平行线的判定优秀教案
平行线的判定教案市公开课一等奖教案省赛课金奖教案
平行线的判定教案一、教学目标1. 知识目标:掌握平行线的判定方法,包括同位角相等、内错角互补、对顶角相等以及平行线的特性,为解决与平行线相关的几何问题打下基础。
2. 技能目标:培养学生观察、分析和推理的能力,提升解决几何问题的能力。
3. 情感目标:通过合作学习和解决实际问题的过程,培养学生的团队合作精神,增强自信心。
二、教学重点和难点1. 教学重点:学习平行线判定的方法和技巧,掌握平行线的基本特性。
2. 教学难点:理解平行线的概念及其判定方法,运用所学知识解决实际问题。
三、教学准备黑板、白板、书籍、平行尺、草纸、教学案例等。
四、教学过程Step 1 引入新知1. 引导学生思考:你们对“平行线”有什么了解?该如何判定两条线是否平行?2. 出示两条线段 AB 和 CD,让学生观察并比较。
引导学生表示平行的概念。
3. 引导学生讨论并总结两条线段平行的条件,如同位角相等、内错角互补、对顶角相等等。
Step 2 学习平行线判定方法1. 同位角相等:绘制两条平行线,引导学生观察同位角的性质和关系,并通过示例教案演示同位角相等的判定方法。
2. 内错角互补:绘制两条交叉的线段,引导学生观察内错角的性质和关系,并通过示例教案演示内错角互补的判定方法。
3. 对顶角相等:绘制两条平行线与第三条交叉线,引导学生观察对顶角的性质和关系,并通过示例教案演示对顶角相等的判定方法。
4. 引导学生总结并记忆平行线的判定方法,培养学生观察、分析和推理的能力。
Step 3 拓展知识与应用1. 引导学生运用所学知识解决实际问题。
例如:已知直线 AB 和直线 CD,点 P 为两直线之间的一个点,如何判定直线 PA 和直线 PB 是否平行?2. 给学生分组讨论并解决教师提供的实际问题,加深对平行线判定方法的理解和掌握。
Step 4 总结归纳1. 通过学生的合作探究和问题解决,教师对平行线的判定方法进行总结,并与学生一起归纳出判定平行线的要点和方法。
平行线及其判定优秀教案
平行线及其判定优秀教案引言:平行线是几何学中一个重要概念,对于理解几何图形的性质和解题具有重要作用。
本教案以平行线的定义和判定为出发点,以简洁清晰的教学步骤和示例,帮助学生掌握平行线的概念并熟练运用判定方法。
教学目标:1. 理解平行线的定义;2. 掌握判断两条直线是否平行的方法;3. 发展学生的逻辑思维和几何推理能力;4. 提高解题能力和应用能力。
教学重点:1. 平行线的定义;2. 判定两条直线是否平行的方法。
教学难点:1. 发展学生的几何推理能力;2. 解决复杂情况下的平行线问题。
教学准备:1. 平行线的定义和性质教材;2. 来自不同角度的平行线判定方法。
教学过程:步骤一:引入平行线的定义(介绍,7分钟)1. 引导学生回顾直线的定义和性质;2. 引导学生思考:当两条直线的性质满足什么条件时,可以称其为平行线?3. 给出平行线的定义:“如果两条直线在同一平面内,且不相交,那么这两条直线互相平行。
”4. 通过图示或示意图解释定义中的关键要素。
步骤二:平行线判定方法一(讲解,10分钟)1. 利用平行线的定义,推导出两条平行线之间的性质;2. 介绍平行线判定方法一:如果一条直线与另一条直线所形成的内角和为180度,则这两条直线平行;3. 通过示例演示方法一的应用。
步骤三:平行线判定方法二(讲解,10分钟)1. 引导学生思考:如果我们只知道两条直线上的一对内角是否相等,能否判断这两条直线是否平行?2. 介绍平行线判定方法二:如果一条直线与另一条直线上的任意一对内角相等,则这两条直线平行;3. 通过示例演示方法二的应用。
步骤四:综合应用(讲解,15分钟)1. 提供一个综合性问题:已知四边形ABCD,AB与CD平行,角A与角D之和为180度,证明直线BC与直线AD平行;2. 引导学生运用平行线判定方法一和方法二,解决这个问题;3. 通过图示或示意图展示解题过程,解释思路和步骤。
步骤五:巩固练习(练习,15分钟)1. 发放练习题,包括判定两条直线是否平行和应用平行线判定方法证明问题等;2. 学生独立完成练习,教师巡回指导;3. 收集学生答案,讲解答案并解释解题思路。
七年级数学下册《平行线的判定》教案、教学设计
1.提高观察能力,学会从几何图形中发现规律,总结性质。
2.培养逻辑思维能力,学会运用已知条件推导出结论。
3.学会运用画图、列表等方法整理、分析问题,提高解决问题的策略。
4.学会与同学合作交流,分享学习心得,提高合作能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,对待数学问题要有耐心和毅力。
1.必做题:
a.请从生活中找到三个平行线的例子,并简要说明其应用。
b.根ቤተ መጻሕፍቲ ባይዱ平行线的判定方法,完成以下练习题:
-判断以下直线是否平行,并说明理由:
① a ∥ b, b ∥ c,求证:a ∥ c。
②在ΔABC中,AB ∥ CD,求证:∠BAC = ∠DCE。
-填空题:
①如果两条直线上的同位角相等,那么这两条直线()。
3.作业完成后,请认真检查,确保答案正确,提高作业质量。
4.作业提交时间:下节课前。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握平行线的定义及判定方法,包括同位角相等、内错角相等、同旁内角互补。
2.能够运用直尺、圆规等工具准确画出平行线。
3.熟练运用平行线的性质解决实际问题。
(二)教学难点
1.对平行线判定方法的灵活运用,尤其是同位角、内错角、同旁内角在实际问题中的应用。
2.画平行线时,学生对工具的使用不够熟练,需要加强实践操作。
1.设计具有层次性的练习题,让学生运用平行线的判定方法解题。
2.练习题包括:
a.判断题:判断哪些直线是平行线,并说明理由。
b.填空题:补充完整平行线的判定条件。
c.应用题:运用平行线性质解决实际问题。
3.学生独立完成练习题,教师巡回指导,解答学生疑问。
教案平行线的性质与判定
经典教案平行线的性质与判定一、教学目标1. 让学生理解平行线的概念,掌握平行线的性质和判定方法。
2. 培养学生运用平行线的性质和判定方法解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队协作能力。
二、教学内容1. 平行线的概念及特征2. 平行线的性质3. 平行线的判定方法4. 平行线的应用5. 练习与拓展三、教学重点与难点1. 教学重点:平行线的性质和判定方法,以及如何在实际问题中运用。
