练习13_直线、平面平行的判定及其性质
线线、线面、面面平行练习题(含答案)
DC A B B 1A1C 1直线、平面平行的判定及其性质 测试题A一、选择题1.下列条件中,能判断两个平面平行的是( ) A .一个平面内的一条直线平行于另一个平面; B .一个平面内的两条直线平行于另一个平面 C .一个平面内有无数条直线平行于另一个平面 D .一个平面内任何一条直线都平行于另一个平面2.E ,F ,G 分别是四面体ABCD 的棱BC ,CD ,DA 的中点,则此四面体中与过E ,F ,G 的截面平行的棱的条数是 A .0 B .1 C .2 D .3 3. 直线,a b c ,及平面αβ,,使//a b 成立的条件是( )A .//,a b αα⊂B .//,//a b ααC .//,//a c b cD .//,a b ααβ= 4.若直线m 不平行于平面α,且m ⊄α,则下列结论成立的是( ) A .α内的所有直线与m 异面 B .α内不存在与m 平行的直线 C .α内存在唯一的直线与m 平行 D .α内的直线与m 都相交 5.下列命题中,假命题的个数是( )① 一条直线平行于一个平面,这条直线就和这个平面内的任何直线不相交;② 过平面外一点有且只有一条直线和这个平面平行;③ 过直线外一点有且只有一个平面和这条直线平行;④ 平行于同一条直线的两条直线和同一平面平行;⑤ a 和b 异面,则经过b 存在唯一一个平面与α平行A .4B .3C .2D .1 6.已知空间四边形ABCD 中,,M N 分别是,AB CD 的中点,则下列判断正确的是( ) A .()12MN AC BD ≥+ B .()12MN AC BD ≤+C .()12MN AC BD =+ D .()12MN AC BD <+二、填空题7.在四面体ABCD 中,M ,N 分别是面△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________.8.如下图所示,四个正方体中,A ,B 为正方体的两个顶点,M ,N ,P分别为其所在棱的中点,能得到AB//面MNP 的图形的序号的是①②③④9.正方体ABCD -A 1B 1C 1D 1中,E 为DD 1中点,则BD 1和平面ACE 位置关系是 . 三、解答题10.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.11.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .B一、选择题1.α,β是两个不重合的平面,a ,b 是两条不同直线,在下列条件下,可判定α∥β的是( )A .α,β都平行于直线a ,bB .α内有三个不共线点到β的距离相等C .a ,b 是α内两条直线,且a ∥β,b ∥βD .a ,b 是两条异面直线且a ∥α,b ∥α,a ∥β,b ∥β2.两条直线a ,b 满足a ∥b ,b α,则a 与平面α的关系是( )A .a ∥αB .a 与α相交C .a 与α不相交D .a α 3.设,a b 表示直线,,αβ表示平面,P 是空间一点,下面命题中正确的是( ) A .a α⊄,则//a α B .//a α,b α⊂,则//a bC .//,,a b αβαβ⊂⊂,则//a bD .,,//,//P a P a βααβ∈∈,则a β⊂ 4.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是( )A.异面B.相交C.平行D.不能确定 5.下列四个命题中,正确的是( )①夹在两条平行线间的平行线段相等;②夹在两条平行线间的相等线段平行;③如果一条直线和一个平面平行,那么夹在这条直线和平面间的平行线段相等;④如果一条直线和一个平面平行,那么夹在这条直线和平面间的相等线段平行 A .①③ B .①② C .②③ D .③④6.a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是A .过A 有且只有一个平面平行于a ,bB .过A 至少有一个平面平行于a ,bC .过A 有无数个平面平行于a ,bD .过A 且平行a ,b 的平面可能不存在 二、填空题7.a ,b ,c为三条不重合的直线,α,β,γ为三个不重合的平面,直线均不在平面内,给出六个命题:.⇒⎭⎬⎫;⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫⇒⎭⎬⎫αγγαβαγβγαααβαβαγγ∥∥∥⑥∥∥∥⑤∥∥∥④∥∥∥③∥∥∥②∥∥∥①a a a c a c c c b a b a b a c b c a ;;;; 其中正确的命题是________________.(将正确的序号都填上)8.设平面α∥β,A ,C ∈α,B ,D ∈β,直线AB 与CD 交于S ,若AS =18,BS =9,CD =34,则CS =_____________.9.如图,正四棱柱ABCD-A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,DD 1,DC 中点,N 是BC 中点,点M 在四边形EFGH 及其内部运动,则M 满足 时,有MN ∥平面B 1BD D 1. 三、解答题10.如图,在正四棱锥P ABCD -中,PA AB a ==,点E在棱PC 上. 问点E 在何处时,//PA EBD 平面,并加以证明.11.如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN,求证:直线MN ∥平面PBC .EPDCBA参考答案A一、选择题 1.D【提示】当l =⋂βα时,α内有无数多条直线与交线l 平行,同时这些直线也与平面β平行.故A ,B ,C 均是错误的2.C【提示】棱AC ,BD 与平面EFG 平行,共2条. 3.C【提示】//,,a b αα⊂则//a b 或,a b 异面;所以A 错误;//,//,a b αα则//a b 或,a b 异面或,a b 相交,所以B 错误;//,,a b ααβ=则//a b 或,a b 异面,所以D 错误;//,//a c b c ,则//a b ,这是公理4,所以C 正确.4.B【提示】若直线m 不平行于平面α,且m ⊄α,则直线m 于平面α相交,α内不存在与m 平行的直线. 5.B【提示】②③④错误.②过平面外一点有且只有一个平面和这个平面平行,有无数多条直线与它平行.③过直线外一点有无数个平面和这条直线平行④平行于同一条直线的两条直线和同一平面平行或其中一条在平面上. 6. D【提示】本题可利用空间中的平行关系,构造三角形的两边之和大于第三边. 二、填空题7.平面ABC ,平面ABD【提示】连接AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB .因此,MN ∥平面ABC 且MN ∥平面ABD . 8. ①③【提示】对于①,面MNP//面AB,故AB//面MNP.对于③,MP//AB,故AB//面MNP,对于②④,过AB 找一个平面与平面MNP 相交,AB 与交线显然不平行,故②④不能推证AB//面MNP. 9.平行【提示】连接BD 交AC 于O ,连OE ,∴OE ∥B D 1,OEC 平面ACE ,∴B D 1∥平面ACE. 三、解答题10.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D11.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点 E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点, 所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1 又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH 因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDGB一、选择题1.D【提示】A 错,若a ∥b ,则不能断定α∥β;B 错,若A ,B ,C 三点不在β的同一侧,则不能断定α∥β;C 错,若a ∥b ,则不能断定α∥β;D 正确. 2.C【提示】若直线a ,b 满足a ∥b ,b α,则a ∥α 或a α 3.D【提示】根据面面平行的性质定理可推证之. 4.C【提示】设α∩β=l ,a ∥α,a ∥β,过直线a 作与α、β都相交的平面γ,记α∩γ=b ,β∩γ=c ,则a ∥b 且a ∥c ,∴b ∥c .又b ⊂α,α∩β=l ,∴b ∥l .∴a ∥l . 5.A 【提示】 6. D【提示】过点A 可作直线a ′∥a ,b ′∥b ,则a ′∩b ′=A ,∴a ′,b ′可确定一个平面,记为α.如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 二、填空题 7.①④⑤⑥ 8.68或368 【提示】如图(1),由α∥β可知BD ∥AC ,∴SA SB =SC SD ,即189=SCSC 34-,∴SC =68. SS AABBCCα α ββ(1)(2)DD如图(2),由α∥β知AC ∥BD ,∴SB SA =SD SC =SC CD SC -,即918=SCSC -34. ∴SC =368.9.M ∈HF【提示】易证平面NHF ∥平面BD D 1 B 1,M 为两平面的公共点,应在交线HF 上. 三、解答题 10.解:当E 为PC 中点时,//PA EBD 平面.证明:连接AC ,且AC BD O =,由于四边形ABCD 为正方形,∴O 为AC 的中点,又E 为中点,∴OE 为△ACP 的中位线,∴//PA EO ,又PA EBD ⊄平面,∴//PA EBD 平面. 11.证法一:过N 作NR ∥DC 交PC 于点R ,连接RB ,依题意得NR NR DC -=NP DN =MB AM =MB MB AB -=MBMBDC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB 平面PBC ,∴直线MN ∥平面PBC .证法二:过N 作NQ ∥AD 交P A 于点Q ,连接QM ,∵MB AM =NP DN =QPAQ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN ∥平面PBC .OF ABCDP E。
直线、平面平行的判定和性质
∴PM∥BE,∴APEP=MAMB,
又 AE=BD,AP=DQ,∴PE=BQ, ∴APEP=DBQQ,∴MAMB=DQQB,
∴MQ∥AD,又 AD∥BC,
∴MQ∥BC,∴MQ∥平面 BCE,又 PM∩MQ=M, ∴平面 PMQ∥平面 BCE,又 PQ⊂平面 的直线 a,b 和平面 α, ①若 a∥α,b⊂α,则 a∥b; ②若 a∥α,b∥α,则 a∥b; ③若 a∥b,b⊂α,则 a∥α; ④若 a∥b,a⊂α,则 b∥α 或 b⊂α, 上面命题中正确的是________(填序号). 答案 ④
解析 ①若 a∥α,b⊂α,则 a,b 平行或异面;②若 a∥α,b∥α,则 a,b 平行、相交、异面都有可能;③若 a∥b,b⊂α,a∥α 或 a⊂α.
作 PM∥AB 交 BE 于 M, 作 QN∥AB 交 BC 于 N,
连接 MN. ∵正方形 ABCD 和正方形 ABEF 有公共边 AB,∴AE =BD. 又 AP=DQ,∴PE=QB,
又 PM∥AB∥QN,∴PAMB =PAEE=QBDB,QDNC=BBQD,
∴PAMB =QDNC, ∴PM // QN,即四边形 PMNQ 为平行四边形, ∴PQ∥MN.又 MN⊂平面 BCE,PQ⊄平面 BCE, ∴PQ∥平面 BCE.
直线、平面平行的判定及性质
2012·考纲
1.以立体几何的定义、公理、定理为出发点,认识 和理解空间中线面平行的有关性质和判定定理.
2.能运用公理、定理和已获得的结论证明一些空间位 置关系的简单命题.
课本导读
1.直线和平面平行的判定: (1)定义:直线与平面没有公共点,则称直线平行平面; (2)判定定理: a⊄α,b⊂α,a∥b⇒a∥α ; (3)其他判定方法:α∥β,a⊂α⇒a∥β. 2.直线和平面平行的性质: a∥α,a⊂β,α∩β=l⇒a∥l.
