热处理原理以及退火正火淬火回火工艺
钢的热处理(原理及四把火)
钢的热处理钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。
热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。
其共同点是:只改变内部组织结构,不改变表面形状与尺寸。
第一节钢的热处理原理热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。
热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。
热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下)1、整体热处理:包括退火、正火、淬火、回火和调质;2、表面热处理:包括表面淬火、物理和化学气相沉积等;3、化学热处理:渗碳、渗氮、碳氮共渗等。
热处理的三阶段:加热、保温、冷却一、钢在加热时的转变加热的目的:使钢奥氏体化(一)奥氏体( A)的形成奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。
在铁素体和渗碳体的相界面上形成。
有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。
1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。
2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。
(F比Fe 3 C先消失)3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。
(二)奥氏体晶粒的长大奥氏体大小用奥氏体晶粒度来表示。
分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。
热处理工艺
热处理工艺热处理工艺是通过加热和冷却对金属材料进行控制的工艺过程,目的是改变其原有的物理和化学性质,以提升材料的性能。
热处理工艺包括退火、正火、淬火、回火、疏松加热等不同方法。
本文将介绍热处理工艺的原理、方法和应用。
一、热处理工艺原理1.金属材料的组织结构与性能金属材料由于晶粒和晶界结构,其中晶粒内的原子排列方式称为晶态。
金属材料的物理和力学性质与其晶粒和晶界结构有关。
晶粒的大小、形状、分布和晶界的状态对金属材料的强度、硬度、塑性、韧性、导电性等性质影响显著。
2.热处理过程的原理由于金属材料在加热和冷却过程中的物理和化学反应,其晶粒和晶界组成的结构也会发生变化,从而影响其物理和化学性质。
热处理工艺就是通过控制材料的加热、保温时间和冷却速度等参数来控制金属材料的组织结构,从而提高材料的性能。
二、热处理方法1.退火退火是将金属材料加热至一定温度,保温一定时间后慢冷的热处理方法。
通过退火可以改变金属材料的晶界和晶粒的结构,增强塑性、韧性和延展性能。
退火方法也有多种不同的类型,包括全退火、球化退火、等温退火和局部退火等。
2.正火正火是将金属材料加热至一定温度,保温一定时间后慢冷的热处理方法。
通过正火可以改变金属材料的晶粒组织结构,提高其强度和硬度。
3.淬火淬火是将金属材料加热至一定温度,然后迅速浸入冷却介质中,使其迅速冷却的热处理方法。
淬火可以使晶粒迅速细化,提高材料的硬度和强度,但同时也会减少塑性和韧性。
4.回火回火是在淬火后将材料重新加热至一定温度并保温一定时间后冷却的热处理方法。
回火可以通过改变材料的晶界和晶粒组织结构来调整其硬度和韧性。
5.疏松加热疏松加热是将金属材料加热至一定温度并保温一定时间,旨在在已存在的材料中生成孔洞或气体,使材料产生疏松现象。
此工艺常用于铸造后处理中,其目的是在材料中消除潜在的缺陷和裂纹。
三、应用热处理工艺广泛应用于制造业中,包括钢铁、铸造、航空航天、汽车和电子等领域。
热处理原理与工艺
热处理原理与工艺热处理是一种通过加热和冷却来改变材料性能的工艺。
它可以使金属材料获得所需的力学性能、物理性能和化学性能,从而满足不同工程要求。
热处理工艺包括退火、正火、淬火、回火等,不同的工艺可以实现不同的效果。
下面将详细介绍热处理的原理和工艺。
首先,我们来介绍退火工艺。
退火是将金属材料加热到一定温度,保持一定时间后,再以适当速度冷却到室温。
退火的目的是消除材料内部的应力,改善塑性和韧性,降低硬度。