2. 教学难点:平行线的判定方法,以及如何灵活运用平行线的性质解决复杂问题。
四、教学方法1. 采用问题驱动法,引导学生主动探究平行线的性质和判定方法。
2. 运用案例分析法,让学生通过实际问题理解平行线在生活中的应用。
3. 采用小组讨论法,培养学生的团队协作能力和沟通能力。
4. 利用多媒体辅助教学,增强课堂趣味性,提高学生的学习兴趣。
五、教学安排1. 课时:2课时(90分钟)2. 教学过程:第一课时:1. 导入:通过生活实例引入平行线的概念,让学生感知平行线。
2. 探究:引导学生发现平行线的性质,总结平行线的判定方法。
3. 应用:运用平行线的性质和判定方法解决实际问题。
4. 总结:对本节课的内容进行总结,布置课后作业。
第二课时:1. 复习:回顾上节课的内容,检查学生的掌握情况。
2. 拓展:引导学生进一步探究平行线的应用,解决更复杂的问题。
3. 练习:进行课堂练习,巩固所学知识。
4. 总结:对本节课的内容进行总结,布置课后作业。
六、教学活动1. 导入:通过复习上节课的内容,引入本节课的学习主题——平行线的性质和判定。
2. 探究:引导学生通过实际操作,发现并证明平行线的性质。
3. 判定:讲解并演示平行线的判定方法,让学生理解并掌握。
4. 应用:运用平行线的性质和判定方法解决实际问题,巩固所学知识。
5. 总结:对本节课的内容进行总结,布置课后作业。
七、教学策略1. 采用问题驱动法,引导学生主动探究平行线的性质和判定。
七年级数学上册《平行线的判定》教案、教学设计
2.实践应用:
(1)观察生活中有哪些平行线的例子,用手机或相机拍照,并简要说明其中的平行线判定方法。
(2)结合实际情境,设计一道平行线相关的问题,并给出解答。
3.小组合作:
以小组为单位,共同完成以下任务:
(1)讨论平行线在实际生活中的应用,形成一份调查报告。
1.注重学生的认知规律,从简单到复杂,由易到难,逐步引导学生掌握平行线的判定方法。
2.考虑到学生的个体差异,因材施教,给予不同层次的学生适当的关注和指导。
3.激发学生的学习兴趣,通过生动有趣的生活实例,提高学生参与课堂的积极性和主动性。
4.培养学生的合作意识,组织学生进行小组讨论,使学生在互动交流中共同提高。
四、教学内容与过程
(一)导入新课
1.教学活动设计
利用多媒体展示生活中常见的平行线现象,如铁轨、电线、书本的边缘等,引导学生观察并思考这些现象背后的数学原理。
2.提出问题
提问:“同学们,你们在生活中还见到过哪些平行线的例子?这些平行线有什么共同的特点?”通过问题引导学生关注平行线的概念。
3.引入新课
在学生回答问题的基础上,教师总结:“平行线在我们的生活中无处不在,今天我们就来学习如何判定两条直线是否平行。”
作业评价:
1.作业完成情况将作为学生课堂表现评价的一部分,鼓励学生认真完成作业,提高自身能力。
2.教师将对作业进行批改,并及时给予反馈,帮助学生查漏补缺,提高学习效果。
3.对于表现优秀的学生,教师将给予表扬和奖励,激发学生的学习积极性。
请同学们认真对待本次作业,通过作业的完成,提高自己的数学素养,为今后的学习打下坚实基础。
平行线的判定数学教案
平行线的判定数学教案一、教学目标1. 让学生理解平行线的概念,掌握平行线的判定方法。
2. 培养学生观察、分析、推理的能力,提高解决问题的能力。
3. 激发学生学习数学的兴趣,培养合作意识。
二、教学内容1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。
2. 平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。
三、教学重点与难点1. 教学重点:平行线的判定方法。
2. 教学难点:平行线的判定方法的运用。
四、教学方法1. 采用问题驱动法,引导学生探究平行线的判定方法。
2. 利用几何画板软件,动态展示平行线的判定过程,增强直观感受。
3. 组织小组讨论,培养学生的合作意识。
五、教学过程1. 导入新课:通过生活中的实例,引入平行线的概念。
2. 探究平行线的判定方法:(1)同位角相等;(2)内错角相等;(3)同旁内角互补。
3. 实例分析:运用平行线的判定方法,解决实际问题。
4. 巩固练习:设计相关练习题,让学生独立完成,检验学习效果。
6. 布置作业:设计课后作业,巩固所学知识。
六、教学评价1. 采用课堂问答、练习题和小组讨论等方式,评价学生对平行线判定方法的掌握程度。
2. 关注学生在解决问题时的思维过程,评价学生的观察、分析、推理能力。
3. 结合学生的课堂表现、作业完成情况和课后自主学习情况,全面评价学生的学习效果。
七、教学反思1. 针对本节课的教学内容,反思教学目标的设定是否符合学生的实际需求。
2. 反思教学方法的选择和运用,是否有利于学生的理解和掌握。
3. 分析学生在学习过程中遇到的问题,思考如何在教学中进行调整和改进。
八、教学拓展1. 探究平行线的其他判定方法,如利用向量、坐标等概念。
2. 介绍平行线在实际应用中的例子,如建筑设计、交通规划等。
3. 引导学生关注数学与现实生活的联系,提高学生运用数学知识解决实际问题的能力。
九、课后作业1. 完成练习册的相关题目,巩固平行线的判定方法。
平行线的判定优质教学案
平行线的判定优质教学案一、目标:1. 知识与技能:(1)从“旋转木支架摆.放平行线的活动过程中发现”同位角相等,两直线平行;培养学生动手操作,主动探究及合作交流的能力。
(2)会用平行线的判定方法判定两直线平行,初步学会用几何语言进行简单推理和表述。
2.过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。
3.情感态度价值观:让学生在活动中体验探索、交流.、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想...、推理的科学态度。
二、重点:平行线的判定公理和两条判定定理。
三、教学难点:运用平行线的判定方法进行简单的推理四、教学教具:多媒体、三角板、木支架,直木棍五、教学方法:启发式引导式六、教学过程:1:课前下发预习资料,重温.对顶角.,邻补角的知识,认识公理与定理。
2:复习并导入新课:(1)直木棍展示两直线在同一平面内的两种位置关系,相交与平行,相交产生对顶角与邻补角,对顶角相等,邻补角互补。
