:(1)正确. 证明:在AB 上取一点M ,使AM EC =,连接ME . BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠. 90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠. AME BCF ∴△≌△(ASA ). AE EF ∴=. (2)正确.证明:在BA 的延长线上取一点N .使AN CE =,连接NE .BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥. DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). AE EF ∴=. 6、如图, 射线MB 上,MB=9,A 是射线MB 外一点,AB=5且A 到射线MB 的距离为3,动点P 从M 沿射线MB 方向以1个单位/秒的速度移动,设P 的运动时间为t. 求(1)△ PAB 为等腰三角形的t 值;(2)△ PAB 为直角三角形的t 值;(3) 若AB=5且∠ABM=45 °,其他条件不变,直接写出△ PAB 为直角三角形的t 值AD F GB图1A D FC G B 图3ADFGB 图2AD FC GE B MA D FG B N7、如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.求:(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PM N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由解(1)如图1,过点E 作EG BC ⊥于点G .∵E 为AB 的中点,∴122BE AB ==.在Rt EBG△中,60B =︒∠,∴30BEG =︒∠.∴112BG BE EG ====,即点E 到BC(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变.∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥,∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM ==∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.图1 A D E BF CGA D E BFCPNMG HA D E BF C图4(备用)AD EBF C 图5(备用)A D E BF C图1 图2A D E BF C PNM图3A D EBFCPNM(第25题)在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=.②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形. 当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==.∵MNC △是等边三角形,∴3MC MN ==. 此时,6132x EP GM BC BG MC ===--=--=.当MP MN=时,如图4,这时MC MN MP ==此时,615x EP GM ===-=当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠,∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.此时,6114x EP GM ===--=. 综上所述,当2x =或4或(5-时,PMN △为等腰三角形.8、如图,已知ABC △中,10AB AC ==厘M ,8BC =厘M ,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇? 解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘M , ∵10AB =厘M ,点D 为AB 的中点, ∴5BD =厘M .图3A D E BFCPN M图4A D EBF CP MN 图5A DEBF (P ) CM NGGRG又∵8PC BC BP BC =-=,厘M , ∴835PC =-=厘M , ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠, ∴BPD CQP △≌△. ②∵P Qv v ≠, ∴BP CQ ≠, 又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,,∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t===厘M/秒。
初一动点问题专题
初一动点问题专题随着社会的不断发展,初中阶段的学生面临着各种动点问题。
动点问题是指不仅涉及学生的行为和情绪,还涉及到他们的心理健康和学习状态。
这些问题可能会影响学生的学业成绩,甚至对其未来的发展产生不利影响。
因此,针对初一学生的动点问题,学校和家长都需要引起重视,并采取有效的措施加以解决。
一、初一学生的典型动点问题1.学习动点问题初一是学生升入中学的新阶段,在学习上可能会遇到新的困难和挑战。
这一阶段的学习内容开始增加,难度也有所加大,这对于一些学生来说可能会感到压力较大,导致学习动点问题的出现。
表现为不愿意完成作业、不专心听讲、成绩下降等情况。
2.行为动点问题初一学生大多处于青春期的阶段,心理和情绪易受外界影响,因此很容易出现行为动点问题。