13 直线、平面平行的判定及其性质-艺考生文化课百日冲刺
(十三) 直线、平面平行的判定及其性质1.一条直线若同时平行于两个湘交平面,则这条直线与这两个平面的交线的位置关系是A .异面B .相交C .平行D .不确定2.已知m 、n 是不重合的直线,βα、是不重合的平面,则下列命题是真命题的是①若,//,ααn m ⊂则;//n m,,β⊥⊥m n m ②则;//βn,//n m n ,③=βα 则且α//m β//m④若,,βα⊥⊥m m 则⋅βα//①③.A ②③.B ③④.C ④.D3.设α.β、γ为三个不同的平面,m 、n 是两条不同的直线,在命题“,,y n m ⊂=⋂βα且____,则m∥n” 中的横线处填入下列三组条件中的一组,使该命题为真命题.;,//βγα⊂n ① ;//,//βγn m ②⋅⊂γβm n ,//③可以填入的条件有A .①或②B .②或③C .①或③D .①或②或③4.下列命题正确的是A .直线a 与平面α不平行,则直线a 与平面α内的所有直线都不平行B .如果两条直线与平面α所成的角相等,则这两条直线平行C .垂直于同一直线的两个平面平行D .直线a 与平面α不垂直,则直线a 与平面α内的所有直线都不垂直5.已知直线L 、m 、n 及平面α,下列命题中的假命题是A .若n l n m m l //,//,//则B .若n l n l ⊥⊥则,//,ααC .若n Ll n m m l ⊥⊥,//,D .若n l n l //,//,//则αα6.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是A .若n m n m //,//,//则ααB .若βαγβγα//,,则⊥⊥C .若βαβα//,//,//则m mD .若n m n m //,,则αα⊥⊥7.如图13 -1,四边形ABEF 与四边形ABCD 都是直角梯形,,21//,21//,90AF BE AD BC FAB BAD o =∠=∠ G 、H 分别是FA 、FD 的中点.(1)证明:CH∥平面BEFA ;(2)C 、D 、F 、E 四点是否共面?为什么?8.如图13 -2,直四棱柱1111D C B A ABCD -的底面是梯形,,1,2,,//1===⊥AB DD CD DC AD CD AB P 、Q 分别是111D C CC 、的中点.求证:AC∥平面BPQ .9.如图13 -3,在矩形ABCD 中,AD⊥平面ABE .AE=EB =BC ,F 为CE 上的点沮BF⊥平面ACE(1)求证AE⊥平面BCE;(2)求证:AE∥平面BFD.10.如图13 -4,在正三棱柱111C B A ABC -中,点D 为棱AB 的中点,.3,11==AA BC(1)求证:;//11CD A BC 平面(2)求三棱锥C B A D 11-的体积.。
直线平面平行的判定与性质 练习题
直线、平面平行的判定与性质1.(2019·西安模拟)设α,β是两个平面,直线a ⊂α,则“a ∥β”是“α∥β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 依题意,由a ⊂α,a ∥β不能推出α∥β,此时平面α与β可能相交;反过来,由α∥β,a ⊂α,可得a ∥β.综上所述,“a ∥β”是“α∥β”的必要不充分条件,选B.2.(2019·四川名校联考)如图,正方体ABCD A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定解析:选B 由题可得A 1M =13A 1B ,AN =13AC ,所以分别取BC ,BB 1上的点P ,Q ,使得CP =23BC ,B Q =23BB 1,连接M Q ,NP ,P Q ,则M Q 綊23B 1A 1,NP 綊23AB ,又B 1A 1綊AB ,故M Q 綊NP ,所以四边形M Q PN 是平行四边形,则MN ∥Q P ,Q P ⊂平面BB 1C 1C ,MN ⊄平面BB 1C 1C ,则MN ∥平面BB 1C 1C ,故选B.3.(2019·枣庄诊断)如图,直三棱柱ABC A ′B ′C ′中,△ABC 是边长为2的等边三角形,AA ′=4,点E ,F ,G ,H ,M 分别是边AA ′,AB ,BB ′,A ′B ′,BC 的中点,动点P 在四边形EFGH 内部运动,并且始终有MP ∥平面ACC ′A ′,则动点P 的轨迹长度为( )A .2B .2πC .2 3D .4解析:选D 连接MF ,FH ,MH ,因为M ,F ,H 分别为BC ,AB ,A ′B ′的中点,所以MF ∥平面AA ′C ′C ,FH ∥平面AA ′C ′C ,所以平面MFH ∥平面AA ′C ′C ,所以M 与线段FH 上任意一点的连线都平行于平面AA ′C ′C ,所以点P 的运动轨迹是线段FH ,其长度为4,故选D.4.(2019·成都模拟)已知直线a ,b 和平面α,下列说法中正确的是( ) A .若a ∥α,b ⊂α,则a ∥b B .若a ⊥α,b ⊂α,则a ⊥bC.若a,b与α所成的角相等,则a∥bD.若a∥α,b∥α,则a∥b解析:选B 对于A,若a∥α,b⊂α,则a∥b或a与b异面,故A错;对于B,利用线面垂直的性质,可知若a⊥α,b⊂α,则a⊥b,故B正确;对于C,若a,b与α所成的角相等,则a与b相交、平行或异面,故C错;对于D,由a∥α,b∥α,则a,b之间的位置关系可以是相交、平行或异面,故D错.5.(2017·全国卷Ⅰ)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MN Q不平行的是( )解析:选A 法一:对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以M Q∥CD,所以AB∥M Q .又AB⊄平面MN Q,M Q⊂平面MN Q,所以AB∥平面MN Q.同理可证选项C、D中均有AB∥平面MN Q.故选A.法二:对于选项A,设正方体的底面对角线的交点为O(如图所示),连接O Q,则O Q∥AB.因为O Q与平面MN Q有交点,所以AB与平面MN Q有交点,即AB与平面MN Q不平行,根据直线与平面平行的判定定理及三角形的中位线性质知,选项B、C、D中AB∥平面MN Q.故选A.6.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A.若α⊥γ,α⊥β,则γ∥βB.若m∥n,m⊂α,n⊂β,则α∥βC.若m∥n,m⊥α,n⊥β,则α∥βD.若m∥n,m∥α,则n∥α解析:选C 对于A,若α⊥γ,α⊥β,则γ∥β或γ与β相交;对于B,若m∥n,m⊂α,n⊂β,则α∥β或α与β相交;易知C正确;对于D,若m∥n,m∥α,则n∥α或n在平面α内.故选C.7.如图所示,三棱柱ABCA1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1的值为________.解析:设BC 1∩B 1C =O ,连接OD .∵A 1B ∥平面B 1CD 且平面A 1BC 1∩平面B 1CD =OD ,∴A 1B ∥OD ,∵四边形BCC 1B 1是菱形, ∴O 为BC 1的中点,∴D 为A 1C 1的中点,则A 1D ∶DC 1=1.答案:18.已知正方体ABCD A 1B 1C 1D 1,下列结论中,正确的是________(只填序号). ①AD 1∥BC 1;②平面AB 1D 1∥平面BDC 1; ③AD 1∥DC 1;④AD 1∥平面BDC 1.解析:连接AD 1,BC 1,AB 1,B 1D 1,C 1D ,BD ,因为AB 綊C 1D 1,所以四边形AD 1C 1B 为平行四边形,故AD 1∥BC 1,从而①正确;易证BD ∥B 1D 1,AB 1∥DC 1,又AB 1∩B 1D 1=B 1,BD ∩DC 1=D ,故平面AB 1D 1∥平面BDC 1,从而②正确;由图易知AD 1与DC 1异面,故③错误;因为AD 1∥BC 1,AD 1⊄平面BDC 1,BC 1⊂平面BDC 1,故AD 1∥平面BDC 1,故④正确.答案:①②④9.在三棱锥P ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.解析:如图,过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF=MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.答案:810.(2019·南宁毕业班摸底)如图,△ABC 中,AC =BC =22AB ,四边形ABED 是边长为1的正方形,平面ABED ⊥底面ABC ,G ,F 分别是EC ,BD 的中点.(1)求证:GF ∥底面ABC ; (2)求几何体ADEBC 的体积.解:(1)证明:如图,取BC 的中点M ,AB 的中点N ,连接GM ,FN ,MN .∵G ,F 分别是EC ,BD 的中点, ∴GM ∥BE ,且GM =12BE ,NF ∥DA ,且NF =12DA .又四边形ABED 为正方形,∴BE ∥AD ,BE =AD , ∴GM ∥NF 且GM =NF .∴四边形MNFG 为平行四边形.∴GF ∥MN ,又MN ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)连接CN ,∵AC =BC ,∴CN ⊥AB , 又平面ABED ⊥平面ABC ,CN ⊂平面ABC , ∴CN ⊥平面ABED .易知△ABC 是等腰直角三角形,∴CN =12AB =12,∵C ABED 是四棱锥,∴V C ABED =13S 四边形ABED ·CN =13×1×12=16.11.如图,四边形ABCD 与四边形ADEF 为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点,求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)如图,连接AE ,设DF 与GN 的交点为O , 则AE 必过DF 与GN 的交点O . 连接MO ,则MO 为△ABE 的中位线, 所以BE ∥MO .又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN . 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点, 所以MN 为△ABD 的中位线, 所以BD ∥MN .又BD ⊄平面MNG ,MN ⊂平面MNG , 所以BD ∥平面MNG .又DE ⊂平面BDE ,BD ⊂平面BDE ,DE ∩BD =D , 所以平面BDE ∥平面MNG .12.(2019·河南八市联考)如图,在矩形ABCD 中,AB =1,AD =2,PA ⊥平面ABCD ,E ,F 分别为AD ,PA 的中点,点Q 是BC上一个动点.(1)当Q 是BC 的中点时,求证:平面BEF ∥平面PD Q ;(2)当BD ⊥F Q 时,求B QQ C的值.解:(1)证明:∵E ,Q 分别是AD ,BC 的中点, ∴ED =B Q ,ED ∥B Q ,∴四边形BED Q 是平行四边形, ∴BE ∥D Q.又BE ⊄平面PD Q ,D Q ⊂平面PD Q , ∴BE ∥平面PD Q ,又F 是PA 的中点,∴EF ∥PD , ∵EF ⊄平面PD Q ,PD ⊂平面PD Q , ∴EF ∥平面PD Q ,∵BE ∩EF =E ,BE ⊂平面BEF ,EF ⊂平面BEF , ∴平面BEF ∥平面PD Q. (2)如图,连接A Q ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD . ∵BD ⊥F Q ,PA ∩F Q =F ,PA ⊂平面PA Q ,F Q ⊂平面PA Q , ∴BD ⊥平面PA Q ,∵A Q ⊂平面PA Q ,∴A Q ⊥BD ,在矩形ABCD 中,由A Q ⊥BD 得△A Q B 与△DBA 相似, ∴AB 2=AD ×B Q , 又AB =1,AD =2, ∴B Q =12,Q C =32,∴B Q Q C =13.。
直线与平面平行的判定和性质练习
直线与平面平行的判定和性质(一)1.选择题(1)以下命题(其中a,b表示直线,α表示平面)①若a∥b,b⊂α,则a∥α②若a∥α,b∥α,则a∥b③若a∥b,b∥α,则a∥α④若a∥α,b⊂α,则a∥b其中正确命题的个数是()(A)0个(B)1个(C)2个(D)3个(2)已知a∥α,b∥α,则直线a,b的位置关系①平行;②垂直不相交;③垂直相交;④相交;⑤不垂直且不相交.其中可能成立的有()(A)2个(B)3个(C)4个(D)5个(3)如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是()(A)平行(B)相交(C)平行或相交(D)AB⊂α(4)已知m,n为异面直线,m∥平面α,n∥平面β,α∩β=l,则l ()(A)与m,n都相交(B)与m,n中至少一条相交(C)与m,n都不相交(D)与m,n中一条相交2.判断下列命题的真假(1)过直线外一点只能引一条直线与这条直线平行. ()(2)过平面外一点只能引一条直线与这个平面平行. ()(3)若两条直线都和第三条直线垂直,则这两条直线平行. ()(4)若两条直线都和第三条直线平行,则这两条直线平行. ()3.画图表示直线a,b与平面α的下列各位置关系(1)a⊂α(2)α∩a=A(3)a∥α(4)a⊄α,b⊂α且a∥b(5)a⊄α,b⊂α且a与b异面直线与平面平行的判定和性质(二)1.选择题(1)直线与平面平行的充要条件是()(A)直线与平面内的一条直线平行(B)直线与平面内的两条直线平行(C)直线与平面内的任意一条直线平行(D)直线与平面内的无数条直线平行(2)直线a∥平面α,点A∈α,则过点A且平行于直线a的直线()(A)只有一条,但不一定在平面α内(B)只有一条,且在平面α内(C)有无数条,但都不在平面α内(D)有无数条,且都在平面α内(3)若a⊄α,b⊄α,a∥α,条件甲是“a∥b”,条件乙是“b∥α”,则条件甲是条件乙的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件(4)A、B是直线l外的两点,过A、B且和l平行的平面的个数是()(A)0个(B)1个(C)无数个(D)以上都有可能2.平面α与⊿ABC的两边AB、AC分别交于D、E,且AD∶DB=AE∶EC,求证:BC∥平面α3.空间四边形ABCD,E、F分别是AB、BC的中点,求证:EF∥平面ACD.4.经过正方体ABCD-A1B1C1D1的棱BB1作一平面交平面AA1D1D于E1E,求证:E1E∥B1B.5.试证过两异面直线a,b中的一条,且平行于另一条的平面有且只有一个.直线与平面平行的判定和性质(三)1.选择题(1)直线a,b异面直线,直线a和平面α平行,则直线b和平面α的位置关系是()(A )b ⊂α (B )b ∥α (C )b 与α相交 (D )以上都有可能(2)如果点M 是两条异面直线外的一点,则过点M 且与a ,b 都平行的平面( )(A )只有一个(B )恰有两个(C )或没有,或只有一个(D )有无数个2.判断下列命题的真假.(1)若直线l ⊄α,则l 不可能与平面α内无数条直线都相交. ( ) (2)若直线l 与平面α不平行,则l 与α内任何一条直线都不平行.( )3.P 是长方体ABCD -A 1B 1C 1D 1中AC 面上的一点(1)画出经过P 、B 1、C 1的平面与长方体各侧面的交线; (2)画出经过P 、B 1、D 1的平面截长方体所得的截面; (3)以上各条与面的交线与平面A 1C 1是什么关系4.已知a ∥α,a ∥β,α∩β=l ,试判断a 与l 的位置关系,并证明之.5.过空间四边形ABCD 的边AB 、CD 、AD 的中点P 、Q 、R 的平面交BC 于S ,求证S 是BC 的中点.A 1B 1C 1D 1A BCDP。
直线、平面平行的判定与性质