(2)今天这节课有一个任务,“笔记本中的横隔线”拥有什么样的位置关系?是平行吗?有什么依据? 目测并不科学,需要通过严谨的.验证,通过这节课的学习要来完成这个任务。
(3)板书课题:5.2.2平行线的判定上新课前先认识新朋友,公理与定理,多媒体。
3:(1) 木支架活动,请学生摆.放,有偏差则不会平行,从经验得出上下两线平移会重.合。
这样摆是平行的,这个是基本事实叫公理,是经过实践的考验。
板书:公理:同位角相等,两直线平行。
结合图形,引导学生用符号语言表述平行线判定公理:∵∠1=∠2 (已知)∴a∥b (同位角相等,两直线平行)(2) 揭秘平行线四步画法的原理。
多媒体展示。
(3)例题运用。
例1:如下图,直线AB,CD同时垂直于直线EF,试说明AB∥CD.(4)公理谢幕.,回到木支架.,将卡纸放于内错角,也可以平行?猜测是平行,多媒体辅助,猜测:内错角相等,两直线平行。
平行线的判定定理优秀教案
平行线的判定定理【教学目标】1.熟练掌握平行线的判定公理及定理。
2.能对平行线的判定进行灵活运用,并把它们应用于几何证明中。
3.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式。
4.通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想。
【教学重难点】1.熟练掌握平行线的判定公理及定理;2.能对平行线的判定进行灵活运用,并把它们应用于几何证明中。
【教学过程】一、情景引入。
活动内容:回顾两直线平行的判定方法。
师:前面我们探索过直线平行的条件。
大家来想一想:两条直线在什么情况下互相平行呢?生1:在同一平面内,不相交的两条直线就叫做平行线。
生2:两条直线都和第三条直线平行,则这两条直线互相平行。
生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行。
师:很好。
这些判定方法都是我们经过观察、操作、推理、交流等活动得到的。
上节课我们谈到了要证实一个命题是真命题。
除公理、定义外,其他真命题都需要通过推理的方法证实。
我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义。
“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理。
那其他的三个真命题如何证实呢?这节课我们就来探讨。
活动目的:回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔。
教学效果:由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识。
二、探索平行线判定方法的证明。
活动内容:(一)证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。
师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言。
所以根据题意,可以把这个文字证明题转化为下列形式:如图,已知,∠1和∠2是直线a 、b 被直线c 截出的同旁内角,且∠1与∠2互补,求证:a ∥b 。
如何证明这个题呢?我们来分析分析。
师生分析:要证明直线a 与b 平行,可以想到应用平行线的判定公理来证明。
平行线的判定定理教案
平行线的判定定理教案
一、教学目标:
1.了解平行线的定义;
2.掌握平行线的判定定理;
3.能够运用平行线的判定定理解决实际问题。
二、教学内容:
1.平行线的定义;
2.平行线的判定定理:①同位角相等定理;②平行线夹角定理;
③平行线垂直于同一直线定理;④平行线垂直于平行线定理。
三、教学方法
1.导入法:通过提问,让学生回忆平行线的定义,以引入本节
课的主要内容。
2.讲解法:通过简单的例子,讲解平行线的判定定理,并进行
详细的解析,让学生理解每个定理的条件和结论。
3.示范法:通过图片展示和板书的形式,给学生展示各种图形,并演示如何使用平行线的判定定理进行判断,让学生从中发现规律和特点。
4.练习法:通过练习题的形式,让学生独立完成各种难度的练习,巩固所学的知识点。
四、教学过程
1.导入(5分钟)
通过提问,让学生回忆平行线的定义和特点。
2.讲解(20分钟)
(1)同位角相等定理;
(2)平行线夹角定理;
(3)平行线垂直于同一直线定理;
(4)平行线垂直于平行线定理。
3.示范(15分钟)
通过板书和图片的形式,演示如何使用不同的定理判断平行线。
4.练习(20分钟)
让学生进行练习,并及时指导和纠正。
5.总结(5分钟)
通过回答问题和总结,巩固本节课所学的知识点。
五、教学评价
1.教学方法得当,能够引起学生的兴趣;
2.教学内容适合学生的认知水平;
3.教学效果良好,学生能够运用所学知识解决各种实际问题。
初中平行线的判定市公开课获奖教案省名师优质课赛课一等奖教案
初中平行线的判定教案一、教学目标1. 理解平行线的定义和特征;2. 能够使用直线与直线的性质来判定平行线;3. 能够应用所学知识解决与平行线相关的问题。
二、教学准备1. 教师准备:教材、黑板、粉笔、教具箱;2. 学生准备:学生书包中的教材和文具。
三、教学过程1. 导入(5分钟)教师简要复习平行线的定义,并提问学生是否了解如何判定直线之间是否平行。
2. 理论讲解(20分钟)教师分步骤地讲解判定平行线的方法,包括以下几种情况:情况一:两条直线的斜率相等时,这两条直线平行;情况二:两条直线的斜率不存在时,这两条直线平行;情况三:当两条直线的斜率乘积为-1时,这两条直线互相垂直,则这两条直线平行于$x$轴和$y$轴;情况四:当两条直线被同一平行于$x$轴或$y$轴的直线截割时,这两条直线平行。
3. 案例演练(20分钟)教师通过几个典型的案例,让学生观察和分析直线的倾斜程度,从而学会使用斜率来判定直线是否平行。
学生通过解题的方式,熟练掌握判定平行线的方法。
4. 小组合作(15分钟)将学生分成小组,让他们合作解决一些与平行线相关的问题。
教师在小组合作的过程中引导学生,帮助他们互相合作、交流和分享解题思路。
5. 总结归纳(10分钟)教师与学生一起总结判定平行线的方法,并强调学生在实际应用中的重要性。
教师对学生表现良好的小组进行表扬。
6. 课堂练习(20分钟)教师让学生独立完成一些练习题,以检验他们对于平行线判定方法的掌握程度。
7. 作业布置(5分钟)教师布置适量的练习题和探究题,要求学生在课后完成,并在下节课开始前交上。