表现为叛逆、情绪波动大、与同学之间的关系出现问题等情况。
3.人际关系动点问题初一学生由于面对新的环境和人际关系,可能会出现人际关系动点问题。
比如社交能力不足、交友困难等情况。
二、初一动点问题的影响初一动点问题的产生会对学生的成长和发展产生一定的负面影响。
1.学业成绩下降学习动点问题会导致学生的学业成绩下降,甚至可能影响其未来的升学和就业。
2.心理健康问题动点问题可能会导致学生的心理健康问题,表现为焦虑、抑郁等症状。
3.人际关系问题人际关系动点问题会影响学生与同学之间的关系,也可能影响学生未来的社交能力。
三、解决初一动点问题的措施1.学校的措施学校可以通过课程设置和心理辅导等方式帮助学生解决动点问题。
比如设置针对初一学生的心理健康课程、开展校园心理辅导活动等。
2.家长的关注家长是学生成长过程中不可或缺的重要角色,他们需要关注学生的动点问题并给予必要的帮助。
家长可以积极与学校沟通,了解学生的学习和生活状况,并给予合适的支持和鼓励。
3.学生自我调节学生自己也要学会自我调节,比如学会倾诉和释放负面情绪、培养积极心态、树立正确的学习态度等。
此外,学生还可以尝试参加一些兴趣班或者活动,转移注意力,建立自信心。
初一动点问题专题
初一动点问题专题初一是一个重要的阶段,对学生的成长发展有着至关重要的影响。
在这个阶段,学生面临着许多新的问题和挑战,他们需要在学习、人际关系、情感发展等方面进行适当的引导和教育。
动点问题是初一学生经常面临的一类问题,它们包括学习动力不足、情绪波动大、压力过大等情况。
这些问题如果得不到适当的处理和解决,就会对学生的健康成长产生负面影响。
因此,我们有必要对初一学生的动点问题进行专题研究,探讨这些问题的原因和解决方法,以便更好地帮助他们度过这一阶段。
一、学习动力不足的原因及解决方法1.1原因分析初一学生学习动力不足的原因是多方面的。
首先,学习内容的难度增加,许多学生不适应这种变化,导致学习动力下降。
其次,家庭环境、同学关系等外部因素也会对学生的学习动力产生影响。
另外,学生的兴趣和目标不明确也是导致学习动力不足的重要原因。
1.2解决方法针对初一学生学习动力不足的原因,我们可以采取一系列措施来帮助他们。
首先,要重视学生的学习兴趣和需要,尊重他们的选择和决定,引导他们树立正确的学习目标。
其次,加强家校合作,使家庭和学校共同为学生成长创造良好的学习环境。
此外,学校也可以通过设置丰富多彩的教学活动和课外活动,激发学生的学习兴趣,提高他们的学习动力。
二、情绪波动大的原因及解决方法2.1原因分析初一学生的情绪波动大,主要是由于他们身心发育不成熟,情感容易受到外界环境的影响而起伏不定。
此外,学业压力、人际关系、家庭矛盾等也是导致学生情绪波动大的原因。
2.2解决方法针对初一学生情绪波动大的原因,可以采取一些有效的措施来帮助他们。
首先,学校可以开展情感教育课程,帮助学生了解自己的情绪变化,并学会正确的情绪调节方法。
其次,家长和老师要关注学生的情绪变化,及时与他们沟通交流,帮助他们排解情感压力。
另外,学校也可以通过学生活动、心理辅导等方式,为学生提供情感支持和帮助。
三、压力过大的原因及解决方法3.1原因分析初一学生面临着诸多的学习和人际关系等方面的压力,这些压力会给他们的身心健康带来不利影响。
动点问题(讲义及答案)
动点问题(讲义)一、知识点睛由点(___________)的运动产生的几何问题称为动点问题.动点问题的解决方法:1.研究_____________,_____________;2.分析_____________,分段;3.表达_____________,建等式.二、精讲精练1.已知:如图,在矩形ABCD中,AB=4,AD=10,点E为边AD上一点,且AE=7.动点P从点B出发,沿BC向点C以每秒2个单位的速度运动,连接AP,DP.设点P运动时间为t秒.(1)当t=1.5时,△ABP与△CDE是否全等,请说明理由;(2)当t为何值时,△DCP≌△CDE.2.已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=12,BC=24,动点P从点A出发沿AD向点D以每秒1个单位的速度运动,动点Q从点C出发沿CB向点B以每秒2个单位的速度运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,连接PQ,DQ.设点P运动时间为x秒,请求出当x为何值时,△PDQ≌△CQD.3.已知:如图,在△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.点P在线段BC上以每秒3cm的速度由点B 向点C运动,同时点Q在线段CA上由点C向点A运动.设点P运动时间为t秒,若某一时刻△BPD与△CQP全等,求此时t的值及点Q的运动速度.4.已知:如图,正方形ABCD的边长为10cm,点E在边AB上,且AE=4cm,点P在线段BC上以每秒2cm的速度由点B向点C运动,同时点Q在线段CD上由点C向点D运动.设点P运动时间为t秒,若某一时刻△BPE与△CQP全等,求此时t的值及点Q的运动速度.5.已知:如图,在长方形ABCD中,AB=DC=4,AD=BC=5.延长BC到E,使CE=2,连接DE.动点P从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P运动时间为t秒.(1)请用含t的式子表达△ABP的面积S.(2)是否存在某个t值使得△DCP和△DCE全等,若存在,请求出所有的t值;若不存在,请说明理由.6.