北师大版八年级上册数学 73 平行线的判定优质教案

合集下载

北师大版八年级上册数学7.3《平行线的判定》教学设计

北师大版八年级上册数学7.3《平行线的判定》教学设计

北师大版八年级上册数学7.3《平行线的判定》教学设计一. 教材分析《平行线的判定》是北师大版八年级上册数学的一节重要内容,主要介绍了同位角相等、内错角相等、同旁内角互补三种平行线的判定方法。

这部分内容是学生学习几何的基础,对于培养学生的逻辑思维能力和空间想象能力具有重要意义。

在教材中,通过生活实例引入平行线的概念,然后引导学生通过观察、思考、交流、总结出平行线的判定方法,最后通过练习来巩固所学知识。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于图形的认知和观察能力也有一定的提高。

但是,学生在空间想象能力和逻辑思维能力方面还有待提高。

此外,学生的学习习惯和动手操作能力也存在一定的差异。

因此,在教学过程中,教师需要关注学生的个体差异,引导他们积极参与课堂活动,提高他们的空间想象能力和逻辑思维能力。

三. 教学目标1.知识与技能:使学生掌握同位角相等、内错角相等、同旁内角互补三种平行线的判定方法,能够运用这些方法判断两条直线是否平行。

2.过程与方法:通过观察、思考、交流等活动,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探究、合作学习的良好习惯。

四. 教学重难点1.教学重点:同位角相等、内错角相等、同旁内角互补三种平行线的判定方法。

2.教学难点:如何引导学生观察、思考、总结出平行线的判定方法。

五. 教学方法1.情境教学法:通过生活实例引入平行线的概念,激发学生的学习兴趣。

2.引导发现法:引导学生观察、思考、交流,总结出平行线的判定方法。

3.实践操作法:让学生通过动手操作,巩固所学知识。

4.激励评价法:关注学生的个体差异,及时给予鼓励和评价,提高他们的学习积极性。

六. 教学准备1.教具:多媒体课件、黑板、粉笔、直线模型、角度模型。

2.学具:学生用书、练习册、直线模型、角度模型。

七. 教学过程1.导入(5分钟)利用多媒体课件展示生活实例,引导学生观察并提出问题:为什么说这两条直线平行?激发学生的学习兴趣。

北师大版八年级数学7.3平行线的判定教案

北师大版八年级数学7.3平行线的判定教案

北师大版数学八年级7.3平行线的判定教学设计课题7.3 平行线的判定学习目标1、初步了解证明的根本步骤和书写;2、会根据根本领实“同位角相等,两直线平行〞来证明“内错角相等,两直线平行〞“同旁内角互补两直线平行〞,并能简单应用这些结论;3、在证明过程中开展初步的演绎推理能力。

重点平行线的三个判定定理的应用难点证明书写的标准化教学过程教学环节教师活动学生活动设计前知迁引1、教师出示课件:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?同位角相等,两直线平行内错角相等,两直线平行同旁内角互补,两直线平行平行于同一直线的两条直线平行在同一平面内,不相交的两条直线叫做平行线.第一条为根本领实之一,第四条是平行线的传递性,第五条是平行线的定义,故此我们需要证明“内错角相等,两直线平行〞“同旁内角互补,两直线平行〞学生思考得到两直线平行的方法学生在七年级已经学习过关于平行线的相关知识,通过这个小问题引发学生思考,导出课题探究新知引导学生把“内错角相等,两直线平行〞改写为“两条直线被条直线所截,如果内错角相等,那么这两条直线平行〞,通过改写,让学生写出求证:简单的证明这个定理,带着学生进行几何书写。

证明:∵∠1=∠2〔〕,∠2=∠3〔对顶角相等〕学生思考如何改写,又如何由改写后的文字转化成几何语言的求证。

通过改写学生更加清晰定理中的条件和结论,再写出和求证,把文字语言转化为几何语言和数学语言,∴∠1=∠3〔等量代换〕∴ a∥b〔同位角相等,两直线平行〕引导学生把“内错角相等,两直线平行〞改写为“两条直线被条直线所截,如果同旁内角互补,那么这两条直线平行〞,通过改写,让学生写出求证:要求学生用两种方法进行几何书写。

