直线与平面平行的判定和性质经典练习及详细答案

合集下载

平行的判定与性质含练习答案

平行的判定与性质含练习答案

平行的判定与性质知识点一:直线与平面平行的判定及性质直线与平面平行的判断判定文字描述直线和平面在空间平面永无交点,则直线和平面平行(定义)平面外的一条直线一次平面内的一条直线平行,则该直线与此平面平行图形条件a与α无交点结论a∥αb∥α线线平行,则线面平行(线与面的平行问题一定要排除现在直线内的情况)直线与平面平行的性质性质文字描述一条直线与一个平面平行,则这条直线与该平面无交点一条直线和一个平面平行,则过这条直线的任一平面与此平面相交,这条直线和交线平行.图形条件a∥αa∥αa⊂βα∩β=b结论a∩α=∅a∥b线面平行,则线线平行例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.证明:若一条直线与两个相交平面都平行,则这条直线平行于两个平面的交线.知识点二:平面与平面平行的判定及性质平面与平面平行的判定判定文字描述如果两个平面无公共点,责成这两个平面平行一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行.如果两个平面同时垂直于一条直线,那么这两个平面垂直。

图形条件α∩β=∅a,b⊂βa∩b=Pa∥αb∥αl⊥αl⊥β结论α∥βα∥βα∥β平面与平面平行的性质性质文字描述如果两个平行平面同时和第三如果两个平面平行,那么其中一图形条件α∥β β∩γ=b α∩γ=aα∥β a ⊂β结论 a ∥b a ∥α例2 如图,在三棱柱ABC —A 1B 1C 1中,E ,F ,G ,H 分别是AB ,AC ,A 1B 1,A 1C 1的中点,求证:(1)B ,C ,H ,G 四点共面; (2)平面EFA1∥平面BCHG .如图,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO?课堂练习:1.直线a ∥平面α,则a 平行于平面α内的( )D.无穷多条平行直线2.若直线a∥直线b,且a∥平面α,则b与α的位置关系是( )A.一定平行 B.不平行C.平行或相交 D.平行或在平面内3.下列说法正确的是( )A.若直线l平行于平面α内的无数条直线,则l∥αB.若直线l在平面α外,则l∥αC.若直线a∥b,b⊂平面α,则a∥αD.若直线a∥b,b⊂平面α,那么a平行于平面α内的无数条直线4.b是平面α外的一条直线,可以推出b∥α的条件是( )A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的任何一条直线都不相交能力提升5.如果三个平面将空间分成6个互不重叠的部分,则这三个平面的位置关系是( )A.两两相交于三条交线B.两个平面互相平行,另一平面与它们相交C.两两相交于同一条直线D.B中情况或C中情况都可能发生6.[2011·威海质检] 已知直线l、m,平面α,且m⊂α,则“l∥m”是“l∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.[2011·泰安模拟] 设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是( )A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β8.已知平面α∥平面β,P是α、β外一点,过点P的直线m与α、β分别交于点A、C,过点P的直线n与α、β分别交于点B、D,且PA=6,AC=9,PD=8,则BD的长为( )9.[2010·福建卷] 如图K39-1,若Ω是长方体ABCD-A1B1C1D1被平面EFGH截去几何体EFGHB1C1后得到的几何体,其中E为线段A1B1上异于B1的点,F为线段BB1上异于B1的点,且EH∥A1D1,则下列结论中不正确的是( ) A.EH∥FGB.四边形EFGH是矩形C.Ω是棱柱D.Ω是棱台10(10分)如图K39-3,已知P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.求证:MN∥平面PAD;图K39-3 11(13分)[2011·九江七校联考] 如图K39-4所示,四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.求证:PA∥平面EFG;图K39-4课后练习:1、下列命题中正确的是()(A)平行于同一个平面的两条直线平行(B)垂直于同一条直线的两条直线平行(C)若直线a与平面α内的无数条直线平行,则a∥α(D)若一条直线平行两个平面的交线,则这条直线至少平行两个平面中的一个2.平面α∩平面β=a,平面β∩平面γ=b,平面γ∩平面α=c,若a∥b,则c与a,b的位置关系是(A)c与a,b都异面(B)c与a,b都相交(C)c至少与a,b中的一条相交(D)c与a,b都平行3.在正方体ABCD-A1B1C1D1中,与平面AB1C平行的直线是()(A)DD1(B)A1D1(C)C1D1(D)A1D4.下列四个命题:(1)存在与两条异面直线都平行的平面;(2)过空间一点,一定能作一个平面与两条异面直线都平行;(3)过平面外一点可作无数条直线与平面平行;(4)过直线外一点可作无数个平面与直线平行;其中正确的命题是()(A)(1),(3)(B)(2),(4)(C)(1),(3),(4)(D)(2),(3),(4)5.若直线a与平面α内的无数条直线平行,则a与α的关系为。

(完整版)高中数学必修二2.2直线、平面平行的判定及其性质课堂练习及答案

(完整版)高中数学必修二2.2直线、平面平行的判定及其性质课堂练习及答案

2.2. 直线、平面平行的判断及其性质直线与平面平行的判断知识梳理1、直线与平面平行的判判定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

简记为:线线平行,则线面平行。

符号表示:aαbβ=> a∥ αa∥ b知能训练一.选择题1.已知 m,n 是两条不同样直线,α,β,γ是三个不同样平面,以下命题中正确的选项是()A .若 m∥ α, n ∥ α,则 m∥ n B .若α⊥ γ,β⊥ γ,则α∥ βC.若 m ∥ α, m ∥ β,则α∥ β D .若 m ⊥ α, n⊥ α,则 m ∥ n 2.若直线l 不平行于平面α,且l?α,则()A .α内存在直线与 l 异面B .α内存在与 l 平行的直线C.α内存在唯一的直线与 l 平行D .α内的直线与 l 都相交3.如图, M 是正方体 ABCD-A 1B 1C1D 1的棱 DD 1的中点,给出以下命题①过 M 点有且只有一条直线与直线AB 、 B 1C1都订交;②过 M 点有且只有一条直线与直线AB 、 B 1C1都垂直;③过 M 点有且只有一个平面与直线AB 、 B 1C1都订交;④过 M 点有且只有一个平面与直线AB 、 B 1C1都平行.其中真命题是()A .② ③ ④B .① ③ ④C .① ② ④D .① ② ③4.正方体 ABCD-A 1B 1C1D 1中 M ,N ,Q 分别是棱 D 1C1, A 1D 1,BC 的中点. P在对角线 BD 1上,且BP=BD1,给出下面四个命题:(1)MN ∥面 APC;(2)C1 Q∥面 APC;(3)A ,P, M 三点共线;(4)面 MNQ ∥面 APC.正确的序号为()A .( 1 )( 2 )B .( 1 )( 4 )C.( 2)( 3 ) D .( 3 )( 4)5.在正方体ABCD-A 1B 1C1D 1的各个极点与各棱中点共20 个点中,任取两点连成直线,所连的直线中与A 1BC 1平行的直线共有()A . 12 条B . 18 条C . 21 条D . 24 条6.直线 a∥平面α,P∈ α,那么过 P 且平行于 a 的直线()A .只有一条,不在平面α内B .有无数条,不一定在平面α内C.只有一条,且在平面α内D .有无数条,一定在平面α内7.若是直线a∥平面α,那么直线 a 与平面α内的()A .一条直线不相交B .两条直线不相交C .无数条直线不相交D .任意一条直线不相交8.如图在正方体ABCD-A 1B 1C1D 1中,与平面AB 1C 平行的直线是()A .DD 1B .A 1 D 1C .C 1D 1 D .A 1 D9.如图,在三棱柱 ABC-A 1B1C1中,点 D 为 AC 的中点,点 D1是 A 1C1上的一点,若 BC 1∥平面 AB 1D 1,则等于()A . 1/2B . 1C. 2 D . 310.下面四个正方体图形中, A 、B 为正方体的两个极点,M、N 、 P 分别为其所在棱的中点,能得出AB ∥平面 MNP 的图形是()A .①②B .①④C.②③ D .③④11.如图,正方体的棱长为1,线段 B′ D上′有两个动点 E ,F,EF= ,则以下结论中错误的选项是()A . AC ⊥ BEB . EF ∥平面 ABCDC.三棱锥 A-BEF的体积为定值D .异面直线 AE , BF 所成的角为定值二.填空题12.如图,在正方体ABCD-A1B 1C1D 1 中,E,F,G,H,M分别是棱AD ,DD 1,D1A 1,A 1A ,AB的中点,点 N在四边形EFGH的四边及其内部运动,则当N 只需满足条件时,就有MN ⊥ A1C1;当N 只需满足条件时,就有MN ∥平面 B 1D 1C.13.如图,正方体ABCD-A1B 1C1D 1 中,AB=2,点E 为 AD的中点,点 F 在 CD上,若EF ∥平面AB 1C,则线段EF的长度等于.三.解答题14.如图,在三棱柱 ABC-A 1B 1 C1中,侧棱 AA 1⊥底面 ABC ,AB ⊥ BC,D 为 AC的中点, AA 1=AB=2 .(1)求证: AB 1∥平面 BC1D ;(2)若 BC=3 ,求三棱锥 D-BC 1C 的体积.平面与平面平行的判断知识梳理1、两个平面平行的判判定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。

2022高三总复习数学 直线、平面平行的判定与性质(含解析)

2022高三总复习数学 直线、平面平行的判定与性质(含解析)

直线、平面平行的判定与性质A 级——基础达标1.(2021·宁夏大学高三模拟)设m ,n 是两条不同的直线,α,β是两个不同的平面,且m ⊂α,n ⊂α,则“α∥β ”是“m ∥β且n ∥β ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A m ,n 是两条不同的直线,α,β是两个不同的平面,且m ⊂α,n ⊂α,则“α∥β ”得“m ∥β且n ∥β ”,根据面面平行的判定定理得“m ∥β且n ∥β ”不能得到“α∥β ”,所以“α∥β ”是“m ∥β且n ∥β ”的充分不必要条件.故选A .2.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶2,则对角线AC 和平面DEF 的位置关系是( )A .平行B .相交C .在平面内D .不能确定解析:选A 如图,由AE EB =CF FB 得AC ∥EF .又因为EF ⊂平面DEF ,AC⊄平面DEF ,所以AC ∥平面DEF .3.下列四个正方体中,A ,B ,C 为所在棱的中点,则能得出平面ABC ∥平面DEF 的是( )解析:选B 在B 中,如图,连接MN ,PN ,∵A ,B ,C 为正方体所在棱的中点,∴AB ∥MN ,AC ∥PN ,∵MN ∥DE ,PN ∥EF ,∴AB∥DE,AC∥EF,∵AB∩AC=A,DE∩EF=E,AB,AC⊂平面ABC,DE,EF⊂平面DEF,∴平面ABC∥平面DEF.4.已知P为△ABC所在平面外一点,平面α∥平面ABC,且α分别交线段PA,PB,PC于点A′,B′,C′.若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC=()A.2∶3 B.2∶5C.4∶9 D.4∶25解析:选D∵平面α∥平面ABC,∴AB∥平面α.又∵平面α∩平面PAB=A′B′,∴A′B′∥A B.∵PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴A′B′∶AB=2∶5,∴S△A′B′C′S△ABC=⎝⎛⎭⎫A′B′AB2=425,故选D.5.(多选)(2021·山东济南质检)下列四个命题中正确的是()A.如果一条直线不在某个平面内,那么这条直线就与这个平面平行B.过直线外一点有无数个平面与这条直线平行C.过平面外一点有无数条直线与这个平面平行D.过空间一点必存在某个平面与两条异面直线都平行解析:选BC A.如果一条直线不在某个平面内,那么这条直线就与这个平面平行或相交,故A错误;B.过直线外一点有且只有一条直线和已知直线平行,过这条直线有无数个平面与已知直线平行,故B正确;C.过平面外一点有无数条直线与这个平面平行,且这无数条直线在同一平面内,故C 正确;D.过空间一点不一定存在某个平面与两条异面直线都平行,当此点在其中一条直线上时平面最多只能与另一条直线平行,故D错误.故选B、C.6.(多选)在正方体ABCD-A1B1C1D1中,E,F,G分别是A1B1,B1C1,BB1的中点,下列四个推断中正确的是()A.FG∥平面AA1D1DB.EF∥平面BC1D1C.FG∥平面BC1D1D.平面EFG∥平面BC1D1解析:选AC连接AD1、A1C1(图略),因为在正方体ABCD-A1B1C1D1中,E,F,G 分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为BC1∥AD1,所以FG∥AD1,因为FG⊄平面AA1D1D,AD1⊂平面AA1D1D,所以FG∥平面AA1D1D,故A项正确;因为EF∥A1C1,A1C1与平面BC1D1相交,所以EF与平面BC1D1相交,故B项错误;因为E,F,G分别是A1B1,B1C1,BB1的中点,所以FG∥BC1,因为FG⊄平面BC1D1,BC1⊂平面BC1D1,所以FG∥平面BC1D1,故C项正确;因为EF与平面BC1D1相交,所以平面EFG 与平面BC1D1相交,故D项错误.故选A、C.7.(2021·浙江省镇海中学高三模拟)如图,在正方体ABCD-A1B1C1D1中,AB=2,E为AD的中点,点F在CD上,若EF∥平面AB1C,则EF=________.解析:根据题意,因为EF∥平面AB1C,所以EF∥AC.又E是AD的中点,所以F是CD的中点.因此在Rt△DEF中,DE=DF=1,故EF= 2.答案: 28.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理,EH∥FG,所以四边形EFGH是平行四边形.答案:平行四边形9.设α,β,γ是三个平面,a,b是两条不同直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________(填序号).解析:由面面平行的性质定理可知,①正确;当b ∥β,a ⊂γ时,a 和b 在同一平面内,且没有公共点,所以平行,③正确.故应填入的条件为①或③.答案:①或③10.在正四面体S -ABC 中,M ,E ,F 分别是SA ,AB ,AC 的中点,当点P 在线段EF 上运动时,直线MP 与平面SBC 的位置关系是________.解析:连接ME ,MF (图略),因为M ,E ,F 分别是SA ,AB ,AC 的中点,所以ME ∥SB ,MF ∥SC ,而ME ∩MF =M ,SB ∩SC =S ,ME ,MF ⊂平面MEF ,SB ,SC ⊂平面SBC ,所以平面MEF ∥平面SBC ,又点P 在线段EF 上,即MP 在平面MEF 内,所以由面面平行的性质定理可得MP ∥平面SBC ,故直线MP 与平面SBC 的位置关系是平行.答案:平行11.如图,E ,F ,G ,H 分别是正方体ABCD -A 1B 1C 1D 1的棱BC ,CC 1,C 1D 1,AA 1的中点.求证:(1)EG ∥平面BB 1D 1D ;(2)平面BDF ∥平面B 1D 1H .证明:(1)如图,取B 1D 1的中点O ,连接GO ,OB ,因为OG綊12B 1C 1,BE 綊12B 1C 1,所以BE 綊OG ,所以四边形BEGO 为平行四边形,故OB ∥EG ,因为OB ⊂平面BB 1D 1D ,EG ⊄平面BB 1D 1D ,所以EG ∥平面BB 1D 1D .(2)由题意可知BD ∥B 1D 1.连接HB ,D 1F ,因为BH 綊D 1F ,所以四边形HBFD 1是平行四边形,故HD 1∥BF .又B 1D 1∩HD 1=D 1,BD ∩BF =B ,所以平面BDF ∥平面B 1D 1H .12.如图所示,四棱锥A -BCDE 中,BE ∥CD ,BE ⊥平面ABC ,CD=32BE ,点F 在线段AD 上. (1)若AF =2FD ,求证:EF ∥平面ABC ;(2)若△ABC 为等边三角形,CD =AC =3,求四棱锥A -BCDE 的体积.解:(1)证明:取线段AC 上靠近C 的三等分点G ,连接BG ,GF .因为AG AC =AF AD =23, 则GF =23CD =BE . 而GF ∥CD ,BE ∥CD ,故GF ∥BE .故四边形BGFE 为平行四边形,故EF ∥BG .因为EF ⊄平面ABC ,BG ⊂平面ABC ,故EF ∥平面ABC .(2)因为BE ⊥平面ABC ,BE ⊂平面BCDE ,所以平面ABC ⊥平面BCDE .所以四棱锥A -BCDE 的高即为△ABC 中BC 边上的高.易求得BC 边上的高为32×3=332. 故四棱锥A -BCDE 的体积V =13×12×(2+3)×3×332=1534. B 级——综合应用13.如图,在平行六面体ABCD -A 1B 1C 1D 1中,点M ,P ,Q 分别为棱AB ,CD ,BC 的中点,若平行六面体的各棱长均相等,给出下列说法:①A 1M ∥D 1P ;②A 1M ∥B 1Q ;③A 1M ∥平面DCC 1D 1;④A 1M ∥平面D 1PQB 1. 则以上说法中正确的个数为( )A.1 B.2C.3 D.4解析:选C连接PM(图略),因为M,P分别为AB,CD的中点,故PM平行且等于AD.由题意知AD平行且等于A1D1,故PM平行且等于A1D1,所以四边形PMA1D1为平行四边形,所以A1M∥D1P,故①正确.显然A1M与B1Q为异面直线,故②错误.由①知A1M∥D1P,由于D1P既在平面DCC1D1内,又在平面D1PQB1内,且A1M既不在平面DCC1D1内,又不在平面D1PQB1内,所以A1M∥平面DCC1D1,A1M∥平面D1PQB1,故③④正确.则正确说法的个数为3,故选C.14.(多选)(2021·高密市高三模拟)已知正四棱柱ABCD-A1B1C1D1的底面边长为2,侧棱AA1=1,P为上底面A1B1C1D1上的动点,给出下列四个选项,其中正确的为() A.若PD=3,则满足条件的P点有且只有一个B.若PD=3,则点P的轨迹是一段圆弧C.若PD∥平面ACB1,则DP长的最小值为2D.若PD∥平面ACB1,且PD=3,则平面BDP截正四棱柱ABCD-A1B1C1D1的外接球所得平面图形的面积为9π4解析:选ABD如图,∵正四棱柱ABCD-A1B1C1D1的底面边长为2,∴B1D1=22,又侧棱AA1=1,∴DB1=(22)2+12=3,则P与B1重合时PD=3,此时P点唯一,故A正确;∵PD=3∈(1,3),DD1=1,则PD1=2,即点P的轨迹是一段圆弧,故B正确;连接DA1,DC1,可得平面A1DC1∥平面ACB1,则当P为A1C1中点时,DP有最小值为(2)2+12=3,故C错误;由C知,平面BDP即为平面BDD1B1,平面BDP截正四棱柱ABCD-A1B1C1D1的外接球所得平面图形为外接球的大圆,其半径为1222+22+12=32,面积为9π4,故D正确.故选A、B、D.15.(2021·烟台模拟)如图,在矩形ABCD和矩形ABEF中,AF=AD,AM=DN,矩形ABEF可沿AB任意翻折.(1)求证:当点F,A,D不共线时,线段MN总平行于平面FAD;(2)“不管怎样翻折矩形ABEF,线段MN总与线段FD平行”这个结论正确吗?如果正确,请证明;如果不正确,请说明能否改变个别已知条件使上述结论成立,并给出理由.解:(1)证明:在平面图形中,连接MN(图略),设MN与AB交于点G.当点F,A,D不共线时,如图,MG∥AF,NG∥AD.又MG∩NG=G,AD∩AF=A,∴平面GNM∥平面ADF.又MN⊂平面GNM,∴MN∥平面ADF.故当点F,A,D不共线时,线段MN总平行于平面FAD.(2)这个结论不正确.要使上述结论成立,M,N应分别为AE和DB的中点.理由如下:当点F,A,D共线时,如题图,∵四边形ABCD和四边形ABEF都是矩形,AD=AF,∴AD∥BE且AD=BE,∴四边形ADBE是平行四边形,∴AE∥D B.又AM=DN,∴四边形ADNM是平行四边形,∴MN∥AD,∴MN∥FD.当点F,A,D不共线时,由(1)知平面MNG∥平面FDA,则要使MN∥FD 总成立,根据面面平行的性质定理,只要FD与MN共面即可.若要使FD与MN共面,连接FM(图略),只要FM与DN相交即可.∵FM⊂平面ABEF,DN⊂平面ABCD,平面ABEF∩平面ABCD=AB,∴若FM与DN相交,则交点只能为点B,此时只有M,N分别为AE,DB的中点才满足.由FM∩DN=B,可知它们确定一个平面,即F,D,N,M四点共面.∵平面FDNM∩平面MNG=MN,平面FDNM∩平面FDA=FD,平面MNG∥平面FDA,∴MN∥FD.C级——迁移创新16.如图所示,侧棱与底面垂直,且底面为正方形的四棱柱ABCD-A1B1C1D1中,AA1=2,AB=1,M,N分别在AD1,BC上移动,始终保持MN∥平面DCC1D1,设BN=x,MN=y,则函数y=f(x)的图象大致是()解析:选C过M作MQ∥DD1,交AD于点Q,连接QN.∵MN∥平面DCC1D1,MQ∥平面DCC1D1,MN∩MQ=M,∴平面MNQ∥平面DCC1D1.又平面ABCD与平面MNQ和DCC1D1分别交于QN和DC,∴NQ∥DC,可得QN=CD=AB=1,AQ=BN=x,∵MQ AQ =DD1AD=2,∴MQ=2x.在Rt△MQN中,MN2=MQ2+QN2,即y2=4x2+1,∴y2-4x2=1(x≥0,y≥1),∴函数y=f(x)的图象为焦点在y轴上的双曲线上支的一部分.故选C.。