已知:如图,在长方形ABCD中,AB=CD=3cm,AD=BC=5cm,动点P从点B出发,以每秒1cm的速度沿BC方向向点C运动,动点Q从点C出发,以每秒2cm的速度沿CD-DA-AB 向点B运动,P,Q同时出发,当点P停止运动时,点Q也随之停止,设点P运动时间为t秒.请回答下列问题:(1)请用含t的式子表达△CPQ的面积S,并直接写出t的取值范围.(2)是否存在某个t值使得△ABP和△CDQ全等,若存在,请求出所有的t值;若不存在,请说明理由.【参考答案】【知识点睛】速度已知1.研究基本图形,标注;2.分析运动过程,分段;3.表达线段长,建等式.【精讲精练】1.解:(1)当t =1.5时,△ABP ≌△CDE .理由如下:如图,由题意得BP =2t∴当t =1.5时,BP =3∵AE =7,AD =10∴DE =3∴BP =DE在矩形ABCD 中AB =CD ,∠B =∠CDE在△ABP 和△CDE 中AB CD B CDE BP DE =⎧⎪∠=∠⎨⎪=⎩∴△ABP ≌△CDE (SAS )(2)如图,由题意得BP =2t∵BC =10∴CP =10-2t若使△DCP ≌△CDE ,则需CP =DE即10-2t =3,t =72∴当t =72时,△DCP ≌△CDE .2.解:如图,由题意得AP =x ,CQ =2x∵AD =12∴DP =12-x要使△PDQ ≌△CQD ,则需DP =QC即12-x =2x ,x =4∴当x =4时,△PDQ ≌△CQD .3.解:如图,由题意得BP =3t∵BC =8∴PC =8-3t∵AB =10,D 为AB 中点∴BD =12AB =5①要使△BDP ≌△CPQ ,则需BD =CP ,BP =CQ即5=8-3t ,t =1∴CQ =3t =3则Q 的速度为Q v =s t =31=3(cm/s )即当t =1,Q 的速度为每秒3cm 时,△BDP ≌△CPQ .②要使△BDP ≌△CQP ,则需BP =CP ,BD =CQ 即3t =8-3t ,CQ =5∴t =43则Q 的速度为Q v =st =5×34=154(cm/s )即当t =43,Q 的速度为每秒154cm 时,△BDP ≌△CQP .综上所述,当t =1,Q 的速度为每秒3cm 或t =43,Q 的速度为每秒154cm 时,△BPD 与△CQP 全等.4.解:如图,由题意得BP =2t∵正方形ABCD 的边长为10cm∴AB =BC =10∴PC =10-2t∵AE =4∴BE =10-4=6①要使△BEP ≌△CPQ ,则需EB =PC ,BP =CQ即6=10-2t ,CQ =2t∴t =2,CQ =4则点Q 的速度为Q v =s t =42=2(cm/s )即当t =2,Q 的速度为每秒2cm 时,△BEP ≌△CPQ .②要使△BEP ≌△CQP ,则需BP =CP ,BE =CQ即2t =10-2t ,CQ =6∴t =52则点Q 的速度为Q v =s t=6×25=125(cm/s )即当t =52,Q 的速度为每秒125cm 时,△BEP ≌△CQP .综上所述,当t =2,Q 的速度为每秒2cm 或t =52,Q 的速度为每秒125cm 时,△BEP 与△CQP 全等.5.解:(1)①当P 在BC 上时,如图,由题意得BP =2t (0<t ≤2.5)1214224ABP S AB BP t t∆=⋅=⨯⨯=∴ ②当P 在CD 上时,(2.5<t ≤4.5)12145210ABP S AB BC ∆=⋅=⨯⨯=∴③当P 在AD 上时,由题意得AP =14-2t (4.5<t <7)12141422284ABP S AB AP t t∆=⋅=⨯⨯=∴--()(2)①当P 在BC 上时,如图,由题意得BP =2t要使△DCP ≌△DCE ,则需CP =CE∵CE =2∴5-2t =2,t =1.5即当t =1.5时△DCP ≌△DCE②当P 在CD 上时,不存在t 使△DCP 和△DCE 全等③当P 在AD 上时,由题意得BC +CD +DP =2t ∵BC =5,CD =4,∴DP =2t -4-5要使△DCP ≌△CDE ,则需DP =CE即2t -9=2,t =5.5即当t =5.5时,△DCP ≌△CDE .综上所述,当t =1.5或t =5.5时,△DCP 和△DCE 全等.6.解:(1)①当Q 在CD 上时,如图,由题意得CQ =2t ,BP=t∴CP=5-t (0<t ≤1.5)2121 (5)225CPQ S CP CQ t t t t ∆=⋅=-⋅=-∴②当Q 在DA 上时,(1.5<t ≤4)121(5)327.5 1.5CPQ S CP CD t t∆=⋅=⨯=∴--③当Q 在AB 上时,由题意得BQ =11-2t (4<t <5)2121(5)(112)2215522CPQ S CP BQ t t t t ∆=⋅=-⨯-=-+∴①当Q 在CD 上时,不存在t 使△ABP 和△CDQ 全等②当Q在AD上时,如图,由题意得DQ=2t-3要使△ABP≌△CDQ,则需BP=DQ∵DQ=2t-3,BP=t∴t=2t-3,t=3即当t=3时,△ABP≌△CDQ.③当Q在AB上时,不存在t使△ABP和△CDQ全等综上所述,当t=3时,△ABP和△CDQ全等.11。
七年级动点问题(已整理)
七年级动点问题(已整理)动点问题是一类开放性题目,其中题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动。
解决这类问题的关键是要在动态中寻找静态,灵活运用相关数学知识来解决问题。
1、在数轴上,点A对应的数是-12或12,点B沿数轴匀速平移经过原点到达。
如果OA=OB,那么点B所对应的数是多少?从点A到达点B所用时间是3秒,求该点的运动速度。
从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。
