直线与平面平行的判定定理教案设计

合集下载

直线与平面平行的判定定理教案

直线与平面平行的判定定理教案

直线与平面平行的判定定理教案在几何学中,判定直线与平面是否平行是非常重要的基础知识。

本教案将介绍直线与平面平行的判定定理,帮助学生更好地理解和掌握这一知识点。

一、直线与平面平行的判定定理1. 定理一:一条直线与平面平行的充分必要条件是,这条直线与平面内一条直线平行。

证明:设直线l与平面α平行,直线m与平面α内一条直线平行。

不妨设直线m与直线l相交于点A,过点A作平面α的一条平行直线n。

则直线l与平面α平行,直线m与平面α内一条直线平行,因此直线l与直线m平行,即得证。

2. 定理二:一条直线与平面平行的充分必要条件是,这条直线与平面内一条平行线的垂线平行。

证明:设直线l与平面α平行,直线m与平面α内一条平行线的垂线平行。

不妨设直线m与直线l相交于点A,过点A作平面α的一条平行线n。

则直线l与平面α平行,直线m与平面α内一条平行线的垂线平行,因此直线l与直线m平行,即得证。

二、教学重点与难点1. 教学重点:理解直线与平面平行的判定定理,掌握定理的证明方法。

2. 教学难点:理解平面内平行线的垂线平行的概念,掌握直线与平面平行的判定方法。

三、教学过程与方法1. 导入:通过提出问题引导学生思考直线与平面平行的概念,激发学生的学习兴趣。

2. 讲解:通过示意图和具体例题,讲解直线与平面平行的判定定理,引导学生理解定理的含义和应用方法。

3. 练习:让学生进行练习,通过多个例题加深对直线与平面平行的判定方法的理解,提高解题能力。

4. 总结:对直线与平面平行的判定定理进行总结,强调定理的重要性和应用范围。

四、教学反思与展望直线与平面平行的判定定理是几何学中的基础知识,理解和掌握这一定理对学生的几何学学习至关重要。

本教案通过系统的讲解和练习,帮助学生掌握直线与平面平行的判定方法,提高解题能力。

在未来的教学中,可以通过更多的实例和练习,进一步巩固学生的理解和应用能力,帮助他们更好地掌握直线与平面平行的判定定理。

直线与平面平行判定定理说课教案

直线与平面平行判定定理说课教案

直线与平面平行判定定理说课教案第一章:直线与平面平行的概念引入教学目标:1. 让学生理解直线与平面平行的基本概念。

2. 培养学生运用几何图形进行直观思考的能力。

教学内容:1. 直线与平面平行的定义。

2. 直线与平面平行的判定条件。

教学步骤:1. 引入直线与平面平行的概念,通过实物模型或图形进行展示,让学生感受直线与平面平行的直观形象。

3. 讲解直线与平面平行的判定条件,引导学生理解并掌握判定方法。

巩固练习:2. 利用直线与平面平行的判定条件,证明一条直线与一个平面平行。

第二章:直线与平面平行判定定理的证明教学目标:1. 使学生理解直线与平面平行判定定理的内容。

2. 培养学生运用逻辑推理和几何证明的能力。

教学内容:1. 直线与平面平行判定定理的表述。

2. 直线与平面平行判定定理的证明过程。

教学步骤:1. 引入直线与平面平行判定定理,让学生理解定理的含义。

2. 讲解直线与平面平行判定定理的证明过程,引导学生理解并掌握证明方法。

3. 通过图形示例,让学生运用直线与平面平行判定定理进行判断。

巩固练习:1. 证明一条直线与一个平面平行。

第三章:直线与平面平行判定定理的应用教学目标:1. 使学生掌握直线与平面平行判定定理的应用方法。

2. 培养学生运用定理解决实际问题的能力。

教学内容:1. 直线与平面平行判定定理在实际问题中的应用。

2. 直线与平面平行判定定理在其他几何问题中的应用。

教学步骤:1. 讲解直线与平面平行判定定理在实际问题中的应用,引导学生运用定理解决问题。

2. 引导学生思考直线与平面平行判定定理在其他几何问题中的应用,如证明定理、求解几何问题等。

巩固练习:第四章:直线与平面平行判定定理的综合训练教学目标:1. 使学生熟练掌握直线与平面平行判定定理。

2. 培养学生运用定理解决综合问题的能力。

教学内容:1. 直线与平面平行判定定理的综合应用。

2. 直线与平面平行判定定理与其他几何定理的关联。

教学步骤:1. 给出直线与平面平行判定定理的综合应用问题,引导学生运用定理解决问题。

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)一、教学目标1. 让学生理解直线与平面平行的概念。

2. 引导学生掌握直线与平面平行的判定定理。

3. 培养学生的空间想象能力和逻辑思维能力。

二、教学内容1. 直线与平面平行的定义。

2. 直线与平面平行的判定定理。

三、教学重点与难点1. 教学重点:直线与平面平行的判定定理及其证明。

2. 教学难点:直线与平面平行的判定定理的证明和应用。

四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定定理。

2. 利用几何模型和动画,直观展示直线与平面平行的判定过程。

3. 设计典型例题,培养学生运用判定定理解决问题的能力。

五、教学过程1. 导入新课:通过生活中的实例,引导学生思考直线与平面之间的关系。

2. 讲解直线与平面平行的定义,让学生明确直线与平面平行的概念。

3. 引导学生探究直线与平面平行的判定定理,讲解定理的证明过程。

4. 利用几何模型和动画,直观展示直线与平面平行的判定过程,加深学生理解。

5. 设计典型例题,引导学生运用判定定理解决问题,巩固所学知识。

6. 课堂小结:总结本节课的主要内容和知识点。

7. 布置作业:布置一些有关直线与平面平行的判定定理的练习题,巩固所学知识。

这五个章节的内容是教案的核心部分,后续的章节可以根据这五个章节的内容进行扩展和延伸。

希望这个教案能对你有所帮助!六、教学评估1. 课堂提问:通过提问了解学生对直线与平面平行判定定理的理解程度。

2. 作业批改:检查学生作业,了解学生对直线与平面平行判定定理的掌握情况。

3. 课堂练习:设计一些有关直线与平面平行的判定定理的练习题,让学生当堂练习,及时了解学生学习效果。

七、教学策略的调整1. 根据学生掌握情况,对直线与平面平行判定定理的讲解进行调整,使之更易于学生理解。

2. 对于学习有困难的学生,提供个别辅导,帮助他们理解直线与平面平行的判定定理。

3. 对于理解较深刻的学生,提供一些拓展性的问题,激发他们的思维。

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)第一章:教学目标1.1 知识与技能让学生掌握直线与平面平行的判定定理,并能够运用该定理判断直线与平面的位置关系。