直线、平面平行的判定与性质重点难点重点:掌握线线平行、线面平行的判定与性质定理,能用判定定理证明线面平行、面面平行,会用性质定理解决线面平行、面面平行的问题.难点:线面平行与面面平行在判定中的相互转化使用.方法突破线面平行的判定定理的实质是:对于平面外的一条直线,只需在平面内找出一条直线与这条直线平行,就可断定这条直线必与这个平面平行. 线面平行的性质定理的实质是:已知线面平行,过已知直线作一平面与已知平面相交,其交线必与已知直线平行. 两个平面平行问题的判定与证明,是将其转化为一个平面内的直线与另一个平面平行的问题,即“线面平行,则面面平行”,必须注意这里的“线面”是指一个平面内的两条相交直线和另一个平面.1. 判定线线平行的三种方法(1)公理4:证明两直线同时平行于第三条直线.(2)线面平行的性质定理:如果一条直线和一个平面平行,且经过这条直线的平面和这个平面相交,那么这条直线与交线平行.推理模式:l∥α,l∥β,α∩β=m?圯l∥m.(3)平行平面的性质定理:如果两个平行平面同时与第三个平面相交,那么它们的交线平行.推理模式:α∥β,γ∩α=a,γ∩β=b?圯a∥b.2. 判定线面平行的三种方法(1)根据线面平行的判定定理:如果不在某个平面内的一条直线与该平面内的一条直线平行,那么这条直线与这个平面平行.推理模式:l?埭α,m?奂α,l∥m?圯l∥α.使用定理时,一定要说明“平面外的一条直线与平面内的一条直线平行”,若不注明该条件,则证明过程就不完备.(2)面面平行的另一性质:如果两个平面平行,那么其中一个平面内的直线平行于另一个平面.推理模式:α∥β,a?奂α?圯a∥β.3. 判定面面平行的三种方法(1)根据面面平行的判定定理:如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面互相平行.推理模式:a?奂β,b?奂β,a∩b=P,a∥α,b∥α?圯β∥α.(2)平行平面的判定定理推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行.推理模式:a∩b=P,a?奂α,b?奂α,a′∩b′=P′,a′?奂β,b′?奂β,a∥a′,b∥b′?圯α∥β.(3)向量法:如果两个不同平面的法向量相互平行,那么就可以判定两个平面平行.典例精讲一、线线平行的判定■已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形.思索若证四边形是平行四边形,只需证一组对边相等且平行或两组对边分别平行,选其一证出即可. 利用平行公理证明两条直线平行的思路就是要找准一条直线与这两条直线都平行的直线来传递.破解如图1,连结BD,因为EH是△ABD的中位线,所以EH∥BD,EH=■BD. 又因为FG是△CBD的中位线,所以FG∥BD,FG=■BD. 根据公理4,FG∥EH且FG=EH,所以四边形EFGH是平行四边形.■图1二、线面平行的判定■如图2,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=■,AF=1,M是线段EF的中点. 求证:AM ∥平面BDE.■图2思索设AC与BD相交于G,连结EG,证明四边形AGEM 是平行四边形,可得EG∥AM,利用线面平行的判定定理可证.破解设AC与BD相交于G,连结EG,则G是AC的中点. 因为M是线段EF的中点,ACEF是矩形,所以EM∥AG,EM=AG,所以四边形AGEM是平行四边形,所以EG∥AM. 因为AM不在平面BDE内,EG在平面BDE内,所以AM∥平面BDE.三、面面平行的判定■如图3,在三棱锥S-ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB. 过A作AF⊥SB,垂足为F,点E,G分别是侧棱SA,SC的中点. 求证:平面EFG∥平面ABC.■图3思索证明平面EFG∥平面ABC,需要在平面EFG内找到两条相交直线与平面ABC平行,而线面平行的判定定理告诉我们,要证明线面平行,需要转化为证明线线平行. 因此,证明该题的关键是在平面内最为恰当的位置找出一条直线与该直线平行.破解(1)因为E,G分别是侧棱SA,SC的中点,所以EG∥AC.因为AC?奂平面ABC,EG?埭平面ABC,所以EG∥平面ABC. ?摇因为AS=AB,AF⊥SB,所以F为SB的中点,所以EF∥AB.因为AB?奂平面ABC,EF?埭平面ABC,所以EF∥平面ABC.因为EF∩EG=E,EF,EG?奂平面EFG,所以平面EFG∥平面ABC.四、线线平行、线面平行、面面平行的转化■如图4,已知点S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为三角形SAB上的高,D,E,F分别是AC,BC,SC的中点,试判断SG与平面DEF的位置关系,并给予证明.■图4思索一可判断SG∥平面DEF,要证明结论成立,只需证明SG与平面DEF内的一条直线平行,观察图形可以看出,转化成线线平行的证明.破解一连结CG交DE于点H,因为DE是△ABC的中位线,所以DE∥AB. 在△ACG中,D是AC的中点,且DH∥AG,所以H为CG的中点,所以FH是△SCG的中位线,所以FH ∥SG. 又SG?埭面DEF,FH?奂面DEF,所以SG∥平面DEF. 思索二要证明SG∥平面DEF,只需证明平面SAB∥平面DEF,从而得到线面平行.破解二因为EF是△SBC的中位线,所以EF∥SB,又EF?埭面SAB,SB?奂面SAB,所以EF∥平面SAB. 同理,DF∥平面SAB.因为EF∩DF=F,所以可得面SAB∥面DEF. 又SG?奂面SAB,所以SG∥平面DEF.证法一直接应用线面平行的判定定理来证明;证法二是通过线线平行证面面平行,再由面面平行证线面平行. 在本题的证明过程中实现了线线平行、线面平行、面面平行的转化.变式练习1. 如图5,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点. 求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.■图52. 如图6,在三棱锥S-ABC中,M,N,P分别为棱SA,SB,SC的中点,求证:平面MNP∥平面ABC.■图63. 如图7,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D为AB的中点,求证:AC1∥平面CDB1.参考答案1. (1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC. 因为AD?奂平面ABC,所以CC1⊥AD. 因为AD⊥DE,且CC1,DE?奂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1. 又因为AD?奂平面ADE,所以平面ADE⊥平面BCC1B1.(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1. 因为CC1⊥平面A1B1C1,且A1F?奂平面A1B1C1,所以CC1⊥A1F. 因为CC1,?摇B1C1?奂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1. 由(1)知,AD⊥平面BCC1B1,所以A1F∥AD. 又因为AD?奂平面ADE,?摇A1F?埭平面ADE,所以直线A1F∥平面ADE2. 因为M,N,P分别为棱SA,SB,SC的中点,所以MN∥AB,PN∥BC. 因为MN?埭平面ABC,AB?奂平面ABC,PN?埭平面ABC,BC?奂平面ABC,所以MN∥平面ABC,PN∥平面ABC. 因为MN∩PN=N,MN,PN?奂平面MPN. 所以平面MNP∥平面ABC.3. 证法一(利用线面平行的判定定理):设C1B与CB1的交点为E,由已知得E为C1B的中点. 连结AC1,DE,则OE■■AC1. 又DE?奂平面CDB1,AC1?埭平面CDB1,所以AC1∥平面CDB1.证法二(利用共线向量定理证明线面平行):因为直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,所以AC,BC,CC1两两垂直,以AC,BC,CC1为x,y,z轴建立空间直角坐标系,由已知可得C(0,0,0),A(3,0,0),C1(0,0,4),B(0,4,0),B1(0,4,4),D■,2,0. 设CB1与C1B的交点为E,则E(0,2,2),因为■=-■,0,2,■=(-3,0,4),所以■=■■,所以■∥■. 因为DE?奂平面CDB1,AC1?埭平面CDB1,所以AC1∥平面CDB1.证法三(利用法向量证明线面平行):因为直三棱柱ABC-A1B1C1底面三边长AC=3,BC=4,AB=5,所以AC,BC,CC1两两垂直,以■,■,■为正交基底,建立空间直角坐标系,则C(0,0,0),A(3,0,0),C1(0,0,4),B■(0,4,4),D■,2,0,故■=(-3,0,4),■=(0,4,4),■=■,2,0. 设平面CDB1的法向量为n=(x,y,z),则4y+4z=0,■x+2y=0,故有n=(4,-3,3),所以■?n=0. 因此■⊥n. 又AC1不在平面CDB1内,从而有AC1∥平面CDB1. ■。
直线、平面平行的判定及性质及详细答案
直线、平面平行的判定及性质1.直线和平面平行的判定定理2.直线和平面平行的性质定理3.两个平面平行的判定定理4.两个平面平行的性质定理5.与垂直相关的平行的判定定理例1如图所示,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.证明:MN∥平面A′ACC′.例2.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.如图所示,在三棱柱ABC-A1B1C1中,E为AC上一点,若AB1∥平面C1EB,求:AE∶EC.例3如图所示,正方体ABCD—A1B1C1D1中,M、N、E、F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.例4如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E、F分别在线段AB,CD上,且AE∶EB=CF∶FD.求证:EF∥β.练习题:1.(课本习题改编)给出下列四个命题:①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行;②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行;③若平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行;④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行.其中正确命题的个数是________个.1.下列命题中正确的是________.①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行;⑤若l与平面α平行,则l与α内任何一条直线都没有公共点;⑥平行于同一平面的两直线可以相交.2.(2014·合肥一检)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.1.已知两条不同直线l1和l2及平面α,则直线l1∥l2的一个充分条件是() A.l1∥α且l2∥αB.l1⊥α且l2⊥αC.l1∥α且l2⊄αD.l1∥α且l2⊂α答案 B解析l1⊥α且l2⊥α⇒l1∥l2.2.(2012·四川)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行答案 C解析若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交,A项不正确;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,那么经过这三个点的平面与这个平面相交,B项不正确.3.(2013·浙江)设m,n是两条不同的直线,α,β是两个不同的平面() A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β答案 C解析A项中,直线m,n可能平行,也可能相交或异面,直线m,n的关系是任意的;B项中,α与β也可能相交,此时直线m平行于α,β的交线;D 项中,m也可能平行于β.故选C项.4.设α,β表示平面,m,n表示直线,则m∥α的一个充分不必要条件是()A .α⊥β且m ⊥βB .α∩β=n 且m ∥nC .m ∥n 且n ∥αD .α∥β且m ⊂β答案 D解析 若两个平面平行,其中一个面内的任一直线均平行于另一个平面,故选D.5.若空间四边形ABCD 的两条对角线AC 、BD 的长分别是8、12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为( )A .10B .20C .8D .4答案 B解析 设截面四边形为EFGH ,F 、G 、H 分别是BC 、CD 、DA 的中点,∴EF =GH =4,FG =HE =6.∴周长为2×(4+6)=20.6.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定答案 B解析 连接CD 1,在CD 1上取点P ,使D 1P =2a3,∴MP ∥BC ,PN ∥AD 1. ∴MP ∥面BB 1C 1C ,PN ∥面AA 1D 1D . ∴面MNP ∥面BB 1C 1C ,∴MN ∥面BB 1C 1C .7.如图所示,四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________(写出所有符合要求的图形序号).答案①③8. 棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,P A⊥底面ABCD,E为PC的中点,则BE与平面P AD的位置关系为________.答案平行解析取PD的中点F,连接EF.在△PCD中,EF綊12CD.又∵AB∥CD且CD=2AB,∴EF=12CD且CD=2AB.∴EF綊AB,∴四边形ABEF是平行四边形,∴EB∥AF.又∵EB⊄平面P AD,AF⊂平面P AD,∴BE∥平面P AD.9. 如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.答案22 3a解析 如图所示,连接AC ,易知MN ∥平面ABCD .∴MN ∥PQ .又∵MN ∥AC ,∴PQ ∥AC . 又∵AP =a 3,∴PD AD =DQ CD =PQ AC =23. ∴PQ =23AC =232a =223a .10.考查下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l 、m 为直线,α、β为平面),则此条件为________.①⎭⎬⎫m ⊂αl ∥m⇒l ∥α;②⎭⎬⎫l ∥m m ∥α⇒l ∥α;③⎭⎬⎫l ⊥βα⊥β⇒l ∥α. 答案 l ⊄α解析 ①体现的是线面平行的判定定理,缺的条件是“l 为平面α外的直线”,即“l ⊄α”,它也同样适合②③,故填l ⊄α.11.在四面体ABCD 中,M 、N 分别是面△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案 平面ABC 和平面ABD解析 连接AM 并延长交CD 于E ,连接BN 并延长交CD 于F .由重心的性质可知,E 、F 重合为一点,且该点为CD 的中点E .由EM MA =EN NB =12,得MN ∥AB .因此MN ∥平面ABC 且MN ∥平面ABD .12.过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,EF 1,EE 1,FF 1,E 1F ,E 1F 1均与平面ABB1A 1平行,故符合题意的直线共6条.13. 如图所示,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E、B、F、D1四点共面;(2)求证:平面A1GH∥平面BED1F.答案(1)略(2)略解析(1)连接FG.∵AE=B1G=1,∴BG=A1E=2.∴BG綊A1E,∴A1G∥BE.又∵C1F綊B1G,∴四边形C1FGB1是平行四边形.∴FG綊C1B1綊D1A1.∴四边形A1GFD1是平行四边形.∴A1G綊D1F,∴D1F綊EB.故E、B、F、D1四点共面.(2)∵H是B1C1的中点,∴B1H=32.又B1G=1,∴B1GB1H=23.又FCBC=23,且∠FCB=∠GB1H=90°,∴△B1HG∽△CBF.∴∠B1GH=∠CFB=∠FBG,∴HG∥FB.又由(1)知,A1G∥BE,且HG∩A1G=G,FB∩BE=B,∴平面A1GH∥平面BED1F.14. 如图所示,四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.(1)求证:P A∥平面EFG;(2)求三棱锥P—EFG的体积.答案(1)略(2)1 6解析(1)如图所示,取AD的中点H,连接GH,FH.∵E,F分别为PC,PD的中点,∴EF∥CD.∵G,H分别是BC,AD的中点,∴GH∥CD.∴EF∥GH,∴E,F,H,G四点共面.∵F,H分别为DP,DA的中点,∴P A∥FH.∵P A⊄平面EFG,FH⊂平面EFG,∴P A∥平面EFG.(2)∵PD⊥平面ABCD,CG⊂平面ABCD,∴PD⊥CG.又∵CG⊥CD,CD∩PD=D,∴GC⊥平面PCD.∵PF =12PD =1,EF =12CD =1, ∴S △PEF =12EF ·PF =12. 