2、动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度。
已知动点A、B的速度比是1:4.求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置。
若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间。
在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动。
若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度。
3、在数轴上,已知点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x。
若点P到点A,点B的距离相等,求点P对应的数。
数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,求出x的值;若不存在,说明理由。
点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动。
当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间。
求当点A与点B重合时,点P所经过的总路程是多少?4、在数轴上,两个质点A、B所对应的数为-8、4.A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒。
点A、B两点同时出发相向而行,在原点处相遇。
数学动点问题解题技巧初一
数学动点问题解题技巧初一
动点问题是一类比较复杂的数学问题,需要学生具备一定的数学思维和解题能力。
在初一阶段,解决动点问题的方法和技巧主要包括以下几个方面:
1.理解题意
动点问题通常涉及一些物体或点在运动过程中的变化,因此需要首先理解题目的意思,明确哪些是变化的量,哪些是不变的量。
同时,需要注意题目中的单位、符号等细节问题。
2.建立模型
在理解题意的基础上,需要将题目中的问题转化为数学模型。
通常可以利用图形、图表等方式来建立模型,帮助理解问题。
在建立模型的过程中,需要注意变量的选择和表示。
3.确定变量
在动点问题中,通常会有多个变量在变化,如时间、速度、距离等。
需要选择合适的变量来表示问题中的变化,并明确各个变量之间的关系。
4.建立方程
根据题目所给条件和建立的模型,可以建立相应的方程来表示问题。
在建立方程的过程中,需要注意单位的统一和符号的使用。
5.求解方程
建立方程后,需要求解方程以得出答案。
在求解方程的过程中,需要注意方程的解是否符合题意,以及单位的转换等问题。
6.整合答案
最后一步是将求解出的方程的解整合成完整的答案。
需要注意答案的单位、
符号等细节问题,以及答案的合理性。
总之,解决动点问题需要学生具备一定的数学思维和解题能力。
通过理解题意、建立模型、确定变量、建立方程、求解方程和整合答案等步骤,可以逐步解决这类问题。
同时,也需要多加练习和思考,提高解题的速度和准确性。
简单的动点问题
练习二:1.参加一次聚会的每两人都握了一次手,所有人共握手66次,有多少人参加聚会2.要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛3.初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人三.简单动点问题与路程相关,找到直角三角形,用勾股定理找等量关系。
与面积相关,两种常用方法:图形本身的公式和割补法。
1.如图(a )所示,在△ABC 中∠B=90°,AB=6cm ,BC=8cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度运动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度运动.(1)如果P 、Q 分别从A 、B 同时出发,经过几秒钟,使S △PBQ =8cm 2.(2)如果P 、Q 分别从A 、B 同时出发,并且P 到B 后又继续在BC 边上前进,Q 到C•后又继续在CA 边上前进,经过几秒钟,使△PCQ 的面积等于.(a)BA C Q P2.如图所示,已知甲、乙两人分别从正方形广场ABCD的顶点C、B两点同时出发,甲由C向D运动,乙由B向C运动,甲的速度为1千米/分,乙的速度为2千米/分,若正方形广场的周长为40千米,则几分钟后,两人相距102千米3.如图,某市区南北走向的北京路与东西走向的喀什路相交于点O处.甲沿着喀什路以4m/s的速度由西向东走,乙沿着北京路以3m/s的速度由南向北走.当乙走到O点以北50m处时,甲恰好到点O处.若两人继续向前行走,求两个人相距85m时各自的位置.4.如图,已知A,B,C,D为矩形的四个顶点,AB=16cm , AD=6cm,动点P,Q分别从点A,C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向D移动。
问:(1)P,Q两点出发多长时间时,四边形PBCQ的面积是332cm(2)P,Q两点出发多长时间时,点P与点Q的距离是10cm四.传播繁殖问题1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑作业1.一个两位数,它的数值等于它的个位上的数字的平方的3倍,它的十位上的数字比个位上的数字大2,若设个位数字为x,列出求这个两位数的方程__________________________。
动点问题
由.