总结证明的一般步骤:(1)根据题意画出图形(假设已给出图形,则可省略);(2)根据题设和结论,结合图形,写出和求证;(3)经过分析,找出推出求证的途径,写出证明过程;(4)检查证明过程是否正确完善. 学生通过上述例子,再模仿改写和写求证,并用两种方法去证明,让学生感知学习过的知识后立刻运用标准学生的书写。

八年级数学上册7.3平行线的判定教学设计 (新版北师大版)

八年级数学上册7.3平行线的判定教学设计 (新版北师大版)

八年级数学上册7.3平行线的判定教学设计(新版北师大版)一. 教材分析《八年级数学上册7.3平行线的判定》这一节内容主要让学生掌握平行线的判定方法,理解平行线的性质,并能运用这些方法解决实际问题。

教材通过丰富的图片和实例,引导学生探索平行线的判定规律,培养学生的逻辑思维能力和空间想象能力。

二. 学情分析学生在学习这一节内容时,已具备了一定的数学基础,如掌握了直线、射线、线段的性质,具备了一定的观察和分析能力。

但部分学生对于平行线的概念和判定方法可能还较为模糊,因此,在教学过程中,教师需要关注这部分学生的学习需求,通过具体实例和操作,帮助他们理解和掌握平行线的判定方法。

三. 教学目标1.让学生掌握平行线的判定方法,理解平行线的性质。

2.培养学生观察、分析、解决问题的能力。

3.培养学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.平行线的判定方法。

2.平行线性质的应用。

五. 教学方法1.采用问题驱动法,引导学生主动探索平行线的判定方法。

2.利用多媒体辅助教学,展示实例和操作过程,增强学生的直观感受。

3.采用小组合作学习,让学生在讨论中巩固知识,提高解决问题的能力。

4.注重个体差异,针对不同学生提供个性化的指导。

六. 教学准备1.准备相关的多媒体教学课件。

2.准备实例和练习题。

3.准备教学用具,如直尺、三角板等。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的平行线现象,如楼梯、轨道等,引导学生关注平行线,激发学生的学习兴趣。

2.呈现(10分钟)讲解平行线的定义和性质,通过实例和动画演示,让学生直观地理解平行线的概念。

3.操练(10分钟)让学生分组讨论,尝试找出判定两条直线平行的方法。

教师巡回指导,给予个别学生必要的帮助。

4.巩固(10分钟)出示一些判断题和练习题,让学生运用所学知识解决问题,巩固对平行线判定方法的理解。

5.拓展(10分钟)引导学生思考:在实际生活中,平行线有哪些应用?如何运用平行线的性质解决实际问题?6.小结(5分钟)对本节课的内容进行总结,强调平行线的判定方法和性质,提醒学生注意在实际问题中的应用。

北师大版八年级数学上册7.3平行线的判定说课稿

北师大版八年级数学上册7.3平行线的判定说课稿
四、教学过程设计
(一)导入新课
为了快速吸引学生的注意力和兴趣,我计划采用以下导入方式:首先,我会向学生展示一些实际生活中的图片,如楼梯、铁路等,让学生观察并提问它们与平行线有什么关系;然后,我会引导学生思考平行线的判定方法,并告诉他们本节课我们将学习一种新的判定方法。这样的导入方式能够激发学生的学习兴趣,使他们能够主动参与到学习过程中。
(二)媒体资源
为了辅助教学,我将使用多媒体课件、实物模型和几何画板等资源。多媒体课件能够提供丰富的信息和图像,帮助学生直观地理解平行线的判定过程;实物模型能够让学生亲自操作和观察,增强他们的实践能力;几何画板能够动态展示平行线的判定过程,帮助学生更好地理解知识点。这些媒体资源在教学中的作用是提供直观、生动的学习材料,激发学生的学习兴趣,提高他们的学习效果。
(二)教学反思
在教学过程中,我预见到可能出现的问题或挑战包括学生对判定方法的理解不够深入、运用不够熟练,以及一些学生可能对证明过程感到困惑。为了应对这些问题,我将提供丰富的实例和练习题,通过引导学生观察、操作和推理,帮助他们深入理解判定方法,并加强课后辅导和个别指导,帮助学生克服学习障碍。
课后,我将通过收集学生的作业、课堂表现和参与度等评估教学效果。根据评估结果,我将针对学生的掌握情况和学习问题,制定具体的反思和改进措施,如调整教学方法、提供额外的辅导资源,或者重新设计教学活动和练习题,以提高教学效果和学生的学习成果。
北师大版八年级数学上册7.3平行线的判定说课稿
一、教材分析
(一)内容概述
本节课的教学内容是北师大版八年级数学上册7.3平行线的判定。这部分内容在整个课程体系中处于八年级上册,是学生学习了直线、射线、线段以及垂线等知识的基础上进行学习的。本节课的主要知识点包括同位角相等、内错角相等、同旁内角互补以及平行线的判定方法。