这种工艺适用于大多数金属材料,尤其是碳钢和合金钢。
其次,正火工艺是将金属材料加热到临界温度以上,保持一定时间后,再冷却到室温。
正火可以提高金属的硬度和强度,同时保持一定的韧性。
这种工艺适用于低碳钢、合金钢和工具钢等材料。
淬火是将金属材料加热到临界温度以上,然后迅速冷却到室温。
淬火可以使金属材料获得高硬度和高强度,但同时会降低其韧性。
这种工艺适用于合金钢、高速钢和不锈钢等材料。
最后,回火是将经过淬火处理的金属材料加热到一定温度,然后保持一定时间后冷却。
回火可以降低金属的脆性,提高韧性和塑性。
这种工艺适用于经过淬火处理的合金钢和工具钢等材料。
在进行热处理工艺时,需要注意控制加热温度、保温时间和冷却速度,以确保获得所需的材料性能。
同时,还需要考虑材料的化学成分、组织结构和形状等因素,综合运用各种热处理工艺,以达到最佳的效果。
总之,热处理是一种重要的金属材料加工工艺,通过改变材料的组织结构和性能,可以满足不同工程要求。
各种热处理工艺都有其特定的原理和适用范围,只有深入理解这些原理,才能正确地选择和应用热处理工艺,从而获得优质的金属材料。
热处理工艺基本知识
9.2.5 钢的淬透性
1. 淬透性的概念
淬透层深度
当试样尺寸较大时, 从表面向内冷却速度逐渐减小, 当冷却速度低 于Vc, 就不能得到全部马氏体, 随着深度的加深, 马氏体的数量愈 来愈少, 到达一定的深度后, 冷却速度低于Vc’, 根本不能发生马 氏体相变。所以大尺寸试样想全部得到马氏体是不可能的, 随着 马氏体数量的减少, 对应的硬度也不断下降, 通常把淬火钢从表面 到马氏体组织占50%处的距离成为淬透层深度。实际淬透层的深 度除了与材料本身有关外, 还与试样的大小、冷却方式有密切的 关系。
9.2.2 淬火冷却介质
理想的淬火冷却速度 为保证得到多 的马氏体, 冷却速度应该大于临界冷 却速度Vc;为防止零件变形、开裂, 冷却应慢一些。所以理想的冷却速 度如图, 开始冷却慢一些, 在快要发 生组织转变时快冷, 以躲开鼻子尖, 随后又慢冷让马氏体转变慢慢的进
常行用。 淬火介质
盐水、碱水 10-15%的NaCl水溶液是最强的冷却介质。 清水 直接冷却和沸腾的蒸汽冷却, 冷却能力也很强。 碱浴、硝盐浴 熔融的氢氧化钠、硝酸盐、亚硝酸盐导热能力很强, 在
3. 却分,级躲淬开火鼻子淬温入度15,0估-计26温0℃度硝低盐于浴中躲过了鼻尖, 停留一 5段00时℃间时让立表即面转和入心油部中温, 放度慢均冷匀却, 热应力松弛。取出空冷。 速度继续冷却到室温。
4. 等温淬火 直接淬入硝盐浴中保温, 发生贝氏体转变。 5. 局部淬火 局部加热法或局部冷却法 6. 冷处理 冷却到室温以下的过程称为“冷处理”。
第九章 钢的热处理工艺
钢的退火和正火 钢的淬火和回火 其它热处理
9.1 钢的退火与正火
9.1.1 退火操作及其应用
退火: 将组织偏离平 衡状态的钢加热到适 当的温度,保温一定 时间,然后缓慢冷却 (例如随炉冷却),以 获得接近平衡状态组 织的热处理工艺叫做 “退火”。
热处理原理以及退火正火淬火回火工艺
热处理原理以及退火正火淬火回火工艺一、热处理的作用机床、汽车、摩托车、火车、矿山、石油、化工、航空、航天等用的大量零部件需要通过热处理工艺改善其性能。
拒初步统计,在机床制造中,约60%~70%的零件要通过热处理,在汽车、拖拉机制造中,需要热处理的零件多达70%~80%,而工模具及滚动轴承,那么要100%进行热处理。
总之,凡重要的零件都必须进行适当的热处理才能使用。
材料的热处理通常指的是将材料加热到相变温度以上发生相变,再施以冷却再发生相变的工艺过程。
通过那个相变与再相变,材料的内部组织发生了变化,因而性能变化。
例如碳素工具钢T8在市面上购回的经球化退火的材料其硬度仅为20HRC,作为工具需经淬火并低温回火使硬度提高到60~63HRC,这是因为内部组织由淬火之前的粒状珠光体转变为淬火加低温回火后的回火马氏体。
同一种材料热处理工艺不一样其性能差别专门大。
表6-1列出45钢制直径为F15mm的平均园棒材料经退火、正火、淬火加低温回火以及淬火加高温回火的不同热处理后的机械性能,导致性能差别如此大的缘故是不同的热处理后内部组织截然不同。
同类型热处理〔例如淬火〕的加热温度与冷却条件要由材料成分确定。
这些说明,热处理工艺〔或制度〕选择要依照材料的成份,材料内部组织的变化依靠于材料热处理及其它热加工工艺,材料性能的变化又取决于材料的内部组织变化,材料成份-加工工艺-组织结构-材料性能这四者相互依成的关系贯穿在材料加工的全过程之中。