C
Q P
A
B
谢谢各位老师的指导
练习:如图,已知矩形ABCD的边长AB=2,
BC=3,点P是AD边上的一动点(P异于A、D), Q是BC边上的任意一点. 连AQ、DQ,过P作 PE∥DQ交AQ于E,作PF∥AQ交DQ于F. (1)求证:△APE∽△ADQ; (的大2)函值设数?A关 最P的系 大长式 值为, 为x并多,求少试当?求P△在P何E处F的时面,积S△SP△EPFE取F关得于最x
动态几何 ——动点问题(1)
例1、如图,l 表示一条河流,A处有一放牛的
小孩,现在小孩需要牵牛到河中饮水,再 回到家中B处。问小孩沿着怎样的路线才能 使所走路程最短?
B
A
l
P A'
如图,圆O中半径OA⊥半径OB,BC
2
AC
点P是OA上的一个动点,若半径OA=2,请 求出PB+PC的最小值。
2CLeabharlann Q PAB
例2、 如图,△ABC中,∠C=90°,AC=3厘米,CB=4厘米.两 个动点P、Q分别从A、C两点同时按顺时针方向沿△ABC的边运 动.当点Q运动到点A时,P、Q两点运动即停止.点P、Q的运动 速度分别为1厘米/秒、2厘米/秒,设点P运动时间为t(秒).
(2)当点P、Q运动时,△CPQ的面积大小也随之变化.设 △CPQ面积为S(厘米2),求出S与时间t的函数关系式,并指 出自变量t的取值范围;
B
C
A OP
A
B'
Q
A B
A' P
等腰三角形
Q
A
A'
P
B
抛物线
动点问题(含答案)
动点问题1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?点评:此题主要考查了平行四边形、等腰梯形,直角梯形的判定,难易程度适中.2. 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.(1)试说明EO=FO;(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.点评:本题主要考查利用平行线的性质“等角对等边"证明出结论(1),再利用结论(1)和矩形的判定证明结论(2),再对(3)进行判断.解答时不仅要注意用到前一问题的结论,更要注意前一问题为下一问题提供思路,有相似的思考方法.是矩形的判定和正方形的性质等的综合运用.3. 如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.(1)求NC,MC的长(用t的代数式表示);(2)当t为何值时,四边形PCDQ构成平行四边形;(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由;(4)探究:t为何值时,△PMC为等腰三角形.点评:此题繁杂,难度中等,考查平行四边形性质及等腰三角形性质.考查学生分类讨论和数形结合的数学思想方法.4. 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.点评:本题考查到三角形、平行四边形、等腰梯形等图形的边的特点.5.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.(1)当t为何值时,四边形MNCD是平行四边形?(2)当t为何值时,四边形MNCD是等腰梯形?点评:考查了等腰梯形和平行四边形的性质,动点问题是中考的重点内容.6. 如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).(1)设△BPQ的面积为S,求S与t之间的函数关系;(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.7. 直线y=— 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B⇒A运动.(1)直接写出A、B两点的坐标;(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.点评:本题主要考查梯形的性质及勾股定理.在解题(2)时,应注意分情况进行讨论,防止在解题过程中出现漏解现象.错误!错误!1。
六年级动点问题知识点
六年级动点问题知识点动点是数学中的一个重要概念,主要用于描述物体在空间中的位置以及位置的变化。
在六年级数学中,学生需要学习和掌握一些与动点相关的知识点。
本文将从定义、性质和运用三个方面,为您介绍六年级动点问题的知识点。
一、定义动点是指在空间中不断变化位置的点。
它可以通过坐标来表示,常用的表示方式有实数坐标和有理数坐标。
实数坐标是指通过实数值来表示点在坐标轴上的位置,有理数坐标则是指通过有理数值来表示。
学生在学习动点时,需要学会根据坐标轴上的数线进行定位,并正确理解坐标的正负关系。
二、性质1. 平移性质:动点可以沿着坐标轴的正方向或负方向移动,移动的距离可以是整数或分数。
在平移过程中,动点的坐标会发生相应的变化,但相对位置关系保持不变。