北师大版八年级数学上册7.3平行线的判定公开课优质教案(1)

北师大版八年级数学上册7.3平行线的判定公开课优质教案(1)

平行线的判定教学设计一、教学内容解析本节课是人教版七年级下册第五章(相交线与平行线)中第二节(平行线及其判定)的第二小节(平行线的判定)的第一课时.主要内容是平行线的判定方法,这是本章的重点内容之一.本节首先通过平行线的画法等实例让学生在画图、观察、实验、归纳的基础上发现并认可“同位角相等,两直线平行”的判定方法.在此基础上再通过探索并证明得到“内错角相等(或同旁内角互补),两直线平行”的判定方法.这部分内容是继“同位角、内错角、同旁内角”即三线八角内容之后学习的又一个重要知识,同时它又是空间与图形领域的基础知识,学好它会为后面继续学习平行线的性质、三角形、四边形等知识打下坚实的基础.平行线还是学习其它有关学科,如物理等的重要数学基础.是人们在日常生活中经常接触到的一种图形,能使人们更好的认识与平行线有关的实际事物.在本节的学习中,还渗透了在解决问题以及推理论证中最常用的“转化”的数学思想方法,即由未知转化为已知,转化为已解决的问题.同时在探究的过程中也体现了“由特殊到一般”的数学思想方法.以上都说明这部分内容在本节、本章乃至整个初中数学中都有着十分重要的地位和作用.教学重点:平行线的三个判定方法.教学难点:本节课的教学难点有两个,一个是判定方法1的得出;另一个是得出判定方法2、3的“简单推理”的过程.二、教学目标设置1.知识与技能(1)掌握“两条直线被第三条直线所截,如果同位角相等,那么两直线平行”这一基本事实;探索并证明“两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),那么两直线平行”;(2)会用平行线的判定方法判定两条直线平行,初步学会用文字语言及符号语言进行简单的推理和表述.2.过程与方法在探索图形的过程中,通过观察、操作、交流、说理等方式,有条理的思考和表达自己的探索过程和结果,体会发现和得到几何结论的一般方法,从而进一步培养学生动手操作、主动探究、合作交流以及语言表达的能力.同时体会“转化”及“特殊到一般”的数学思想方法.3.情感态度与价值观让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、合情推理的科学态度.三、学生学情分析从认知结构的角度,七年级的学生已经具备一定的生活经验和数学活动经验,并且对基本的几何图形有一定的认识.学生已经学习了平行线的定义、画法、平行公理等知识,具备了探究平行线的判定方法的条件和基础.特别是已经知道平移三角尺画平行线的方法以及“平移”过去是平行的事实.但在逻辑思维、几何语言以及合作交流的意识等方面发展不够均衡,同时通过“说理”、“简单推理”等言之有据的解答问题的习惯和能力还很薄弱.四、教学策略分析1.在本节内容的呈现上注意充分体现学生的认知过程,给学生提供充足的探索与交流的时间和空间.特别是在判定方法1的得出过程中,要让学生通过画图、观察、交流、猜想、验证等去主动发现结论,并承认结论的正确性,同时培养他们的直觉思维和创造性思维,体现“实验几何”的特点.2.注意突出本节课的重点内容.因为本节课有三个判定方法,内容较多,所以在教学中,还应重点突出判定方法1的教学,课堂活动也主要围绕着它进行,这也是因为判定2、3都是在判定1的基础上得到的,所以要给学生充足的思考、探究的时间.但实际上先有哪个判定方法都可以得到另外两个,这一点如果学生想到并提出的话要予以适当说明.3.因为本章的教学是“推理”的入门阶段,所以在识图、画图、几何语言的训练上只是从“说理”过渡到“简单推理”.在判定2、3的学习中用说理的方式展示推理的过程,强调让学生经历推理的过程,感受推理论证的作用,使说理、推理作为观察、实验、探究得出结论的自然延续.