又GC =12BC =1,∴V P —EFG =V G —PEF =13×12×1=16.15.一个多面体的直观图和三视图如图所示(其中M ,N 分别是AF ,BC 中点).(1)求证:MN ∥平面CDEF ; (2)求多面体A —CDEF 的体积. 答案 (1)略 (2)83解析 (1)证明 由三视图知,该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2,DE =CF =22,∴∠CBF =90°.取BF 中点G ,连接MG ,NG ,由M ,N 分别是AF ,BC 中点,可知:NG ∥CF ,MG ∥EF .又MG ∩NG =G ,CF ∩EF =F ,∴平面MNG ∥平面CDEF ,∴MN ∥平面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE —BCF 为直三棱柱,∴AH ⊥平面CDEF ,且AH = 2.∴V A -CDEF =13S 四边形CDEF ·AH =13×2×22×2=83.16. 如图所示,三棱柱ABC -A 1B 1C 1,底面为正三角形,侧棱A 1A ⊥底面ABC ,点E 、F 分别是棱CC 1、BB 1上的点,点M 是线段AC 上的动点,EC =2FB .当点M 在何位置时,BM ∥平面AEF?答案当M为AC中点时,BM∥平面AEF.解析方法一:如图所示,取AE的中点O,连接OF,过点O作OM⊥AC 于点M.∵侧棱A1A⊥底面ABC,∴侧面A1ACC1⊥底面ABC.∴OM⊥底面ABC.又∵EC=2FB,∴OM∥FB綊12EC.∴四边形OMBF为矩形.∴BM∥OF.又∵OF⊂面AEF,BM⊄面AEF,故BM∥平面AEF,此时点M为AC的中点.方法二:如图所示,取EC的中点P,AC的中点Q,连接PQ、PB、BQ. ∴PQ∥AE.∵EC=2FB,∴PE綊BF,PB∥EF.∴PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,∴平面PBQ ∥平面AEF .又∵BQ ⊂面PQB ,∴BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.17. (2013·福建)如图所示,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ;(3)求三棱锥D -PBC 的体积.答案 (1)略 (2)略 (3)8 3解析 方法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理,得BE =3,从而AB =6.又由PD ⊥平面ABCD ,得PD ⊥AD .从而在Rt △PDA 中,由AD =4,∠P AD =60°,得PD =4 3.正视图如图所示.(2) 取PB 中点N ,连接MN ,CN .在△P AB 中,∵M 是P A 中点,∴MN ∥AB ,MN =12AB =3.又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD .∴四边形MNCD 为平行四边形.∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .(3)V D -PBC =V P -DBC =13S △DBC ·PD ,又S △DBC =6,PD =43,所以V D -PBC =8 3.方法二:(1)同方法一.(2) 取AB 的中点E ,连接ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD ,∴四边形BCDE 为平行四边形.∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE∥平面PBC.又在△P AB中,ME∥PB,ME⊄平面PBC,PB⊂平面PBC,∴ME∥平面PBC.又DE∩ME=E,∴平面DME∥平面PBC.又DM⊂平面DME,∴DM∥平面PBC.(3)同方法一.。
直线与平面平行的判定和性质经典练习及详细答案
平面平行的判定及其性质羄直线、1.2.薂下列命题中,正确命题的是④.;肇①若直线I上有无数个点不在平面:.内,则I // :•芆②若直线I与平面「平行,则I与平面「内的任意一条直线都平行;莁③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线I与平面「平行,则I与平面:.内的任意一条直线都没有公共点3.4. 芀下列条件中,不能判断两个平面平行的是____________ (填序号)肇①一个平面内的一条直线平行于另一个平面蚆②一个平面内的两条直线平行于另一个平面膃③一个平面内有无数条直线平行于另一个平面聿④一个平面内任何一条直线都平行于另一个平面答案①②③5.5. 腿对于平面和共面的直线m n,下列命题中假命题是________________ (填序号)肇①若mL用,m丄n,贝V n / 、丄薁②若mil :- , n // :•,贝V m// n膂③若m二:z , n// :•,贝U m// n芇④若m n与:•所成的角相等,则m// n 答案①②④7.6. 膄已知直线a, b,平面「,则以下三个命题:芃①若a // b, b二:乂,则a //⑶袁②若a // b, a //芒,贝U b //芒;莆③若 a // :•, b // :-,则 a // b.薅其中真命题的个数是答案09.7. 羅直线a//平面M直线b M那么a// b是b〃M的条件.蚀A.充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要11.12.蒆能保证直线a与平面〉平行的条件是, a// b p bu a, a//b肆A. a 広a, b u a, c//a,a//b,a//c蒃C. b u a£a,C^b, D e b 且AC=BD葿D. b u 口,A^a,B13.14. 薆如果直线a平行于平面?,则 _________a平行 B.平面〉内无数条直线与a平行蒇A.平面?内有且只有一直线与a平行的直线 D.平面〉内的任意直线与直线a都平行膅C.平面〉内不存在与15.15. 蒂如果两直线a// b,且a//平面〉,则b与〉的位置关系__________蚆A.相交B. b〃° c.匕匚口D.b〃°或b u°17.16. 薄下列命题正确的个数是______19.17. 蚃(1)若直线I上有无数个点不在平面a内,则I // al与平面a平行,则l与平面a内的任意一直线平行芁(2)若直线,那么另一条也与这个平面平行蚆(3)两条平行线中的一条直线与一个平面平行a和平面a内一直线b平行,则a // a羅(4 )若一直线莄A.0个 B.1个 C.2个 D.3个21.22. 罿b是平面a外的一条直线,下列条件中可得出b/ a是肀A. b与a内的一条直线不相交 B. b与a内的两条直线不相交莅C.b与a内的无数条直线不相交 D.b与a内的所有直线不相交23.23. 螂已知两条相交直线a、b, a//平面a ,则b与a的位置关系肂A. b / a B.b与a相交 C.b」a D.b/ a或b与a相交25.24. 膀如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC, SGSAB上的高,D E、F分别是AC BC SC的中点,试判断SG与平面DEF的位置关系,并给予证明.螆解SG//平面DEF证明如下:薄方法一:三角形中位线连接CG交螁••• DE是厶ABC的中位线,芀••• DE// AB.腿在△ ACG中, D是AC的中点,羂且DH// AG薀• H为CG的中点.艿• FH是厶SCG的中位线,芄• FH// SG蚄又SG亿平面DEF FHU平面DEF,荿••• SG//平面DEF荿方法二:平面平行的性质蚅••• EF为厶SBC的中位线,• EF/ SB膂••• EF伉平面SAB SBu平面SAB莂• EF//平面SAB葿同理可证,DF//平面SAB EF A DF=F ,肆.••平面SAB/平面DEF,又SG二平面SAB • SG//平面DEF27.25. 袄如图所示,在正方体ABC—ABC1D1中,E、F、G H分别是BC CG、賺CD、A1A的中点.求证:蕿(1)BF/ HD;蒇(2)EG//平面BBDD;莁(3)平面BDF/平面BDH袀证明平行四边形的性质,平行线的传递性虿(1 )如图所示,取BB的中点M易证四边形蚄又••• MC/ BF,「. BF/ HD.肃(2)取BD的中点0,连接E0, D0,贝U OE^蚈又DG& I DC• OE^ DG2蝿.••四边形OEGD是平行四边形,• GE// DO.肄又D 0-平面BB D D, • EG/平面BBD D.蒁(3)由(1)知DH// BF,又BD// BD, BD、HD =平面HBD, BF、BH 平面BDF,且BD A HD=D, DBA BF=B,「.平面BDF// 平面B D H.29.26. 螁如图所示,在三棱柱ABC-A i B C中,M N分别是BC和A i B i的中点. 衿求证:MN//平面AACC.蒅证明方法一:平行四边形的性质膃设AC中点为F,连接NF, FC,蒀••• N为A i B i中点,衿••• NF// BQ,且NF=^B C i,2祎又由棱柱性质知B i C i庄BC蚁又M是BC的中点,艿• NF MC羈.••四边形NFCM^平行四边形.芇• MIN/ CF,又CF 平面AA C i, MN二平面AA C ,• MIN/平面AAC C. 莃方法二:三角形中位线的性质节连接AM交C C于点P,连接A i P, 肇T M是BC的中点,且MC/ B i C i,莄• M是B i P的中点,肅又••• N为A B中点,肁• MN// A P,又 A PU 平面AA C , MW 平面AAC,:MIN/平面AACC.膈方法三:平面平行的性质 螅设BiG 中点为Q 连接NQ MQ ,薃•••M Q 是BG BG 的中点,袀•••MQ CG ,又 CGu 平面 AAGC, MQ 伉平面 AAGC, 芈•••MQ/平面 AA C i C.膆•••N 、Q 是A B i 、B i C 的中点,芅• NQ 二 AQ ,又 A i C 二平面 AAC C, NQ 二平面 AAC C, 蕿• NQ//平面 AA C i C.莈又••• MQ P NQB ,「.平面 MNQ 平面 AAC C, 薇又MN 二平面MNQ. MIN/平面AA C C.3 i .32.螂如图所示,正方体 ABC — A B i C D 中,侧面对角线 AB , BC 上分 别有两点 E , F ,且B E=C F. 蚁求证: EF //平面 ABCD 蒈方法一:平行四边形的性质螃过E 作ES// BB 交AB 于S,过F 作FT // BB 交BC 于 T ,蒄连接ST ,则-AE 更,且AB i B i B BC i C i C莀T B i E=C F , B A=CB,. AE=BF蒈•••旦,••• ES=FTB i B CC i膄又••• ES// B B// FT ,.四边形 EFTS 为平行四边形Bl ______ G袂•••EF// ST ,又 ST=平面 ABCD EFC :平面 ABCD : EF//平面 ABCD腿方法二:相似三角形的性质 薈连接BF 交BC 于点Q 连接AQ薅••• BQ // BC, • B 1L =圧BQ C 1B膂• EF // AQ 又 AQ=平面 ABCD EF 二平面 ABCD •- EF//平面 ABCD 蚇方法三:平面平行的性质 羆过E 作EG/ AB 交BB 于G,肂连接GF,则B 11史£ ,B 1A B 1B羁 TB i E=C i F , BA=CB ,螇••• C i E =B i G , • FG // B l C i // BC C 1B B i B 莇又 EG A FG P G , AB A BC=B ,螄.••平面 EFG/平面 ABCD 而EF 二平面EFG螀• EF//平面ABCD33.34.袇如图所示,在正方体 ABC — A B i C D 中,O 为底面ABCD 的中心,P 是DD 的中点,设薄T B i E=C i F , BiA=GB,B L E B ,FB 1D B i QQ是CC上的点,问:当点Q在什么位置时,平面DBQ// 平面PAO蒄解面面平行的判定节当Q为CC的中点时,A B葿平面 DBQ//平面PAO羇••• Q 为CG 的中点,P 为DD 的中点,••• QB// PA袅:P 、O 为 DD 、DB 的中点,• DB// PO羄又 PO P PA=P , DB A QB=B , 薂DB //平面PAO QB//平面 PAO 肇.••平面 DBQ//平面PAO芆直线与平面平行的性质定理35.EFGH 为空间四边形ABCD 勺一个截面,若截面为平行四边形芀(1)求证:AB//平面 EFGH CD//平面 EFGH肇(2)若AB=4, CD=6,求四边形EFGH 周长的取值范围 蚆(1)证明•••四边形EFGH 为平行四边形,• EF// HG膃•••HX 平面 ABD • EF//平面 ABD 聿•••EF 平面 ABC 平面 ABD A 平面 ABCAB腿• EF// AB. • AB//平面 EFGH 肇同理可证,CD//平面EFGH薁⑵ 解 设EF=x (O v x v 4),由于四边形 EFGH 为平行四边形,膂•••CF=x 则 FG = B F = B C -C F =1- x .从而 F G=6- 1 2 3x . •••四边形 EFGH 的周长 CB 4 6 BC BC 4 21 =2(x+6-5)=12- x.又0v x v 4,则有8v l v 12, •四边形 EFGH 周长的取值范围是(8,212) 37.36.莁如图所示,四边形 AC38.芇如图所示,平面:• //平面[,点A € :. , C €「,点B € 1 , D € [,点E , F 分别在线 段 AB CD 上,且 AE : EB=CF : FD薆••• AC// DH, •••四边形 ACDH 是平行四边形, 蒇在AH 上取一点 G,使AG : GH=CF : FD,膅又••• AE : EB=CF : FD, • GF// HD EG// BH 蒂又EG A GFG, •平面 EFG//平面-蚆•••EF 平面 EFG •- EF / l 综上,EF// I薄(2)解三角形中位线膄(1)求证:EF / -; :. / :,:.门平面 ACDHAC,蚃 如图所示,连接 AD,取AD 的中点 M 连接 ME MF.芁••• E , F 分别为AB, CD 的中点,蚆••• ME// BD, MF// AC,羅且 M ^Z BGB , MF=LAC=2,2 2莄•••/ EMF 为AC 与BD 所成的角(或其补角),罿EMF=60。
高考专题练习: 直线、平面平行的判定与性质