2. 对称性质:若点A的坐标为(x,y),则关于坐标轴的对称点为(-x,y)或(x,-y)。
对称性质可以帮助学生在处理动点问题时进行简化和推导,快速找到解决方案。
三、运用1. 描述物体的位置:动点可以用来描述物体在空间中的位置。
学生可以通过将物体与坐标轴相关联,使用动点来表示物体在不同时间点的位置。
2. 解决问题:动点问题常常涉及到变量和方程式,学生需要通过建立方程式来解决问题。
例如,根据已知条件设置方程,让动点的坐标满足这些条件,从而求解未知值。
3. 图形变换:通过变换动点的坐标,可以实现对图形的平移、翻转、旋转等操作。
学生可以通过练习动点问题,提高对二维图形变换的理解和应用能力。
4. 单元格坐标:在Excel等电子表格软件中,单元格可以看作是一个二维坐标系中的动点。
学生可以通过掌握动点的概念和性质,更好地理解和应用电子表格软件,提高数据处理和图表绘制的能力。
综上所述,六年级动点问题涉及动点的定义、性质和运用。
学生需通过实例练习,掌握动点在空间中的位置变化,能够建立方程和图形变换方面的联系。
通过运用动点知识,学生可以更好地解决位置相关的问题,提高数学思维与解决问题的能力。
七年级动点问题20道含答案
七年级动点问题20道含答案一、七年级动点问题20道1. 函数$y=3cos\frac{3\pi x}{4}$的图像称作:(A.余弦曲线)2. 斜率等于负一,斜截式为$y=7x-5$的直线称作:(B.负斜率直线)3. 求函数$f(x)=x^3-7x+2$在$x=2$处取得最大值:(D.8)4. 直线$y=mx+b$中,m 为:(A.斜率)5. 闭合曲线$\frac{x^2}{4}+\frac{y^2}{9}=1$在$x$=4处的坐标是:(C. $(4,\frac{3}{2})$)6. 函数$f(x)=2x^{2}-3$的最小值是:(B. -3)7. 函数$f(x)=\frac{x^2}{2}+1$的图像是:(A.抛物线)8. 函数$f(x)=2x+5$的大致图象是:(B.直线)9. 三维坐标中,z 轴表示的为:(C.高度)10. 绘制抛物线需要:(A.二个点)11. 点$A(-1,2)$绕原点旋转$90^{\circ}$后,其新坐标是:(B. $(2,-1)$)12. 子弹以15米/秒的速度射出,它从出射点到返回出射点所需要的时间为:(B.2秒)13. 平面内的向量$\overrightarrow{a}$和$\overrightarrow{b}$的夹角为30°,且$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=4$,则$\overrightarrow{a}\cdot\overrightarrow{b}$ 为:(D.6)14. 直线$y=2/3x-3$的斜率为:(B. 2/3)15. 一个三角形的两个锐角都为$60^{\circ}$,则这个三角形是:(D.等腰三角形)16. 半径为4的圆的面积为:(B.50.27公分平方)17. 在正方形ABCD中,点P到边AB的距离是4,A点到点P的垂直平分线的距离为:(D. 2)18. 圆$x^{2}+y^{2}+8x+2y-13=0$的圆心坐标是:(C. (-4, -1))19. $f(x)=-2x^2+4$的最小值是:(A. 0)20. 角A,B,C构成的夹角是60度,AB=5,BC=7,AC=:(B. 8)二、七年级动点文章今天,我们就来一起练习一下关于七年级动点的知识吧!首先,对于函数问题,函数$y=3cos\frac{3\pi x}{4}$的图像应当称作余弦曲线。
动点问题公式
动点问题公式
转换
动点问题公式转换是一种在分析物体的运动时,将物体的运动方程写成不同的形式的方法。
通常情况下,动点问题公式转换会利用到坐标变换、抛物线方程以及高斯准则等数学技巧。
例如,假设有一个物体在x-y平面中运动,它的运动方程可以表示为:x = x0 + t*Vx, y = y0 + t*Vy。
这里,x0,y0表示物体初始位置,t表示时间,Vx,Vy表示物体的x, y方向上的速度。
动点问题公式转换就是将这个方程变换为其他形式,如:r = r0 + t*Vr, θ = θ0 + t*ω。
其中,r0表示物体的初始距离,θ0表示物体初始的角度,Vr、ω分别表示物体的径向和角速度。
通过动点问题公式转换,可以使物体的运动更加直观和清晰,从而更好地分析和理解物体的运动规律。
动点问题
有关“动点”的运动问题”
1)关键—— 以静代动 把动的点进行转换,变为线段的长度, 2)方法—— 时间变路程
求“动点的运动时间”可以转化为求“动点 的运动路程”,也是求线段的长度; 3)常找的数量关系——
面积,勾股定理等; 由此,学会把动点的问题转化为静点的问题, 是解这类问题的关键.
例1 在矩形ABCD中,AB=6cm,BC=12cm, 点P从点A开始以1cm/s的速度沿AB边向点 B移动,点Q从点B开始以2cm/s的速度沿BC 边向点C移动,如果P、Q分别从A、B同时出 发,几秒后⊿ PBQ的面积等于8cm2?