1.2 过程与方法通过观察实例,引导学生发现直线与平面平行的判定规律,培养学生运用几何推理解决问题的能力。

1.3 情感态度与价值观激发学生对几何学的兴趣,培养学生的逻辑思维能力和创新意识。

第二章:教学重难点2.1 教学重点直线与平面平行的判定定理的表述及证明。

2.2 教学难点如何引导学生理解并证明直线与平面平行的判定定理。

第三章:教学方法与手段3.1 教学方法采用问题驱动法、实例分析法、小组讨论法等。

3.2 教学手段多媒体课件、几何模型、黑板等。

第四章:教学过程4.1 导入新课通过展示生活中的实例,如墙角、桌面等,引导学生观察直线与平面的位置关系,激发学生的学习兴趣。

4.2 探究与讲解引导学生发现直线与平面平行的判定规律,讲解直线与平面平行的判定定理及证明过程。

4.3 巩固练习设计相关练习题,让学生运用所学知识判断直线与平面的位置关系。

4.4 拓展与应用引导学生思考直线与平面平行在现实生活中的应用,如建筑设计、机械制造等。

第五章:作业布置与课后反思5.1 作业布置布置一些有关直线与平面平行的判定定理的应用题,巩固所学知识。

5.2 课后反思教师应及时反思本节课的教学效果,针对学生的掌握情况,调整教学策略,为后续教学做好准备。

第六章:教学评价6.1 评价目标评价学生对直线与平面平行判定定理的理解程度及运用能力。

6.2 评价方法采用课堂问答、练习批改、小组讨论等方式进行评价。

6.3 评价内容重点评价学生对直线与平面平行判定定理的掌握情况,以及能够运用该定理解决实际问题的能力。

第七章:教学拓展7.1 拓展内容介绍直线与平面平行判定定理在现实生活中的应用,如建筑设计、计算机图形学等。

7.2 拓展方式邀请相关领域专家进行讲座,或组织学生进行实地考察。

7.3 拓展目标培养学生对几何学的兴趣,提高学生的实践能力。

《直线与平面平行的判定》教案、导学案、课后作业

《直线与平面平行的判定》教案、导学案、课后作业

《8.5.2 直线与平面平行》教案第1课时直线与平面平行的判定【教材分析】在直线与平面的位置关系中,平行是一种非常重要的关系,本节内容既是直线与直线平行关系延续和提高,也是后续研究平面与平面平行的基础,既巩固了前面所学的内容,又为后面内容的学习做了知识上和方法上的准备,在教材中起着承前启后的作用。

【教学目标与核心素养】课程目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.数学学科素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【教学重点和难点】重点:直线与平面平行的判定定理及其应用.难点:直线与平面平行的判定定理,找平行关系.【教学过程】一、情景导入问题1.观察开门与关门,门的两边是什么位置关系.当门绕着一边转动时,此时门转动的一边与门框所在的平面是什么位置关系?【答案】平行.问题2.请同学门将一本书平放在桌面上,翻动书的封面,观察封面边缘所在直线l 与桌面所在的平面具有怎样的位置关系?桌面内有与l 平行的直线吗?【答案】平行,有.问题3.根据以上实例总结在什么条件下一条直线和一个平面平行? 要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探. 二、预习课本,引入新课阅读课本135-137页,思考并完成以下问题 1、直线与平面平行的判定定理是什么?2、怎样用符号语言表示直线与平面平行的判定定理?