四、课堂评价教师可以通过观察学生的课堂表现、听写测试和布置的作业来评价学生的学习情况。
通过学生的表现,可以检测出学生对平行线判定方法的熟练掌握程度。
五、教学拓展为进一步拓展学生的知识,教师可引导学生通过实际生活中的例子来感受平行线的重要性,并和学生一起思考平行线在工程、建筑和设计等领域的应用。
最新平行线的判定教学设计一等奖(通用8篇)
最新平行线的判定教学设计一等奖(通用8篇)平行线的判定教学设计一等奖篇一1、对于平行线的判定(2)的引入,在上课时平行线判定(1)的基础上,导入得当,衔接自然,达到预期设想目标。
2、把本课时一分为二,重点在于对例2的讲解上,添加辅助线的.导入也十分顺畅,学生掌握较好。
3、对于少部分同学同位角、内错角是哪两条直线被哪一条直线所截构成的还不是很清楚,要引起足够的重视。
平行线的判定教学设计一等奖篇二《平行线的判定及性质》的复习课是在学习这两部分知识之后,针对学生在平行线的'判定及性质区别上以及几何简单推理表述上仍存在困惑,而精心设计了这一节课的导学案。
1、教学目标和重难点基于学生的学习情况,确定了本节课的教学目标和教学重难点。
教学目标是:使学生了解平行线的判定和性质的区别;掌握平行线的判定及性质,并且会运用它们进行简单推理和计算。
教学重难点是:平行线的判定与性质的区别和简单的几何推理过程的书写。
2、具体内容安排如下:首先安排的是自主学习部分,以填空的形式。
再次让学生认清“角的数量关系”与“线平行”相互转化的几何思想,进一步明确由“角数量关系”得到“线平行”要运用平行线的判定;反过来,由“线平行”得到“角数量关系”要运用平行线的性质;从而让学生进一步体会两者在的“条件”和“结论”恰好相反。
接着安排的是巩固提高练习。
在学生明确判定和性质内容和区别之后,让学生试着书写几何推理过程。
该部分的题难度逐步提升,并且设计了一题多解的类型,开动学生脑筋,激发学习兴趣。
进一步提高分析问题、解决问题的能力,以便于能够灵活地将图形语言、符号语言和文字语言进行简单的转化。
再者安排了提高练习,目的是照顾中等生,让他们通过本节课也有一定的提高。
最后是测评反馈,目的是通过本节课学习,了解学生对该部分知识的掌握情况。
1、导学案内容设计上,测评反馈较简单,起不到测评效果;3、小组讨论过程中,学生不懂得如何进行讨论,讨论的作用起不到;4、解决问题的方法总结上不到位;5、驾驭课堂能力差,学生学习热情不能很好地调动;6、教学语言不够简练,教学心理紧张。
平行线的判定 公开课获奖教案 公开课获奖教案
7.3平行线的判定1.了解并掌握平行线的判定公理和定理;(重点)2.了解证明的一般步骤.(重点)一、情境导入我们知道,光线从空气中进入水中会发生折射现象,光线从水中进入空气中,同样也会发生折射现象.如图为光线从空气中进入水中,再从水中进入空气中的示意图.由于折射率相同,因此有∠1=∠4,∠2=∠3,那么你能说明光线c与d平行吗?二、合作探究探究点一:平行线的判定【类型一】平行线的判定公理如图,直线l1、l2、l3、l4两两相交,且∠1=∠2=∠3.求证:l1∥l2,l3∥l4.解析:∠1和∠2是直线l1、l2被直线l3所截得的同位角,∠2和∠3是直线l3、l4被直线l2所截得的同位角,所以由∠1=∠2可以判定l1∥l2,由∠2=∠3可以判定l3∥l4.证明:∵∠1=∠2(已知),∴l1∥l2(同位角相等,两直线平行).∵∠2=∠3(已知),∴l3∥l4(同位角相等,两直线平行).方法总结:利用平行线的判定公理进行推理证明的关键是分清同位角是哪两条直线被第三条直线所截构成的.【类型二】平行线的判定定理1如图,已知AB,CD与直线EF分别相交于点B,C,且∠ABE=∠DCF.求证:AB∥CD.解析:由等角的补角相等可知∠ABC=∠BCD.再由平行线的判定定理1即可得到结论.证明:因为∠ABC+∠ABE=∠DCB+∠DCF=180°(邻补角的定义),∠ABE=∠DCF(已知),所以∠ABC=∠DCB(等角的补角相等),所以AB∥CD(内错角相等,两直线平行).方法总结:要证明两条直线平行,主要是指出图形中两条直线被第三条直线所截的角,观察是否有同位角相等、内错角相等、同旁内角互补或由角的数量关系推得同位角相等、内错角相等、同旁内角互补.【类型三】 平行线的判定定理2如图,直线AE ,CD 相交于点O ,如果∠A=110°,∠1=70°,就可以说明AB∥CD,这是为什么?解析:由题意可知∠1=∠AOD =70°,又因为∠A =110°,所以∠A +∠AOD =180°,故AB∥CD.解:因为∠1=∠AOD(对顶角相等),∠1=70°,所以∠AOD=70°.又因为∠A=110°,所以∠A +∠AOD=180°(等式的性质),所以AB∥CD(同旁内角互补,两直线平行).方法总结:(1)本题运用数形结合思想,平行线的判定是由角之间的数量关系到“形”的判定.要判定两直线平行,可围绕截线找同位角、内错角或同旁内角,若同位角相等、内错角相等或同旁内角互补,则两直线平行.(2)若题中的结论能用同位角相等、内错角相等或同旁内角互补中的一个方法说明两直线平行时,一般都要通过结合对顶角、互补角等知识来说明.探究点二:平行线的判定公理、定理的综合应用如图,已知DE ,BF 分别平分∠ADC 和∠ABC,∠1=∠2,∠ADC =∠ABC,因此可推出图中哪些线段平行?为什么?解析:结合图形以及已知条件,能证明DE∥BF ,DF ∥BE 和AD∥BC. 解:DE∥BF,DF ∥BE ,AD ∥BC.理由如下:(1)DE∥BF.∵∠1=∠2(已知),∴DE ∥BF(同位角相等,两直线平行).(2)DF∥BE.∵DE 平分∠ADC,BF 平分∠ABC(已知),∴∠3=12∠ADC ,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF ∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE 平分∠ADC(已知),∴∠ADE =∠3(角平分线定义),∠ADE =∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC =180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD ∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)⎩⎪⎨⎪⎧判定公理:同位角相等,两直线平行判定定理⎩⎪⎨⎪⎧内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.4.4 一次函数的应用 第1课时 确定一次函数的表达式1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y =(m -4)m 2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m 2-15=1且m -4≠0,∴m =-4,∴y =-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0. 