二、热处理的差不多要素热处理工艺中有三大差不多要素:加热、保温、冷却。
这三大差不多要素决定了材料热处理后的组织和性能。
加热是热处理的第一道工序。
不同的材料,其加热工艺和加热温度都不同。
加热分为两种,一种是在临界点A1以下的加热,现在不发生组织变化。
另一种是在A1以上的加热,目的是为了获得平均的奥氏体组织,这一过程称为奥氏体化。
保温的目的是要保证工件烧透,防止脱碳、氧化等。
保温时刻和介质的选择与工件的尺寸和材质有直截了当的关系。
热处理工程实训实验报告
一、实验目的1. 了解热处理的基本原理和工艺流程。
2. 掌握热处理设备的使用方法和操作技巧。
3. 通过实际操作,提高对金属材料性能的认识和掌握。
4. 培养团队合作精神,提高实验操作能力。
二、实验原理热处理是一种金属加工工艺,通过加热、保温和冷却,改变金属内部组织结构,从而改善其性能。
热处理工艺主要包括退火、正火、淬火和回火等。
1. 退火:将金属工件加热到一定温度,保温一段时间后,以适当的速度冷却。
退火的目的主要是消除内应力,降低硬度,提高塑性,改善加工性能。
2. 正火:将金属工件加热到一定温度,保温一段时间后,在空气中冷却。
正火的目的主要是提高硬度,降低韧性,改善切削性能。
3. 淬火:将金属工件加热到一定温度,保温一段时间后,迅速冷却。
淬火的目的主要是提高金属的硬度和耐磨性。
4. 回火:将淬火后的金属工件加热到一定温度,保温一段时间后,以适当的速度冷却。
回火的目的是消除淬火产生的内应力,降低硬度,提高韧性。
三、实验仪器及材料1. 实验仪器:加热炉、洛氏硬度计、金相显微镜、砂纸等。
2. 实验材料:45号钢、20号钢等。
四、实验步骤1. 实验一:45号钢淬火及回火前后硬度测量(1)将45号钢试样加热至850℃,保温30分钟,然后淬火。
(2)将淬火后的试样进行回火,分别在200℃、300℃、400℃下保温1小时。
(3)使用洛氏硬度计测量淬火及回火后的硬度。
2. 实验二:20号钢正火后硬度测量(1)将20号钢试样加热至840℃,保温30分钟,然后正火。
(2)使用洛氏硬度计测量正火后的硬度。
3. 实验三:金相组织观察(1)将45号钢和20号钢试样进行金相制样。
(2)使用金相显微镜观察金相组织。
五、实验结果与分析1. 实验一:45号钢淬火及回火前后硬度测量(1)淬火后的硬度为60HRC,回火后的硬度分别为58HRC、56HRC、54HRC。
(2)随着回火温度的升高,硬度逐渐降低,韧性逐渐提高。
2. 实验二:20号钢正火后硬度测量(1)正火后的硬度为48HRC。
钢热处理工艺的四把火-退火、正火、淬火、回火
正火工艺与操作不当也产生组织缺陷,与退火相似,补救方法基本相同。
“四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调质。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为时效处理。把压力加工形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为形变热处理;在负压气氛或真空中进行的热处理称为真空热处理,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。
球化退火工艺方法很多,最常用的两种工艺是普通球化退火和等温球化退火。普通球化退火是将钢加热到Ac1以上20~30℃,保温适当时间,然后随炉缓慢冷却,冷到500℃左右出炉空冷。等温球化退火是与普通球化退火工艺同样的加热保温后,随炉冷却到略低于Ar1的温度进行等温,等温时间为其加热保温时间的1.5倍。等温后随炉冷至500℃左右出炉空冷。和普通球化退火相比,球化退火不仅可缩短周期,而且可使球化组织均匀,并能严格地控制退火后的硬度。
4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥பைடு நூலகம்料地潜力,节约材料消耗,提高零件使用寿命
5.设备紧凑,使用方便,劳动条件好
6.便于机械化和自动化
7.不仅用在表面淬火还可用在穿透加热与化学热处理等。
• 感应加热的基本原理
将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。
热处理基本知识及工艺原理
热处理基本知识及工艺原理1. 热处理的基础热处理听起来很高大上,其实说白了就是给金属“洗澡”,不过这澡可不是一般的洗澡,它是通过加热和冷却,让金属变得更结实、更耐用。