尽管只是入门阶段,但对学生来说是一个难点,因此教师要有规范的示范,同时注意循序渐进、因材施教,不能作统一要求或要求过高.4.为了体现通过“做数学”来学习数学这一特点,本节通过生活中的实例,及学生画图、观察、交流、验证、归纳等活动,探索发现平行线的三个判定方法,然后再对它们进行说明、解释或论证,也体现了由“实验几何”到“论证几何”的过渡. 在发现问题、探究结论、解决问题的过程中,呈现具体----抽象----具体的过程.5.本节课的教法主要是引导----操作法、观察法、讨论法、多媒体电化教学法相结合.学法主要是学生动手实践、自主探索与合作交流相结合.五、教学过程教学流程安排活动流程活动内容和目的活动1:通过实例引出新课活动2:探究判定方法1活动3:应用判定方法1解决(实际)问题活动4:在解决问题中探究判定方法2和3 活动5:巩固练习(例题)介绍角尺、演示木工用角尺画平行线的过程,引起学生兴趣、为后面出现的应用问题做铺垫.从用直尺和三角尺画平行线开始,设计问题串,引导学生探究并认可“同位角相等,两直线平行” .首先明确判定1是画法的依据,进而解决引课中的问题,并通过一个直接应用问题巩固判定方法1.让学生熟悉和应用判定1.通过“小明的画板问题”探究得到判定方法2,并经过简单推理予以证明.再让学生类比以上过程独立说明判定方法3的正确性.通过解决问题巩固和加深对三个判定方法的理解和掌握.活动6:小结,布置作业引导学生总结回顾本节知识点,培养学生的概括表达能力并巩固知识、灵活应用.通过补充作业题,满足部分学生的需求.教学过程设计问题与情境师生行为设计意图【活动1】同学们看过木工师傅工作吗?展示和介绍角尺的结构、用途,并演示画图.教师请一名学生帮助演示木工用角尺在木板上画平行线.学生观察、思考,引出本节课题.活动1来源于生活实际,用角尺演示木工画图过程容易激发学生的学习兴趣;教材中提到了这个实例,但学生很少见到角尺的实物,为了“启后”,故在此展示;这个实例又可以作为判定方法1的直接应用.【活动2】探究本节课的问题,从画平行线开始入手.如何在图形中反映出画图的过程?∠1和∠2有着怎样的数量关系?多少度?又有着怎样的位置关系?在画图中,三角板起着怎样的作用?可以用一个角代替三角板吗?用量角器能实现这一过程吗?师生一起用直尺和三角板画平行线.教师演示课件,引导学生得到上面两个图形,并让学生把自己的画图过程也如此反映出来.通过问题串引导学生发现“画法中画的就是一对相等的同位角”这一事实.引导学生理解和承认结论的正确性,从而得到判定方法1,并明确其用法.一方面是复习,更重要的是利用此画法探究得到判定方法1.这个过程比较重要,学生画图只可以看到两条平行线,没有这个图形是较难发现结论的.层层递进的问题串体现了思维和探究过程的连续性,学生在教师的引导下发现自己确实是利用三角板画了两个相等的同位角.用任意角代替三角板画平行线是对一般情况的证明,学生是可以理解的,可以发展学生的逻辑思维能力和想象力等.用量角器画平行线,既是对结论正确性的一种补充,同时为后续的“数学活动”提供了一种画平行线的方法.以上让学生经历发现、探究结论的全过程,在操作、思考中学生的体验会更加深刻,过程中也渗透了由特殊到一般的思维过程和研究问题的方法.【活动3】用直尺和三角板画平行线的依据是什么呢?木工用角尺画平行线的数学道理是什么?如图,已知∠1=52°,当∠2=时,AB∥CD,理由是 .教师再次提出这两个实际问题,学生思考并解答问题.引导学生说出这两种画法的依据正是判定方法1;此问题让学生思考、回答,引导学生明确截线与被截线,准确说明理由.利用这两个实际问题去发现、得到判定方法1,再反过来应用其解决实际问题,明确依据,体现数学学习中的具体----抽象----具体这一过程.应用和熟悉判定方法1,说明问题时要有理有据.【活动4】小明有一块小画板,他想知道它的上下边缘是否平行,于是他在两个边缘之间画了一条线段;小明身边只有一个量角器,他通过测量某些角的大小就能知道这个画板的上下边缘是否平行,让我们来看看他是怎样做的.