直线、平面平行的判定及性质及详细答案

直线、平面平行的判定及性质及详细答案

直线、平面平行的判定及性质1.直线和平面平行的判定定理2.直线和平面平行的性质定理3.两个平面平行的判定定理4.两个平面平行的性质定理5.与垂直相关的平行的判定定理例1如图所示,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=λAA′,点M,N分别为A′B和B′C′的中点.证明:MN∥平面A′ACC′.例2.正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.如图所示,在三棱柱ABC-A1B1C1中,E为AC上一点,若AB1∥平面C1EB,求:AE∶EC.例3如图所示,正方体ABCD—A1B1C1D1中,M、N、E、F分别是棱A1B1,A1D1,B1C1,C1D1的中点.求证:平面AMN∥平面EFDB.例4如图所示,平面α∥平面β,点A∈α,C∈α,点B∈β,D∈β,点E、F分别在线段AB,CD上,且AE∶EB=CF∶FD.求证:EF∥β.练习题:1.(课本习题改编)给出下列四个命题:①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行;②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行;③若平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行;④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行.其中正确命题的个数是________个.1.下列命题中正确的是________.①若直线a不在α内,则a∥α;②若直线l上有无数个点不在平面α内,则l∥α;③若直线l与平面α平行,则l与α内的任意一条直线都平行;④如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行;⑤若l与平面α平行,则l与α内任何一条直线都没有公共点;⑥平行于同一平面的两直线可以相交.2.(2014·合肥一检)给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.1.已知两条不同直线l1和l2及平面α,则直线l1∥l2的一个充分条件是() A.l1∥α且l2∥αB.l1⊥α且l2⊥αC.l1∥α且l2⊄αD.l1∥α且l2⊂α答案 B解析l1⊥α且l2⊥α⇒l1∥l2.2.(2012·四川)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行答案 C解析若两条直线和同一平面所成的角相等,则这两条直线可平行、可异面、可相交,A项不正确;如果到一个平面距离相等的三个点在同一条直线上或在这个平面的两侧,那么经过这三个点的平面与这个平面相交,B项不正确.3.(2013·浙江)设m,n是两条不同的直线,α,β是两个不同的平面() A.若m∥α,n∥α,则m∥nB.若m∥α,m∥β,则α∥βC.若m∥n,m⊥α,则n⊥αD.若m∥α,α⊥β,则m⊥β答案 C解析A项中,直线m,n可能平行,也可能相交或异面,直线m,n的关系是任意的;B项中,α与β也可能相交,此时直线m平行于α,β的交线;D 项中,m也可能平行于β.故选C项.4.设α,β表示平面,m,n表示直线,则m∥α的一个充分不必要条件是()A .α⊥β且m ⊥βB .α∩β=n 且m ∥nC .m ∥n 且n ∥αD .α∥β且m ⊂β答案 D解析 若两个平面平行,其中一个面内的任一直线均平行于另一个平面,故选D.5.若空间四边形ABCD 的两条对角线AC 、BD 的长分别是8、12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为( )A .10B .20C .8D .4答案 B解析 设截面四边形为EFGH ,F 、G 、H 分别是BC 、CD 、DA 的中点,∴EF =GH =4,FG =HE =6.∴周长为2×(4+6)=20.6.在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是( )A .相交B .平行C .垂直D .不能确定答案 B解析 连接CD 1,在CD 1上取点P ,使D 1P =2a3,∴MP ∥BC ,PN ∥AD 1. ∴MP ∥面BB 1C 1C ,PN ∥面AA 1D 1D . ∴面MNP ∥面BB 1C 1C ,∴MN ∥面BB 1C 1C .7.如图所示,四个正方体图形中,A 、B 为正方体的两个顶点,M 、N 、P 分别为其所在棱的中点,能得出AB ∥面MNP 的图形的序号是________(写出所有符合要求的图形序号).答案①③8. 棱锥P-ABCD的底面是一直角梯形,AB∥CD,BA⊥AD,CD=2AB,P A⊥底面ABCD,E为PC的中点,则BE与平面P AD的位置关系为________.答案平行解析取PD的中点F,连接EF.在△PCD中,EF綊12CD.又∵AB∥CD且CD=2AB,∴EF=12CD且CD=2AB.∴EF綊AB,∴四边形ABEF是平行四边形,∴EB∥AF.又∵EB⊄平面P AD,AF⊂平面P AD,∴BE∥平面P AD.9. 如图所示,ABCD-A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1、B1C1的中点,P是上底面的棱AD上的一点,AP=a3,过P,M,N的平面交上底面于PQ,Q在CD上,则PQ=________.答案22 3a解析 如图所示,连接AC ,易知MN ∥平面ABCD .∴MN ∥PQ .又∵MN ∥AC ,∴PQ ∥AC . 又∵AP =a 3,∴PD AD =DQ CD =PQ AC =23. ∴PQ =23AC =232a =223a .10.考查下列三个命题,在“________”处都缺少同一个条件,补上这个条件使其构成真命题(其中l 、m 为直线,α、β为平面),则此条件为________.①⎭⎬⎫m ⊂αl ∥m⇒l ∥α;②⎭⎬⎫l ∥m m ∥α⇒l ∥α;③⎭⎬⎫l ⊥βα⊥β⇒l ∥α. 答案 l ⊄α解析 ①体现的是线面平行的判定定理,缺的条件是“l 为平面α外的直线”,即“l ⊄α”,它也同样适合②③,故填l ⊄α.11.在四面体ABCD 中,M 、N 分别是面△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.答案 平面ABC 和平面ABD解析 连接AM 并延长交CD 于E ,连接BN 并延长交CD 于F .由重心的性质可知,E 、F 重合为一点,且该点为CD 的中点E .由EM MA =EN NB =12,得MN ∥AB .因此MN ∥平面ABC 且MN ∥平面ABD .12.过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.答案 6解析 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,记AC ,BC ,A 1C 1,B 1C 1的中点分别为E ,F ,E 1,F 1,则直线EF ,EF 1,EE 1,FF 1,E 1F ,E 1F 1均与平面ABB1A 1平行,故符合题意的直线共6条.13. 如图所示,已知ABCD-A1B1C1D1是棱长为3的正方体,点E在AA1上,点F在CC1上,G在BB1上,且AE=FC1=B1G=1,H是B1C1的中点.(1)求证:E、B、F、D1四点共面;(2)求证:平面A1GH∥平面BED1F.答案(1)略(2)略解析(1)连接FG.∵AE=B1G=1,∴BG=A1E=2.∴BG綊A1E,∴A1G∥BE.又∵C1F綊B1G,∴四边形C1FGB1是平行四边形.∴FG綊C1B1綊D1A1.∴四边形A1GFD1是平行四边形.∴A1G綊D1F,∴D1F綊EB.故E、B、F、D1四点共面.(2)∵H是B1C1的中点,∴B1H=32.又B1G=1,∴B1GB1H=23.又FCBC=23,且∠FCB=∠GB1H=90°,∴△B1HG∽△CBF.∴∠B1GH=∠CFB=∠FBG,∴HG∥FB.又由(1)知,A1G∥BE,且HG∩A1G=G,FB∩BE=B,∴平面A1GH∥平面BED1F.14. 如图所示,四棱锥P—ABCD中,底面ABCD为正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别为PC、PD、BC的中点.(1)求证:P A∥平面EFG;(2)求三棱锥P—EFG的体积.答案(1)略(2)1 6解析(1)如图所示,取AD的中点H,连接GH,FH.∵E,F分别为PC,PD的中点,∴EF∥CD.∵G,H分别是BC,AD的中点,∴GH∥CD.∴EF∥GH,∴E,F,H,G四点共面.∵F,H分别为DP,DA的中点,∴P A∥FH.∵P A⊄平面EFG,FH⊂平面EFG,∴P A∥平面EFG.(2)∵PD⊥平面ABCD,CG⊂平面ABCD,∴PD⊥CG.又∵CG⊥CD,CD∩PD=D,∴GC⊥平面PCD.∵PF =12PD =1,EF =12CD =1, ∴S △PEF =12EF ·PF =12. 又GC =12BC =1,∴V P —EFG =V G —PEF =13×12×1=16.15.一个多面体的直观图和三视图如图所示(其中M ,N 分别是AF ,BC 中点).(1)求证:MN ∥平面CDEF ; (2)求多面体A —CDEF 的体积. 答案 (1)略 (2)83解析 (1)证明 由三视图知,该多面体是底面为直角三角形的直三棱柱,且AB =BC =BF =2,DE =CF =22,∴∠CBF =90°.取BF 中点G ,连接MG ,NG ,由M ,N 分别是AF ,BC 中点,可知:NG ∥CF ,MG ∥EF .又MG ∩NG =G ,CF ∩EF =F ,∴平面MNG ∥平面CDEF ,∴MN ∥平面CDEF .(2)作AH ⊥DE 于H ,由于三棱柱ADE —BCF 为直三棱柱,∴AH ⊥平面CDEF ,且AH = 2.∴V A -CDEF =13S 四边形CDEF ·AH =13×2×22×2=83.16. 如图所示,三棱柱ABC -A 1B 1C 1,底面为正三角形,侧棱A 1A ⊥底面ABC ,点E 、F 分别是棱CC 1、BB 1上的点,点M 是线段AC 上的动点,EC =2FB .当点M 在何位置时,BM ∥平面AEF?答案当M为AC中点时,BM∥平面AEF.解析方法一:如图所示,取AE的中点O,连接OF,过点O作OM⊥AC 于点M.∵侧棱A1A⊥底面ABC,∴侧面A1ACC1⊥底面ABC.∴OM⊥底面ABC.又∵EC=2FB,∴OM∥FB綊12EC.∴四边形OMBF为矩形.∴BM∥OF.又∵OF⊂面AEF,BM⊄面AEF,故BM∥平面AEF,此时点M为AC的中点.方法二:如图所示,取EC的中点P,AC的中点Q,连接PQ、PB、BQ. ∴PQ∥AE.∵EC=2FB,∴PE綊BF,PB∥EF.∴PQ∥平面AEF,PB∥平面AEF.又PQ∩PB=P,∴平面PBQ ∥平面AEF .又∵BQ ⊂面PQB ,∴BQ ∥平面AEF .故点Q 即为所求的点M ,此时点M 为AC 的中点.17. (2013·福建)如图所示,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,BC =5,DC =3,AD =4,∠P AD =60°.(1)当正视方向与向量AD →的方向相同时,画出四棱锥P -ABCD 的正视图(要求标出尺寸,并写出演算过程);(2)若M 为P A 的中点,求证:DM ∥平面PBC ;(3)求三棱锥D -PBC 的体积.答案 (1)略 (2)略 (3)8 3解析 方法一:(1)在梯形ABCD 中,过点C 作CE ⊥AB ,垂足为E ,由已知得,四边形ADCE 为矩形,AE =CD =3,在Rt △BEC 中,由BC =5,CE =4,依勾股定理,得BE =3,从而AB =6.又由PD ⊥平面ABCD ,得PD ⊥AD .从而在Rt △PDA 中,由AD =4,∠P AD =60°,得PD =4 3.正视图如图所示.(2) 取PB 中点N ,连接MN ,CN .在△P AB 中,∵M 是P A 中点,∴MN ∥AB ,MN =12AB =3.又CD ∥AB ,CD =3,∴MN ∥CD ,MN =CD .∴四边形MNCD 为平行四边形.∴DM ∥CN .又DM ⊄平面PBC ,CN ⊂平面PBC ,∴DM ∥平面PBC .(3)V D -PBC =V P -DBC =13S △DBC ·PD ,又S △DBC =6,PD =43,所以V D -PBC =8 3.方法二:(1)同方法一.(2) 取AB 的中点E ,连接ME ,DE .在梯形ABCD 中,BE ∥CD ,且BE =CD ,∴四边形BCDE 为平行四边形.∴DE ∥BC .又DE ⊄平面PBC ,BC ⊂平面PBC ,∴DE∥平面PBC.又在△P AB中,ME∥PB,ME⊄平面PBC,PB⊂平面PBC,∴ME∥平面PBC.又DE∩ME=E,∴平面DME∥平面PBC.又DM⊂平面DME,∴DM∥平面PBC.(3)同方法一.。