就像人要适当运动一样,金属也需要“锻炼”才能有更好的表现。
大家常常听到的“热处理”这两个字,实际上是金属加工中的一个重要环节,尤其是在制造一些需要承受高强度和高温的零件时,它的重要性就显得尤为突出。
1.1 热处理的类型热处理可分为几种主要的类型,比如淬火、回火、退火、正火等等。
这些名字听起来有点像高深的武功秘籍,但其实它们各有各的妙处。
淬火就像是给金属来个猛击,迅速让它从热状态转为冷状态,达到硬化的效果;而回火则是帮金属放松一下,避免太过刚强造成的脆弱。
退火则是金属的“慢养”,通过长时间的加热和缓慢冷却,让金属的内部结构得到调整。
正火呢,就像是在金属身上做个深层按摩,让它恢复到最佳状态。
1.2 热处理的原理那热处理的原理又是什么呢?其实也不复杂。
热处理过程中,金属的内部原子结构会发生变化,就像是大海中的波涛汹涌,时而平静,时而激烈。
加热的时候,原子就像聚会的朋友,欢快地跳动;冷却时,它们就得迅速找到自己的位置,有时候甚至会出现“打架”的情况,这就影响了金属的强度和韧性。
2. 热处理的工艺2.1 工艺步骤热处理的工艺流程一般包括加热、保温和冷却三个步骤。
先是加热,像开车一样,把温度开到理想值,这个过程要慢慢来,别着急;接着就是保温,保持一段时间,让金属的“细胞”好好“吸收养分”;最后是冷却,冷却的方法可以是水、油,甚至空气,各种各样的方式让金属在不同的环境中“转身”。
这整个流程下来,金属的性能就提升了好几个档次。
2.2 影响因素当然,热处理的效果也受很多因素影响,比如温度、时间、冷却速度等。
就好比炒菜,如果温度掌握不好,时间控制不当,最终的味道可就大相径庭了。
为了得到理想的效果,工艺参数的选择可得仔细斟酌。
3. 热处理的应用热处理在我们生活中无处不在,特别是在汽车、航空、机械等行业,都是大显身手的地方。
热处理的4种方法
钢铁热处理的四种基本工艺什么是退火钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。
退火是将金属或合金加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。
退火的目的:退火所能达到的目的主在是:消除锻件及焊接结构的应力,消除冷加工后的加工应力,避免零件在加热和使用过程中产生变形及开裂;消除铸件和锻件的不均匀组织和粗大晶粒,消除合金钢硬而脆的特性,改善其切削加工的性能,胀管时的管头,胀接前也要进行退火。
(1) 降低硬度,改善切削加工性;(2)消除残余应力,稳定尺寸,减少变形与裂纹倾向;(3)细化晶粒,调整组织,消除组织缺陷。
在生产中,退火工艺应用很广泛。
根据工件要求退火的目的不同,退火的工艺规范有多种,常用的有完全退火、球化退火、和去应力退火等。
正火与退火的区别,处理温度正火的冷却速度比退火快,得到的组织较细,工件的强度和硬度比退火高。
对于高碳钢的工件,正火后硬度偏高,切削加工性能变差,故宜采用退火工艺。
从经济方面考虑,正火比退火的生产周期短,设备利用率高,生产效率高,节约能源、降低成本以及操作简便,所以在满足工作性能及加工要求的条件下,应尽量以正火代替退火。
退火和正火可在电阻炉或煤、油、煤气炉中进行,最常用的是电阻炉。
电阻炉是利用电流通过电阻丝产生的热量来加热工件,同时用热电偶等电热仪表控制温度,操作简单、温度准确。
在加热过程中,由于工件与外界介质在高温下发生化学反应,当加热温度和加热速度控制不当或装炉不合适时,会造成工件氧化、脱碳、过热、过烧及变形等缺陷。
因此要严格控制加热温度和加热速度等。
图2-2为退火和正火的加热温度范围。
什么样叫金属冷加工硬化现象?在工程中,有时需用对钢件进行冷加工,如锻打、压延、弯曲、冲压等。
当冷加工产生塑性变形时,不但其外形发生了变化,其内部的晶粒形状也会发生变化,晶粒沿受力方向被拉长。
冷加工塑性变形较大时,还会产生较大内应力。
这种现象称为冷加工硬化。
利用冷加工硬化对钢材使用强度的提高是有限的,而冷加工硬化引起的塑性降低及残存的内应力则是有害的。
热处理中的正火、退火、回火
正火:正火是将钢加热到Ac3以上30~50°C(亚共析钢)或Acm以上30~50°C (过共析钢),保温后在空气中冷却的热处理工艺。
正火和退火作用相似,也是将钢加热到奥氏体区,使钢进行重结晶,从而解决铸钢件、锻件的粗大晶粒和组织不均问题。
但正火比退火的冷却速度稍快,形成了索氏体组织组织。
索氏体比珠光体的强度、硬度稍高,但韧性并未下降。
正火主要用于:(1)取代部分完全退火。