如何说明结论的正确性?同桌小丽还有另外一种度量方法,也可以吗?请大家仿照判定方法2,画图进行说明.以“小明的小画板问题”提出问题,让学生思考、交流其方法正确与否,并说明理由.为说明结论成立的一般性,引导学生一起画图,明确条件和结论,教师讲解和示范规范的推理过程,得到判定方法2.通过小丽的方法说明正确的理由后,让学生仿照判定方法2独立完成画图,明确条件、结论以及说理的过程,得到判定方法3.这时,教师及时对三个判定方法及其探究过程进行总结,向学生说明其中的数学思想方法等.此问题由教材习题 5.2的第5题改编,应该比较吸引学生,引起学生思考和解决问题的愿望.通过问题引出判定方法2和3是对教材的引出方式的一个改变,可以起到更好的效果,在学生解决问题的过程中,很自然的得到了另外两个判定方法.通过对这两个判定方法的推理论证,让学生知道数学中的结论是需要证明其正确性的,而不仅仅是通过实验、探究得出.两个判定方法的不同处理既给学生起到了示范,同时又让学生得到了训练,当然这时还不易要求过高.【活动5】例1 如图所示:(1)如果已知∠1=∠3,则可判定_____∥_____,其理由是_________________;(2)如果已知∠4+∠5=180°,则可判定_____∥_____,其理由是_________________;(3)如果已知∠1=∠6,则可判定_____∥_____,其理由是_________________;(4)如果已知∠5+∠2=180°,那么根据对顶角相等,有∠2=_____,因此可知∠4+∠5=______,所以可判定_____∥_____,其理由是_________________.例2 在铺设铁轨时,两条直轨必须是互相平行的.如图,已经知道∠2是直角,那么再度量图中哪个角(图中已标出的),就可以判断两条直轨是否平行?说出你的理由.例3 如图,已知b⊥a,c⊥a,那么b与c平行吗?为什么?教师用大屏幕依次展示例1、例2,学生思考、回答,同时进行适当的引导,反复、准确的应用判定方法的条件和结论,同时纠正学生在表述中出现的问题.注意关注学生能否准确的思考和表述,逻辑性是否正确.特别是例2的三种方法,是否准确的说清楚理由.例3要求学生能准确书写推理过程,关注学生对图形的处理以及理由是否书写正确,找学生用实物投影展示、说明其解答过程.通过前两个问题,让学生正确应用判定方法,熟悉判定方法的内容,能够准确表述,培养分析、思考、解决问题的能力.以填空的形式出现,符合学生现有的认知水平,重点培养学生的理解和应用能力、准确表述思维过程的能力.根据教学过程的进程,例3可以作为备选内容,如果本节课处理,目的是让学生初步掌握“简单推理”过程,严谨、准确的解答问题.时间不允许的情况下,可以放在下一课时解决.例3同时也是判定直线平行的一个方法,无论本节课是否处理,都可以在下一课时一起归纳总结平行线的所有判定方法.【活动6】说说今天你学教师引导学生回顾、总对本节课所学知识进行了哪些平行线的判定方法.你能说一说我们得到这三个判定方法的过程吗?除此之外我们还有哪些收获呢?1.判定直线平行的三个方法:①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行.2.我们知道了“转化”的数学思想方法.3.我们要学会用“推理”的方式解决数学问题.布置作业:教材第16页习题5.2,第1、2、4、7题.补充题:已知:如图,直线AB、CD、EF被MN所截,∠1=∠2,∠3+∠1=180°,试说明CD∥EF.(考虑多种证法)结本节课所学内容,学生回答,教师进行适当补充.教师布置作业,学生记录作业.及时整理、巩固和提高,培养学生整理、归纳的习惯和能力.补充题有多种证法,属于一题多解,鼓励学有余力的学生积极思考,提高能力,树立信心,调动学生学习的积极性.。