直线与平面平行的判定和性质经典练习及详细答案

直线与平面平行的判定和性质经典练习及详细答案

平面平行的判定及其性质羄直线、1.2.薂下列命题中,正确命题的是④.;肇①若直线I上有无数个点不在平面:.内,则I // :•芆②若直线I与平面「平行,则I与平面「内的任意一条直线都平行;莁③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线I与平面「平行,则I与平面:.内的任意一条直线都没有公共点3.4. 芀下列条件中,不能判断两个平面平行的是____________ (填序号)肇①一个平面内的一条直线平行于另一个平面蚆②一个平面内的两条直线平行于另一个平面膃③一个平面内有无数条直线平行于另一个平面聿④一个平面内任何一条直线都平行于另一个平面答案①②③5.5. 腿对于平面和共面的直线m n,下列命题中假命题是________________ (填序号)肇①若mL用,m丄n,贝V n / 、丄薁②若mil :- , n // :•,贝V m// n膂③若m二:z , n// :•,贝U m// n芇④若m n与:•所成的角相等,则m// n 答案①②④7.6. 膄已知直线a, b,平面「,则以下三个命题:芃①若a // b, b二:乂,则a //⑶袁②若a // b, a //芒,贝U b //芒;莆③若 a // :•, b // :-,则 a // b.薅其中真命题的个数是答案09.7. 羅直线a//平面M直线b M那么a// b是b〃M的条件.蚀A.充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要11.12.蒆能保证直线a与平面〉平行的条件是, a// b p bu a, a//b肆A. a 広a, b u a, c//a,a//b,a//c蒃C. b u a£a,C^b, D e b 且AC=BD葿D. b u 口,A^a,B13.14. 薆如果直线a平行于平面?,则 _________a平行 B.平面〉内无数条直线与a平行蒇A.平面?内有且只有一直线与a平行的直线 D.平面〉内的任意直线与直线a都平行膅C.平面〉内不存在与15.15. 蒂如果两直线a// b,且a//平面〉,则b与〉的位置关系__________蚆A.相交B. b〃° c.匕匚口D.b〃°或b u°17.16. 薄下列命题正确的个数是______19.17. 蚃(1)若直线I上有无数个点不在平面a内,则I // al与平面a平行,则l与平面a内的任意一直线平行芁(2)若直线,那么另一条也与这个平面平行蚆(3)两条平行线中的一条直线与一个平面平行a和平面a内一直线b平行,则a // a羅(4 )若一直线莄A.0个 B.1个 C.2个 D.3个21.22. 罿b是平面a外的一条直线,下列条件中可得出b/ a是肀A. b与a内的一条直线不相交 B. b与a内的两条直线不相交莅C.b与a内的无数条直线不相交 D.b与a内的所有直线不相交23.23. 螂已知两条相交直线a、b, a//平面a ,则b与a的位置关系肂A. b / a B.b与a相交 C.b」a D.b/ a或b与a相交25.24. 膀如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC, SGSAB上的高,D E、F分别是AC BC SC的中点,试判断SG与平面DEF的位置关系,并给予证明.螆解SG//平面DEF证明如下:薄方法一:三角形中位线连接CG交螁••• DE是厶ABC的中位线,芀••• DE// AB.腿在△ ACG中, D是AC的中点,羂且DH// AG薀• H为CG的中点.艿• FH是厶SCG的中位线,芄• FH// SG蚄又SG亿平面DEF FHU平面DEF,荿••• SG//平面DEF荿方法二:平面平行的性质蚅••• EF为厶SBC的中位线,• EF/ SB膂••• EF伉平面SAB SBu平面SAB莂• EF//平面SAB葿同理可证,DF//平面SAB EF A DF=F ,肆.••平面SAB/平面DEF,又SG二平面SAB • SG//平面DEF27.25. 袄如图所示,在正方体ABC—ABC1D1中,E、F、G H分别是BC CG、賺CD、A1A的中点.求证:蕿(1)BF/ HD;蒇(2)EG//平面BBDD;莁(3)平面BDF/平面BDH袀证明平行四边形的性质,平行线的传递性虿(1 )如图所示,取BB的中点M易证四边形蚄又••• MC/ BF,「. BF/ HD.肃(2)取BD的中点0,连接E0, D0,贝U OE^蚈又DG& I DC• OE^ DG2蝿.••四边形OEGD是平行四边形,• GE// DO.肄又D 0-平面BB D D, • EG/平面BBD D.蒁(3)由(1)知DH// BF,又BD// BD, BD、HD =平面HBD, BF、BH 平面BDF,且BD A HD=D, DBA BF=B,「.平面BDF// 平面B D H.29.26. 螁如图所示,在三棱柱ABC-A i B C中,M N分别是BC和A i B i的中点. 衿求证:MN//平面AACC.蒅证明方法一:平行四边形的性质膃设AC中点为F,连接NF, FC,蒀••• N为A i B i中点,衿••• NF// BQ,且NF=^B C i,2祎又由棱柱性质知B i C i庄BC蚁又M是BC的中点,艿• NF MC羈.••四边形NFCM^平行四边形.芇• MIN/ CF,又CF 平面AA C i, MN二平面AA C ,• MIN/平面AAC C. 莃方法二:三角形中位线的性质节连接AM交C C于点P,连接A i P, 肇T M是BC的中点,且MC/ B i C i,莄• M是B i P的中点,肅又••• N为A B中点,肁• MN// A P,又 A PU 平面AA C , MW 平面AAC,:MIN/平面AACC.膈方法三:平面平行的性质 螅设BiG 中点为Q 连接NQ MQ ,薃•••M Q 是BG BG 的中点,袀•••MQ CG ,又 CGu 平面 AAGC, MQ 伉平面 AAGC, 芈•••MQ/平面 AA C i C.膆•••N 、Q 是A B i 、B i C 的中点,芅• NQ 二 AQ ,又 A i C 二平面 AAC C, NQ 二平面 AAC C, 蕿• NQ//平面 AA C i C.莈又••• MQ P NQB ,「.平面 MNQ 平面 AAC C, 薇又MN 二平面MNQ. MIN/平面AA C C.3 i .32.螂如图所示,正方体 ABC — A B i C D 中,侧面对角线 AB , BC 上分 别有两点 E , F ,且B E=C F. 蚁求证: EF //平面 ABCD 蒈方法一:平行四边形的性质螃过E 作ES// BB 交AB 于S,过F 作FT // BB 交BC 于 T ,蒄连接ST ,则-AE 更,且AB i B i B BC i C i C莀T B i E=C F , B A=CB,. AE=BF蒈•••旦,••• ES=FTB i B CC i膄又••• ES// B B// FT ,.四边形 EFTS 为平行四边形Bl ______ G袂•••EF// ST ,又 ST=平面 ABCD EFC :平面 ABCD : EF//平面 ABCD腿方法二:相似三角形的性质 薈连接BF 交BC 于点Q 连接AQ薅••• BQ // BC, • B 1L =圧BQ C 1B膂• EF // AQ 又 AQ=平面 ABCD EF 二平面 ABCD •- EF//平面 ABCD 蚇方法三:平面平行的性质 羆过E 作EG/ AB 交BB 于G,肂连接GF,则B 11史£ ,B 1A B 1B羁 TB i E=C i F , BA=CB ,螇••• C i E =B i G , • FG // B l C i // BC C 1B B i B 莇又 EG A FG P G , AB A BC=B ,螄.••平面 EFG/平面 ABCD 而EF 二平面EFG螀• EF//平面ABCD33.34.袇如图所示,在正方体 ABC — A B i C D 中,O 为底面ABCD 的中心,P 是DD 的中点,设薄T B i E=C i F , BiA=GB,B L E B ,FB 1D B i QQ是CC上的点,问:当点Q在什么位置时,平面DBQ// 平面PAO蒄解面面平行的判定节当Q为CC的中点时,A B葿平面 DBQ//平面PAO羇••• Q 为CG 的中点,P 为DD 的中点,••• QB// PA袅:P 、O 为 DD 、DB 的中点,• DB// PO羄又 PO P PA=P , DB A QB=B , 薂DB //平面PAO QB//平面 PAO 肇.••平面 DBQ//平面PAO芆直线与平面平行的性质定理35.EFGH 为空间四边形ABCD 勺一个截面,若截面为平行四边形芀(1)求证:AB//平面 EFGH CD//平面 EFGH肇(2)若AB=4, CD=6,求四边形EFGH 周长的取值范围 蚆(1)证明•••四边形EFGH 为平行四边形,• EF// HG膃•••HX 平面 ABD • EF//平面 ABD 聿•••EF 平面 ABC 平面 ABD A 平面 ABCAB腿• EF// AB. • AB//平面 EFGH 肇同理可证,CD//平面EFGH薁⑵ 解 设EF=x (O v x v 4),由于四边形 EFGH 为平行四边形,膂•••CF=x 则 FG = B F = B C -C F =1- x .从而 F G=6- 1 2 3x . •••四边形 EFGH 的周长 CB 4 6 BC BC 4 21 =2(x+6-5)=12- x.又0v x v 4,则有8v l v 12, •四边形 EFGH 周长的取值范围是(8,212) 37.36.莁如图所示,四边形 AC38.芇如图所示,平面:• //平面[,点A € :. , C €「,点B € 1 , D € [,点E , F 分别在线 段 AB CD 上,且 AE : EB=CF : FD薆••• AC// DH, •••四边形 ACDH 是平行四边形, 蒇在AH 上取一点 G,使AG : GH=CF : FD,膅又••• AE : EB=CF : FD, • GF// HD EG// BH 蒂又EG A GFG, •平面 EFG//平面-蚆•••EF 平面 EFG •- EF / l 综上,EF// I薄(2)解三角形中位线膄(1)求证:EF / -; :. / :,:.门平面 ACDHAC,蚃 如图所示,连接 AD,取AD 的中点 M 连接 ME MF.芁••• E , F 分别为AB, CD 的中点,蚆••• ME// BD, MF// AC,羅且 M ^Z BGB , MF=LAC=2,2 2莄•••/ EMF 为AC 与BD 所成的角(或其补角),罿EMF=60。

直线、平面平行的判定及其性质(人教A版)(含答案)

直线、平面平行的判定及其性质(人教A版)(含答案)

直线、平面平行的判定及其性质(人教A版)一、单选题(共11道,每道8分)1.如果直线a∥平面α,那么直线a与平面α内的( )A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交答案:D解题思路:试题难度:三颗星知识点:直线与平面平行的性质2.给出下列五个命题:其中正确命题的序号是( )①若一条直线与一个平面内的一条直线平行,则这条直线与这个平面平行;②若一条直线与一个平面内的两条直线平行,则这条直线与这个平面平行;③若平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行;④若两条平行直线中的一条与一个平面平行,则另一条也与这个平面平行;⑤若一条直线与一个平面平行,则这条直线与这个平面内的无数多条直线平行.A.③⑤B.①②⑤C.②③D.③④⑤答案:A解题思路:试题难度:三颗星知识点:空间直线和平面的位置关系3.如果直线a∥平面β,那么下列命题正确的是( )A.平面β内有且只有一条直线与a平行B.平面β内有且只有一条直线与a垂直C.平面β内有无数条直线与a不平行D.平面β内不存在与a垂直的直线答案:C解题思路:试题难度:三颗星知识点:空间直线和平面的位置关系4.设a,b为直线,α,β为平面,P是空间一点,下列命题中正确的是( ) A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:空间直线和平面的位置关系5.下列能够使平面α∥平面β的条件是( )A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:空间直线和平面的位置关系6.下列关于互不相同的直线,m,n和平面α,β,γ的命题,其中为真命题的是( ) A.B.C.D.答案:D解题思路:试题难度:三颗星知识点:空间直线和平面的位置关系7.如图,正方体中,截面和直线AC的位置关系是( )A. B.C. D.上述答案均不正确答案:A解题思路:试题难度:三颗星知识点:直线与平面平行的判定8.如图,在正方体中,M,N分别是,AC的中点,则MN与平面的位置关系是( )A.相交B.平行C.垂直D.不能确定答案:B解题思路:试题难度:三颗星知识点:直线与平面平行的判定9.在正方体中,P,Q分别是棱,的中点,则过点B,P,Q的截面是( )A.三角形B.菱形但不是正方形C.正方形D.邻边不等的矩形答案:B解题思路:试题难度:三颗星知识点:平面的基本性质及推论、平行公理10.如图,两个正方形ABCD和ADEF所在平面互相垂直,设M,N分别是BD和AE的中点,则下列选项不正确的是( )A.MN与平面CDE相交B.MN∥平面CDEC.AB∥平面CDED.AF∥平面CDE答案:A解题思路:试题难度:三颗星知识点:直线与平面平行的判定11.下列四个正方体中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的序号是( )A.①③B.①④C.②③D.②④答案:B解题思路:试题难度:三颗星知识点:直线与平面平行的判定二、填空题(共1道,每道9分)12.过三棱柱的任意两条棱的中点作直线,其中与平面平行的直线共有____条.答案:6解题思路:试题难度:知识点:直线与平面平行的判定第11页共11页。