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、直线与平面平行的判定定理四、典例分析、举一反三题型一直线与平面平行的判断定理的理解 例1 下列命题中正确的个数是( )①若直线a 不在α内,则a ∥α ②若直线l 上有无数个点不在平面α内,则l ∥α ③若直线l 与平面α平行,则l 与α内的任意一条直线都平行 ④若l 与平面α平行,则l 与α内任何一条直线都没有公共点 ⑤平行于同一平面的两直线可以相交A.1B.2C.3D.4【答案】B【解析】①a⊄α,则a∥α或a与α相交,故①不正确;②当l与α相交时,满足条件,但得不出l∥α,故②不正确;③若l∥α,则l与α内的无数条直线异面,并非都平行,故③错误;若l∥α,则l与α内的任何直线都没有公共点,故④正确;若a∥α,b∥α,则a与b可以相交,也可以平行或异面,故⑤正确.解题技巧(判定定理理解的注意事项)(1)明确判定定理的关键条件.(2)充分考虑各种可能的情况.(3)特殊的情况注意举反例来说明.跟踪训练一1.设a,b是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( )A.a∥b,b⊂α,则a∥αB.a⊂α,b⊂β,α∥β,则a∥bC.a⊂α,b⊂α,a∥β,b∥β,则α∥βD.α∥β,a⊂α,则a∥β【答案】D.【解析】A,B,C错;在D中,α∥β,a⊂α,则a与β无公共点,所以a∥β,故D正确.故选D.题型二直线与平面平行的判断定理的应用例2 在空间四边形ABCD中,E,F分别是AB,AD的中点,求证:EF∥平面BCD.【答案】证明见解析【解析】∵AE=EB,AF=FB,∴EF∥BD.EF⊄平面BCD,BD⊂平面BCD.∴ EF ∥平面BCD解题技巧: (判定定理应用的注意事项) (1)欲证线面平行可转化为线线平行解决.(2)判断定理中有三个条件,缺一不可,注意平行关系的寻求.常常利用平行四边形、三角形中位线、等比例线段、相似三角形.跟踪训练二1.如图,已知OA,OB,OC 交于点O,AD 12OB,E,F 分别为BC,OC 的中点.求证:DE∥平面AOC.【答案】证明见解析 【解析】 证明 在△OBC 中, 因为E,F 分别为BC,OC 的中点, 所以FE 12OB,又因为AD12OB,所以FE AD.所以四边形ADEF 是平行四边形. 所以DE ∥AF.又因为AF ⊂平面AOC,DE ⊄平面AOC. 所以DE ∥平面AOC. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本139页练习1、2、3题,143页习题8.5的4、5、6题.【教学反思】本节课,从内容上来说,学生基本掌握判定定理,但是在应用中,书写证明过程不太规范,需提高学生的逻辑思维能力.从方法上来说,通过本节课判定定理的学习,学生理解证明一条直线与一个平面平行,只要在这个平面内找出一条与此直线平行的直线就可以了,让学生初步感知空间问题可以转化为平面问题解决.《8.5.2 直线与平面平行》导学案第1课时直线与平面平行的判定【学习目标】知识目标1.理解直线和平面平行的判定定理并能运用其解决相关问题.2.通过对判定定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.核心素养1.逻辑推理:探究归纳直线和平面平行的判定定理,找平行关系;2.直观想象:题中几何体的点、线、面的位置关系.【学习重点】:直线与平面平行的判定定理及其应用.【学习难点】:直线与平面平行的判定定理,找平行关系.【学习过程】一、预习导入阅读课本135-137页,填写。