正火是在炉外冷却,占用设备时间短,生产率高,故应尽量用正火取代退火。
必须看到,含碳量较高的钢,正火后硬度过高,使切削加工性变差,且正火难以消除内应力。
因此,中碳合金钢、高碳钢及复杂件仍以退火为宜。
(2)用于普通结构件的最终热处理。
(3)用于过共析钢,以减少或消除二次渗碳体呈网状析出。
退火是将钢加热、保温,然后随炉或埋入灰中使其缓慢冷却的热处理工艺。
(1).完全退火它是将亚共析钢加热到Ac3以上30~50°C ,保温后缓慢冷却,以获得接近平衡状态组织。
完全退火主要用于铸钢件和重要锻件。
因为铸钢件铸态下晶粒粗大,塑性、韧性较差;锻件因锻造时变形不均匀,致使晶粒和组织不均,且存在内应力。
完全退火可降低硬度,改善切削加工性。
完全退火的原理是:钢件被加热到Ac3以上时,呈完全奥氏体状态,由于初始形成的奥氏体晶粒非常细小,缓慢冷却时,通过“重结晶”使钢件获得细小经历,并消除了内应力。
必须指出,应严格控制加热温度、防止温度过高,否则奥氏体晶粒将急剧长大。
(2).球化退火主要用于过共析钢件。
过共析钢经过锻造以后,其珠光体晶粒粗大,且存在少量二次渗碳体,致使钢的硬度高、脆性大,进行切削加工时易磨损刀具,且淬火时容易产生裂纹和变形。
球化退火时,将钢加热到Ac1以上20~30°C。
此时初始形成的奥氏体内及其晶界上尚有少量未完全溶解的渗碳体,在随后的冷却过程中,奥氏体经共析反应析出的渗碳体便以未溶渗碳体为核心,呈球状析出,分布在铁素体基体上,这种组织称为“球化体”。
热处理的实验报告
一、实验目的1. 了解热处理对金属材料性能的影响。
2. 掌握热处理的基本工艺流程及操作方法。
3. 通过实验验证不同热处理工艺对材料性能的影响。
二、实验原理热处理是通过对金属材料进行加热、保温和冷却,使金属内部组织结构发生变化,从而改变其性能的一种工艺方法。
热处理工艺主要包括退火、正火、淬火和回火等。
1. 退火:将金属加热到一定温度,保温一段时间,然后缓慢冷却,以消除金属内部应力,降低硬度,提高塑性。
2. 正火:将金属加热到一定温度,保温一段时间,然后在大气中冷却,以获得一定的组织结构和性能。
3. 淬火:将金属加热到一定温度,保温一段时间,然后快速冷却,以获得高硬度和高耐磨性的组织。
4. 回火:将淬火后的金属加热到一定温度,保温一段时间,然后缓慢冷却,以消除淬火应力,降低硬度,提高韧性。
三、实验仪器与材料1. 仪器:箱式电炉、加热炉、金相显微镜、抛光机、洛氏硬度计、水浴锅、天平等。
2. 材料:45号钢、20CrMnTi钢、T10钢等。
四、实验过程1. 实验一:退火实验(1)将45号钢加热至800℃,保温1小时,然后缓慢冷却至室温。
(2)用金相显微镜观察退火后的组织,记录组织类型和晶粒大小。
(3)用洛氏硬度计测定退火后的硬度,记录数据。
2. 实验二:正火实验(1)将20CrMnTi钢加热至900℃,保温1小时,然后在大气中冷却。
(2)用金相显微镜观察正火后的组织,记录组织类型和晶粒大小。
(3)用洛氏硬度计测定正火后的硬度,记录数据。
3. 实验三:淬火实验(1)将T10钢加热至850℃,保温1小时,然后迅速浸入水中冷却。
(2)用金相显微镜观察淬火后的组织,记录组织类型和晶粒大小。
(3)用洛氏硬度计测定淬火后的硬度,记录数据。
4. 实验四:回火实验(1)将淬火后的T10钢加热至200℃,保温1小时,然后缓慢冷却至室温。
(2)用金相显微镜观察回火后的组织,记录组织类型和晶粒大小。
(3)用洛氏硬度计测定回火后的硬度,记录数据。
退火正火淬火回火的原理
退火正火淬火回火的原理退火、正火、淬火和回火是金属热处理中常见的四种工艺方法,用于改善和调整金属材料的组织和性能。
1. 退火:退火是将金属材料加热到一定温度后,经过一定时间保温,再以适宜速率冷却的过程。
退火可以消除金属材料的残余应力,改善塑性和韧性,并使其晶粒细化。
退火的原理主要有以下几个方面:- 晶界迁移:在高温下,金属材料中晶粒边界的能量降低,导致晶界迁移,晶粒尺寸增大。
- 位错运动:退火过程中,位错能够在晶粒中自由移动,减少位错密度,消除残余应力。
- 本质灭解:某些弥散在金属晶粒中的固溶体相会在退火过程中析出,导致晶粒尺寸的变大和晶格的重新排列。
2. 正火:正火是将金属材料加热到适宜温度保持一段时间后,通过空冷或缓慢冷却的方式进行热处理。
正火的主要作用是将金属材料中的非球状晶粒转化为球状晶粒,提高材料的塑性和韧性。
其原理在于:- 形核长大:正火过程中,晶界能量降低,使得新晶粒的形核长大,同时消除以前晶粒的形核。