高考专题练习: 直线、平面平行的判定与性质

高考专题练习: 直线、平面平行的判定与性质

1.直线与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与这个平面内的一条直线平行,则该直线与此平面平行(线线平行⇒线面平行)因为l∥a,a⊂α,l⊄α,所以l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)因为l∥α,l⊂β,α∩β=b,所以l∥b2.平面与平面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)因为a∥β,b∥β,a∩b=P,a⊂α,b⊂α,所以α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行因为α∥β,α∩γ=a,β∩γ=b,所以a∥b常用结论1.三种平行关系的转化线线平行、线面平行、面面平行的相互转化是解决与平行有关的证明题的指导思想.2.平行关系中的三个重要结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)垂直于同一个平面的两条直线平行,即若a⊥α,b⊥α,则a∥b.(3)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)直线l平行于平面α内的无数条直线,则l∥α.()(2)若直线l在平面α外,则l∥α.()(3)若直线l∥b,直线b⊂α,则l∥α.()(4)若直线l∥b,直线b⊂α,那么直线l平行于平面α内的无数条直线.()答案:(1)×(2)×(3)×(4)√二、易错纠偏常见误区|(1)对空间平行关系的相互转化条件理解不够;(2)忽略线面平行、面面平行的条件.1.如果直线a∥平面α,那么直线a与平面α内的()A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线都不相交解析:选D.因为a∥平面α,直线a与平面α无公共点,因此a和平面α内的任意一条直线都不相交,故选D.2.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.解析:因为平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,所以EF∥HG.同理EH∥FG,所以四边形EFGH 是平行四边形.答案:平行四边形与线、面平行相关命题的判定(师生共研)(1)设m,n表示不同直线,α,β表示不同平面,则下列结论中正确的是()A.若m∥α,m∥n,则n∥αB.若m⊂α,n⊂β,m∥β,n∥α,则α∥βC.若α∥β,m∥α,m∥n,则n∥βD.若α∥β,m∥α,n∥m,n⊄β,则n∥β(2)(2020·沈阳市教学质量监测(一))已知a,b为两条不同的直线,α,β,γ为三个不同的平面,则下列说法中正确的是()①若a∥α,α∥β,则a∥β;②若α∥β,β∥γ,则α∥γ;③若a⊥α,b⊥α,则a∥b;④若α⊥γ,β⊥γ,则α⊥β.A.①③B.②③C.①②③D.②③④【解析】(1)A错误,n有可能在平面α内;B错误,平面α可能与平面β相交;C错误,n也有可能在平面β内;D正确,易知m∥β或m⊂β,若m⊂β,又n∥m,n⊄β,所以n∥β,若m∥β,过m作平面γ交平面β于直线l,则m∥l,又n∥m,所以n∥l,又n⊄β,l⊂β,所以n∥β.(2)若a∥α,α∥β,则a可能平行于β,也可能在β内,故①不正确;若α∥β,β∥γ,则由面面平行的性质知α∥γ,故②正确;若a⊥α,b⊥α,则由线面垂直的性质知a∥b,故③正确;若α⊥γ,β⊥γ,则α与β可能平行也可能相交,故④不正确.综上所述,②③正确,故选B.【答案】(1)D(2)B解决线、面平行关系应注意的问题(1)注意判定定理与性质定理中易忽视的条件,如线面平行的条件中线在面外易被忽视.(2)结合题意构造或绘制图形,结合图形作出判断.(3)会举反例或用反证法推断命题是否正确.1.下列命题中正确的是()A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a∥α,b⊄α,则b∥α解析:选D.A错误,a可能在经过b的平面内;B错误,a与α内的直线平行或异面;C错误,两个平面可能相交;D正确,由a∥α,可得a平行于经过直线a的平面与α的交线c,即a∥c,又a∥b,所以b∥c,b⊄α,c⊂α,所以b∥α.2.设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面解析:选B.对于A,C,D选项,α均有可能与β相交,故排除A,C,D 选项,选B.线面平行的判定与性质(多维探究)角度一线面平行的证明在正方体ABCD-A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D.【证明】(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC 1D 1是平行四边形,所以HD 1∥MC 1.又因为在平面BCC 1B 1中,BM ∥=FC 1, 所以四边形BMC 1F 为平行四边形, 所以MC 1∥BF ,所以BF ∥HD 1. (2)取BD 的中点O ,连接EO ,D 1O , 则OE ∥DC 且OE =12DC ,又D 1G ∥DC 且D 1G =12DC ,所以OE ∥=D 1G , 所以四边形OEGD 1是平行四边形,所以GE ∥D 1O . 又D 1O ⊂平面BB 1D 1D ,GE ⊄平面BB 1D 1D , 所以EG ∥平面BB 1D 1D .证明直线与平面平行的常用方法(1)利用线面平行的定义.(2)利用线面平行的判定定理:关键是找到平面内与已知直线平行的直线,可先直观判断题中是否存在这样的直线,若不存在,则需作出直线,常考虑利用三角形的中位线、平行四边形的对边平行或过已知直线作一平面,找其交线进行证明.角度二 线面平行性质定理的应用如图,在五面体ABCDFE 中,底面ABCD 为矩形,EF ∥AB ,过BC的平面交棱FD 于点P ,交棱F A 于点Q .证明:PQ ∥平面ABCD .【证明】 因为底面ABCD 为矩形,所以AD ∥BC ,⎭⎪⎬⎪⎫AD ∥BCAD ⊂平面ADF BC ⊄平面ADF ⇒BC ∥平面ADF ,⎭⎪⎬⎪⎫BC ∥平面ADFBC ⊂平面BCPQ 平面BCPQ ∩平面ADF =PQ ⇒BC ∥PQ ,⎭⎪⎬⎪⎫PQ ∥BCPQ ⊄平面ABCD BC ⊂平面ABCD ⇒PQ ∥平面ABCD .应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.该定理的作用是由线面平行转化为线线平行.1.(一题多解)(2021·河南中原名校联考)如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是P A ,BD 上的点且PE ∶EA =BF ∶FD ,求证:EF ∥平面PBC .证明:方法一:如图,连接AF ,并延长交BC 于点G ,连接PG ,因为BC ∥AD ,所以FG F A =FBFD , 又因为PE EA =BFFD ,所以PE EA =GFF A ,所以EF ∥PG .又因为PG ⊂平面PBC ,EF ⊄平面PBC , 所以EF ∥平面PBC .方法二:如图,过点F 作FM ∥AD ,交AB 于点M ,连接EM ,因为FM ∥AD ,AD ∥BC ,所以FM ∥BC ,又因为FM ⊄平面PBC ,BC ⊂平面PBC , 所以FM ∥平面PBC . 由FM ∥AD 得BM MA =BFFD ,又因为PE EA =BF FD ,所以PE EA =BMMA ,所以EM ∥PB . 因为PB ⊂平面PBC ,EM ⊄平面PBC , 所以EM ∥平面PBC ,因为EM ∩FM =M ,EM ,FM ⊂平面EFM ,所以平面EFM∥平面PBC,因为EF⊂平面EFM,所以EF∥平面PBC.2.如图,几何体E-ABCD是四棱锥,△ABD为正三角形,CB=CD,EC⊥BD.(1)求证:BE=DE;(2)若∠BCD=120°,M为线段AE的中点,求证:DM∥平面BEC.证明:(1)取BD的中点O,连接CO,EO.由于CB=CD,所以CO⊥BD.又EC⊥BD,EC∩CO=C,又因为CO,EC⊂平面EOC,所以BD⊥平面EOC,因此BD⊥EO,又O为BD的中点,所以BE=DE.(2)取AB的中点N,连接DN,MN,因为M是AE的中点,N是AB的中点,所以MN∥BE.又MN⊄平面BEC,BE⊂平面BEC,所以MN∥平面BEC.因为△ABD为正三角形,所以∠BDN=30°,又CB=CD,∠BCD=120°,因此∠CBD=30°,所以DN∥BC.又DN⊄平面BEC,BC⊂平面BEC,所以DN∥平面BEC.又MN∩DN=N,故平面DMN∥平面BEC,又DM⊂平面DMN,所以DM∥平面BEC.面面平行的判定与性质(典例迁移)如图所示,在三棱柱ABC-A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.【证明】(1)因为G,H分别是A1B1,A1C1的中点,所以GH∥B1C1,又B1C1∥BC,所以GH∥BC,所以B,C,H,G四点共面.(2)在△ABC中,E,F分别为AB,AC的中点,所以EF∥BC,因为EF⊄平面BCHG,BC⊂平面BCHG,所以EF∥平面BCHG.又因为G,E分别为A1B1,AB的中点,所以A1G∥=EB,所以四边形A1EBG是平行四边形,所以A1E∥GB.因为A1E⊄平面BCHG,GB⊂平面BCHG,所以A1E∥平面BCHG.又因为A1E∩EF=E,所以平面EF A1∥平面BCHG.【迁移探究1】(变条件)在本例条件下,若D为BC1的中点,求证:HD∥平面A1B1BA.证明:如图所示,连接HD,A1B,因为D为BC1的中点,H为A1C1的中点,所以HD∥A1B,又HD⊄平面A1B1BA,A1B⊂平面A1B1BA,所以HD∥平面A1B1BA.【迁移探究2】(变条件)在本例条件下,若D1,D分别为B1C1,BC的中点,求证:平面A1BD1∥平面AC1D.证明:如图所示,连接A1C交AC1于点M,因为四边形A1ACC1是平行四边形,所以M是A1C的中点,连接MD,因为D为BC的中点,所以A1B∥DM.因为A1B⊂平面A1BD1,DM⊄平面A1BD1,所以DM∥平面A1BD1.又由三棱柱的性质知,D1C1∥=BD,所以四边形BDC1D1为平行四边形,所以DC1∥BD1.又DC1⊄平面A1BD1,BD1⊂平面A1BD1,所以DC1∥平面A1BD1,又因为DC1∩DM=D,DC1,DM⊂平面AC1D,所以平面A1BD1∥平面AC1D.1.如图,AB∥平面α∥平面β,过点A,B的直线m,n分别交α,β于点C,E和点D,F,若AC=2,CE=3,BF=4,则BD的长为()A.65B.75C.85D.95解析:选C.由AB∥α∥β,易证ACCE=BDDF.即AC AE =BDBF,所以BD=AC·BFAE=2×45=85.2.(一题多解)如图,四边形ABCD是正方形,ED⊥平面ABCD,AF⊥平面ABCD.证明:平面ABF∥平面DCE.证明:方法一:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为AF⊄平面DCE,DE⊂平面DCE,所以AF∥平面DCE.因为四边形ABCD是正方形,所以AB∥CD.因为AB⊄平面DCE,CD⊂平面DCE,所以AB∥平面DCE.因为AB∩AF=A,AB⊂平面ABF,AF⊂平面ABF,所以平面ABF∥平面DCE.方法二:因为DE⊥平面ABCD,AF⊥平面ABCD,所以DE∥AF.因为四边形ABCD为正方形,所以AB∥CD.又AF∩AB=A,DE∩DC=D,所以平面ABF∥平面DCE.方法三:因为DE⊥平面ABCD,所以DE⊥AD,在正方形ABCD中,AD⊥DC.又DE∩DC=D,所以AD⊥平面DEC.同理AD⊥平面ABF.所以平面ABF∥平面DCE.[A级基础练]1.已知α,β表示两个不同的平面,直线m是α内一条直线,则“α∥β”是“m∥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由α∥β,m⊂α,可得m∥β;反过来,由m∥β,m⊂α,不能推出α∥β.综上,“α∥β”是“m∥β”的充分不必要条件.2.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面解析:选D.A项,α,β可能相交,故错误;B项,直线m,n的位置关系不确定,可能相交、平行或异面,故错误;C项,若m⊂α,α∩β=n,m∥n,则m∥β,故错误;D项,假设m,n垂直于同一平面,则必有m∥n,所以原命题正确,故D项正确.3.(2021·合肥模拟)已知a,b,c为三条不同的直线,α,β,γ为三个不同的平面,则下列说法正确的是()A.若a∥b,b⊂α,则a∥αB.若a⊂α,b⊂β,a∥b,则α∥βC.若α∥β,a∥α,则a∥βD.若α∩β=a,β∩γ=b,α∩γ=c,a∥b,则b∥c解析:选D.若a∥b,b⊂α,则a∥α或a⊂α,故A不正确;若a⊂α,b ⊂β,a∥b,则α∥β或α与β相交,故B不正确;若α∥β,a∥α,则a∥β或a⊂β,故C不正确;如图,由a∥b可得b∥α,又b⊂γ,α∩γ=c,所以b∥c,故D正确.4.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()解析:选A.对于选项B,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ.同理可证选项C,D中均有AB∥平面MNQ.故选A.5.如图,在三棱柱ABC-A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面B.平行C.相交D.以上均有可能解析:选B.在三棱柱ABC-A1B1C1中,AB∥A1B1.因为AB⊂平面ABC,A1B1⊄平面ABC,所以A1B1∥平面ABC.因为过A1B1的平面与平面ABC交于DE,所以DE∥A1B1,所以DE∥AB.6.如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度为________.解析:因为EF∥平面AB1C,EF⊂平面ABCD,平面ABCD∩平面AB1C=AC,所以EF∥AC,所以点F为DC的中点.故EF=12AC= 2.答案: 27.在棱长为2的正方体ABCD-A1B1C1D1中,M是棱AA1的中点,过C,M,D1作正方体的截面,则截面的面积是________.解析:由面面平行的性质知截面与平面AB1的交线MN是△AA1B的中位线,所以截面是梯形CD1MN,其面积为12×(2+22)×(5)2-⎝⎛⎭⎪⎫222=92.答案:9 28.如图所示,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D,DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M只需满足条件________时,就有MN∥平面B1BDD1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)解析:连接HN,FH,FN,则FH∥DD1,HN∥BD,FH∩HN=H,DD1∩BD =D,所以平面FHN∥平面B1BDD1,只需M∈FH,则MN⊂平面FHN,所以MN∥平面B1BDD1.答案:点M在线段FH上(或点M与点H重合)9.如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1)求证:平面CMN∥平面P AB;(2)求三棱锥P-ABM的体积.解:(1)证明:因为M,N分别为PD,AD的中点,所以MN∥P A,又MN⊄平面P AB,P A⊂平面P AB,所以MN∥平面P AB.在Rt△ACD中,∠CAD=60°,CN=AN,所以∠ACN=60°.又∠BAC=60°,所以CN∥AB.因为CN⊄平面P AB,AB⊂平面P AB,所以CN∥平面P AB.又CN∩MN=N,所以平面CMN∥平面P AB.(2)由(1)知,平面CMN∥平面P AB,所以点M到平面P AB的距离等于点C到平面P AB的距离.因为AB=1,∠ABC=90°,∠BAC=60°,所以BC=3,所以三棱锥P-ABM的体积V=V M­P AB=V C­P AB=V P­ABC=13×12×1×3×2=33.10.如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,AB=2,AF=1,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m 的位置关系,并证明你的结论.解:(1)证明:如图,记AC与BD的交点为O,连接OE.因为O,M分别是AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m ∥AM ,所以l ∥m .[B 级 综合练]11.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列说法中,错误的为( )A .AC ⊥BDB .AC =BD C .AC ∥截面PQMND .异面直线PM 与BD 所成的角为45° 解析:选B .因为截面PQMN 是正方形, 所以PQ ∥MN ,QM ∥PN ,则PQ ∥平面ACD ,QM ∥平面BDA , 所以PQ ∥AC ,QM ∥BD ,由PQ ⊥QM 可得AC ⊥BD ,故A 正确; 由PQ ∥AC 可得AC ∥截面PQMN ,故C 正确; 由BD ∥PN ,所以∠MPN 是异面直线PM 与BD 所成的角,且为45°,D 正确; 由上面可知:BD ∥PN ,MN ∥AC . 所以PN BD =AN AD ,MN AC =DN AD ,而AN 与DN 关系不确定,PN =MN , 所以BD 与AC 关系不确定.B 错误.故选B .12.在正四棱柱ABCD -A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q 是CC 1上的点,则点Q 满足条件________时,有平面D 1BQ ∥平面P AO .解析:如图所示,设Q 为CC 1的中点,因为P 为DD 1的中点,所以QB ∥P A .连接DB ,因为P ,O 分别是DD 1,DB 的中点,所以D 1B ∥PO ,又D 1B ⊄平面P AO ,QB ⊄平面P AO ,PO ⊂平面P AO ,P A ⊂平面P AO ,所以D 1B ∥平面P AO ,QB ∥平面P AO ,又D 1B ∩QB =B ,所以平面D 1BQ ∥平面P AO .故Q 为CC 1的中点时,有平面D 1BQ ∥平面P AO .答案:Q 为CC 1的中点13.(2021·烟台模拟)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =2,AA 1=1.一平面截该长方体,所得截面为OPQRST ,其中O ,P 分别为AD ,CD 的中点,B 1S =12,则AT =________.解析:设AT =x ,则A 1T =1-x ,由面面平行的性质得,PO ∥SR ,TO ∥QR ,TS ∥PQ , 所以△DOP ∽△B 1RS .因为DP =OD =1,所以B 1S =B 1R =12, 所以A 1S =C 1R =32.由△ATO ∽△C 1QR ,可得AO AT =C 1RC 1Q ,即1x =32C 1Q ,故C 1Q =3x2.由△A 1TS ∽△CQP ,可得CQ CP =A 1TA 1S ,即1-3x 21=1-x 32,解得x =25.答案:2514.(2020·高考全国卷Ⅱ)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B -EB 1C 1F 的体积.解:(1)证明:因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN .又因为B 1C 1⊂平面EB 1C 1F ,所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ∩平面EB 1C 1F =PN ,故AO ∥PN .又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP=ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为12×(B 1C 1+EF )·PN =12×(6+2)×6=24.所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.[C 级 提升练]15.如图,四棱锥P -ABCD 中,底面ABCD 是直角梯形,AB ∥CD ,AB ⊥AD ,AB =2CD =2AD =4,侧面P AB 是等腰直角三角形,P A =PB ,平面P AB ⊥平面ABCD ,点E ,F 分别是棱AB ,PB 上的点,平面CEF ∥平面P AD .(1)确定点E ,F 的位置,并说明理由;(2)求三棱锥F -DCE 的体积.解:(1)因为平面CEF ∥平面P AD ,平面CEF ∩平面ABCD =CE ,平面P AD ∩平面ABCD =AD ,所以CE ∥AD ,又AB ∥DC ,所以四边形AECD 是平行四边形,所以DC =AE =12AB ,即点E 是AB 的中点.因为平面CEF ∥平面P AD ,平面CEF ∩平面P AB =EF ,平面P AD ∩平面P AB =P A ,所以EF ∥P A ,又点E 是AB 的中点,所以点F 是PB 的中点.综上,E ,F 分别是AB ,PB 的中点.(2)连接PE ,由题意及(1)知P A =PB ,AE =EB ,所以PE ⊥AB ,又平面P AB ⊥平面ABCD ,平面P AB ∩平面ABCD =AB , 所以PE ⊥平面ABCD .又AB ∥CD ,AB ⊥AD ,所以V F ­DEC =12V P ­DEC =16S △DEC ×PE =16×12×2×2×2=23.。