探究点二:确定一次函数的表达式【类型一】 根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y =kx +b ,因为它的图象经过(0,5)、(2,-5)两点,所以当x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可.解:设一次函数的表达式为y =kx +b ,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.2.2 平方根 第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根;(重点) 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入上一节课我们做过:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大正方形,那么有a 2=2,a =________,2是有理数,而a 是无理数.在前面我们学过若x 2=a ,则a 叫做x 的平方,反过来x 叫做a 的什么呢?二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.解:(1)∵82=64,∴64的算术平方根是8;(2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑.(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a.解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题.探究点二:算术平方根的性质【类型一】解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误.【类型二】已知x 3(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方式都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方式都具有非负性,即a ≥0,|a|≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a≥0,a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化.4.4一次函数的应用第1课时确定一次函数的表达式1.会确定正比例函数的表达式;(重点)2.会确定一次函数的表达式.(重点)一、情境导入某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y与x之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.二、合作探究探究点一:确定正比例函数的表达式求正比例函数y=(m-4)m2-15的表达式.解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.解:由正比例函数的定义知m2-15=1且m-4≠0,∴m=-4,∴y=-8x.方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.探究点二:确定一次函数的表达式【类型一】根据给定的点确定一次函数的表达式已知一次函数的图象经过(0,5)、(2,-5)两点,求一次函数的表达式.解析:先设一次函数的表达式为y=kx+b,因为它的图象经过(0,5)、(2,-5)两点,所以当x=0时,y=5;当x=2时,y=-5.由此可以得到两个关于k、b的方程,通过解方程即可求出待定系数k和b的值,再代回原设即可.解:设一次函数的表达式为y=kx+b,根据题意得,∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩⎪⎨⎪⎧k =-5,b =5.∴一次函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.【类型二】 根据图象确定一次函数的表达式正比例函数与一次函数的图象如图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=34,即正比例函数的表达式为y =34x.∵OA =32+42=5,且OA =2OB ,∴OB =52.∵点B 在y 轴的负半轴上,∴B 点的坐标为(0,-52).又∵点B 在一次函数y 2=k 2x +b 的图象上,∴-52=b ,代入3=4k 2+b 中,得k 2=118.∴一次函数的表达式为y 2=118x -52.方法总结:根据图象确定一次函数的表达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.【类型三】 根据实际问题确定一次函数的表达式某商店售货时,在进价的基础上加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,并求出当数量是2.5千克时的售价.解析:从图表中可以看出售价由8+0.4依次向下扩大到2倍、3倍、…… 解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.三、板书设计确定一次函数表达式⎩⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。
最新-初中数学平行线教案优秀6篇