- 晶粒的再结晶:晶界的迁移和位错的运动都有助于晶粒的再结晶,使晶粒尺寸增大,晶界能量降低。
- 组织均匀化:正火过程还可以减少金属材料中的偏析和组织不均匀性,使其具有更好的力学性能。
3. 淬火:淬火是将材料加热到适宜温度,然后迅速将其冷却到室温或低温的过程。
淬火的目的是通过迅速冷却,使金属材料中的奥氏体转变为马氏体或者贝氏体,从而提高材料的硬度和强度。
淬火的原理主要有:- 马氏体转变:在热处理过程中,奥氏体在快速冷却时无法充分进行相变,形成具有大量位错和高硬度的马氏体。
- 马氏体变形:马氏体具有较高的弹性变形能力,能够在外力的作用下发生形变,从而得到更高的强度。
4. 回火:回火是将淬火后的金属材料加热到一定温度,保温一段时间后再进行冷却的过程。
回火的目的是通过改变淬火形成的马氏体或贝氏体的组织形态,以获得理想的强度和韧性之间的平衡。
回火的原理主要有:- 残余应力的消除:回火过程中,大部分纯铁的碳体会转变为球状石墨,从而减少金属材料中的残余应力。
金属学原理与热处理 第七章
1. 掌握等温转变曲线和连续冷却转变曲线 2.掌握碳钢在加热和冷却时的组织转变过程
和转变产物的性能 3.掌握合金的时效和调幅分解过程 二、热处理工艺 掌握退火、正火、淬火和回火工艺的目的、
温度和冷却方式,正确制定工艺
第七章钢在加热和冷却时的转变
§7.1 概述 §7.2 钢在加热时的转变 §7.3 钢的过冷奥氏体转变曲线
入γ的终了温度 Arcm---冷却时γ开始析出二次渗
碳体的开始温度
推荐钢号
40Cr 45﹟钢 GCr6 GCr15 65Mn 60Si2Mn
T8A T10A 9SiCr CrWMn 5CrMnMo
典型零件用钢的化学成分及临界温度
C 0.37~0.45 0.42~0.50 1.05~1.15 0.95~1.05 0.57~0.65 0.62~0.70 0.75~0.84 0.95~1.04 0.85~0.95 0.90~1.05 0.50~0.60
改变钢的临界点,从而改变过热度 本身扩散系数低,均匀化过程显著减缓。
奥氏体形成速度的因素
加热温度 原始组织 化学成分
扩散速度,相变驱动力 形核位置,碳扩散距离
碳,合金元素
§7.2 钢在加热时的转变
奥氏体晶粒度:奥氏体晶粒的大小。
1-4级:粗晶 5-8级:细晶
§7.2 钢在加热时的转变
起始晶粒度 实际晶粒度
概述
概述
热处理作用(P177):
1. 改变钢的内部组织、结构,以改善其性能,延长零件 使用寿命;
2. 消除铸造、锻压、焊接等热加工工艺造成的各种缺陷, 细化晶粒,消除偏析,降低内应力,使钢的组织和性能 更加均匀。
3. 预备热处理可以可以为后序加工及最终热处理作好 组织准备。
简述常用热处理工艺的原理与特点
简述常用热处理工艺的原理与特点-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII简述常用热处理工艺的原理与特点。
热处理是指材料在固态下,通过加热、保温和冷却的手段,以获得预期组织和性能的一种金属热加工工艺。
热处理工艺原理1、正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。
2、退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺。
3、淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺。
4、回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。
5、调质处理:一般习惯将淬火加高温回火相结合的热处理称为调质处理。
调质处理广泛应用于各种重要的结构零件,特别是那些在交变负荷下工作的连杆、螺栓、齿轮及轴类等。
调质处理后得到回火索氏体组织,它的机械性能均比相同硬度的正火索氏体组织更优。
它的硬度取决于高温回火温度并与钢的回火稳定性和工件截面尺寸有关,一般在HB200—350之间。
特点:金属热处理是机械制造中的重要工艺之一,金球的热处理工艺与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。
比较钢材与非金属材料热处理的异同点。
热处理有金属材料热处理和非金属材料热处理相同点:热处理的原理基本一样,都是一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。
不同点:1.钢的表面热处理有两大类:一类是表面加热淬火热处理,另一类是化学热处理。