解:设x秒后⊿ PBQ的面积等于8cm2
1 根据题意,得 2 x (6 x) 8 2 2
整 0
解这个方程,得 x1 2, x2 4
Q
0 x 6
所以2秒或4秒后⊿ PBQ的 面积等于8cm2
A P
B
专题02 数轴上的三种动点问题
专题02 数轴上的三种动点问题引言在数学中,数轴是一个常见的工具,用于表示实数集合。
它是一条无限长的直线,上面的每个点都对应着一个实数。
在数轴上,我们可以研究各种动点问题,这些问题涉及到点在数轴上的移动和相对位置的变化。
本文将介绍三种常见的数轴上的动点问题,并提供解决问题的方法和示例。
问题一:点的坐标变化问题问题描述在数轴上,有两个动点A和B,初始坐标分别为a和b。
点A每秒钟向右移动x个单位,点B每秒钟向左移动y个单位。
问在t秒后,点A和点B的坐标分别是多少?解决方法这个问题可以通过简单的数学运算来解决。
首先,我们可以得到点A和点B在t秒后的位移分别为xt和-yt。
将初始坐标与位移相加,即可得到点A和点B在t秒后的坐标。
具体而言,点A在t秒后的坐标为:坐标A = a + xt点B在t秒后的坐标为:坐标B = b - yt示例假设点A的初始坐标为5,点B的初始坐标为10,点A每秒钟向右移动2个单位,点B每秒钟向左移动3个单位。
我们要求在2秒后,点A和点B的坐标。
根据上述解决方法,点A在2秒后的坐标为:坐标A = 5 + 2*2 = 9点B在2秒后的坐标为:坐标B = 10 - 3*2 = 4因此,点A在2秒后的坐标是9,点B在2秒后的坐标是4。
问题二:点的相对位置问题问题描述在数轴上,有两个动点A和B,初始坐标分别为a和b。
点A每秒钟向右移动x个单位,点B每秒钟向左移动y个单位。
问在t秒后,点A和点B相对位置发生了怎样的变化?解决方法要解决这个问题,我们可以通过分析点A和点B的运动情况来确定它们的相对位置是否发生了变化。
首先,我们需要确定点A和点B在t秒内是否相遇。
如果点A在t秒内移动的距离和点B在t秒内移动的距离之和大于等于它们的初始距离,那么它们相遇;反之,则它们没有相遇。
如果它们相遇了,我们可以继续分析它们的相对位置。
如果点A在相遇时位于点B的左侧,则相对位置发生了变化;反之,则相对位置没有发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动点问题“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.速度特点: 1. 运动方向2. 运动速度3. S=vt注意:时间范围确定最终状态分类关键: 动中求静.解题方法及思想:数学思想:分类思想函数思想方程思想数形结合思想转化思想专题一: 几何中动点问题动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置)。
近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
【例1】 如图,在等腰梯形ABCD 中,AD BC ∥,5075135AB DC AD BC ====,,,点P 从点B 出发沿折线段BA AD DC --以每秒5个单位长度的速度向点C 匀速运动,点Q 从点C 出发沿线段CB 方向以每秒3个单位长度的速度匀速运动,过点Q 向上作射线QK BC ⊥,交折线段CD DA AB --于点E ,点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止,设点P 、Q 运动的时间是t 秒()0t >(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长; (2)当点P 运动到AD 上时,t 为何值能使PQ DC ∥?(3)设射线QK 扫过梯形ABCD 的面积为S ,分别求出点E 运动到CD DA ,上时,S 与t 的函数关系式;(不必写出t 的取值范围)P KQ EDCBA【例2】 如图,在平面直角坐标系中,点()30A,,()332B ,,()02C ,,动点D 以每秒1个单位的速度从点O 出发沿OC 向终点C 运动,同时动点E 以每秒2个单位的速度从点A 出发沿AB 向终点B 运动,过点E 作EF AB ⊥交BC 于点F ,连结OA 、OF ,设运动时间为t 秒.(1)求ABC ∠的度数; (2)当t 为何值时,AB DF ∥; (3)设四边形AEFD 的面积为S , ①求S 关于t 的函数关系式;②若一抛物线2y x mx =+经过动点E ,当23S <时,求m 的取值范围.y x D FE OC BA【例3】 如图,在平面直角坐标系中,四边形OABC 为矩形,点A B ,的坐标分别为()()4043,,,,动点M N ,分别从点O B ,同时出发,以每秒1个单位的速度运动,其中点M 沿OA 向终点A 运动,点N 沿BC 向终点C 运动,过点N 作NP BC ⊥,交AC 于点P ,连结MP ,当两动点运动了t 秒时.(1)P 点的坐标为( , )(用含t 的代数式表示). (2)记M PA ∆的面积为S ,求S 与t 的函数关系式(04)t <<. (3)当t = 秒时,S 有最大值,最大值是 .(4)若点Q 在y 轴上,当S 有最大值且QAN ∆为等腰三角形时,求直线AQ 的解析式.y xOPNMCBA【例4】 ABC ∆中,90C ∠=︒,60A ∠=︒,2cm AC =.长为1cm 的线段MN 在ABC ∆的边AB 上沿AB 方向以1cm/s 的速度向点B 运动(运动前点M 与点A 重合).过M N ,分别作AB 的垂线交直角边于P ,Q 两点,线段MN 运动的时间为ts .(1)若AM P ∆的面积为y ,写出y 与t 的函数关系式(写出自变量t 的取值范围);(2)线段MN 运动过程中,四边形MNQP 有可能成为矩形吗?若有可能,求出此时t 的值;若不可能,说明理由;(3)t 为何值时,以C ,P ,Q 为顶点的三角形与ABC ∆相似?N M QPBA C5.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C时,点M 也随之停止运动.