1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)因为l∥a,a⊂α,l⊄α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b常用结论1.三种平行关系的转化线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想.2.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)直线l平行于平面α内的无数条直线,则l∥α.()(2)若直线l在平面α外,则l∥α.()(3)若直线l∥b,直线b⊂α,则l∥α.()(4)若直线l∥b,直线b⊂α,那么直线l平行于平面α内的无数条直线.()答案:(1)×(2)×(3)×(4)√二、易错纠偏常见误区|(1)对空间平行关系的相互转化条件理解不够;(2)忽略线面平行、面面平行的条件.1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.2.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH 是平行四边形.答案:平行四边形与线、面平行相关命题的判定(师生共研)(1)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β(2)(2020·沈阳市教学质量监测(一))已知a,b为两条不同的直线,α,β,γ为三个不同的平面,则下列说法中正确的是()①若a∥α,α∥β,则a∥β;②若α∥β,β∥γ,则α∥γ;③若a⊥α,b⊥α,则a∥b;④若α⊥γ,β⊥γ,则α⊥β.A.①③B.②③C.①②③D.②③④【解析】(1)A错误,n有可能在平面α内;B错误,平面α可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.(2)若a∥α,α∥β,则a可能平行于β,也可能在β内,故①不正确;若α∥β,β∥γ,则由面面平行的性质知α∥γ,故②正确;若a⊥α,b⊥α,则由线面垂直的性质知a∥b,故③正确;若α⊥γ,β⊥γ,则α与β可能平行也可能相交,故④不正确.综上所述,②③正确,故选B.【答案】(1)D(2)B解决线、面平行关系应注意的问题(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易被忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.1.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,b⊄α,c⊂α,所以b∥α.2.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面解析:选B.对于A,C,D选项,α均有可能与β相交,故排除A,C,D 选项,选B.线面平行的判定与性质(多维探究)角度一线面平行的证明在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D.【证明】(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC 1D 1是平行四边形,所以HD 1∥MC 1.又因为在平面BCC 1B 1中,BM ∥=FC 1, 所以四边形BMC 1F 为平行四边形, 所以MC 1∥BF ,所以BF ∥HD 1. (2)取BD 的中点O ,连接EO ,D 1O , 则OE ∥DC 且OE =12DC ,又D 1G ∥DC 且D 1G =12DC ,所以OE ∥=D 1G , 所以四边形OEGD 1是平行四边形,所以GE ∥D 1O . 又D 1O ⊂平面BB 1D 1D ,GE ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D .证明直线与平面平行的常用方法(1)利用线面平行的定义.(2)利用线面平行的判定定理:关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.角度二 线面平行性质定理的应用如图,在五面体ABCDFE 中,底面ABCD 为矩形,EF ∥AB ,过BC的平面交棱FD 于点P ,交棱F A 于点Q .证明:PQ ∥平面ABCD .【证明】 因为底面ABCD 为矩形,所以AD ∥BC ,⎭⎪⎬⎪⎫AD ∥BCAD ⊂平面ADF BC ⊄平面ADF ⇒BC ∥平面ADF ,⎭⎪⎬⎪⎫BC ∥平面ADFBC ⊂平面BCPQ 平面BCPQ ∩平面ADF =PQ ⇒BC ∥PQ ,⎭⎪⎬⎪⎫PQ ∥BCPQ ⊄平面ABCD BC ⊂平面ABCD ⇒PQ ∥平面ABCD .应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.该定理的作用是由线面平行转化为线线平行.1.(一题多解)(2021·河南中原名校联考)如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是P A ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .证明:方法一:如图,连接AF ,并延长交BC 于点G ,连接PG ,因为BC ∥AD ,所以FG F A =FBFD , 又因为PE EA =BFFD ,所以PE EA =GFF A ,所以EF ∥PG .又因为PG ⊂平面PBC ,EF ⊄平面PBC , 所以EF ∥平面PBC .方法二:如图,过点F 作FM ∥AD ,交AB 于点M ,连接EM ,因为FM ∥AD ,AD ∥BC ,所以FM ∥BC ,又因为FM ⊄平面PBC ,BC ⊂平面PBC , 所以FM ∥平面PBC . 由FM ∥AD 得BM MA =BFFD ,又因为PE EA =BF FD ,所以PE EA =BMMA ,所以EM ∥PB . 因为PB ⊂平面PBC ,EM ⊄平面PBC , 所以EM ∥平面PBC ,因为EM ∩FM =M ,EM ,FM ⊂平面EFM ,所以平面EFM∥平面PBC,因为EF⊂平面EFM,所以EF∥平面PBC.2.如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,又因为CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)取AB的中点N,连接DN,MN,因为M是AE的中点,N是AB的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.面面平行的判定与性质(典例迁移)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G∥=EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EF A1∥平面BCHG.【迁移探究1】(变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.【迁移探究2】(变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1∥=BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.1.如图,AB∥平面α∥平面β,过点A,B的直线m,n分别交α,β于点C,E和点D,F,若AC=2,CE=3,BF=4,则BD的长为()A.65B.75C.85D.95解析:选C.由AB∥α∥β,易证ACCE=BDDF.即AC AE =BDBF,所以BD=AC·BFAE=2×45=85.2.(一题多解)如图,四边形ABCD是正方形,ED⊥平面ABCD,AF⊥平面ABCD.证明:平面ABF∥平面DCE.证明:方法一:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为AF⊄平面DCE,DE⊂平面DCE,所以AF∥平面DCE.因为四边形ABCD是正方形,所以AB∥CD.因为AB⊄平面DCE,CD⊂平面DCE,所以AB∥平面DCE.因为AB∩AF=A,AB⊂平面ABF,AF⊂平面ABF,所以平面ABF∥平面DCE.方法二:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为四边形ABCD为正方形,所以AB∥CD.又AF∩AB=A,DE∩DC=D,所以平面ABF∥平面DCE.方法三:因为DE⊥平面ABCD,所以DE⊥AD,在正方形ABCD中,AD⊥DC.又DE∩DC=D,所以AD⊥平面DEC.同理AD⊥平面ABF.所以平面ABF∥平面DCE.[A级基础练]1.已知α,β表示两个不同的平面,直线m是α内一条直线,则“α∥β”是“m∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由α∥β,m⊂α,可得m∥β;反过来,由m∥β,m⊂α,不能推出α∥β.综上,“α∥β”是“m∥β”的充分不必要条件.2.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析:选D.A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.3.(2021·合肥模拟)已知a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a⊂α,b⊂β,a∥b,则α∥βC.若α∥β,a∥α,则a∥βD.若α∩β=a,β∩γ=b,α∩γ=c,a∥b,则b∥c解析:选D.若a∥b,b⊂α,则a∥α或a⊂α,故A不正确;若a⊂α,b ⊂β,a∥b,则α∥β或α与β相交,故B不正确;若α∥β,a∥α,则a∥β或a⊂β,故C不正确;如图,由a∥b可得b∥α,又b⊂γ,α∩γ=c,所以b∥c,故D正确.4.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:选A.对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.5.如图,在三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选B.在三棱柱ABC-A1B1C1中,AB∥A1B1.因为AB⊂平面ABC,A1B1⊄平面ABC,所以A1B1∥平面ABC.因为过A1B1的平面与平面ABC交于DE,所以DE∥A1B1,所以DE∥AB.6.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度为________.解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以点F为DC的中点.故EF=12AC= 2.答案: 27.在棱长为2的正方体ABCD-A1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是________.解析:由面面平行的性质知截面与平面AB1的交线MN是△AA1B的中位线,所以截面是梯形CD1MN,其面积为12×(2+22)×(5)2-⎝⎛⎭⎪⎫222=92.答案:9 28.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,FH∩HN=H,DD1∩BD =D,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,所以MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)9.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面P AB;(2)求三棱锥P-ABM的体积.解:(1)证明:因为M,N分别为PD,AD的中点,所以MN∥P A,又MN⊄平面P AB,P A⊂平面P AB,所以MN∥平面P AB.在Rt△ACD中,∠CAD=60°,CN=AN,所以∠ACN=60°.又∠BAC=60°,所以CN∥AB.因为CN⊄平面P AB,AB⊂平面P AB,所以CN∥平面P AB.又CN∩MN=N,所以平面CMN∥平面P AB.(2)由(1)知,平面CMN∥平面P AB,所以点M到平面P AB的距离等于点C到平面P AB的距离.因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=3,所以三棱锥P-ABM的体积V=V MP AB=V CP AB=V PABC=13×12×1×3×2=33.10.如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,AB=2,AF=1,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m 的位置关系,并证明你的结论.解:(1)证明:如图,记AC与BD的交点为O,连接OE.因为O,M分别是AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m ∥AM ,所以l ∥m .[B 级 综合练]11.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列说法中,错误的为( )A .AC ⊥BDB .AC =BD C .AC ∥截面PQMND .异面直线PM 与BD 所成的角为45° 解析:选B .因为截面PQMN 是正方形, 所以PQ ∥MN ,QM ∥PN ,则PQ ∥平面ACD ,QM ∥平面BDA , 所以PQ ∥AC ,QM ∥BD ,由PQ ⊥QM 可得AC ⊥BD ,故A 正确; 由PQ ∥AC 可得AC ∥截面PQMN ,故C 正确; 由BD ∥PN ,所以∠MPN 是异面直线PM 与BD 所成的角,且为45°,D 正确; 由上面可知:BD ∥PN ,MN ∥AC . 所以PN BD =AN AD ,MN AC =DN AD ,而AN 与DN 关系不确定,PN =MN , 所以BD 与AC 关系不确定.B 错误.故选B .12.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面P AO .解析:如图所示,设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥P A .连接DB ,因为P ,O 分别是DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面P AO ,QB ⊄平面P AO ,PO ⊂平面P AO ,P A ⊂平面P AO ,所以D 1B ∥平面P AO ,QB ∥平面P AO ,又D 1B ∩QB =B ,所以平面D 1BQ ∥平面P AO .故Q 为CC 1的中点时,有平面D 1BQ ∥平面P AO .答案:Q 为CC 1的中点13.(2021·烟台模拟)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=1.一平面截该长方体,所得截面为OPQRST ,其中O ,P 分别为AD ,CD 的中点,B 1S =12,则AT =________.解析:设AT =x ,则A 1T =1-x ,由面面平行的性质得,PO ∥SR ,TO ∥QR ,TS ∥PQ , 所以△DOP ∽△B 1RS .因为DP =OD =1,所以B 1S =B 1R =12, 所以A 1S =C 1R =32.由△ATO ∽△C 1QR ,可得AO AT =C 1RC 1Q ,即1x =32C 1Q ,故C 1Q =3x2.由△A 1TS ∽△CQP ,可得CQ CP =A 1TA 1S ,即1-3x 21=1-x 32,解得x =25.答案:2514.(2020·高考全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B -EB 1C 1F 的体积.解:(1)证明:因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .又因为B 1C 1⊂平面EB 1C 1F ,所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN .又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP=ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为12×(B 1C 1+EF )·PN =12×(6+2)×6=24.所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.[C 级 提升练]15.如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面P AB 是等腰直角三角形,P A =PB ,平面P AB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面P AD .(1)确定点E ,F 的位置,并说明理由;(2)求三棱锥F -DCE 的体积.解:(1)因为平面CEF ∥平面P AD ,平面CEF ∩平面ABCD =CE ,平面P AD ∩平面ABCD =AD ,所以CE ∥AD ,又AB ∥DC ,所以四边形AECD 是平行四边形,所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面P AD ,平面CEF ∩平面P AB =EF ,平面P AD ∩平面P AB =P A ,所以EF ∥P A ,又点E 是AB 的中点,所以点F 是PB 的中点.综上,E ,F 分别是AB ,PB 的中点.(2)连接PE ,由题意及(1)知P A =PB ,AE =EB ,所以PE ⊥AB ,又平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB , 所以PE ⊥平面ABCD .又AB ∥CD ,AB ⊥AD ,所以V F DEC =12V P DEC =16S △DEC ×PE =16×12×2×2×2=23.。
直线平面平行垂直的判定及其性质知识点
8.求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面. 已知:空间四边形 ABCD 中,E、F 分别是 AB、AD 的中点 求证:EF‖平面 BCD
8 题图
9 题图
9.如图,在椎体 P-ABCD 中,ABCD 是边长为 1 的棱形, 且∠DAB=60 , ,PB=2, E,F 分别是 BC,PC 的中点.