热处理原理与工艺
热处理原理与工艺
热处理是通过对金属材料进行加热、保温和冷却,以改变其组织结构和性能的工艺。
它可以使金属材料获得所需的力学性能和物理性能。
热处理的主要原理是通过改变材料的晶粒结构,调整晶界及相的分布,从而改善金属材料的力学性能和物理性能。
具体来说,热处理主要包括退火、正火、淬火、回火等工艺。
退火是将金属材料加热到一定温度保温一段时间后,慢慢冷却到室温。
退火可以去除金属材料的内应力,改善塑性,提高延展性和强韧性。
退火还可以促进晶界的移动和重排,使得晶粒尺寸变大,晶界变得清晰平整。
正火是将金属材料加热到适当温度保温一段时间后,通过自然冷却或受控冷却的方式冷却到室温。
正火可以提高金属材料的硬度和强度,同时也会降低材料的延展性。
淬火是将热处理金属材料迅速冷却至室温,通常使用水、油等介质进行冷却。
淬火可以使金属材料产生马氏体组织,提高硬度和强度,但会降低塑性和韧性。
回火是在淬火后,将金属材料加热到适当温度保温一段时间后,通过自然冷却或受控冷却的方式冷却到室温。
回火可以消除淬火产生的内应力,并提高金属材料的韧性和塑性。
在热处理过程中,需要控制加热温度、保温时间和冷却速度,
以确保金属材料达到所需的组织结构和性能。
此外,不同的金属材料和工件形状也需要采用不同的热处理工艺。
通过合理的热处理工艺,可以使金属材料在使用过程中具有良好的性能和耐久性。
热处理技术报告
热处理技术报告
简介
本报告旨在介绍热处理技术的基本原理和应用。
热处理技术是
通过控制材料的加热和冷却过程,改变材料的物理和化学性质,以
提高材料的力学性能和耐磨性。
原理
热处理技术通过控制材料的加热温度、保温时间和冷却方式来
改变材料的组织结构和性能。
常见的热处理方法包括退火、正火、
淬火和回火。
- 退火:通过加热材料到一定温度后缓慢冷却,使材料达到最
稳定的结构。
退火可以消除材料的应力,提高材料的延展性和塑性。
- 正火:加热材料到临界温度,然后迅速冷却,使材料达到硬
度和强度的平衡。
正火可以增加材料的硬度和耐磨性。
- 淬火:将加热材料迅速冷却至室温以下,使材料形成马氏体
结构,增加材料的硬度和韧性。
- 回火:在淬火后,通过加热材料到一定温度后冷却,以减轻
材料的脆性。
回火可以提高材料的韧性和抗冲击性。
应用
热处理技术广泛应用于金属和合金的制造和加工过程中。
- 钢铁行业:热处理技术可以提高钢材的硬度、强度和耐磨性,用于制造汽车零部件、机床工具等。
- 航空航天领域:热处理技术可用于加工航空发动机零部件、
航空航天材料,提高材料的高温抗氧化和耐热性能。
- 电子行业:热处理技术可用于制造电子器件的导线和接触材料,提高材料的导电性和稳定性。
总结
热处理技术是一种重要的材料处理方法,通过控制材料的加热
和冷却过程,可以改善材料的性能。
在不同行业中的广泛应用使热
处理技术成为现代工程领域中不可或缺的一环。
钢的热处理原理
钢的热处理原理钢是一种重要的金属材料,广泛应用于机械制造、建筑工程、汽车制造等领域。
而钢的性能很大程度上取决于其热处理过程。
热处理是通过加热和冷却来改变钢的组织结构和性能的工艺过程。
下面将介绍钢的热处理原理。
首先,钢的热处理包括退火、正火、淬火和回火四个基本工艺。
退火是将钢加热到一定温度,然后缓慢冷却到室温,目的是消除残余应力和改善加工硬化组织。
正火是将钢加热到一定温度,然后在空气中冷却,以提高钢的硬度和强度。
淬火是将钢加热到临界温度以上,然后迅速冷却到介质中,以获得马氏体组织,提高钢的硬度。
回火是在淬火后,将钢加热到较低的温度,然后冷却,以降低硬度和提高韧性。
其次,钢的热处理原理是基于固溶、析出和相变的原理。
在加热过程中,钢中的合金元素和碳元素会溶解在钢基体中,形成固溶体。
在冷却过程中,这些元素会析出,形成新的组织结构。
同时,钢的相变也会发生,如奥氏体转变为马氏体,从而改变钢的硬度和强度。
另外,钢的热处理过程中需要控制加热温度、保温时间和冷却速度。
加热温度应该根据钢的成分和要求的性能来确定,一般应该高于临界温度。
保温时间则是保证合金元素和碳元素充分溶解和扩散的时间。
冷却速度则决定了钢的组织结构和性能,快速冷却可以得到马氏体组织,从而提高硬度。
最后,钢的热处理还需要考虑材料的预处理和后处理。
预处理包括去除表面氧化层、清洁和退火,以保证热处理的效果。
后处理则包括除去淬火和回火产生的残余应力、调质和表面处理,以提高钢的综合性能。
综上所述,钢的热处理原理是基于固溶、析出和相变的原理,通过控制加热温度、保温时间和冷却速度来改变钢的组织结构和性能。