设运动时间为t 秒.⑴ 若4a =厘米,1t =秒,则PM =______厘米;⑵ 若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;⑶ 若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; ⑷ 是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a 的值;若不存在,请说明理由.P N NMQDC BAQPMDCBA专题二:函数中动点问题(写出走过和剩下的路程,再找等量关系)【例1】 已知抛物线2y ax bx c =++与y 轴交于点()03A ,,与x 轴分别交于()10B ,、()50C ,两点. (1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点,求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E ,点F 的坐标,并求出这个最短总路径的长.xCA'33B EFy M'O MA2.如图,在平面直角坐标系xOy 中,ABC 三个机战的坐标分别为()6,0A -,()6,0B ,()0,43C ,延长AC 到点D,使CD=12AC ,过点D 作DE ∥AB 交BC 的延长线于点E. (1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线y kx b =+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线y kx b =+与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。
(要求:简述确定G 点位置的方法,但不要求证明)专题三:双动点问题(利用图形性质列t 的方程,分类)1.已知直线y=kx-3与x 轴交于点A (4,0),与y 轴交于点C ,抛物线234y x mx n =-++经过点A 和点C,动点P 在x 轴上以每秒1个长度单位的速度由抛物线与x 轴的另一个交点B 向点A 运动,点Q 由点C 沿线段CA 向点A 运动且速度是点P 运动速度的2倍. (1)求此抛物线的解析式和直线的解析式;(2)如果点P 和点Q 同时出发,运动时间为t (秒),试问当t 为何值时,△PQA 是直角三角形; (3)在直线CA 上方的抛物线上是否存在一点D ,使得△ACD 的面积最大,若存在,求出点D 坐标;若不存在,请说明理由.2.如图:抛物线经过A (-3,0)、B (0,4)、C (4,0)三点. (1)求抛物线的解析式.(2)已知AD = AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ +MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。
(注:抛物线2y ax bx c =++的对称轴为2bx a=-)QP O DC (4,0)B (0,4)A (-3,0)xy3.如图,已知抛物线(1)233()0y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.QPMODC B Axy4.如图,已知抛物线1C 与坐标轴的交点依次是()40A -,,()20B -,,()08E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式;(2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C ,D 两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围; (3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t的值;若不能,说明理由.E -6-5HNMD C BA Oy x-2-1-4-3-2-112345687543215.在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x mx m y 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上. (1)求B 点的坐标;(2)点P 在线段OA 上,从O 点出发向A 点运动,过P 点作x 轴的垂线,与直线OB 交于点E ,延长PE 到点D ,使得ED =PE ,以PD 为斜边,在PD 右侧作等腰直角三角形PCD (当P 点运动时,C 点、D 点也随之运动).①当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;②若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止运动,P 点也同时停止运动).过Q 点作x 轴的垂线,与直线AB 交于点F ,延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点、N 点也随之运动).若P 点运动到t 秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t 的值.6.如图,在平面直角坐标系中,以点(04)C ,为圆心,半径为4的圆交y 轴正半轴于点A , AB 是C ⊙的切线.动点P 从点A 开始沿AB 方向以每秒1个单位长度的速度运动,点Q 从O 点开始沿x 轴正方向以每秒4个单位长度的速度运动,且动点P 、Q 从点A 和点O 同时出发,设运动时间为t (秒). ⑴当1t =时,得到1P 、1Q 两点,求经过A 、1P 、1Q 三点的抛物线解析式及对称轴l ; ⑵当t 为何值时,直线PQ 与C ⊙相切?并写出此时点P 和点Q 的坐标;⑶在⑵的条件下,抛物线对称轴l 上存在一点N ,使NP NQ +最小,求出点N 的坐标并说明理由.l Q 1P 1yxQOPCBA。