直线与平面平行的判定教案

直线与平面平行的判定教案

直线与平面平行的判定教案直线与平面平行的判定教案范文直线与平面平行的判定教案1一、教学目标1.借助对图片、实例的观察,抽象概括出直线与平面垂直的定义,并能正确理解直线与平面垂直的定义。

2.通过直观感知,操作确认,归纳直线与平面垂直判定的定理,并能运用判定定理证明一些空间位置关系的简单命题,进一步培养学生的空间观念。

3.让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

二、教学重点、难点1.教学重点:操作确认并概括出直线与平面垂直的定义和判定定理。

2.教学难点:操作确认并概括出直线与平面垂直的判定定理及初步运用。

三、课前准备1.教师准备:教学课件2.学生自备:三角形纸片、铁丝(代表直线)、纸板(代表平面)、三角板四、教学过程设计1.直线与平面垂直定义的建构(1)创设情境①请同学们观察图片,说出旗杆与地面、高楼的侧棱与地面的位置有什么关系?②请把自己的数学书打开直立在桌面上,观察书脊与桌面的位置有什么关系?③请将①中旗杆与地面的位置关系画出相应的几何图形。

(2)观察归纳①思考:一条直线与平面垂直时,这条直线与平面内的直线有什么样的位置关系?②多媒体演示:旗杆与它在地面上影子的位置变化。

③归纳出直线与平面垂直的定义及相关概念。

定义:如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直,记作:l⊥α.直线l叫做平面α的垂线,平面α叫做直线l的垂面.直线与平面垂直时,它们唯一的公共点P叫做垂足。

用符号语言表示为:(3)辨析(完成下列练习):①如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。

②若a⊥α,bα,则a⊥b。

在创设情境中,学生练习本上画图,教师针对学生出现的问题,如不直观、不标字母等加以强调,并指出这就叫直线与平面垂直,引出课题。

在多媒体演示时,先展示动画1使学生感受到旗杆AB所在直线与过点B的直线都垂直。

再展示动画2使学生明确旗杆AB所在直线与地面内任意一条不过点B 的直线B1C1也垂直,进而引导学生归纳出直线与平面垂直的定义。

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理教学设计(教案)

直线与平面平行的判定定理(一)教学设计(教案)1000字一、教学目标:1. 了解直线与平面平行的定义及判定方法;2. 能运用相关的知识解决几何问题;3. 培养学生的逻辑思维、分析问题的能力。

二、教学重点:1. 直线与平面平行的定义及判定方法;2. 运用相关的知识解决几何问题。

三、教学难点:1. 引导学生理解直线与平面平行的概念;2. 培养学生的分析推理能力。

四、教学方法:1. 演示法:通过图形演示、引导学生理解直线与平面平行的概念;2. 讨论法:通过讨论引导学生理解判定方法及其应用;3. 实践法:通过习题训练提高学生解决问题的能力。

五、教学过程:1. 导入环节:教师先提问:“直线与平面什么时候叫做平行?”引导学生基于实际生活中的经验进行回答,帮助学生由表及里地理解平行的概念。

2. 讲授环节:(1)直线与平面平行的定义教师通过图形演示,向学生讲解直线与平面平行的定义。

然后向学生介绍平行的概念及平行公理。

(2)平行公理教师通过展示平行公理,指导学生理解平行公理的内容。

(3)判定直线与平面平行的方法学生已经知道直线与平面平行的定义,那么如何判定一个直线与一个平面是否平行呢?教师可以通过讲授以下几点:①两点法:在这种情况下,绘制从平面内通过直线的两条不相交的直线。