热处理是钢材加工中不可或缺的一部分,对于提高钢的硬度、强度和韧性起着至关重要的作用。
因此,在实际生产中,需要根据具体要求合理选择热处理工艺,以确保钢材具有优良的性能。
钢的热处理基本工艺
钢的热处理基本工艺有:退火、正火、淬火和回火。
1.退火——加热到一定温度,经保温后随炉冷却。
2.正火——加热到一定温度,经保温后在空气中冷却。
3.淬火——加热到临界温度以上的某一温度,经保温后以快速冷却(即大于临界冷却速度)。
4.回火——将淬火后的工件重新加热到临界点以下的某一温度,经长时期保温后缓慢冷却。
可分为:⏹①低温回火(150~250℃)目的是消除和降低淬火钢的内应力及脆性,提高韧性,使零件具有较高的硬度(58~64HRC)。
⏹主要用于各种工、量、模具及滚动轴承等,如用T12钢制造的锯条、锉刀等,一般都采用淬火后低温回火。
⏹②中温回火(350~500℃)中温回火后工件的硬度有所降低,但可使钢获得较高的弹性极限和强度(35~45HRC)。
主要用于各种弹簧的热处理。
⏹③高温回火(500~650℃)通常将钢件淬火后加高温回火,称为调质处理。
经调质处理后的零件,既具有一定的强度、硬度,又具有一定的塑性和韧性,即综合力学性能较好(25~35HRC)。
主要用于轴、齿轮、连杆等重要结构零件。
如各类轴、齿轮、连杆等采用中碳钢制造,经淬火+高温回火后,即可达到使用性能的要求。
⏹一般随着回火温度的升高,钢的强度和硬度下降,而塑性韧性上升。
型(芯)砂——芯砂的性能要求比普通型砂的综合性能要高。
1)分型面的确定分型面是指上、下砂型的接触表面。
2)分型面确定的原则:⏹①分型面应选择在模样的最大截面处;⏹②应使铸件上的重要加工面朝下或处于垂直位置;⏹③应使铸件的全部或大部分在同一砂箱内,以减少错箱和提高铸件精度。
典型浇注系统一般包括:外浇口、直浇道、横浇道和内浇道等冒口:主要起补缩作用。
同时还兼有排气、浮渣及观察金属液体的流动情况等。
一般安放在壁厚顶部。
四、熔炼设备⏹铸铁——冲天炉;⏹铸钢——电弧炉;⏹有色金属——坩埚炉。
离心铸造是在离心力的作用下,所以组织致密,无缩孔、气孔、渣眼等缺陷,因此力学性能较好。
铸造空心旋转体铸件不需要型芯和浇注系统,铸件不需要冒口补缩,省工省料、生产率高、质量好、成本低。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热处理原理以及退火正火淬火回火工艺热处理是指通过控制金属的加热和冷却过程,改变其组织结构和性能
的工艺过程。
常见的热处理工艺包括退火、正火、淬火和回火等。
以下将
详细讨论各种工艺的原理及其应用。
1.退火:
退火是指将金属加热到一定温度,保持一段时间后,以适当速度冷却
到室温的过程。
退火的主要目的是改善金属的塑性、韧性和机械性能。
退
火可分为完全退火和不完全退火两种。
完全退火是将材料加热到足够高的
温度,使其结构中的晶界、析出物等发生重排和消失。
不完全退火则是将
材料加热到一定温度,使其结构中的晶界、析出物等部分发生变化。
退火的应用包括消除金属加工硬化,改善冷作硬化材料的塑性、焊接
后消除应力和改善机械加工性能等。
2.正火:
正火是指将金属加热到临界温度以上,保持一定时间后冷却至室温的
过程。
正火的目的是改变金属的组织结构,提高其硬度和强度。
正火的冷
却速度较慢,使金属内部的相转变得以充分进行。
正火的应用包括强化材料的组织结构,提高其抗拉强度、耐磨性和耐
腐蚀性。
3.淬火:
淬火是指将金属加热到相变温度以上,保持一段时间后迅速冷却至室
温的过程。
淬火的目的是使金属中形成高硬度的马氏体结构。
迅速冷却可
以抑制相变,使金属的组织结构保持不稳定状态,从而形成硬脆的马氏体。
淬火的应用包括提高材料的硬度和强度、改善耐磨性和耐腐蚀性。
4.回火:
回火是指将已经淬火过的金属加热到一定温度,保持一段时间后冷却至室温的过程。
回火的目的是消除淬火产生的应力和脆性,同时调整金属的硬度和韧性。
回火一般在淬火后立即进行,以充分发挥淬火的效果。
回火的应用包括提高材料的韧性和塑性,降低其硬度和强度,调整材料的组织结构。
总结起来,退火、正火、淬火和回火是常见的热处理工艺。
它们通过控制金属的加热和冷却过程,改变其组织结构和性能。
退火主要是为了改善塑性和韧性,正火用于提高硬度和强度,淬火用于形成高硬度的马氏体结构,而回火则用于调整硬度、韧性和组织结构。
这些热处理工艺广泛应用于钢铁、铝合金和铜合金等金属材料的制造和加工过程中,以满足不同应用领域对材料性能的需求。