线线平行,则线面平行线与面的平行问题一定要排除现在直线内的情况
※判定定理的证明
知识点二、直线与平面平行的性质
性质
一条直线与一个平面平行, 一条直线和一个平面平行,则
文字描述
则这条直线与该平面无交点 过这条直线的任一平面与此平
面相交,这条直线和交线平行.
图形
条件 结论
线面平行,则线线平行
a∥α a∩α=∅
a∥αa⊂βα∩β=b a∥b
特别提示 证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通过“线线” 平行,证得“线面”平行;②利用两平面平行的性质定理,通过“面面”平行,证得“线面”平行.
知识点三、平面与平面平行的判定
文字描述
如果两个平面无公共 点,责成这两个平面平 行
判定 一个平面内有两条相 交直线与另一个平面 平行,那么这两个平面 平行.
文字描述 两个平面相交,如果它们所成的二面角是
直二面角,就说这两个平面垂直.
图形
判定
一个平面过另一个平面的垂线,则这两个 平面垂直
结果
α∩β=l α-l-β=90o α⊥β
垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼
知识点五、平面和平面垂直的性质
面面垂直
线面垂直如果两个平面垂直,那么一个平面内垂直于它们交线的直线与一
直线平面平行、垂直的判定及其性质知识点
一、直线、平面平行的判定及其性质知识点一、直线与平面平行的判定ⅰ.直线和平面的位置关系(一条直线和一个平面的位置关系有且只有以下三种)位置关系直线在平面内直线与平面相交直线与平面平行公共点有无数个公共点有且只有一个公共点没有公共点符号表示a⊂αa∩α=A a||α图形表示注:直线和平面相交或平行的情况统称为直线在平面外ⅱ.思考:如图,设直线b在平面α内,直线a在平面α外,猜想在什么条件下直线a与平面α平行.(a||b)直线与平面平行的判断判定文字描述直线和平面在空间平面永无交点,则直线和平面平行(定义)平面外的一条直线一次平面内的一条直线平行,则该直线与此平面平行图形条件a与α无交点结论a∥αb∥α※判定定理的证明知识点二、直线与平面平行的性质图形条件a∥αa∥αa⊂βα∩β=b 结论a∩α=∅a∥b线面平行,则线线平行特别提示证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通过“线线”平行,证得“质定理,通过“面面”平行,证得“线面”平行.知识点三、平面与平面平行的判定知识点四、平面与平面平行的性质二、直线、平面垂直的判定及其性质知识点一、直线和平面垂直的定义与判定定义判定语言描述如果直线l和平面α内的任意一条直线都垂直,我们就说直线l与平面互相垂直,记作l⊥α一条直线与一个平面内的两条相交直线都垂直,则这条直线与该平面垂直.图形条件b为平面α内的任一直线,而l对这一直线总有l⊥αl⊥m,l⊥n,m∩n=B,mα,nα结论l⊥αl⊥α要点诠释:定义中“平面内的任意一条直线”就是指“平面内的所有直线”,这与“无数条直线”知识点二、直线和平面垂直的性质性质语言描述一条直线垂直于一个平面,那么这条直线垂直于这个平面内的所有直线垂直于同一个平面的两条直线平行.图形条件知识点三、二面角Ⅰ.二面角::从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle). 这条直线叫做二面角的棱,二面角ABαβ--. (简记P AB Q--)二面角的平面角的三个特征:ⅰ.点在棱上ⅱ.线在面内ⅲ.与棱垂直Ⅱ.二面角的平面角:在二面角αβ-l-的棱l上任取一点O,以点O为垂足,在半平面,αβ内分别作垂直于棱l的射成的AOB∠叫做二面角的平面角.作用:衡量二面角的大小;范围:000180θ<<.知识点四、平面和平面垂直的定义和判定定义判定文字描述两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面垂直.一个平面过另一个平面的垂线,则这两个平面垂直图形结果α∩β=l α-l-β=90o α⊥β(垂直问题中要注意题目中的文字表述,特别是“任何”“随意”“无数”等字眼)知识点五、平面和平面垂直的性质面面垂直线面垂直(如果两个平面垂直,那么一个平面内垂直于它们交线的直线与一个面平垂直1.如图,若Ω是长方体ABCD-A 1B 1C 1D 1被平面EFGH 截去几何体EFGHB 1C 1后得到的几何体,其中EBB 1上异于B 1的点,且EH ∥A 1 D 1,则下列结论中不正确的是A. EH ∥FGB.四边形EFGH 是矩形C. Ω是棱柱D. Ω是棱台2能保证直线a 与平面α平行的条件是( A )⊄α,b ⊂α,a ∥b B .b ⊂α,a ∥bC. b ⊂α,c ∥α,a ∥b,a ∥cD. b ⊂α,A ∈a,B ∈a,C ∈b ,D ∈b 且AC =BD3下列命题正确的是( D F )A. 平行于同一平面的两条直线平行B. 若直线a ∥α,则平面α内有且仅有一条直线与a 平行C. 若直线a ∥α,则平面α内任一条直线都与a 平行D. 若直线a ∥α,则平面α内有无数条直线与a 平行E. 如果a 、b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面F. 如果直线a 、b 和平面α满足a ∥b ,a ∥α,b ⊄α,那么b ∥α4在空间,下列命题正确的是 (A )平行直线的平行投影重合 (B )平行于同一直线的两个平面平行 (C )垂直于同一平面的两个平面平行 (D )垂直于同一平面的两条直线平行5已知m 、n 为两条不同的直线,a 、β为两个不同的平面,则下列命题中正确的是A .,,m n αα⊂⊂m ∥β,n ∥β⇒a ∥βB .a ∥β,,m n αβ⊂⊂⇒m ∥nC .m ⊥a,m ⊥n ⇒n ∥aD .n ∥m,n ⊥a ⇒m ⊥a 6.下列命题中错误的是(A )如果平面α⊥平面β,那么平面α内一定直线平行于平面β(B )如果平面α垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ (D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β8.求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面. 已知:空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点 求证:EF ‖平面BCD8题图 9题图9.如图,在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60 , ,PB=2, E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥ 平面DEF;(2) 求二面角P-AD-B 的余弦值.课堂练习A 组、n 是空间两条不同的直线,α、β是两个不同的平面,下面四个命题中,真命题的序号是________.①m ⊥α,n ∥β,α∥β⇒m ⊥n ; ②m ⊥n ,α∥β,m ⊥α⇒n ∥β; ③m ⊥n ,α∥β,m ∥α⇒n ⊥β; ④m ⊥α,m ∥n ,α∥β⇒n ⊥β.4.如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111在长方体(1)作出过直线AC 且与直线BD1平行的截面,并说明理由.(2)设E 、F 分别是A1B 和B1C 的中点,求证直线6. 在图中所示的一块木料中,棱BC 平行于平面A ’C ’ .(1)要经过平面内的一点P 和棱BC 将木料据开,应怎样画线 (2)所画的线和平面AC 是什么位置关系C A ''EABCFE 1 A 1B 1C 1D 1D。
高中数学直线、平面平行的判定与性质
例2 如图所示,正方体ABCD-A1B1C1D1中,M,N分别为A1B1,A1D1 的中点,E,F分别为B1C1,C1D1的中点.
(1)求证:四边形BDFE为梯形; (2)求证:平面AMN∥平面EFDB.
解题导引
1 (1)在△B1D1C1中得EF∥B1D1且EF= 2 B1D1 在正方体中得 1 BD������ B1D1 EF∥BD且EF= BD 四边形BDFE为梯形 2
证明 证法一:如图所示,作PM∥AB交BE于M,作QN∥AB交BC于N,连接 MN. ∵正方形ABCD和正方形ABEF有公共边AB,∴AE=BD. 又AP=DQ,∴PE=QB, 又PM∥AB∥QN, ∴ = = = ,∴ = , 又AB=DC, ∴PM������ QN,∴四边形PMNQ为平行四边形, ∴PQ∥MN. 又MN⊂平面BCE,PQ⊄平面BCE, ∴PQ∥平面BCE.§8Leabharlann 4直线、平面平行的判定与性质
知识清单
考点 直线、平面平行的判定与性质
1.判定直线与直线平行的方法
(1)平行公理:a∥b,b∥c⇒① a∥c ; (2)线面平行的性质定理:a∥β,a⊂α,α∩β=b⇒② a∥b ;
(3)面面平行的性质定理:α∥β,γ∩α=a,γ∩β=b⇒③ a∥b ;
(4)垂直于同一个平面的两条直线④ 平行 ; (5)如果一条直线与两个相交平面都平行,那么这条直线必与它们的交 线平行.
∴ = ,
∴MQ∥AD,又AD∥BC, ∴MQ∥BC,∴MQ∥平面BCE,又PM∩MQ=M,
∴平面PMQ∥平面BCE,
又PQ⊂平面PMQ,∴PQ∥平面BCE.
方法 2 判定或证明面面平行的方法
1.利用面面平行的定义(此法一般伴随反证法证明). 2.利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于 另一个平面,那么这两个平面平行. 3.证明两个平面都垂直于同一条直线. 4.证明两个平面同时平行于第三个平面.