初中数学平行线教案优秀6篇在日复一日的学习、工作或生活中,大家都写过作文吧,作文是经过人的思想考虑和语言组织,通过文字来表达一个主题意义的记叙方法。
你知道作文怎样写才规范吗?学而不思则罔,思而不学则殆,下面是勤劳的小编帮助大家收集整理的初中数学平行线教案优秀6篇。
初中数学平行线教案篇一教学目标:1、学会平行线的识别的方法,能在实际生活和数学图形中识别平行线;能根据图形中的已知条件,通过简单的说理,得出欲求结果。
2、通过说理渗透合情推理的思想,培养学生逻辑推理能力。
3、通过探索平行线的三个识别方法,让学生在学习活动中获得成功的体验,锻炼克服困难的意志,培养科学的学习态度。
教学重难点:重点:学会平行线识别的。
方法,能在实际生活和数学图形中识别平行线。
难点:能根据图形中的已知条件,学会用数学语言简单的说理。
教学准备:三角板、直尺、硬纸片(角的形状)教学过程:一、创设问题情景1、组织学生进行如下活动:(1)用硬纸片制作一个角;(2)这个角放在白纸上,描出∠AOB;(如图)(3)再把角的两边反向延长得OD、OC,把角的一边靠在延长线OD上,再把这个角画出来得∠OPE;(4)探索这个过程,你能得到什么结论?为什么?2、在上述操作过程中,角的位置移到了另一个位置,这样的移动称为平移。
在平移前后的相同位置构成了一对同位角,其大小始终不变,因此,只要保持同位角相等,画出的直线就平行于已知直线。
请同学们根据这样的一个事实用一句话来叙述。
3、学生分组交流二、探索结论1、同位角相等,两直线平行。
2、如图,直线a、b被直线c所截,如果∠1=∠2,那么a∠b。
如果∠1=∠3,可得a∠b吗?同样,你能用语言来叙述吗?得出结论:内错角相等,两直线平行。
3、如果∠1+∠4=,能识别两直线a∠b吗?让学生分组交流得出结论:同旁内角互补,两直线平行。
4、组织学生分组讨论,归纳总结平行线的识别方法。
(略)三、识别方法的应用例1、按课本讲,但注意书写格式:∠∠1=∠2,根据“内错角相等,两直线平行”,∠a∠b。
平行线的判定数学教案
平行线的判定数学教案教学目标:1. 理解平行线的定义和性质;2. 掌握平行线的判定方法;3. 能够运用平行线的判定方法解决实际问题。
教学内容:第一章:平行线的定义和性质1.1 平行线的定义1.2 平行线的性质第二章:平行线的判定方法2.1 利用同位角相等判定平行线2.2 利用内错角相等判定平行线2.3 利用同旁内角互补判定平行线第三章:平行线的判定实例3.1 利用判定方法判断图形中的平行线3.2 解决实际问题中的平行线问题第四章:平行线的判定练习4.1 判断图形中的平行线4.2 解决实际问题中的平行线问题第五章:总结与拓展5.1 总结平行线的判定方法和性质5.2 探讨平行线的应用和拓展教学步骤:1. 引导学生回顾直线、射线和线段的性质;2. 引入平行线的定义,引导学生理解并能够描述平行线的特征;3. 讲解平行线的性质,让学生通过观察和思考,发现平行线的性质;4. 引导学生掌握平行线的判定方法,并通过实例进行讲解和练习;5. 提供练习题,让学生巩固所学知识,并能够解决实际问题;6. 总结平行线的判定方法和性质,引导学生思考平行线的应用和拓展。
教学评价:1. 课堂讲解的清晰度和连贯性;2. 学生对平行线的定义和性质的理解程度;3. 学生对平行线的判定方法的掌握程度;4. 学生解决实际问题的能力。
教学资源:1. 教学PPT或黑板;2. 平行线的判定实例;3. 练习题。
教学建议:1. 在讲解平行线的性质时,可以利用图形进行直观展示,帮助学生更好地理解和记忆;2. 在讲解平行线的判定方法时,可以通过实际例题进行讲解,让学生通过观察和思考,发现判定方法;3. 在解决实际问题时,可以提供多种解题思路和方法,让学生选择合适的方法进行解答;4. 在总结和拓展环节,可以引导学生思考平行线在实际生活中的应用,激发学生的学习兴趣。
第六章:利用平行线的性质解决实际问题6.1 利用平行线的性质计算角度和边长6.2 利用平行线的性质解决几何问题教学步骤:1. 复习平行线的性质,提醒学生掌握平行线的性质;2. 引入实际问题,让学生尝试运用平行线的性质解决;3. 提供练习题,让学生巩固所学知识,并能够解决实际问题;4. 引导学生总结利用平行线的性质解决实际问题的方法和技巧。
《7.4 平行线的判定》精品教案
7.4 平行线的判定课时目标1.探索并证明平行线的判定定理:“内错角相等,两直线平行”“同旁内角互补,两直线平行”.2.经历探索两条平行线平行的过程,理解两条直线平行的条件.3.体会几何图形与数字结合起来的特点,利用数形结合思想来解决相关问题.学习重点理解和运用两个判定定理.学习难点运用定理进行推理,以及用几何语言进行表述.课时活动设计新课导入如图,直线a,b被直线c所截,如果同位角∠1=∠5,请你说出图中其他相等的同位角、所有相等的内错角、所有互补的同旁内角.设计意图:帮助学生初步感知根据基本事实判定两直线平行,顺势引出本节课的内容.探究新知问题1:怎样判定两条直线平行?问题2:思考有没有其他的方法判定两条直线平行?问题3:如图,如果∠2=∠3,能得出a∥b吗?解:∵∠2=∠3(已知),∠3=∠1(对顶角相等),∴∠1=∠2(等量代换).∴a∥b(同位角相等,两直线平行).教师引导学生总结归纳:平行线的判定定理:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单地说,就是内错角相等,两直线平行.问题4:如图,如果∠2+∠4=180°,能得出a∥b吗?解:∵∠2+∠4=180°(已知),∠1+∠4=180°(平角的定义),∴∠1=∠2(等量代换).∴a∥b(同位角相等,两直线平行).教师引导学生总结归纳:平行线的判定定理:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单地说,就是同旁内角互补,两直线平行.设计意图:学生经历观察、思考,总结出平行线的判定定理.让学生感受知识的形成过程,培养学生严谨的科学态度,锻炼学生自主探究学习的能力,激发学生的学习兴趣,并进一步体会将文字语言转化为符号语言.典例精讲例如图,已知直线AB,CD被直线EF所截,∠1=60°,∠2=120°.对AB∥CD说明理由.理由:∵∠1+∠2=60°+120°=180°(已知),∠2=∠4(对顶角相等),∴∠1+∠4=180°(等量代换).∴AB∥CD(同旁内角互补,两直线平行).在学生独立写完过程后,教师板书推理过程,强调证明过程的规范性.设计意图:得到平行线的判定定理后,通过例题,让学生进一步熟悉和运用,在运用过程中,关注说理能力的培养.课堂小结本节课你学到了哪些知识?设计意图:通过小结,使学生梳理本节所学内容,同学们互帮互助,解决困惑.充分发挥学生的主体意识,培养学生的语言概括能力和发散思维能力.7.4平行线的判定一、平行线的判定定理:内错角相等,两直线平行;同旁内角互补,两直线平行.二、例题.教学反思。