然后,选择一个点,可以是直线与另一直线的交点或是单独的一个点,到其中一个直线,从而确定所需的指向平面的向量(请参见示例)。

然后,将向量应用到直线的另一个点上并绘制另一条直线。

如果第二条直线不与平面相交,则直线与平面平行。

②垂线法:从平面内通过直线绘制一条垂直于该直线的直线。

如果该直线与平面相交于一个点,则它与该平面垂直,与该平面平行。

③斜率法:对于平行的一段直线,它们的斜率是相等的。

(4)一些练习题在这部分,教师可以通过一些练习题,让学生掌握相关的知识点,同时还可以提高学生的分析推理能力。

3. 巩固练习环节:教师可以出几道题目,让学生在课堂上进行解答,并就解答过程进行引导。

直线与平面平行的判定 优秀教案

直线与平面平行的判定 优秀教案

直线与平面平行的判定优秀教案一、教学目标1. 知识与技能:使学生能够准确理解直线与平面平行的定义,掌握直线与平面平行的判定定理,并能灵活运用这些定理进行空间平行关系的判定。

2. 过程与方法:通过实例分析、动手实践、逻辑推理等方式,培养学生的空间想象能力和几何推理能力。

3. 情感态度与价值观:激发学生对空间几何的兴趣,培养学生严谨的科学态度和探索精神。

二、教学重难点重点:直线与平面平行的判定定理的理解和应用。

难点:对判定定理的深入理解和灵活运用。

三、教学准备教具:黑板、粉笔、直尺、模型(如门、书本等)四、教学过程(一)导入新课1. 复习提问:空间中直线与平面有几种位置关系?分别是什么?2. 引入课题:今天我们要来学习的是直线与平面平行的判定。

(二)新课展开1. 直线与平面的位置关系(1)通过实物模型(如门、书本等)展示直线与平面的三种位置关系:直线在平面内、直线与平面相交、直线与平面平行。

(2)引导学生理解直线与平面平行的定义:如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。

2. 直线与平面平行的判定定理(1)引导学生观察实物模型,发现直线与平面平行的判定条件:如果一条直线与一个平面内的两条相交直线都平行,那么这条直线与这个平面平行。

(2)通过实例分析,让学生理解判定定理的应用。

例如,门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行。

3. 判定定理的证明(1)引导学生根据判定定理的条件,利用反证法进行证明。

(2)通过证明过程,让学生理解判定定理的严谨性和正确性。

4. 判定定理的应用(1)通过例题讲解,让学生掌握利用判定定理证明直线与平面平行的方法。

(2)引导学生自主思考,尝试运用判定定理解决空间平行关系问题。

(三)课堂练习1. 判断题:判断下列说法是否正确,并说明理由。

(1)如果一条直线与一个平面内的无数条直线平行,那么这条直线与这个平面平行。

(2)如果一条直线与一个平面内的两条平行直线平行,那么这条直线与这个平面平行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.2.1 直线与平面平行的判定(选自人教A版必修②第二章第二节第一课时)一、教材分析本节教材选自人教A版数学必修②第二章第二节第一课时,主要内容是直线与平面平行的判定定理的探究与发现、归纳概括、练习与应用。

它是在前面已学空间点、线、面的位置关系的基础上,结合有关的实物模型,通过直观感知、操作确认(合情推理,不要求证明)归纳出直线与平面平行的判定定理。

学线面平行判定是三大平行判定(线线平行、线面平行、面面平行)的核心,也是高考的高频考点之一,学好线面平行对后续学习面面平行及三大垂直的判定与性质等内容,具有良好的示范作用,同时,它在立体几何学习中起着承上启下的作用,具有重要的意义与地位。

本节课的学习对培养学生空间想象能力与逻辑推理能力起到重要作用。

线面平行的判定蕴含的数学思想方法主要有数形结合与化归与转化思想。

二、学情分析本节课的教学对象是高一的学生,他们具备一定的由形象思维转化为逻辑思维的能力。

学生在此前已经学习了直线与直线平行的性质及判定、直线与平面平行的定义,对直线与平面平行有了一定的认识,这些都为学生学习本节课做了准备。

同时,由于本节课与生活实际相结合,学生的学习兴趣、参与度会比较大。

但是由于学生处于学习空间立体几何的初始阶段,学习立体几何所具备的语言表达及空间感与空间想象能力不够,特别是对线面平行(空间立体)转化为线线平行(平面)的化归与转化思想,这是学生首次接触的思想方法,应加以必要的强化与引导。