04线面平行与面面平行判定与性质(经典题型+答案)

04线面平行与面面平行判定与性质(经典题型+答案)

线面平行、面面平行的判定及性质一、直线与平面平行文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则直线与此平面平行.性质定理如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.二、平面与平面平行文字语言图形语言符号语言判定定理一个平面内有两条相交直线与另一个平面平行,则这两个平面平行性质定理如果两个平行平面时与第三个平面相交,那么它们的交线平行A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内有无数条直线平行于另一个平面D.一个平面内任何一条直线都平行于另一个平面解:由面面平行的定义可知选D.例2:若直线a平行于平面α,则下列结论错误的是()A.a平行于α内的所有直线B.α内有无数条直线与a平行C.直线a上的点到平面α的距离相等D.α内存在无数条直线与a垂直解:A错误,a与α内的直线平行或异面.例3:已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,上面命题中正确的是________(填序号)。

解:①中a与b可能异面;②中a与b可能相交、平行或异面;③中a可能在平面α内,④正确。

例4:已知α、β是平面,m 、n 是直线,给出下列命题:①若m ⊥α,m ⊂β,则α⊥β.②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β.③如果m ⊂α,n ⊄α,m 、n 是异面直线,那么n 与α相交.④若α∩β=m ,n ∥m ,且n ⊄α,n ⊄β,则n ∥α且n ∥β其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4解:对于①,由定理“如果一个平面经过另一个平面的一条垂线,那么这两个平面垂直”得知,①正确;对于②,注意到直线m ,n 可能是两条平行直线,此时平面α,β可能是相交平面,因此②不正确;对于③,满足条件的直线n 可能平行于平面α,因此③不正确;对于④,由定理“如果平面外一条直线平行于平面内一条直线,那么这条直线平行于这个平面”得知,④正确.综上所述,其中正确的命题是①④,选B.例5:已知m ,n 表示两条不同直线,α,β,γ表示不同平面,给出下列三个命题:(1)⎩⎪⎨⎪⎧ m ⊥αn ⊥α⇒m ∥n ;(2)⎩⎪⎨⎪⎧ m ⊥αm ⊥n ⇒n ∥α (3)⎩⎪⎨⎪⎧m ⊥αn ∥α⇒m ⊥n 其中真命题的个数为 ( ) A .0 B .1 C .2 D .3 解:若⎩⎪⎨⎪⎧ m ⊥α,n ⊥α,则m ∥n ,即命题(1)正确;若⎩⎪⎨⎪⎧ m ⊥α,m ⊥n ,则n ∥α或n ⊂α,即命题(2)不正确;若⎩⎪⎨⎪⎧m ⊥αn ∥α,则m ⊥n ,即命题(3)正确;综上可得,真命题共有2个.选C例6:已知m 、n 、l 1、l 2表示直线,α、β表示平面.若m ⊂α,n ⊂α,l 1⊂β,l 2⊂β,l 1∩l 2=M ,则以下条件中,能推出α∥β的是 ( )A .m ∥β且l 1∥αB .m ∥β且n ∥βC .m ∥β且n ∥l 2D .m ∥l 1且n ∥l 2解:由定理“如果一个平面内有两条相交直线分别与另一个平面平行,那么这两个平面平行”可得,由选项D 可推知α∥β.例7:在下列条件中,可判断平面α与β平行的是( ).A. α、β都平行于直线lB. α内存在不共线的三点到β的距离相等C. l 、m 是α内两条直线,且l ∥β,m ∥βD. l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β 解:排除法,A中α、β可以是相交平面;B中三点可面平面两侧;C中两直线可以不相交.故选D,也可直接证明.例8:经过平面外的两点作该平面的平行平面可以作( ).A. 0个B. 1个C. 0个或1个D. 1个或2个解:这两点可以是在平面同侧或两侧.选C 。

直线、平面平行的判定与性质知识点+典型例题及答案解析

直线、平面平行的判定与性质知识点+典型例题及答案解析

2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定1、直线和平面的位置关系一条直线和一个平面的位置关系有且只有以下三种 位置关系 直线在平面内 直线与平面相交 直线与平面平行 公共点 有无数个公共点有且只有一个公共点没有公共点 符号表示a ⊂αa ∩α=Aa||α 图形表示注:直线和平面相交或平行的情况统称为直线在平面外 2、直线和平面平行(1)定义:直线和平面没有公共点,则称此直线L 和平面α平行,记作L ||α。

(2)判定定理:如果平面外的一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

简记为:线线平行,则线面平行.符号表示:,////a b a b a ααα⊄⊂⇒、.2.2.2 平面与平面平行的判定1、定义:没有公共点的两个平面叫做平行平面。

符号表示为:平面α、平面β,若a ∩β=∅,则a ∥β2、判定定理:1..性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行. 简记为:线面平行,则线线平行.判定文字描述如果两个平面无公共点,责成这两个平面平行一个平面内有两条相交直线与另一个平面平行,那么这两个平面平行.如果两个平面同时垂直于一条直线,那么这两个平面垂直。

图形条件=αβ∅α,b ⊂β,α∩b =P α∥α,b ∥α ⇒β∥αl ⊥α l ⊥β ⇒β∥α结论//αβ //αβ //αβ符号表示:若//,,,//a a b a b αβαβ⊂=则.2.2.4 平面与平面平行的性质性质文字描述如果两个平行平面同时和第三平面相交,那么他们的交线平行 如果两个平行平面中有一个垂直于一条直线,那么另一个平面也垂直于这条直线 如果两个平面平行,那么其中一个平面内的直线平行于另一个平面 图形条件 α∥β β∩γ=b α∩γ=a α∥β l ⊥α α∥β a ⊂β结论a ∥bl ⊥βa ∥α1. 解题方法(1) 证明直线与平面平行的常用方法:2.利用定义,证明直线与平面没有公共点。

高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)

高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)

§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。

高考数学一轮经典例题直线与平面的平行判定和性质

高考数学一轮经典例题直线与平面的平行判定和性质

典型(diǎnxíng)例题一例1简述以下问题(wèntí)的结论,并画图说明:〔1〕直线(zhíxiàn)平面(píngmiàn),直线,那么和α的位置关系如何?〔2〕直线,直线,那么直线b和α的位置关系如何?分析:〔1〕由图〔1〕可知:或者;〔2〕由图〔2〕可知:或者αb.⊂说明:此题是考察直线与平面位置关系的例题,要注意各种位置关系的画法与表示方法.典型例题二例2是平行四边形所在平面外一点,是的中点,求证:平面.分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和直线平行就可以了.证明:如下图,连结,交于点,∵四边形ABCD是平行四边形∴,连结,那么OQ在平面BDQ内,且OQ是的中位线,∴.∵在平面BDQ外,∴//PC平面(píngmiàn)BDQ.说明(shuōmíng):应用线面平行的断定(duàndìng)定理证明线面平行时,关键是在平面内找一条直线与直线平行,怎样找这一直线呢?由于两条直线首先要保证一共面,因此常常设法过直线作一平面与平面相交,假如能证明直线和交线平行,那么就可以马上(mǎshàng)得到结论.这一个证明线面平行的步骤可以总结为:过直线作平面,得交线,假设线线平行,那么线面平行.典型例题三例3经过两条异面直线,b之外的一点P,可以作几个平面都与a,b平行?并证明你的结论.分析:可考虑P点的不同位置分两种情况讨论.解:〔1〕当P点所在位置使得a,P〔或者b,P〕本身确定的平面平行于b〔或者a〕时,过P点再作不出与a,b都平行的平面;〔2〕当P点所在位置a,P〔或者b,P〕本身确定的平面与b〔或者a〕不平行时,可过点P作,.由于a,b异面,那么,不重合且相交于P.由于,a',b'确定的平面α,那么由线面平行断定定理知:,αb.可作一个平面都与a,b平行.//故应作“0个或者1个〞平面.说明:此题解答容易无视对P点的不同位置的讨论,漏掉第〔1〕种情况而得出可作一个平面的错误结论.可见,考虑问题必须全面,应区别不同情形分别进展分类讨论.典型例题四例4平面外的两条平行(píngxíng)直线中的一条平行于这个平面,那么另一条直线也平行于这个平面.:直线(zhíxiàn),平面(píngmiàn)α,.求证(qiúzhèng):αb.//证明:如下图,过a及平面α内一点作平面.设,∵αa,//∴.又∵ba//,∴.∵α⊄b,,∴αb.//说明:根据断定定理,只要在α内找一条直线,根据条件αa,为了//利用直线和平面平行的性质定理,可以过a作平面β与α相交,我们常把平面β称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化.和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面〞为根据来做出辅助平面的.典型例题五例5四面体的所有棱长均为a.求:〔1〕异面直线的公垂线段及EF的长;〔2〕异面直线EF和所成的角.分析:依异面直线的公垂线的概念求作异面直线ABSC、的公垂线段,进而求出其间隔;对于异面直线所成的角可采取平移构造法求解.解:〔1〕如图,分别(fēnbié)取ABSC、的中点(zhōnɡ diǎn),连结(liánjié).由,得≌.∴,是的中点(zhōnɡ diǎn),∴.同理可证∴EF是ABSC、的公垂线段.在中,,.∴.〔2〕取AC的中点,连结,那么.∴EF和所成的锐角或者直角就是异面直线EF和SA所成的角.连结,在中,,,.由余弦定理,得.∴.故异面直线EF和SA所成的角为.说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.典型例题六例6 假如一条直线与一个平面(píngmiàn)平行,那么过这个平面内的一点且与这条直线平行的直线必在这个平面内.:直线(zhíxiàn)α//a ,,,a b //.求证(qiúzhèng):α⊂b .分析(f ēnx ī):由于过点与a 平行的直线是惟一存在的,因此,此题就是要证明,在平面α外,不存在过B 与a 平行的直线,这是否认性命题,所以使用反证法.证明:如下图,设α⊄b ,过直线a 和点B 作平面β,且.∵α//a ,∴.这样过B 点就有两条直线b 和同时平行于直线a ,与平行公理矛盾. ∴b 必在α内.说明:(1)本例的结论可以直接作为证明问题的根据. (2)本例还可以用同一法来证明,只要改变一下表达方式.如上图,过直线a 及点B 作平面β,设'b =αβ .∵α//a ,∴α//'b . 这样,'b 与b 都是过B 点平行于a 的直线,根据平行公理,这样的直线只有一条,∴b 与'b 重合.∵,∴α⊂b .典型例题七例7 以下命题正确的个数是〔〕.(1)假设直线上有无数个点不在平面α内,那么;(2)假设(jiǎshè)直线l平行(píngxíng)于平面α内的无数条直线(zhíxiàn),那么α//l;(3)假设(jiǎshè)直线l与平面α平行,那么l与平面α内的任一直线平行;(4)假设直线l在平面α外,那么α//l.A.0个B.1个C.2个D.3个分析:此题考察的是空间直线与平面的位置关系.对三种位置关系定义的准确理解是解此题的关键.要注意直线和平面的位置关系除了按照直线和平面公一共点的个数来分类,还可以按照直线是否在平面内来分类.解:(1)直线l上有无数个点不在平面α内,并没有说明是所在点都不在平面α内,因此直线可能与平面平行亦有可能与直线相交.解题时要注意“无数〞并非“所有〞.(2)直线l虽与α内无数条直线平行,但l有可能在平面α内,所以直线l不一定平行α.(3)这是初学直线与平面平行的性质时常见错误,借助教具我们很容易看到.当αl时,假设且,那么在平面α内,除了与平//行的直线以外的每一条直线与l都是异面直线.(4)直线l在平面α外,应包括两种情况:α//l和l与α相交,所以l与α不一定平行.应选A.说明:假如题中判断两条直线与一平面之间的位置关系,解题时更要注意分类要完好,考虑要全面.如直线l、m都平行于α,那么l与m的位置关系可能平行,可能相交也有可能异面;再如直线、αl,那么m与α的位置关系可//能是平行,可能是m在α内.典型例题八例8如图,求证:两条平行线中的一条和平面相交,那么另一条也与该平面相交.:直线ba//,.求证:直线b与平面α相交.分析(fēnxī):利用(lìyòng)ba//转化(zhuǎnhuà)为平面问题来解决,由a//可确定一辅助(fǔzhù)平面β,这样可以把题中相关元素集中使用,既创造b了新的线面关系,又将三维降至二维,使得平几知识可以运用.解:∵ba//,∴a和b可确定平面β.∵,∴平面α和平面β相交于过点P的直线l.∵在平面β内l与两条平行直线a、b中一条直线a相交,∴l必定与直线b也相交,不妨设,又因为b不在平面α内〔假设b 在平面α内,那么α和β都过相交直线b和l,因此α与β重合,a在α内,和矛盾〕.所以直线b和平面α相交.说明:证明直线和平面相交的常用方法有:证明直线和平面只有一个公一共点;否认直线在平面内以及直线和平面平行;用此结论:一条直线假如经过平面内一点,又经过平面外一点,那么此直线必与平面相交〔此结论可用反证法证明〕.典型例题九例9如图,求证:经过两条异面直线中的一条,有且仅有一个平面与另一条直线平行.:a与b是异面直线.求证:过b且与a平行的平面有且只有一个.分析:此题考察存在性与唯一性命题的证明方法.解题时要理解“有且只有〞的含义.“有〞就是要证明过直线b存在一个平面α,且αa,“只有〞就//是要证满足这样条件的平面是唯一的.存在性常用构造法找出〔或者作出〕平面,唯一性常借助于反证法或者其它唯一性的结论.证明(zhèngmíng):(1)在直线(zhíxiàn)b上任(shàng rèn)取一点A,由点A和直线(zhíxiàn)a可确定平面β.在平面β内过点A作直线,使,那么'a和b为两相交直线,所以过'a和b可确定一平面α.∵αb,a与b为异面直线,⊂∴.又∵,,∴αa.//故经过b存在一个平面α与a平行.(2)假如平面也是经过b且与a平行的另一个平面,由上面的推导过程可知γ也是经过相交直线b和'a的.由经过两相交直线有且仅有一个平面的性质可知,平面α与γ重合,即满足条件的平面是唯一的.说明:对于两异面直线a和b,过b存在一平面α且与a平行,同样过a也存在一平面β且与b平行.而且这两个平面也是平行的〔以后可证〕.对于异面直线a和b的间隔,也可转化为直线a到平面α的间隔,这也是求异面直线的间隔的一种方法.典型例题十例10 如图,求证:假如一条直线和两个相交平面都平行,那么这条直线和它们的交线平行.:,α//a ,,求证:.分析(f ēnx ī):此题考察综合运用线面平行的断定(duàndìng)定理和性质定理的才能.利用线面平行的性质定理,可以先证明直线a 分别和两平面的某些直线(zhíxiàn)平行,即线面平行可得线线平行.然后再用线面平行的断定定理和性质定理来证明a 与l 平行(píngxíng).证明:在平面α内取点P ,使,过P 和直线a 作平面γ交α于b .∵α//a ,,,∴b a //.同理过a 作平面交β于. ∵β//a ,,,∴c a //. ∴c b //. ∵,, ∴.又∵α⊂b ,l =βα , ∴.又∵b a //, ∴l a //.另证:如图,在直线l 上取点,过M 点和直线a 作平面和α相交于直线,和β相交于直线.∵α//a ,∴, ∵β//a ,∴,但过一点只能(zh ī nénɡ)作一条直线与另一直线平行. ∴直线(zhíxiàn)和2l 重合(chónghé). 又∵,,∴直线(zhíxiàn)1l 、2l 都重合于直线l , ∴l a //.说明:“线线平行〞与“线面平行〞在一定条件下是可以互相转化的,这种转化的思想在立体几何中非常重要.典型例题十一例11 正方形ABCD 与正方形所在平面相交于,在、BD 上各取一点P 、Q ,且.求证:面.分析:要证线面平行,可以根据断定定理,转化为证明线线平行.关键是在平面BCE 中如何找一直线与平行.可考察过PQ 的平面与平面BCE 的交线,这样的平面位置不同,所找的交线也不同.证明一:如图,在平面ABEF 内过P 作交于M , 在平面ABCD 内过Q 作交于,连结.∵ABPM//,∴.又∵,∴,即.∵正方形ABEF与ABCD有公一共(yīgòng)边AB,∴.∵DQAP ,∴.∴.又∵ABPM//,ABQN//,∴.∴四边形为平行四边形.∴.又∵面BCE,∴//PQ面BCE.证明(zhèngmíng)二:如图,连结(lián jié)并延长(yáncháng)交BC于,连结.∵,∴.又∵正方形ABEF 与正方形ABCD 有公一共边AB , ∴DB AE =, ∵DQ AP =,∴.∴.∴, 又∵面, ∴//PQ 面BEC .说明(shu ōmíng):从此题中我们可以看出,证线面平行的根本问题是要在平面内找一直线(zhíxiàn)与直线平行,此时常用中位线定理、成比例线段、射影法、平行挪动、补形等方法,详细用何种方法要视条件而定.此题中我们可以把“两个有公一共边的正方形〞这一条件(tiáojiàn)改为“两个(li ǎn ɡ ɡè)全等的矩形〞,那么题中的结论是否仍然成立?典型例题十二例12 三个平面两两相交于三条交线,证明这三条交线或者平行、或者相交于一点.:,,.求证:a 、b 、c 互相平行或者相交于一点.分析:此题考察的是空间三直线的位置关系,我们可以先从熟悉的两条交线的位置关系入手,根据一共面的两条直线平行或者相交来推论三条交线的位置关系.证明:∵a =βα ,b =γβ , ∴.∴a 与b 平行或者相交. ①假设b a //,如图∵,,∴.又∵c =αγ ,α⊂a ,∴c a //. ∴.②假设(ji ǎshè)a 与b 相交(xi āngji āo),如图,设,∴,. 又∵,.∴, 又∵,∴. ∴直线(zhíxiàn)a 、b 、c 交于同一点(y ī di ǎn)O .说明:这一结论常用于求一个几何体的截面与各面交线问题,如正方体ABCD 中, M 、N 分别是、的中点,画出点、M 、N 的平面与正方体各面的交线,并说明截面多边形是几边形?典型例题十三例13 空间四边形ABCD ,,AE 是的BC 边上的高,是的BC 边上的中线,求证:AE 和DF 是异面直线. 证法一:〔定理法〕如图由题设条件可知点E、不重合,设BCD∆所在平面α.∴AE和DF是异面直线(zhíxiàn).证法(zhènɡ fǎ)二:〔反证法〕假设(jiǎshè)AE和DF不是(bù shi)异面直线,那么AE和DF一共面,设过AE、DF的平面为β.(1)假设E、F重合,那么E是BC的中点,这与题设ACAB≠相矛盾.(2)假设E、F不重合,∵,,,∴.∵,,∴A、B、、D四点一共面,这与题设ABCD是空间四边形相矛盾.综上,假设不成立.故AE和DF是异面直线.说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用.首先看一个有趣的实际问题:“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装?〞对于这个问题,同学们可试验做一做.也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢?用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,那么9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.典型例题十四例14AB、BC、是不在同一平面内的三条线段,E、F、G分别是AB、BC、CD的中点,求证:平面和AC平行,也和BD平行.分析(fēnxī):欲证明(zhèngmíng)AC平面(píngmiàn)EFG,根据直线(zhíxiàn)和平面平等的断定定理只须证明AC平行平面EFG内的一条直线,由图可知,只须证明.证明:如图,连结AE、EG、EF、.在ABC∆中,E、F分别是AB、BC的中点.∴EFAC//.于是AC//平面EFG.同理可证,BD//平面EFG.说明:到目前为止,断定直线和平面平行有以下两种方法:(1)根据直线和平面平行定义;(2)根据直线和平面平行的断定定理.典型例题十五例15空间四边形ABCD,P、Q分别是ABC∆的重心,∆和BCD求证:.分析:欲证线面平行,须证线线平行,即要证明PQ与平面中的某条直线平行,根据条件,此直线为,如图.证明:取BC的中点E.∵P 是ABC ∆的重心,连结AE , 那么,连结,∵Q 为BCD ∆的重心, ∴,∴在中,.又,,∴ACD PQ 平面//.说明(shu ōmíng):(1)本例中构造(gòuzào)直线AD 与PQ 平行,是充分借助于题目(tímù)的条件:P 、Q 分别(f ēnbié)是ABC ∆和BCD ∆的重心,借助于比例的性质证明AD PQ //,该种方法经常使用,望注意把握.(2)“欲证线面平行,只须证线线平行〞.断定定理给我们提供了一种证明线面平等的方法.根据问题详细情况要纯熟运用.典型例题十六例16 正方体中,E 、G 分别是BC 、的中点如以下图.求证:.分析:要证明D D BB EG 11//平面,根据线面平等的断定定理,需要在平面内找到与EG 平行的直线,要充分借助于E 、G 为中点这一条件. 证明:取BD 的中点F ,连结EF 、.∵E 为BC 的中点,∴EF 为BCD ∆的中位线,那么,且.∵G 为11D C 的中点, ∴且, ∴且,∴四边形为平行四边形, ∴,而,,∴.典型(di ǎnxíng)例题十七例17 假如(ji ǎrú)直线,那么(nà me)直线a 与平面(píngmiàn)α内的〔 〕.A .一条直线不相交B .两条相交直线不相交C .无数条直线不相交D .任意一条直线都不相交解:根据直线和平面平行定义,易知排除A 、B .对于C ,无数条直线可能是一组平行线,也可能是一共点线,∴C 也不正确,应排除C .与平面α内任意一条直线都不相交,才能保证直线a 与平面α平行,∴D 正确.∴应选D .说明:此题主要考察直线与平面平行的定义.典型例题十八例18 分别和两条异面直线平行的两条直线的位置关系是〔 〕. A .一定平行 B .一定相交 C .一定异面 D .相交或者异面解:如图中的甲图,分别与异面直线a、b平行的两条直线c、是相交关系;如图中的乙图,分别(fēnbié)与异面直线a、b平行(píngxíng)的两条直线c、d 是相交(xiāngjiāo)关系.综上,可知(kě zhī)应选D.说明:此题主要考察有关平面、线面平行等根底知识以及空间想象才能.典型例题十九例19a、b是两条异面直线,以下结论正确的选项是〔〕.A.过不在a、b上的任一点,可作一个平面与a、b平行B.过不在a、b上的任一点,可作一个直线与a、b相交C.过不在a、b上的任一点,可作一个直线与a、b都平行D.过a可以并且只可以作一平面与b平行解:A错,假设点与a所确定的平面与b平行时,就不能使这个平面与 平行了.B错,假设点与a所确定的平面与b平等时,就不能作一条直线与a,b相交.C错,假设这样的直线存在,根据公理4就可有ba//,这与a,b异面矛盾.D正确,在a上任取一点A,过A点做直线bc//,那么c与a确定一个平面与b平行,这个平面是惟一的.∴应选D.说明:此题主要考察异面直线、线线平行、线面平行等根本概念.典型例题二十例20 (1)直线b a //,α平面//a ,那么b 与平面α的位置关系是_____________.(2)A 是两异面直线a 、b 外的一点,过A 最多可作___________个平面同时与a 、b 平行.解:(1)当直线b 在平面α外时,α//b ;当直线b 在平面α内时,α⊂b . ∴应填:α//b 或者α⊂b .(2)因为过A 点分别作a ,b 的平行线只能作一条,〔分别称'a ,'b 〕经过'a ,'b 的平面也是惟一的.所以只能作一个平面; 还有不能作的可能,当这个平面(píngmiàn)经过a 或者(huòzhě)b 时,这个(zhè ge)平面就不满足条件了.∴应填:1.说明(shu ōmíng):考虑问题要全面,各种可能性都要想到,是解答此题的关键.典型例题二十一例21 如图,α//a ,A 是α的另一侧的点,,线段AB ,AC ,AD 交α于E ,F ,G ,假设,,,那么EG =___________.解:∵α//a ,.∴,即,∴.那么.∴应填:.说明:此题是一道综合题,考察知识主要有:直线与平面平行性质定理、相似三角形、比例性质等.同时也考察了综合运用知识,分析和解决问题的才能.内容总结(1)典型例题一例1 简述以下问题的结论,并画图说明:〔1〕直线平面,直线,那么和的位置关系如何。