初中平行线的判定教案
教案初中平行线的判定教学目标:1. 学生能够理解平行线的定义及性质。
2. 学生能够运用平行线的判定方法解决实际问题。
3. 培养学生的观察、分析、推理能力。
教学重点:1. 平行线的定义及性质。
2. 平行线的判定方法。
教学难点:1. 理解平行线的判定方法。
2. 运用平行线判定方法解决实际问题。
教学准备:1. 教学课件或黑板。
2. 直尺、圆规等绘图工具。
3. 练习题。
教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的平行线。
2. 学生分享观察到的平行线,并简单描述其特点。
二、新课导入1. 教师引导学生回顾平行线的定义及性质。
2. 学生分享平行线的定义及性质。
三、探究活动1. 教师出示探究活动一:如何判定两条直线是否平行?2. 学生分组讨论,探究平行线的判定方法。
四、实际应用1. 教师出示实际应用题目,引导学生运用平行线的判定方法解决问题。
2. 学生独立完成题目,教师巡回指导。
五、课堂小结2. 学生分享学习心得。
六、课后作业(布置作业)1. 教师布置相关练习题,巩固平行线的判定方法。
2. 学生完成课后作业。
教学反思:本节课通过观察、探究、实际应用等环节,让学生深入理解平行线的判定方法。
在教学过程中,教师要注意引导学生的观察、分析、推理能力,鼓励学生积极参与讨论,培养学生的合作意识。
同时,教师要及时点评学生的表现,给予鼓励和指导,提高学生的学习兴趣和自信心。
教案探索分数的基本性质教学目标:1. 学生能够理解分数的基本性质。
2. 学生能够运用分数的基本性质解决实际问题。
3. 培养学生的观察、分析、推理能力。
教学重点:1. 分数的基本性质。
2. 分数的基本性质在实际问题中的应用。
教学难点:1. 理解分数的基本性质。
2. 运用分数的基本性质解决实际问题。
教学准备:1. 教学课件或黑板。
2. 练习题。
教学过程:一、导入1. 教师出示一张图片,引导学生观察图片中的分数。
2. 学生分享观察到的分数,并简单描述其特点。
平行线的判定优秀教案
平行线的判定【课时安排】4课时【第一课时】【教学目标】1.了解平行线的概念,理解同一平面内两条直线间的位置关系。
2.掌握平行公理及平行线的画法。
【教学重难点】重点:平行线的概念、画法及平行公理。
难点:理解平行线的概念和根据几何语言画出图形。
【教学过程】(一)情景导入我们知道两条直线相交只有一个交点,除相交外,两条直线还存在其它的位置关系吗?看下面的图片:〔投影1〕双杆上面的两根横杆、支撑横杆的直干它们所在的直线相交吗?黑板的上下两边它们所在的直线相交吗?游泳池中分隔泳道的线它们所在的直线相交吗?屏风的折处和边所在的直线相交吗?今天我们就来讨论这样的问题。
(二)平行线演示:分别将木条a、b与木条c钉在一起,并把它们想象成三条直线。
转动a,直线a 从在c的左侧与直线b相交逐步变为在右侧与b相交。
想象一下,在这个过程中,有没有直线a与直线b不相交的位置呢?有,这时直线a 与直线b 左右两旁都没有交点。
同一平面内,不相交的两条直线叫做平行线。
直线AB 与直线CD 平行,记作“AB ∥CD”。
注意:1.“同一平面内”是前提,以后我们会知道,在空间即使不相交,可能也不平行;2.平行线是“两条直线”的位置关系,两条线段或两条射线平行,就是指它们所在的直线平行;3.“不相交”就是说两条直线没有公共点。
归纳一下,在同一平面内,两条直线有几种位置关系?动手画一画。
相交和平行两种。
注意:这里所指的两条直线是指不重合的直线。
(三)平行公理再来看上面的实验,想象一下,在转动木条a 的过程中,有几个位置能使a 与b 平行? 有且只有一个位置使a 与b 平行。
aC如图,过点B 画直线a 的平行线,能画几条?试试看。
只能画一条。
从实验和作图,我们可以得到怎样的事实?经过直线外一点,有且只有一条直线与这条直线平行。
这一基本事实是人们在长期的实践中总结出来的结论,我们称它为公理,这个结论叫做平行公理。
在上图中,过点C 画直线a 的平行线,它与过点B 画的平行线平行吗?试试看。
平行线判定教学设计
平行线判定教学设计第1篇:《平行线的判定》教学设计《平行线的判定(1)》教学设计一、教学目标:1.知识与技能:掌握平行线的判定方法判定方法,初步学会用几何语言进行简单推理和表述。
2.过程与方法:通过猜想、观察、操作、推理等活动,进一步发展空间观念,培养学生推理能力和有条理表达能力。
3.情感态度价值观:在活动中培养学生的合作意识,在活动中体验探索成功的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜想、推理的科学态度。
二、教学重点:探索并掌握直线平行的判定方法。
三、教学难点:运用平行线的判定方法进行简单的推理。
四、教学教具:多媒体、三角板、直尺。
五、教学方法:在教师引导下学生通过自主探索、合作交流等方式获得新知识、新方法,教师适时点拨,精炼概括,使学生的思维逐渐清晰条理,帮助学生积累经验、训练技能。
六、教学过程:(一)复习旧知引入新课:1、上节课我们学习了什么内容?(平行线,平行公理及其推论)2、如何用平行线的定义及平行公理的推论来说明两直线平行呢?(学生回答,教师总结)如果用平行线定义难以说明两条直线没有交点,平行公理的推论对条件要求较强,要有三条平行线,且其中的两条分别与第三条平行。
这说明用这两个途径说明直线平行都有一定的局限性,那么有没有其他的途径判定两条直线是否平行的方法呢?今天我们一起来探讨平行线的判定方法。
(二)探索新知1、平行线的判定方法1 (1)、回忆上节用三角板和直尺过一点P画已知直线AB的平行线的过程,你发现三角板起着什么样的作用?这种画法实际上是画一对什么角相等吗?我们是否得到一个判定两直线平行的方法?(让学生观察图形后回答,这两个角是直线AB、CD被EF截得的同位角)。
判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
简单记为“同位角相等,两直线平行”。