三、教学目标(一)知识技能目标(1)理解直线与平面平行的判定定理并能进行简单应用;(2)培养学生观察、发现问题的能力和空间想象能力。

(二)过程方法目标(1)启发式:以实物(门、书、直角梯形卡纸)为媒介,启发、诱导学生逐步经历定理的直观感知过程;(2)指导学生进行合情推理。

对于立体几何的学习,学生已初步入门,让学生自己主动地去获取知识、发现问题,教师予以指导,帮助学生合情推理、澄清概念、加深认识。

(三)情感态度价值观目标(1)让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力;(2)在培养学生逻辑思维能力的同时,帮助学生养成办事认真仔细的习惯。

四、教学重点通过直观感知、操作确认,归纳出判定定理。

五、教学难点灵活运用判定定理解决问题。

六、教学方法与手段启发式与探究式教学相结合,多媒体投影、计算机、实物(门、书、直角梯形卡纸)辅助教学。

七、教学设计思想普通高中课程标准指出,培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。

在判定定理得出的过程中,注重对典型实例的观察,分析,给学生提供动手操作的机会,引导学生进行归纳概括活动。

另外,通过观察、思考、探究向学生提出问题,以问题引导学生的思维活动,经历从实际背景中抽象出数学模型,从现实生活空间抽象出几何图形和几何问题的过程。

八、教学过程(一)知识回顾(5min)师:在上节课我们学习了直线与平面的位置关系。

那么,直线与平面的位置关系有几种呢?是以什么作为划分的标准的呢?生:三种。

(学生回答完之后用多媒体幻灯片陆续出现如下表格的内容)(二)新课引入(20min)师:今天我们针对上节课直线与平面平行的位置关系进行探究。

那么怎么样判定直线与平面平行呢?从上节课我们学过的知识中,我们知道,根据定义,判定直线与平面是否平行,只需要判定直线与平面有没有公共点。

但是,直线无限延长,平面无限延展,怎么样才能保证直线与平面没有公共点呢?(抛出疑问让学生思考,引起学生注意力。

)(1)实例感受师:生活中门的两边是平行的,现在我们把教室门打开,当门绕着一边转动时,门上靠近把手的边与门框所在的平面没有公共点,这时门扇转动的一边与门框所在的平面让大家觉得是平行的。

(教师一边解说,一边实践演示)师:现在大家动手操作,将课本平放在桌面上,慢慢地翻开课本的封面。

我们观察一下封面的上边缘与桌面的关系是怎么样的呢?(学生亲自动手实践,增强学生动手能力。

)生:封面的上边缘与桌面也是平行的呢!师:好的,我们再来看看这个。

(取出预先准备好的直角梯形卡纸演示。

)老师把下底边放在桌面上并转动。

同学们,你们觉得上底边与桌面的位置关系是怎样的呀?生:也是平行的。

师:对,类似刚才书的那个例子,上底边与桌面的位置给人以平行的感觉。

那如果我们把直角腰放在桌面上并转动,这时这条腰还与桌面平行吗?(老师用手指着非直角腰问学生)生:不平行。

师:是的,这个时候这条腰与桌面给人的印象就不平行了。

(设计意图:设置这样动手实践的情境,通过对比让学生更清楚地看到线面平行与否的关键因素是什么,使学生学在情境中,思在情理中,感悟在内心中,学自己身边的数学,领悟空间观念与空间图形性质。

)(2)探究思考师:好,现在大家思考一下,刚才演示的直线与平面位置关系为什么会有这么大的不同呢?是什么关键因素起了作用呢?生1:平面内的一条直线。

生2:平面外的一条直线。

生3:这两条直线平行。

(3)得出结论师:根据上面的三个条件,我们能判断这个图中的直线a与平面α平行吗?生:不能。

师:如果平面内有直线b 与直线a 平行,直线a 与平面α的位置关系又怎么样呢?可以保证直线a 与平面α平行吗?(给出教材图 2.2-3,引导学生从生活的实例回到书本的实例,从而让学生根据平面外与平面内对应线段,直接判断出线面平行。