高一数学直线、平面平行的判定及其性质测试答案

高一数学直线、平面平行的判定及其性质测试答案

直线、平面平行的判定及其性质测试答案第1题. 已知a αβ= ,m βγ= ,b γα= ,且m α//,求证:a b //. 答案:证明:m m m a a b a m b βγααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第2题.答案:A. 第3题.答案:证明:连结A F 并延长交B C 于M .连结PM ,AD BC ∵//,B F M F F DF A=∴,又由已知P EB FE AF D =,P EM FE AF A=∴.由平面几何知识可得EF //PM ,又E F P B C ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第4题.答案:证明:如图,分别在A B 和C D 上截取11AE A E =,11D F D F =,连接1E E ,1FF ,E F . ∵长方体1AC 的各个面为矩形,11A E ∴平行且等于A E ,11D F 平行且等于D F ,故四边形11AEE A ,11DFF D 为平行四边形.1EE ∴平行且等于1A A ,1FF 平行且等于1DD .1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11E F F E 为平行四边形,11E F EF //.∵ ∴11E F //平面A BC D .第5题.答案:111∶∶第6题. 如图,正方形A B C D 的边长为13,平面A B C D 外一点P 到正方形各顶点的距离都是13,M ,N 分别是P A ,D B 上的点,且58PM M A BN N D ==∶∶∶. (1) 求证:直线MN //平面PBC ;(2)求线段M N 的长.(1) 答案:证明:连接A N 并延长交B C 于E ,连接P E , 则由AD BC //,得B NN EN D A N =.B NP MN D M A =∵,N EP MA N M A =∴. MN PE ∴//,又P E ⊂平面PBC ,M N ⊄平面PBC , ∴MN //平面PBC .(2) 解:由13PB BC PC ===,得60P B C ∠=þ;由58B E B N A DN D==,知5651388B E =⨯=,由余弦定理可得918P E =,8713M N P E ==∴.第7题.答案:证明:连接A C 、B D 交点为O ,连接M O ,则M O 为B D P △的中位线,∴PD MO //. P D ⊄∵平面M A C ,M O ⊂平面M A C ,∴PD //平面M A C . 第8题.答案:证明:如图,取11D B 的中点O ,连接O F ,O B ,O F ∵ 平行且等于1112B C ,B E 平行且等于1112B C , O F ∴ 平行且等于B E ,则O F E B 为平行四边形,EF ∴//B O . E F ⊄∵平面11BB D D ,B O ⊂平面11BB D D , ∴EF //平面11BB D D .第9题.答案:解:如图,连接D B 交A C 于点O ,取1D D 的中点M ,连接M A ,M C ,则截面M A C 即为所求作的截面.M O ∵为1D D B △的中位线,1D B M O ∴//.1D B ⊄∵平面M A C ,M O ⊂平面M A C ,1D B ∴//平面M A C ,则截面M A C 为过A C 且与直线1D B第10题. 第11题.答案:证明:111111B B AA B B D D A A D D⎧⎪⇒⎨⎪⎩ ∥ ∥ ∥⇒ 四边形11BB D D 是平行四边形⇒ 111111D B D B D B A BD D B A BD ⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BD D B B C B⎧⎪⎨⎪=⎩ 平面同理平面////⇒111B C D A BD 平面平面//.第12题. 答案:证明:(1)AM C N M N AC M BN BAC M N P AC M N P M N M N P⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.C NC P PN BD N BPDBD M N P BD M N P PN M N P⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.(2)M N P AC D PE AC AC D PE AC AC M N P =⎫⎪⊂⇒⎬⎪⎭设平面平面平面//,//平面MNP ACD AC 即平面与平面的交线//.第13题.答案:证明:(1)∵E ,F ,G ,H 分别是A C ,C B ,B D ,D A的中点., EH CD ∴//,FG CD //,EH FG ∴//.因此,E ,F ,G ,H 共面.CD EH ∵//,C D ⊄平面E F G H ,E H ⊂平面E F G H , CD ∴//平面E F G H .同理AB //平面E F G H .(2)设PQ 平面E F G H =N ,连接P C ,设PC EF M = .PCQ △所在平面 平面E F G H =M N , C Q ∵//平面E F G H ,CQ ⊂平面PCQ ,CQ MN ∴//.E F ∵ 是A B C △是的中位线, M ∴是P C 的中点,则N 是PQ 的中点,即PQ 被平面E F G H 平分.第14题.答案:D. 第15题.答案:A. 第16题.答案:20. 第17题.答案:m n ∶.第18题. 答案:(1)证明:BC ∵//平面E F G H ,B C ⊂平面ABC , 平面ABC 平面E F G H E F =, BC EF ∴//.同理BC GH //, EF GH ∴//,同理EH FG //, ∴四边形E G F H 为平行四边形. (2)解:∵A D 与B C 成60þ角,∴60H G F ∠=þ或120þ,设:A E A B x =,∵E F A Ex B C A B==, B C a =,∴E F ax =,由1E H B Ex A D A B==-,得(1)EH a x =-.∴sin 60EFG H S EF EH =⨯⨯四边形þ(1)2ax a x =⨯-⨯22()2a x x =-+2211()224x ⎡⎤=--+⎢⎥⎣⎦.当12x =时,28S a =最大值,即当E 为A B的中点时,截面的面积最大,最大面积为28a .第19题.答案:425∶第20题.答案:证明:如图,取C D 的中点E ,连接N E ,M E ∵M ,N 分别是A B ,P C 的中点, NE PD ∴//,ME AD //,可证明NE //平面P A D ,ME //平面P A D . 又NE ME E = ,∴平面MNE //平面P A D ,又M N ⊂平面M N E ,∴MN //平面P A D .第21题.答案:证明:分A B ,C D 是异面、共面两种情况讨论.(1) 当A B ,C D 共面时,如图(a )αβ∵//,AC BD ∴//,连接E ,F .AE EB C F FD =∶∶∵,EF AC BD ∴////且E F α⊄,A C α⊂,∴EF //平面α.(2) 当A B ,C D 异面时,如图(b ),过点A 作AH CD //交β于点H .在H 上取点G ,使A G G H mn =∶∶,连接E F ,由(1)证明可得GF HD //,又A G G H A EE B =∶∶得EG BH //.∴平面EFG //平面β//平面α.又EF ⊂面EFG ,∴EF //平面α.第23题.答案:B. 第24题.答案:A.第25题. 如图,已知点P 是平行四边形A B C D 所在平面外的一点,E 、F 分别是P A 、B D 上的点且::P E E A B F F D =,求证:EF //平面PBC .答案:证明:连结A F 并延长交B C 于M .连结PM ,AD BC ∵//,B F M F F DF A=∴,又由已知P EB FE AF D =,P EM FE AF A=∴.由平面几何知识可得EF //PM ,又E F P B C ⊄,PM ⊂平面PBC , ∴EF //平面PBC .第26题.答案:证明:如图,分别在A B 和C D 上截得11AE A E =,11D F D F =,连接1E E ,1FF ,E F .∵长方体1AC 的各个面为矩形, 1EE ∴平行且等于1A A ,1FF 平行且等于1DD .1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11E F F E 为平行四边形,11E F EF //.EF ⊂∵平面A B C D ,11E F ⊄平面A B C D , ∴11E F //平面A B C D .第27题.答案:证明:因为1111ABC D A B C D -为正方体, 所以1111D C A B //,1111D C A B =.又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =,所以11D C BA 为平行四边形. 所以11D A C B //.由直线与平面平行的判定定理得1D A //平面1C B D .同理11D B //平面1C B D ,又1111D A D B D = ,所以,平面11A B D //平面1C B D .第28题. 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面. 如图,已知直线a ,b 平面α,且a b //,a α//,a ,b 都在α外. 求证:b α//.答案:证明:过a 作平面β,使它与平面α相交,交线为c . 因为a α//,a β⊂,c αβ= ,所以a c //. 因为a b //,所以b c //.又因为c α⊂,b α⊄, 所以b α//.第29题. 如图,直线A A ',B B ',C C '相交于O ,A O A O =',B O B O =',C O C O ='. 求证:ABC //平面A B C '''.答案:提示:容易证明AB A B //'',AC A C //''. 进而可证平面ABC //平面A B C '''. 第30题.答案:C.。