北师大版八年级数学上册7.3平行线的判定优秀教学案例

北师大版八年级数学上册7.3平行线的判定优秀教学案例
4.教师对小组合作的过程进行观察和指导,及时给予反馈和鼓励,促进学生的学习进步。
(四)反思与评价
1.引导学生对自己的学习过程进行反思,思考自己在探索平行线知识过程中的优点和不足;
2.鼓励学生总结自己的学习经验和方法,形成自己的知识体系;
3.教师对学生的学习成果进行评价,关注学生的知识掌握程度和思维能力的发展;
3.引导学生运用已学的知识,进行问题的分析和解答,帮助学生巩固和加深对平行线知识的理解。
(三)小组合作
1.将学生分成小组,鼓励他们进行合作交流,共同探索平行线的判定方法;
2.设计小组讨论的问题或任务,引导学生在合作中思考、交流和解决问题;
3.鼓励学生分享自己的思路和方法,培养他们的团队合作意识和沟通能力;
4.结合学生的反馈和评价,教师进行教学反思和调整,提高教学效果和学生的学习体验。
四、教学内容与过程
(一)导入新课
1.利用实际生活中的情景,如交通标志、建筑物的布局等,引发学生对平行线知识的兴趣和好奇心;
2.展示一些几何图形,引导学生观察和分析其中的平行线特征,激发学生对平行线知识的探究欲望;
3.设计有趣的数学问题或故事,让学生思考和探索平行线的判定方法,为新的学习内容做好铺垫。
2.鼓励学生分享自己的思路和方法,培养他们的团队合作意识和沟通能力;
3.教师对小组讨论的过程进行观察和指导,及时给予反馈和鼓励,促进学生的学习进步。
(四)总结归纳
1.引导学生总结平行线的判定方法和性质,帮助他们形成知识体系;
2.强调平行线在几何图形中的重要性和应用价值,让学生理解学习平行线知识的意义;
3.小组合作:本案例将学生分成小组,鼓励他们进行合作交流,共同探索平行线的判定方法。这种小组合作的方式不仅能够培养学生的团队合作意识和沟通能力,还能够促进学生之间的思维碰撞和相互学习,提高学生的学习效果。

北师大版-数学-八年级上册-7.3 平行线的判定 教案

北师大版-数学-八年级上册-7.3 平行线的判定 教案

A B C D E 12平行线的判定一、教学目标:1.知识与技能:熟练掌握平行线的判定公理及定理,能灵活运用。

经历探索过程,发展逻辑推理能力,掌握推理论证格式。

2.过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。

3.情感态度价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。

二、教学重点:两直线平行判定方法的证明.三、教学难点:运用平行线的判定方法进行简单的推理.四、教学教具:多媒体、三角板、直尺五、教学方法:启发式六、教学过程:(一)导入新课:“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理。

还有没有其他的判定方法呢?这节课我们就来探讨。

练习:1.已知∠1=54°,当时,AB ∥CD ?(二)新授1.证明:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:已知:如图,∠1和∠2是直线A.b被直线c截出的内错角,且∠1=∠2.求证:a∥b证明:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3=1(等量代换)∴a∥b(同位角相等,两直线平行).这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理,简单地写成:内错角相等,两直线平行。

练习:已知:∠1=∠A=∠C,(1)从∠1=∠A,可以判断哪两条直线平行?它的依据是什么?(2)从∠1=∠C,可以判断哪两条直线平行?它的依据是什么?2.如图:如果∠1+∠2=180°能判定a//b吗?解:能.∵∠1+∠2=180 °(已知)∠1+∠3=180 °(邻补角定义)∴∠2=∠3(同角的补角相等)∴a//b(同位角相等,两直线平行)判定方法:两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。