高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)
§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。
《直线、平面平行的判定及其性质》测试题
直线、平面平行的判定及其性质一、选择题(共60分)1、若两个平面互相平行,则分别在这两个平行平面内的直线( )A.平行B.异面C.相交D.平行或异面2、下列结论中,正确的有( )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥平面β,点P∈α,a∥β,且P∈a,则aα个个个个3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC 和平面DEF的位置关系是( )A.平行B.相交C.在内D.不能确定4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )∥αα与α相交 D.以上都有可能6、下列命题中正确的命题的个数为( )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.7、下列命题正确的个数是( )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥α个个个个8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m ⊥α,m ⊥β,则α∥β; ②若α⊥γ,β⊥γ,则α∥β; ③若mα,nβ,m ∥n,则α∥β;④若m 、n 是异面直线,m α,m ∥β,nβ,n ∥α,则α∥β.其中真命题是( )A.①和②B.①和③C.③和④D.①和④9、长方体ABCD-A 1B 1C 1D 1中,E 为AA 1中点,F 为BB 1中点,与EF 平行的长方体的面有( ) 个 个 个 个10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,M ,使得l ∥α,l ∥β,M ∥α,M ∥β.其中可以判断两个平面α与β平行的条件有( ) 个 个 个 个11、设m ,n 为两条直线,α,β为两个平面,则下列四个命题中,正确的命题是 ( ) A.若m ⊂α,n ⊂α,且m ∥β,n ∥β,则α∥β B.若m ∥α,m ∥n ,则n ∥α C.若m ∥α,n ∥α,则m ∥nD.若m,n 是两条异面直线,且βσββσσ////,//,//,//,则n m n m12、已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题正确的是( ) A.若α⊥γ,α⊥β,则γ∥β B.若m ∥n ,m ⊂α,n ⊂β,则α∥β C.若α⊥β,m ⊥β,则m ∥α D.若m ∥n ,m ⊥α,n ⊥β,则α∥β 二、填空题 (共20分)13.在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP=3a,过P 、M 、N 的平面与棱CD 交于Q ,则PQ=_________. 14.若直线a 和b 都与平面α平行,则a 和b 的位置关系是__________.15.过长方体ABCD —A 1B 1C 1D 1的任意两条棱的中点作直线,其中能够与平面ACC 1A 1平行的直线有 _________条.16.已知平面α∥平面β,P 是α、β外一点,过点P 的直线m 与α、β分别交于A 、C ,过点P 的直线n 与α、β分别交于B 、D 且PA =6,AC =9,PD =8,则BD 的长为 .三、解答题 (17(10分)、18、19、20、21、22(12分))17. (10分)如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点,求证:PD //平面MAC .18.(12分)如图所示,已知P 、Q 是单位正方体ABCD —A 1B 1C 1D 1的面A 1B 1BA 和面ABCD 的中心.求证:PQ ∥平面BCC 1B 1.19. (12分)如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD ∶∶,求证:EF //平面PBC .CDABM P20.(12分)如下图,F,H分别是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,求证:平面BDF∥平面B1D1H.21.(12分)如图,在直四棱柱ABCD—A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=2CD,E,E1,F分别是棱AD,AA1,AB的中点.求证:直线EE1∥平面FCC1.22.(12分)如图,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.(1)求证:MN∥平面PAD;4,求异面直线PA与MN所成的角的大小.(2)若MN=BC=4,PA=3直线、平面平行的判定及其性质(答案)一、选择题1、若两个平面互相平行,则分别在这两个平行平面内的直线( D )A.平行B.异面C.相交D.平行或异面2、下列结论中,正确的有( A )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aα个个个个解析:若aα,则a∥α或a与α相交,由此知①不正确若a∥平面α,bα,则a与b异面或a∥b,∴②不正确若平面α∥β,aα,bβ,则a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设aα,过直线a作一面γ,使γ与平面α相交,则γ与平面β必相交.设γ∩α=b,γ∩β=c,则点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,则a∥b,这与a∩b=P矛盾,∴aα.故④正确.3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC 和平面DEF的位置关系是( A )A.平行B.相交C.在内D.不能确定参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.可以证明AC平面DEF.若AC平面DEF,则AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.主要考察知识点:空间直线和平面[来源:学+科+网Z+X+X+K]4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( D )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在参考答案与解析:解析:如当A与a确定的平面与b平行时,过A作与a,b都平行的平面不存在. 答案:D主要考察知识点:空间直线和平面[来源:学+科+网Z+X+X+K]5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )∥αα与α相交 D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b 与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.答案:D主要考察知识点:空间直线和平面6、下列命题中正确的命题的个数为( A )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(若改为l与α内任何直线都平行,则必有l∥α),∴①是假命题.对于②,∵直线a在平面α外,包括两种情况a∥α和a与α相交,∴a与α不一定平行,∴②为假命题.对于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不一定平行于平面α.∴③也是假命题.对于④,∵a∥b,bα.那么aα,或a∥α.∴a可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A主要考察知识点:空间直线和平面7、下列命题正确的个数是( A )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥α个个个个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A主要考察知识点:空间直线和平面8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是( D )A.①和②B.①和③C.③和④D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情况也成立,③中α与β相交时,也能满足前提条件答案:D主要考察知识点:空间直线和平面9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有( C )个个个个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C主要考察知识点:空间直线和平面10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有( B )个个个个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,但是α与β相交,不平行,故排除①,若α与β相交,如图所示,可在α内找到A、B、C三个点到平面β的距离相等,所以排除③.容易证明②④都是正确的.答案:B主要考察知识点:空间直线和平面11.D12.D二、填空题13、在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,M 、N 分别是棱A 1B 1、B 1C 1的中点,P 是棱AD 上一点,AP=,过P 、M 、N 的平面与棱CD 交于Q ,则PQ=_________.参考答案与解析:解析:由线面平行的性质定理知MN ∥PQ(∵MN ∥平面AC ,PQ=平面PMN ∩平面AC ,∴MN ∥PQ).易知DP=DQ=.故.答案:主要考察知识点:空间直线和平面14、若直线a 和b 都与平面α平行,则a 和b 的位置关系是__________. 参考答案与解析:相交或平行或异面 主要考察知识点:空间直线和平面 15、6 16、52424或三、解答题17.答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //. PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .18.答案:19.答案:证明:连结AF 并延长交BC 于M . 连结PM ,AD BC ∵//,BF MFFD FA=∴, 又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM ,CDABM PO又EF PBC ⊄,PM ⊂平面PBC , ∴EF //平面PBC .20.如下图,F ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱CC 1,AA 1的中点, 求证:平面BDF ∥平面B 1D 1H . 证明: 取DD 1,中点E 连AE 、EF . ∵E 、F 为DD 1、CC 1中点,∴EF ∥CD .,EF =CD ∴EF ∥AB ,EF =AB∴四边形EFBA 为平行四边形. ∴AE ∥BF .又∵E 、H 分别为D 1D 、A 1A 中点,∴D 1E ∥HA ,D 1E =HA ∴四边形HADD 1为平行四边形. ∴HD 1∥AE ∴HD 1∥BF由正方体的性质易知B 1D 1∥BD ,且已证BF ∥D 1H . ∵B 1D 1⊄平面BDF ,BD ⊂平面BDF , ∴B 1D 1∥平面BDF .连接HB ,D 1F , ∵HD 1⊄平面BDF ,BF ⊂平面BDF , ∴HD 1∥平面BDF .又∵B 1D 1∩HD 1=D 1, ∴平面BDF ∥平面B 1D 1H .21,答案:[证明] 因为F 为AB 的中点,CD =2,AB =4,AB ∥CD ,所以CD ∥AF ,CD =AF因此四边形AFCD 为平行四边形, 所以AD ∥FC .又CC 1∥DD 1,FC ∩CC 1=C ,FC ⊂平面FCC 1,CC 1⊂平面FCC 1, AD ∩DD 1=D ,AD ⊂平面ADD 1A 1, DD 1⊂平面ADD 1A 1,所以平面ADD 1A 1∥平面FCC 1. 又EE 1⊂平面ADD 1A 1,EE 1⊄平面FCC 1,所以EE 1∥平面FCC 1.22.答案:(1)取PD 的中点H ,连接AH ,NH ,∵N 是PC 的中点,∴NH =12DC .由M 是AB 的中点,且DC ∥AB ,∴NH ∥AM ,NH =AM 即四边形AMNH 为平行四边形. ∴MN ∥AH,由MN ⊄平面PAD ,AH ⊂平面PAD , ∴MN ∥平面PAD .(2)连接AC 并取其中点O ,连接OM 、ON , ∴OM ∥12BC ,ON ∥12PA .,OM =12BC ,ON =12PA .∴∠ONM 就是异面直线PA 与MN 所成的角, 由MN =BC =4,PA =43,得OM =2,ON =2 3.∴MO 2+ON 2=MN 2,∴∠ONM =30°,即异面直线PA 与MN 成30°的角.。
直线与平面平行的判定与性质试题及答案
直线与平面平行的判定与性质一、选择题1.已知直线a ∥平面α,直线b α,则a 与b 的关系为( )A .相交B .平行C .异面D .平行或异面2.平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面a =c ,若a ∥b ,则c 与a ,b 的位置关系是( )A .c 与a ,b 都异面B .c 与a ,b 都相交C .c 至少与a ,b 中的一条相交D .c 与a ,b 都平行3.给出下列四个命题:①如果a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面;②如果直线a 和平面α满足a ∥α,那么a 与平面α内的直线不是平行就是异面, ③如果直线a ∥α,b ∥α,则a ∥b④如果平面α∩平面β=a ,若b ∥α,b ∥β,则a ∥b其中为真命题有( )A .1个B .2个C .3个D .4个4.A 、B 是不在直线l 上的两点,则过点A 、B 且与直线l 平行的平面的个数是 ( )A .0个B .1个C .无数个D .以上三种情况均有可能二、填空题5.在△ABC 中,AB =5,AC =7,∠A =60°,G 是重心,过G 的平面α与BC 平行,AB ∩α=M ,AC ∩α=N ,则MN ___________6.P 是边长为8的正方形ABCD 所在平面外的一点,且P A =PB =PC =PD =8,M 、N分别在P A 、BD 上,且53==ND BN MA PM ,则MN =_________.7.三个平面两两相交,有三条交线,则这三条交线的位置关系为__________.三、解答题8.如图,两个全等正方形ABCD 与ABEF 所在平面相交于AB ,ME ∈AC ,NE ∈FB ,且AM =FN ,求证:MN ∥平面BCE .9.求证:如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线互相平行.10.已知E ,F ,G ,M 分别是四面体的棱AD ,CD ,BD ,BC 的中点,求证:AM ∥平面EFG .11.在正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱BC ,C 1D 1的中点,求证;EF ∥平面BB 1D 1D .12.空间四边形ABCD 的对棱AD ,BC 成60°的角,且AD =BC =a ,平行于AD 与BC 的截面分别交AB ,AC ,CD ,BD 于E 、F 、G 、H .