直线、平面平行的判定与性质练习题集含答案解析

直线、平面平行的判定与性质练习题集含答案解析

直线、平面平行的判定及其性质练习题第1题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //..第2题. 已知:b αβ=,a α//,a β//,则a 与b 的位置关系是( )A.a b //B.a b ⊥C.a ,b 相交但不垂直 D.a ,b 异面第3题. 如图,已知点P 是平行四边形ABCD 所在平面外的一点,E ,F 分别是PA ,BD 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC .第4题. 如图,长方体1111ABCD A B C D -中,11E F 是平面11AC 上的线段,求证:11E F //平面AC .第6题. 如图,形ABCD 的边长为13,平面ABCD 外一点P 到形各顶点的距离都是13,M ,N 分别是PA ,DB 上的点,且58PM MA BN ND ==∶∶∶. (1) 求证:直线MN //平面PBC ; (2) 求线段MN 的长.第7题. 如图,已知P 为平行四边形ABCD 所在平面外一点,M 为PB 的中点, 求证:PD //平面MAC .第8题. 如图,在体1111ABCD A B C D -中,E ,F 分别是棱BC ,11C D 的中点,求证:EF //平面11BB D D .第9题. 如图,在体1111ABCD A B C D -中,试作出过AC 且与直线1D B 平行的截面,并说明理由.第10题. 设a ,b 是异面直线,a ⊂平面α,则过b 与α平行的平面( ) A.不存在 B.有1个 C.可能不存在也可能有1个 D.有2个以上第11题. 如图,在体1111ABCD A B C D -中,求证:平面1A BD //平面11CD B .第12题. 如图,M 、N 、P 分别为空间四边形ABCD 的边AB ,BC ,CD 上的点,且AM MB CN NB CP PD ==∶∶∶.求证:(1)AC //平面MNP ,BD //平面MNP ; (2)平面MNP 与平面ACD 的交线AC //.第13题. 如图,线段AB ,CD 所在直线是异面直线,E ,F ,G ,H 分别是线段AC ,CB ,BD ,DA 的中点.(1) 求证:EFGH 共面且AB ∥面EFGH ,CD ∥面EFGH ;(2) 设P ,Q 分别是AB 和CD 上任意一点,求证:PQ 被平面EFGH 平分.第14题. 过平面α外的直线l ,作一组平面与α相交,如果所得的交线为a ,b ,c ,…,则这些交线的位置关系为( ) A.都平行B.都相交且一定交于同一点C.都相交但不一定交于同一点 D.都平行或都交于同一点第15题. a ,b 是两条异面直线,A 是不在a ,b 上的点,则下列结论成立的是( ) A.过A 且平行于a 和b 的平面可能不存在 B.过A 有且只有一个平面平行于a 和b C.过A 至少有一个平面平行于a 和b D.过A 有无数个平面平行于a 和b第16题. 若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD 、AC 的截面四边形的周长为 .第17题. 在空间四边形ABCD 中,E ,F ,G ,H 分别为AB ,BC ,CD ,DA 上的一点,且EFGH 为菱形,若AC //平面EFGH ,BD //平面EFGH ,AC m =,BD n =,则AE BE =: .第18题. 如图,空间四边形ABCD 的对棱AD 、BC 成60的角,且AD BC a ==,平行于AD 与BC 的截面分别交AB 、AC 、CD 、BD 于E 、F 、G 、H . (1)求证:四边形EGFH 为平行四边形;(2)E 在AB 的何处时截面EGFH 的面积最大?最大面积是多少?第19题. P 为ABC △所在平面外一点,平面α//平面ABC ,α交线段PA ,PB ,PC 于ABC ''',23PA AA =∶∶'',则AB C ABC S S =△△∶''' .第20题. 如图,在四棱锥P ABCD -中,ABCD 是平行四边形,M ,N 分别是AB ,PC 的中点. 求证:MN //平面PAD .第22题. 已知a αβ=,m βγ=,b γα=,且m α//,求证:a b //.第23题. 三棱锥A BCD -中,AB CD a ==,截面MNPQ 与AB 、CD 都平行,则截面MNPQ 的周长是( ). A.4a B.2a C.32aD.周长与截面的位置有关第27题. 已知体1111ABCD A B C D -,求证:平面11AB D //平面1C BD .第28题. 已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.如图,已知直线a ,b 平面α,且a b //,a α//,a ,b 都在α外.求证:b α//.第29题. 如图,直线AA ',BB ',CC '相交于O ,AO AO =',BO B O =',CO C O ='. 求证:ABC //平面ABC '''.第30题. 直线a 与平面α平行的充要条件是( ) A.直线a 与平面α的一条直线平行 B.直线a 与平面α两条直线不相交C.直线a 与平面α的任一条直线都不相交 D.直线a 与平面α的无数条直线平行直线、平面平行的判定及其性质答案第1题.答案:证明:m m m a a b a m b βγααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第2题.答案:A.第3题答案:证明:连结AF 并延长交BC 于M .连结PM ,AD BC ∵//,BF MF FD FA =∴,又由已知PE BF EA FD =,PE MFEA FA=∴. 由平面几何知识可得EF //PM ,又EF PBC ⊄,PM ⊂平面PBC ,∴EF //平面PBC .第4题. 答案:证明:如图,分别在AB 和CD 上截取11AE A E =,11DF D F =,连接1EE ,1FF ,EF .∵长方体1AC 的各个面为矩形,11A E ∴平行且等于AE ,11D F 平行且等于DF ,故四边形11AEE A ,11DFF D 为平行四边形.1EE ∴平行且等于1AA ,1FF 平行且等于1DD .1AA ∵平行且等于1DD ,1EE ∴平行且等于1FF ,四边形11EFF E 为平行四边形,11E F EF //.EF ⊂∵平面ABCD ,11E F ⊄平面ABCD , ∴11E F //平面ABCD .第6题. 答案:证明:连接AN 并延长交BC 于E ,连接PE ,则由AD BC //,得BN NEND AN=. BN PM ND MA =∵,NE PMAN MA=∴. MN PE ∴//,又PE ⊂平面PBC ,MN ⊄平面PBC ,∴MN //平面PBC .(1) 解:由13PB BC PC ===,得60PBC ∠=;由58BE BN AD ND ==,知5651388BE =⨯=, 由余弦定理可得918PE =,8713MN PE ==∴.第7题.答案:证明:连接AC 、BD 交点为O ,连接MO ,则MO 为BDP △的中位线,∴PD MO //.PD ⊄∵平面MAC ,MO ⊂平面MAC ,∴PD //平面MAC .第8题. 答案:证明:如图,取11D B 的中点O ,连接OF ,OB ,OF ∵ 平行且等于1112B C ,BE 平行且等于1112B C ,OF ∴ 平行且等于BE ,则OFEB 为平行四边形,EF ∴//BO .EF ⊄∵平面11BB D D ,BO ⊂平面11BB D D ,∴EF //平面11BB D D .第9题. 答案:解:如图,连接DB 交AC 于点O ,取1D D 的中点M ,连接MA ,MC ,则截面MAC即为所求作的截面.MO ∵为1D DB △的中位线,1D B MO ∴//.1D B ⊄∵平面MAC ,MO ⊂平面MAC ,1D B ∴//平面MAC ,则截面MAC 为过AC 且与直线1D B 平行的截面.第10题. 答案:C.第11题. 答案:证明:111111B B A A B B D D A A D D ⎧⎪⇒⎨⎪⎩∥ ∥ ∥ ⇒ 四边形11BB D D 是平行四边形⇒ 111111D B DB DB A BD D B A BD⎧⎪⊂⎨⎪⊄⎩平面平面//⇒111111111D B A BDB C A BD D B B C B⎧⎪⎨⎪=⎩平面同理平面//// ⇒111B CD A BD 平面平面//.第12题.答案:证明:(1)AM CN MN AC MB NBAC MNP AC MNP MN MNP⎫=⇒⎪⎪⊄⇒⎬⎪⊂⎪⎭//平面//平面平面.CN CP PN BD NB PDBD MNP BD MNP PN MNP⎫=⇒⎪⎪⊄⎬⎪⊂⎪⎭//平面//平面平面.(2)MNP ACD PE AC ACD PE AC AC MNP =⎫⎪⊂⇒⎬⎪⎭设平面平面平面//,//平面 MNP ACD AC 即平面与平面的交线//.第13题. 答案:证明:(1)∵E ,F ,G ,H 分别是AC ,CB ,BD ,DA 的中点.,EH CD ∴//,FG CD //,EH FG ∴//.因此,E ,F ,G ,H 共面. CD EH ∵//,CD ⊄平面EFGH ,EH ⊂平面EFGH , CD ∴//平面EFGH .同理AB //平面EFGH .(2)设PQ平面EFGH =N ,连接PC ,设PCEF M =.PCQ △所在平面平面EFGH =MN ,CQ ∵//平面EFGH ,CQ ⊂平面PCQ ,CQ MN ∴//.EF ∵ 是ABC △是的中位线,M ∴是PC 的中点,则N 是PQ 的中点,即PQ 被平面EFGH 平分.第14题. 答案:D.第15题. 答案:A.第16题. 答案:20.第17题.答案:m n ∶.第18题. 答案:(1)证明:BC ∵//平面EFGH ,BC ⊂平面ABC , 平面ABC平面EFGH EF =,BC EF ∴//.同理BC GH //,EF GH ∴//,同理EH FG //,∴四边形EGFH 为平行四边形.(2)解:∵AD 与BC 成60角,∴60HGF ∠=或120,设:AE AB x =,∵EF AEx BC AB==, BC a =,∴EF ax =,由1EH BEx AD AB==-, 得(1)EH a x =-.∴sin 60EFGH S EF EH =⨯⨯四边形(1)2ax a x =⨯-⨯22()x x =-+2211()224a x ⎡⎤=--+⎢⎥⎣⎦. 当12x =时,2S =最大值, 即当E 为AB2. 第19题. 答案:425∶第20题.答案:证明:如图,取CD 的中点E ,连接NE ,ME ∵M ,N 分别是AB ,PC 的中点,NE PD ∴//,ME AD //,可证明NE //平面PAD ,ME //平面PAD . 又NEME E =,∴平面MNE //平面PAD ,又MN ⊂平面MNE ,∴MN //平面PAD . 第22题.答案:证明:m m m a a b a m b βαααβ=⎫⎫⎪⎪⇒⇒⎬⎬⎪⎪=⇒⎭⎭同理////////.第23题.答案:B. 第27题.答案:证明:因为1111ABCD A B C D -所以1111D C A B //,1111D C A B =. 又11AB A B //,11AB A B =, 所以11D C AB //,11D C AB =, 所以11D C BA 为平行四边形.所以11D A C B //1D A //平面1C BD .同理11D B //平面1C BD ,又1111D A D B D =,所以,平面11AB D //平面1C BD .第28题. 答案:证明:过a 作平面β,使它与平面α相交,交线为c . 因为a α//,a β⊂,c αβ=,所以a c //. 因为a b //, 所以b c //.又因为c α⊂,b α⊄, 所以b α//.第29题.答案:提示:容易证明AB AB //'',AC AC //''. 进而可证平面ABC //平面ABC '''. 第30题.答案:C.。

直线、平面平行的判定及其性质 习题(含答案)

直线、平面平行的判定及其性质 习题(含答案)
20.如图,在四棱锥 中, ⊥底面 , , , , ,点 为棱 的中点.
(1)(理科生做)证明: ;
(文科生做)证明: ;
(2)(理科生做)若 为棱 上一点,满足 ,求二面角 的余弦值.
(文科生做)求点 到平面 的距离.
21.如图所示的几何体中,四边形 是菱形, 是矩形,平面 平面 ,点 为 的中点,点 为 的中点.
直线、平面平行的判定及其性质习题(含答案)
一、单选题
1.已知直线 和不同的平面 ,下列命题中正确的是
A. B.
C. D.
2.已知直线 与 关于直线 对称, 与 垂直,则 ( )
A. B. C.-2D.2
3.已知 , 是两个不同的平面, , 是异面直线且 ,则下列条件能推出 的是( )
A. , B. , C. , D. ,
B.经过一条直线和一个点确定一个平面
C.经过三点确定 一个平面
D.两两相交且不共点的三条直线确定一个平面
7.四棱锥 中, 平面 ,底面 是边长为2的正方形, , 为 的中点,则异面直线 与 所成角的余弦值为( )
A. B. C. D.
8.直三棱柱 中, , ,则直线 与 所成角的大小为
A.30°B.60°C.90°D.120°
设 .易得 ,
三角形AOH是正三角形,异面直线所成角为60°.
故选:B.
【点睛】
本题考查异面直线所成角的求法,考查计算能力.
9.B
【解析】
【分析】
由题意可知,当平面α经过BCNM时取得的截面面积最大,此时截面是等腰梯形;根据正四棱台的高及MN中点在底面的投影求得等腰梯形的高,进而求得等腰梯形的面积。
5.C
【解析】
【分析】
在棱长为2的正方体 中, 的中点是 ,过点 作与截面 平行的截面,则该截面是一个对角线分别为正方体体对角线和面对角线的菱形,进而得到答案

(完整版)直线与平面平行的判定和性质经典练习及详细答案

(完整版)直线与平面平行的判定和性质经典练习及详细答案

直线、平面平行的判定及其性质1. 下列命题中,正确命题的是 ④ 。

①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行; ③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点。

2. 下列条件中,不能判断两个平面平行的是 (填序号)。

①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面 答案 ①②③3. 对于平面α和共面的直线m 、n,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ⊂α,n ∥α,则m ∥n④若m 、n 与α所成的角相等,则m ∥n 答案 ①②④ 4. 已知直线a ,b,平面α,则以下三个命题: ①若a ∥b,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b 。

其中真命题的个数是 . 答案 05. 直线a //平面M ,直线b ⊂/M ,那么a //b 是b //M 的 条件。

A.充分而不必要 B.必要而不充分 C 。

充要 D 。

不充分也不必要6. 能保证直线a 与平面α平行的条件是 A 。

b a b a //,,αα⊂⊄ B 。

b a b //,α⊂ C.c a b a c b //////,,,αα⊂D 。

b D b C a B a A b ∈∈∈∈⊂,,,,α且BD AC =7. 如果直线a 平行于平面α,则A.平面α内有且只有一直线与a 平行B.平面α内无数条直线与a 平行C.平面α内不存在与a 平行的直线D.平面α内的任意直线与直线a 都平行8. 如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系A 。