北师大版八年级上册7.3《平行线的判定》教案

北师大版八年级上册7.3《平行线的判定》教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行线的基本概念。平行线是在同一平面内,永不相交的两条直线。它在几何学中具有非常重要的地位,广泛应用于日常生活和各类工程设计。
2.案例分析:接下来,我们来看一个具体的案例。通过观察教室内的墙面和地板,我们可以发现平行线的存在。这个案例展示了平行线在实际中的应用,以及它如何帮助我们解决问题。
-突破方法:通过实物演示、动画展示等方式,让学生直观地感受平行线的特点。
b.平行线判定方法的运用:学生在运用判定方法时,容易忽略某些细节,导致判断错误。
-突破方法:
1.强化同位角、内错角、同旁内角的概念,让学生熟练掌握各种角度的识别和计算。
2.通过典型例题,让学生学会如何在实际问题中运用判定方法,注意避免常见错误。
3.重点难点解析:在讲授过程中,我会特别强调平行线的定义和判定方法这两个重点。对于难点部分,如同位角、内错角等概念,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过使用直尺和量角器,学生可以直观地观察到平行线判定方法的原理。
五、教学反思
今天我们在课堂上学习了《平行线的判定》这一章节,整体来看,教学效果还是不错的。我发现同学们对平行线的概念有了更深入的理解,而且能够运用判定方法解决一些实际问题。但在教学过程中,我也注意到了一些需要改进的地方。
首先,对于平行线定义的理解,部分同学仍然存在一定的困难。在今后的教学中,我需要更加注重直观教学,通过实物演示、动画等手段,帮助学生更好地理解平行线的概念。
四、教学流程
(一)导入新课(用时5分钟)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线的判定7.3
第一环节:情景引入活动内容:回顾两直线平行的判定方法前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况师:下互相平行呢? 1:在同一平面内,不相交的两条直线就叫做平行线.生 2:两条直线都和第三条直线平行,则这两条直线互相平行.生:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直生3 线平行.师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.“两我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨.活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔.教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以
使学生很快地回忆起这些知识.
第二环节:探索平行线判定方法的证明活动内容:证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直①
线平行.师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号
列所以根据题意,可以把这个文字证明题转化为下语言.ca12b3.
形式:
如图,已知,∠1和∠2是直线a、b被直线c截出的同旁内角,且∠1与∠2互补,求证:a∥b.
如何证明这个题呢?我们来分析分析.
师生分析:要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a与b即平行.
因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3.
师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)
证明:∵∠1与∠2互补(已知)∴∠1+∠2=180°(互补定义)∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义)
∴∠3=180°-∠2(等式的性质)
∴∠1=∠3(等量代换)
∴a∥b(同位角相等,两直线平行)
这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.
这一定理可简单地写成:同旁内角互补,两直线平行.
注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可
以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.
②证明:内错角相等,两直线平行.
师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关
动画)
生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA组成一个平角,所以∠FEA=180°-∠BEF=180°-45°
=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥AB.
CFEFEB是内错角.因此可知:与∠师:很好.从图中可知:∠“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.
ba∥求证:
证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)
∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)ab(同旁内角互补,两直线平行).∥∴
这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?
acbcab.⊥ ,∥⊥1生:已知,如图,直线.求证:
acbc(已知)⊥⊥,证明:∵
∴∠1=90°∠2=90°(垂直的定义)
∴∠1=∠2(等量代换)
ba(同位角相等,两直线平行)∥∴“如果两条直线都和第三条直线垂直,那么这两条直线平:由此可以得到:2生
行”的结论.
师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.活动目的:
通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.
教学效果:
由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.
第三环节:反馈练习
活动内容:
课本第231页的随堂练习第一题
活动目的:
巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.教学效果:
由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.
第四环节:学生反思与课堂小结
活动内容:
①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下
表:
②由角的大小关系来证两直线平体现了行的方法,再一次“数”与定应用这些公理、而的关系;“形”
理时,必须能在图形中准确地识别出有关的角.
③注意:证明语言的规范化.推理过程要有依据.
活动目的:
通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.
教学效果:
学生充分认识到证明步骤的严密性,对平行线判定的三个定理有了更进一步的认识.
课后作业:课本第232页习题6.4第1,2,3题
思考题:课本第233页习题6.4第4题(给学有余力的同学做)
教学反思
平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。

相关文档
最新文档