(1)求证:四边形EFGH 为平行四边形;(2)E 在AB 的何处时截面EFGH 的面积最大?最大面积是多少?参考答案一、选择题1.D 2.D 3.B 4.D二、填空题 5.3392;6.19;7.两两平行或相交于一点.三、解答题8.证明:过M 在平面AC 内作直线AB 的平行线交于BC 于G ,过N 在平面AE 内作直线AB 的平行线交BE 于H ,连GH ,只要证明GH ∥MN 即可,事实上,∵MG ∥AB ,NH ∥AB ,∴MG ∥NH . 又∵AB MG =AC MC ,FE NH =BF BN,且ABCD 和ABEF 是两个全等的正方形,AM =FN ,∴AC =BF ,MC =BN ,从而有AB MG =FE NH,∴MG =NH ,∴四边形MGHN 为平行四边形.∴MN ∥GH .又∵GH ⊂平面BCE ,MN ⊄平面BCE ,∴MN ∥平面BCE .9.证明:∵a ∥b ,b ⊂β,∴a ∥β.又∵a ⊂α,α∩β=l ,∴a ∥l .又∵a ∥b ,b ∥l ,∴a ∥b ∥l .10.证明:连MD 交GF 于N ,连EN .∵GF 为△BCD 的中位线,∴N 为MD 的中点.∵E 为AD 的中点,∴EN 为△AMD 的中位线,∴EN ∥AM .∵AM ⊄平面EFG ,EN ⊂平面EFG ,∴AM ∥平面EFG .11.证明:取D 1B 1的中点O ,连OF ,OB .∵OF ∥=21B 1C 1,BE ∥=21B 1C 1, ∵OF ∥=BE ,则OFEB 为平行四边形. ∴EF ∥BO .∵EF ⊄平面BB 1D 1D ,BO ⊂平面BB 1D 1D ,∴EF ∥平面BB 1D 1D .12.证明:(1)∵BC ∥平面EFGH ,BC ⊂平面ABC ,平面ABC ∩平面EFGH =EF , ∴BC ∥EF ,同理BC ∥HC ,∴EF ∥HG .同理可证EH ∥FG ,∴四边形EFGH 为平行四边形.解:(2)∵AD 与BC 成角为60°,∴∠HEF =60°(或120°),设AB AE=x , ∵BC EF =AB AE=x ,BC =a ,∴EF =ax ,由AD EH =BA BE =11x-,得EH =(1-x )a .∴S 四边形EFGH =EF ·EH ·sin60°=ax ·a (1-x )·23=223a ·x (1-x )≤223a ·221)-+(x x =283a .当且仅当x =1-x ,即x =21时等号成立,即E 为AB 的中点时,截面EFGH 的面积最大为283a .。
直线、平面平行的判定及其性质_习题
直线、平面平行的判定及性质1.下列命题中,正确命题的个数是 .①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点.2.下列条件中,不能判断两个平面平行的是 (填序号).①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面③一个平面内有无数条直线平行于另一个平面 ④一个平面内任何一条直线都平行于另一个平面3.对于平面α和共面的直线m 、n ,下列命题中假命题是 (填序号).①若m ⊥α,m ⊥n ,则n ∥α ②若m ∥α,n ∥α,则m ∥n③若m ⊂α,n ∥α,则m ∥n ④若m 、n 与α所成的角相等,则m ∥n4.已知直线a ,b ,平面α,则以下三个命题:①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b .其中真命题的个数是 .5.如图所示,在三棱柱ABC —A 1B 1C 1中,M 、N 分别是BC 和A 1B 1的中点.求证:MN ∥平面AA 1C 1.例1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F .求证:EF ∥平面ABCD .例2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.(1)求证:平面G 1G 2G 3∥平面ABC ;(2)求S △321G G G ∶S △ABC .例3 (16分)如图所示,平面α∥平面β,点A ∈α,C ∈α,点B ∈β,D ∈β,点E ,F 分别在线段AB ,CD 上,且AE ∶EB =CF ∶FD .(1)求证:EF ∥β;(2)若E ,F 分别是AB ,CD 的中点,AC =4,BD =6,且AC ,BD 所成的角为60°,求EF 的长.1.如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.3.如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.(1)求证:AB∥平面EFGH,CD∥平面EFGH.(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.一、填空题1.下列命题,其中真命题的个数为 .①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线b⊂α,则a∥α;④若直线a∥b,b⊂α,那么直线a就平行于平面α内的无数条直线.2.写出平面α∥平面β的一个充分条件(写出一个你认为正确的即可).3.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都垂直于γ;②存在平面γ,使得α,β都平行于γ;③存在直线l ⊂α,直线m ⊂β,使得l ∥m ;④存在异面直线l 、m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中,可以判定α与β平行的条件有 (写出符合题意的序号).4.(2008·海南,宁夏文,12)已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,一定成立的是 .①AB ∥m②AC ⊥m ③AB ∥β ④AC ⊥β5.(2008·湖南理,5)设有直线m 、n 和平面α、β.下列命题不正确的是 (填序号). ①若m ∥α,n ∥α,则m ∥n②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β③若α⊥β,m ⊂α,则m ⊥β④若α⊥β,m ⊥β,m ⊄α,则m ∥α6.下列关于互不相同的直线m ,l ,n 和平面α,β的四个命题:①若m ⊂α,l ∩α=A ,点A ∉m ,则l 与m 不共面;②若m ,l 是异面直线,l ∥α,m ∥α,且n ⊥l ,n ⊥m ,则n ⊥α;③若l ∥α,m ∥β,α∥β,则l ∥m ;④若l ⊂α,m ⊂α,l ∩m =A ,l ∥β,m ∥β,则α∥β.其中假命题的序号是 .7.考察下列三个命题,在“ ”处都缺少同一个条件,补上这个条件使其构成真命题(其中l ,m 为不同的直线,α、β为不重合的平面),则此条件为 .①ααl m l m ⇒⎪⎭⎪⎬⎫⊂②ααl m m l ⇒⎪⎭⎪⎬⎫ ③αβαβl l ⇒⎪⎭⎪⎬⎫⊥⊥ 8.如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M ,N 分别是下底面的棱A 1B 1,B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =3a ,过P ,M ,N 的平面交上 底面于PQ ,Q 在CD 上,则PQ = .二、解答题9.如图所示,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO ?10.正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP =DQ .求证:PQ ∥平面BCE .∥ ∥ ∥ ∥∥12.如图所示,正四棱锥P—ABCD的各棱长均为13,M,N分别为PA,BD上的点,且PM∶MA=BN∶ND=5∶8.(1)求证:直线MN∥平面PBC;(2)求线段MN的长.。
直线、平面平行的判定与性质
直线、平面平行的判定与性质一、选择题1.已知直线a 和平面α,那么a ∥α的一个充分条件是( )A .存在一条直线b ,a ∥b 且b ⊂αB .存在一条直线b ,a ⊥b 且b ⊥αC .存在一个平面β,a ⊂β且α∥βD .存在一个平面β,a ∥β且α∥β2.已知直线l 和平面α,若l ∥α,P ∈α,则过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,且在平面α内C .有无数条,一定在平面α内D .有无数条,不一定在平面α内3.已知直线a ,b 异面,给出以下命题:①一定存在平行于a 的平面α使b ⊥α;②一定存在平行于a 的平面α使b ∥α;③一定存在平行于a 的平面α使b ⊂α;④一定存在无数个平行于a 的平面α与b 交于一定点。
则其中论断正确的是( )A .①④B .②③C .①②③D .②③④4.已知m ,n 是两条不同的直线,α,β,γ是三个不同的平面,则下列命题中正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若m ∥n ,n ⊂α,则m ∥αC .若m ∥α,m ∥β,则α∥βD .若α∥β,α∥γ,则β∥γ5.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m ∥l ,且m ⊥α,则l ⊥α;②若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ;③若m ∥l ,且m ∥α,则l ∥α;④若α∩β=m ,β∩γ=l ,γ∩α=n ,且n ∥β,则l ∥m , 其中正确命题的个数是( )A .1B .2C .3D .46.如图,在正方体ABCD -A 1B 1C 1D 1中,M ,N 分别是BC 1,CD 1的中点,则下列说法错误的是( )A .MN 与CC1垂直 B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与A 1B 1平行7.平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( ) A.32 B.22 C.33 D.138.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,AB =1,M ,N 分别在AD 1,BC 上移动,始终保持MN ∥平面DCC 1D 1,设BN =x ,MN =y ,则函数y =f (x )的图象大致是( )二、填空题 9.在四面体A -BCD 中,M ,N 分别是△ACD ,△BCD 的重心,则四面体的四个面中与MN 平行的是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线、平面平行的判定及其性质
A 组
1.平面α∩平面β=a ,平面β∩平面γ=b ,平面γ∩平面a =c ,若a ∥b ,则c 与a ,b 的位置关系是( )
A .c 与a ,b 都异面
B .c 与a ,b 都相交
C .c 至少与a ,b 中的一条相交
D .c 与a ,b 都平行
2.过平行六面体ABCD -A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线共有 ( )
A .4条
B .6条
C .8条
D .12条
3.考察下列三个命题,是否需要在“ ”处添加一个条件,才能构成真命题(其中l ,m 为直线,α、β为平面)?如需要,请填这个条件,如不需要,请把“ ”划掉。
①
αα//_____//l m l m ⇒⎪⎭
⎪
⎬⎫
⊂ ②
αα//_____////l m m l ⇒⎪⎭
⎪
⎬⎫
③
αβαβ//_____l l ⇒⎪⎭
⎪
⎬⎫
⊥⊥ 4.给出下面四个命题:① 在空间过直线外一点,作这条直线的平行线只能有一条;② 既
不平行又不相交的两条直线是异面直线;③ 两两平行的三条直线确定三个平面;④不可能在同一平面内的两条直线是异面直线。
其中正确的命题是__________ 5.对于不重合的两个平面βα与,给定下列条件: ①存在平面γ,使得α、β都垂直于γ; ②存在平面γ,使得α、β都平行于γ; ③存在直线α⊂l ,直线β⊂m ,使得m l //; ④存在异面直线l 、m ,使得.//,//,//,//βαβαm m l l 其中,可以判定α与β平行的条件有 ___________ 6.在正方体ABCD -A 1B 1C 1D 1中,AB =a 则平面AD 1B 1与平面BC 1D 之间的距离为____________.
7.已知平面//α平面β,P 是βα,外一点,过点P 的直线m 与βα,分别交于点C A ,,过点P 的直线n 与
βα,分别交于点D B ,,且6=PA ,9=AC ,8=PD ,则BD 的长为___________
()A 16 ()B ()C 14 ()D 20
B 组
8.已知直线m , n 及平面α,其中m //n ,那么在平面α内到两条直线m , n 距离相
等的点的集合可能是:① 一条直线;② 一个平面;③ 一个点;④ 空集。
其中正确的序号有 .
A
B
C
P
9.已知βα//,线段GH 、GD 、HE 交α、β于A 、B 、C 、D 、E 、F ,若GA=9,AB=12,
72=S S
11.如图,两个全等的正方形ABCD 和ABEF 所在的平面交于AB ,M ∈AC ,N ∈FB ,且AM=FN ,求证:MN ∥平面BCE 。
参考答案:
1.D
2.D .解:如图,过平行六面体1111D C B A ABCD -任意两条棱的中点作直线, 其中与平面
11D DBB 平行的直线共有12条.
3.解:①α⊄l ;②α⊄l ;③α⊄l 。
4._①②④__ 5._②_④___
6.解:设A 1C∩平面AB 1D 1=M,A 1C∩平面BC 1D =N,O 1,O分别为上底面A 1B 1C 1D 1,下底面ABCD 的中心,则M ∈AO 1,N ∈C 1O ,且AO 1∥C 1O ,MN 的长即等于平面AB 1D 1与平面BC 1D 的距离,即MN=A 1M=NC=a C A 3
33
11=
7.24或
5
24
8.①②④ 9.96
证明:
FBD
EAC BF AE H HA HE BD AC G GH GD ∠=∠⇒⎭⎬⎫
⇒=⋂⇒=⋂////
AC ∥BD
219==⇒
GB GA BD AC AE ∥BF 2816
==⇒HA HB AE BF
43
4773sin 21sin 21
=⋅=⋅⋅⋅⋅=∆∆B BD BF A
AE AC S S BFD
AEC
∴ 96=BFD S
10.证明:①存在性:在直线b 上任取一点B ,过B 作a '∥a ,∵a '与b 相交于B ,∴过a ',b 可作一个平面α,∵a '∥a ,a '⊂α,a ⊄α,∴a ∥α。
唯一性:假设过b 还有一平面β,使a ∥β,∵b ⊂α,b ⊂β。
∴α∩β=b ,而a ∥α,a ∥β,∴a ∥b ,这与a ,b 是异面直线矛盾。
∴假设不成立,∴过b 有且只有一个平面与a 平行。
思维点拨:“有且只有”包含“存在”与“唯一”两个方面。
11.证法一:过M 作MP ⊥BC ,NQ ⊥BE ,P 、Q 为
垂足,如图,连结PQ ,∵MP ∥AB ,NQ ∥AB ,∴MP ∥NQ ,又NQ=22BN=22CM=MP ,∴MPQN 是
平行四边形。
∴MN ∥PQ ,又PQ ⊂平面BCE ,而MN ⊄
平面BCE ,∴MN ∥平面BCE 。
证法二:过M 作MG ∥BC ,交AB 于G (如图),连结NG ,∵MG ∥BC ,BC ⊂平面BCE ,MG ⊄平面BCE
,
A D C B
F
E
M
P Q
N
∴MG ∥平面BCE ,又
NF
BN
MA CM GA BG ==,∴GN ∥AF ∥BE ,同样可证明GN ∥平面BCE ,而MG∩NG=G ,∴平面MNG ∥平面BCE ,MN ⊂平面MNG ,∴MN ∥平面BCE 。