)师:再看这个图,(给出教材图2.2-4)如果平面α外的直线a 与平面α内的一条直线b 平行,那么,直线a 、b 共面吗?直线a 与平面α相交吗?(学生会发现a 、b 共面(共面直线包括相交直线和平行直线),直线a 与平面α不可能相交,亦即直线a 与平面α平行。

)于是我们可以得出 直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

用数学符号表示直线与平面平行的判定定理:ααα||||a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄ (三)巩固新知(10min ) (1)选择题(提问学生) 下列说法正确的是( )A.若直线a 在平面α外,则a//α;B.若直线a//b ,b ⊂α,则a//α;C.若直线a//b ,a ⊄α, b ⊂α,则a//α;D.若直线a 平行于平面α内的无数条直线,则a//α。

解析:A 直线与平面相交也属于在平面外,即不符合a//b ;B少了条件a⊄α;C正确,三个条件都具备;D同B,当a在平面内时,也符合。

(2)典型例题(例1)求证:空间四边形相邻两边中点的连线,平行于经过另外两边的平面。

(先讲文字叙述转化成数学符号语言)已知:如图空间四边形ABCD中,E、F分别是AB、AD的证明:连接BD,AE=EB⇒EF∥BDAF=FD EF ⊄平面BCD⇒EF∥平面BCDBD ⊂平面BCD师:要证EF∥平面BCD,关键是在平面BCD中找到和EF 平行的直线,将证明线面平行的问题转化为证明线线平行的问题。

这就是转化的思想。

我们现在来复习一下可以判定线线平行的方法。

生:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。

三角形中位线定理:三角形的中位线平行于第三边并且等于第三遍的一半。

梯形中位线定理;梯形的中位线平行于两底,并且等于两底和的一半。

公理4:平行于同一条直线的两直线平行。

(2)随堂练习①下列命题正确的是()。

A. 平行于同一平面的两条直线平行。

B. 若直线a∥α,则平面α内有且仅有一条直线与a平行。

C. 若直线a∥α,则平面α内任一条直线都与a平行。

D. 若直线a∥α,则平面α内有无数条直线与a平行。

答案:D 。

②如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA=SB=SC ,SG 为△SAB 上的高,D 、E 、F 分别是AC 、BC 、SC 的中点,试判断SG 与平面DEF 的位置关系,并给予证明。

解:SG ∥平面DEF , 证明如下:连接CG 交DE 于点H , 如图所示。

∵DE 是△ABC 的中位线, ∴DE ∥AB 。

在△ACG 中,D 是AC 的中点, 且DH ∥AG ,∴H 为CG 的中点,∴FH 是△SCG 的中位线, ∴FH ∥SG 。

又SG ⊄平面DEF ,FH ⊂平面DEF , ∴SG ∥平面DEF 。

(四)课堂小结(5min)(1)直线与平面平行的判定方法 定义法:证明直线与平面无公共点;判定定理:证明平面外直线与平面内直线平行。

(2)直线与平面平行的判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

数学符号表示直线与平面平行判定:ααα||||a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄(三个条件缺一不可)(3)数学思想方法:空间问题转化成平面问题。

(五)课后作业 P55 1、 P56 2 (六)课后反思立体几何比较抽象,所以要尽可能找生活中的实例进行分析。

多媒体可以代替我们抄题,并且展示一些比较难想像的过程,节省教学的时间,所以在今后的教学中可以适当地运用多媒体进行辅助教学。

另外,要注意培养学生的动手能力,引导学生自主分析、找出规律。

同时,要注重对过去所学的知识进行及时的复习。

九、板书设计§2.2.1 直线与平面平行的判定一、 直线与平面平行的判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。

数学符号:ααα||||a b a b a ⇒⎪⎭⎪⎬⎫⊂⊄a例1 证明: 连接BD ,∵AE=EB,AF=FB∴EF ∥BD (三角形中位线定理)∵EF ⊄平面BCD BD ⊂平面BCD ∴由直线与平面平行的判定定理得: EF ∥平面BCD 。

十、困难与问题(一)教师不了解学生整体水平,难以有针对性地进行教学设计; (二)难把握本节课的教学进程。

小组成员:黄琼芳,黄华坤,李慧玲,关莉翎。

bα。

相关文档
最新文档