直线与平面平行的判定试题及详细答案

直线与平面平行的判定试题及详细答案

1A1.(本小题满分12分)如图,在四棱柱1111ABCD A B C D -中,底面A B C D 是等腰梯形,60,DAB ∠= 22AB CD ==,M 是线段AB 的中点.(I )求证:111//C M A ADD 平面;解:(Ⅰ)连接1AD 1111D C B A ABCD - 为四棱柱,11//D C CD ∴ 11D C CD =又M 为AB 的中点,1=∴AMAM CD //∴,AM CD =11//D C AM ∴,11D C AM =11D AMC ∴为平行四边形11//MC AD ∴又111ADD A M C 平面⊄ 111A D D A AD 平面⊂111//ADD A AD 平面∴2.如图,正三棱柱111C B A ABC -的底面边长是2,侧棱长是3,D 是AC 的中点.求证://1C B 平面BD A 1.2.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,B 1C 1D 1A 1DC B M AD 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 D3.如图,在平行六面体ABCD -A 1B 1C 1D 1中,E ,M ,N ,G 分别是AA 1,CD ,CB ,CC 1的中点, 求证:(1)MN //B 1D 1 ;(2)AC 1//平面EB 1D 1 ;(3)平面EB 1D 1//平面BDG .3.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点,所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG 又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDG4如图,在正四棱锥P ABCD -中,PA AB a ==,点E 在棱PC 上. 问点E 在何处时,//PA EBD 平面,并加以证明.4.证明:设1AB 与B A 1相交于点P ,连接PD ,则P 为1AB 中点,D 为AC 中点,∴PD//C B 1.又 PD ⊂平面B A 1D ,∴C B 1//平面B A 1 DE PD C BA5如下图,设P 为长方形ABCD 所在平面外一点,M ,N 分别为AB ,PD 上的点,且MB AM =NPDN ,求证:直线MN ∥平面PBC .5.证明:(1) M 、N 分别是CD 、CB 的中点,∴MN//BD又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形.所以BD//B 1D 1.又MN//BD ,从而MN//B 1D 1(2)(法1)连A 1C 1,A 1C 1交B 1D 1与O 点四边形A 1B 1C 1D 1为平行四边形,则O 点是A 1C 1的中点E 是AA 1的中点,∴EO 是∆AA 1C 1的中位线,EO//AC 1.AC 1⊄面EB 1D 1 ,EO ⊂面EB 1D 1,所以AC 1//面EB 1D 1 (法2)作BB 1中点为H 点,连接AH 、C 1H ,E 、H 点为AA 1、BB 1中点,所以EH //C 1D 1,则四边形EHC 1D 1是平行四边形,所以ED 1//HC 1又因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AHAH ⋂HC 1=H ,∴面AHC 1//面EB 1D 1.而AC 1⊂面AHC 1,所以AC 1//面EB 1D 1(3)因为EA //B 1H ,则四边形EAHB 1是平行四边形,所以EB 1//AH因为AD //HG ,则四边形ADGH 是平行四边形,所以DG//AH ,所以EB 1//DG又 BB 1//DD 1,∴四边形BB 1D 1D 是平行四边形. 所以BD//B 1D 1.BD ⋂DG=G ,∴面EB 1D 1//面BDG。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线、平面平行的判定及其性质1. 下列命题中,正确命题的是 ④ . ①若直线l 上有无数个点不在平面α内,则l ∥α;②若直线l 与平面α平行,则l 与平面α内的任意一条直线都平行;③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行;④若直线l 与平面α平行,则l 与平面α内的任意一条直线都没有公共点. 2. 下列条件中,不能判断两个平面平行的是 (填序号). ①一个平面内的一条直线平行于另一个平面 ②一个平面内的两条直线平行于另一个平面 ③一个平面内有无数条直线平行于另一个平面④一个平面内任何一条直线都平行于另一个平面 答案 ①②③3. 对于平面α和共面的直线m 、n ,下列命题中假命题是 (填序号). ①若m ⊥α,m ⊥n ,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ⊂α,n ∥α,则m ∥n④若m 、n 与α所成的角相等,则m ∥n 答案 ①②④ 4. 已知直线a ,b ,平面α,则以下三个命题: ①若a ∥b ,b ⊂α,则a ∥α; ②若a ∥b ,a ∥α,则b ∥α; ③若a ∥α,b ∥α,则a ∥b .其中真命题的个数是 . 答案 05. 直线a //平面M ,直线b ⊂/M ,那么a //b 是b //M 的 条件. A .充分而不必要 B.必要而不充分 C.充要 D.不充分也不必要6. 能保证直线a 与平面α平行的条件是 A.b a b a //,,αα⊂⊄ B.b a b //,α⊂ C.c a b a c b //////,,,αα⊂D.b D b C a B a A b ∈∈∈∈⊂,,,,α且BD AC =7. 如果直线a 平行于平面α,则A.平面α内有且只有一直线与a 平行B.平面α内无数条直线与a 平行C.平面α内不存在与a 平行的直线D.平面α内的任意直线与直线a 都平行 8. 如果两直线a ∥b ,且a ∥平面α,则b 与α的位置关系 A.相交 B.α//b C.α⊂b D .α//b 或α⊂b 9. 下列命题正确的个数是10.(1)若直线l上有无数个点不在平面α内,则l∥α(2)若直线l与平面α平行,则l与平面α内的任意一直线平行(3)两条平行线中的一条直线与一个平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥αA.0个B.1个C.2个D.3个11.b是平面α外的一条直线,下列条件中可得出b∥α是A.b与α内的一条直线不相交B.b与α内的两条直线不相交C.b与α内的无数条直线不相交D.b与α内的所有直线不相交12.已知两条相交直线a、b,a∥平面α,则b与α的位置关系A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交13.如图所示,已知S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.解SG∥平面DEF,证明如下:方法一:三角形中位线连接CG交DE于点H,如图所示.∵DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥AG.∴H为CG的中点.∴FH是△SCG的中位线,∴FH∥SG.又SG⊄平面DEF,FH⊂平面DEF,∴SG∥平面DEF.方法二:平面平行的性质∵EF为△SBC的中位线,∴EF∥SB.∵EF⊄平面SAB,SB⊂平面SAB,∴EF∥平面SAB.同理可证,DF∥平面SAB,EF∩DF=F,∴平面SAB∥平面DEF,又SG⊂平面SAB,∴SG∥平面DEF.14.如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是BC、CC1、C1D1、A1A的中点.求证:(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明平行四边形的性质,平行线的传递性(1)如图所示,取BB1的中点M,易证四边形HMC1D1是平行四边形,∴HD1∥MC1.又∵MC1∥BF,∴BF∥HD1.(2)取BD 的中点O ,连接EO ,D 1O ,则OE 21DC , 又D 1G 21DC ,∴OED 1G ,∴四边形OEGD 1是平行四边形,∴GE ∥D 1O . 又D 1O ⊂平面BB 1D 1D ,∴EG ∥平面BB 1D 1D .(3)由(1)知D 1H ∥BF ,又BD ∥B 1D 1,B 1D 1、HD 1⊂平面HB 1D 1,BF 、BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B ,∴平面BDF ∥平面B 1D 1H .15. 如图所示,在三棱柱ABC —A 1B 1C 1中,M 、N 分别是BC 和A 1B 1的中点. 求证:MN ∥平面AA 1C 1C.证明 方法一:平行四边形的性质 设A 1C 1中点为F ,连接NF ,FC , ∵N 为A 1B 1中点, ∴NF ∥B 1C 1,且NF =21B 1C 1,又由棱柱性质知B 1C 1 BC , 又M 是BC 的中点, ∴NF MC ,∴四边形NFCM 为平行四边形. ∴MN ∥CF ,又CF ⊂平面AA 1C 1,MN ⊄平面AA 1C 1,∴MN ∥平面AA 1C 1C. 方法二:三角形中位线的性质 连接AM 交C 1C 于点P ,连接A 1P , ∵M 是BC 的中点,且MC ∥B 1C 1, ∴M 是B 1P 的中点, 又∵N 为A 1B 1中点,∴MN ∥A 1P ,又A 1P ⊂平面AA 1C 1,MN ⊄平面AA 1C 1,∴MN ∥平面AA 1C 1C. 方法三:平面平行的性质设B 1C 1中点为Q ,连接NQ ,MQ , ∵M 、Q 是BC 、B 1C 1的中点,∴MQ CC 1,又CC 1⊂平面AA 1C 1C , MQ ⊄平面AA 1C 1C , ∴MQ ∥平面AA 1C 1C .∵N 、Q 是A 1B 1、B 1C 1的中点,∴NQ A 1C 1,又A 1C 1⊂平面AA 1C 1C ,NQ ⊄平面AA 1C 1C , ∴NQ ∥平面AA 1C 1C .又∵MQ ∩NQ=B ,∴平面MNQ ∥平面AA 1C 1C , 又MN ⊂平面MNQ ∴MN ∥平面AA 1C 1C.16. 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F . 求证:EF ∥平面ABCD .方法一:平行四边形的性质过E 作ES ∥BB 1交AB 于S ,过F 作FT ∥BB 1交BC 于T ,连接ST ,则11AE ESAB B B =,且11BF FT BC C C = ∵B 1E =C 1F ,B 1A =C 1B ,∴AE=BF∴11ES FT B B CC =,∴ES=FT 又∵ES ∥B 1B ∥FT ,∴四边形E FTS 为平行四边形.∴EF ∥ST ,又ST ⊂平面ABCD ,EF ⊄平面ABCD ,∴EF ∥平面ABCD . 方法二:相似三角形的性质连接B 1F 交BC 于点Q ,连接AQ , ∵B 1C 1∥BC ,∴1111B F C F B Q C B =∵B 1E =C 1F ,B 1A =C 1B ,∴1111B E B FB D B Q=∴EF ∥AQ ,又AQ ⊂平面ABCD ,EF ⊄平面ABCD ,∴EF ∥平面ABCD . 方法三:平面平行的性质 过E 作EG ∥AB 交BB 1于G , 连接GF ,则BB GB A B E B 1111=, ∵B 1E =C 1F ,B 1A =C 1B , ∴BB GB BC E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B ,∴平面EFG ∥平面ABCD ,而EF ⊂平面EFG , ∴EF ∥平面ABCD .17. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,O 为底面ABCD 的中心,P 是DD 1的中点,设Q是CC 1上的点,问:当点Q 在什么位置时,平面D 1BQ ∥平面PAO ?解 面面平行的判定 当Q 为CC 1的中点时, 平面D 1BQ ∥平面PAO .∵Q 为CC 1的中点,P 为DD 1的中点,∴QB ∥PA . ∵P 、O 为DD 1、DB 的中点,∴D 1B ∥PO . 又PO ∩PA =P ,D 1B ∩QB =B ,D 1B ∥平面PAO ,QB ∥平面PAO , ∴平面D 1BQ ∥平面PAO . 直线与平面平行的性质定理18. 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形.(1)求证:AB ∥平面EFGH ,CD ∥平面EFGH .(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围. (1)证明 ∵四边形EFGH 为平行四边形,∴EF ∥HG . ∵HG ⊂平面ABD ,∴EF ∥平面ABD .∵EF ⊂平面ABC ,平面ABD ∩平面ABC =AB , ∴EF ∥AB .∴AB ∥平面EFGH . 同理可证,CD ∥平面EFGH . (2)解 设EF =x (0<x <4),由于四边形EFGH 为平行四边形, ∴4x CB CF =.则6FG =BC BF =BC CF BC -=1-4x .从而FG =6-x 23.∴四边形EFGH 的周长l =2(x +6-x 23)=12-x .又0<x <4,则有8<l <12,∴四边形EFGH 周长的取值范围是(8,12).19. 如图所示,平面α∥平面β,点A ∈α,C ∈α,点B ∈β,D ∈β,点E ,F 分别在线段AB ,CD 上,且AE ∶EB =CF ∶FD . (1)求证:EF ∥β;(2)若E ,F 分别是AB ,CD 的中点,AC =4,BD =6,且AC ,BD 所成的角为60°,求EF 的长.(1)证明 两个平行平面同时与第三个平面相交,则交线平行;平行线分线段成比例方法① 当AB ,CD 在同一平面内时, 由α∥β,平面α∩平面ABDC =AC ,平面β∩平面ABDC =BD ,∴AC ∥BD , ∵AE ∶EB =CF ∶FD ,∴EF ∥BD , 又EF ⊄β,BD ⊂β,∴EF ∥β.方法② 当AB 与CD 异面时, 设平面ACD ∩β=DH ,且DH =AC . ∵α∥β,α∩平面ACDH =AC ,∴AC ∥DH ,∴四边形ACDH 是平行四边形,在AH 上取一点G ,使AG ∶GH =CF ∶FD , 又∵AE ∶EB =CF ∶FD ,∴GF ∥HD ,EG ∥BH , 又EG ∩GF =G ,∴平面EFG ∥平面β.∵EF ⊂平面EFG ,∴EF ∥β.综上,EF ∥β.(2)解三角形中位线如图所示,连接AD ,取AD 的中点M ,连接ME ,MF . ∵E ,F 分别为AB ,CD 的中点, ∴ME ∥BD ,MF ∥AC ,且ME =21BD =3,MF =21AC =2,∴∠EMF 为AC 与BD 所成的角(或其补角), ∴∠EMF =60°或120°,∴在△EFM 中由余弦定理得,EF =EMF MF ME MF ME ∠••-+cos 222=212322322⨯⨯⨯±+=613±, 即EF =7或EF =19.20. 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP =DQ . 求证:PQ ∥平面BCE . 证明 方法一:平行四边形的性质 如图所示,作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N ,连接MN .∵正方形ABCD 和正方形ABEF 有公共边AB ,∴AE =BD . 又∵AP =DQ ,∴PE =QB , 又∵PM ∥AB ∥QN , ∴AEPE AB PM =,BD BQ DC QN =,DC QNAB PM =,∴PM QN ,∴四边形PMNQ 为平行四边形,∴PQ ∥MN .又MN ⊂平面BCE ,PQ ⊄平面BCE , ∴PQ ∥平面BCE .方法二:相似三角形的性质如图所示,连接AQ ,并延长交BC 于K ,连接EK ,∵AE =BD ,AP =DQ , ∴PE =BQ , ∴PE AP =BQDQ① 又∵AD ∥BK ,∴BQ DQ =QKAQ②由①②得PE AP =QKAQ,∴PQ ∥EK . 又PQ ⊄平面BCE ,EK ⊂平面BCE , ∴PQ ∥平面BCE .方法三:平面平行的性质 如图所示,在平面ABEF 内,过点P 作PM ∥BE ,交AB 于点M , 连接QM .∵PM ∥BE ,PM ⊄平面BCE , 即PM ∥平面BCE ,∴PE AP =MBAM①又∵AP =DQ ,∴PE =BQ , ∴PE AP =BQDQ②由①②得MBAM =BQ DQ,∴MQ ∥AD , ∴MQ ∥BC ,又∵MQ ⊄平面BCE ,∴MQ ∥平面BCE .又∵PM ∩MQ =M ,∴平面PMQ ∥平面BCE , PQ ⊂平面PMQ ,∴PQ ∥平面BCE .21. 如图所示,正四棱锥P —ABCD 的各棱长均为13,M ,N 分别为PA ,BD 上的点,且PM ∶MA =BN ∶ND =5∶8.(1)求证:直线MN ∥平面PBC ; (2)求线段MN 的长.(1)证明:方法一: 相似三角形的性质 连接AN 并延长交BC 于Q , 连接PQ ,如图所示.∵AD ∥BQ ,∴△AND ∽△QNB , ∴NQ AN =NB DN =BQ AD =58, 又∵MA PM =ND BN =85, ∴MP AM =NQ AN =58,∴MN ∥PQ , 又∵PQ ⊂平面PBC ,MN ⊄平面PBC , ∴MN ∥平面PBC .方法二:平行四边形的性质如图所示,作MQ ∥AB 交P B 于Q ,作NR ∥AB 交BC 于R ,连接QR.∵MQ ∥AB ∥NR , ∴PM MQ PAAB=,NR BN DCBD=,又∵PM BNMA ND=,∴MQ NR , ∴四边形MNRQ 为平行四边形,∴MN ∥QR. 又QR ⊂平面P BC ,MN ⊄平面P BC , ∴MN ∥平面P BC .方法三:平面平行的性质如图所示,在平面ABP 内,过点M 作MN ∥P B ,交AB 于点O ,连接ON.∵MO ∥P B ,MO ⊄平面P BC ,PB ⊂平面P BC 即MO ∥平面P BC , ∴AM AP=AO AB又∵MA PM =ND BN =85, ∴AO AB=DN DB,∴NO ∥AD ,∴NO ∥BC ,又∵NO ⊄平面P BC ,BC ⊂平面P BC ∴NO ∥平面P BC . 又∵MO ∩NO=O ,∴平面MNO ∥平面P BC , MN ⊂平面MNO ,∴MN ∥平面P BC .(2)解 在等边△PBC 中,∠PBC =60°,在△PBQ 中由余弦定理知 PQ 2=PB 2+BQ 2-2PB ·BQ cos ∠PBQ=132+2865⎪⎭⎫⎝⎛-2×13×865×21=642818,∴PQ =891, ∵MN ∥PQ ,MN ∶PQ =8∶13,∴MN =891×138=7.。

相关文档
最新文档