结合图形,引导学生用符号语言表述平行线判定方法1:因为∠1=∠2 (已知) 所以a∥b(同位角相等,两直线平行)(2)、木工用角尺画平行线的过程中,使说出用角尺画平行线的道理。
人教初中数学七下《平行线的判定》教案 (公开课获奖)1
cPb a 4321cba218765cba3412平行线的判定课题 平行线的判定1 授课时间 课型 新授二次修改意见课时 第一课时 授课人 科目 数学 主备教学目标 知识与技能 使学生掌握平行线的判定方法1,并初步运用它进行简单的推理论证。
过程与方法初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。
情感态度价值观 培养学生用几何语言准确表达的能力。
教材分析 重难点 重点: 在观察实验的根底上进行公理的概括与定理的推导 难点: 定理形成过程中的逻辑推理及其书面表达。
教学设想教法 三主互位导学法学法 自主探究 合作交流 动手操作教具 常规教具课堂设计一、目标展示1、使学生掌握平行线的判定方法1,并初步运用它们进行简单的推理论证。
2、初步学会简单的论证和推理,认识几何证明的必要性和证明过程的严密性。
3 培养学生用几何语言准确表达的能力。
二、预习检测1、预习疑难: 。
2、填空:经过直线外一点,_____ ___与这条直线平行.假设都不是,三、质疑探究〔一〕平行线判定方法1:1、观察思考:过点P 画直线CD ∥AB 的过程,三角尺起了什么作用? 图中,∠1和∠2什么关系?2、判定方法1: 应用格式:。
∵∠1=∠2〔〕简单说成: 。
∴AB ∥CD 〔同位角相等,两直线平行〕应用:木工师傅使用角尺画平行线,有什么道理? 〔三〕数学思想:教材15页探究。
四 精讲点拨 〔一〕例 教材15页 〔二〕练一练:教材15页练习1〔三〕总结直线平行的条件 〔1〕 〔2〕方法1:假设a ∥b ,b ∥c ,那么a ∥c.即两条直线都与第三条直线平行,这两条直线也互相平行。
方法2:如图1,假设∠1=∠3,那么a ∥c 。
即 。
方法3:如图2,假设a ⊥b ,a ⊥c,那么b ∥c 。
即在同一平面内,垂直于同一条直线的两条直线互相平行。
五 当堂检测 〔一〕选择题:87654321FE D C BAG H P F E 21D C B A教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小(1) (2) (3) 1.如图1所示,如果∠D=∠EFC,那么( )A.AD ∥BCB.EF ∥BCC.AB ∥DCD.AD ∥EF2.(2000.江苏)如图5,直线a,b 被直线c 所截,现给出以下四个条件:•①∠1=∠5;②∠1=∠7; ③∠2+∠3=180°;④∠4=∠7.其中能说明a ∥b 的条件序号为( )A.①②B.①③C.①④D.③④ 〔二〕填空题:1.如图3,如果∠3=∠7,或____ __,那么______,理由是_____ _____;2.在同一平面内,假设直线a,b,c 满足a ⊥b,a ⊥c,那么b 与c 的位置关系是______.3.如下图,BE 是AB 的延长线,量得∠CBE=∠A=∠C. (1)由∠CBE=∠A 可以判断______∥______,根据是_________.六、作业布置板 书 设 计教学反思ED CB A括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形. [师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.A BICABI作一条直线L ,在L 上取点A ,在L 外取点B ,作出点B 关于直线L 的对称点C ,连接AB 、BC 、CA ,那么可得到一个等腰三角形. [生乙]在甲同学的做法中,A 点可以取直线L 上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形. ……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角. [师]有了上述概念,同学们来想一想. 〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴. 2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系. [生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴. [生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高. [师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕. [师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕. 〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为D CA B,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕. 〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD ,所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x ,从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高. 我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D CABDCA B D C A BEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长. 解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算E DC A B P[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕ba ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年义务教育三年制初级中学教科书·新教材《几何》第一册第二章第五节
平行线的判定
【教学目标】
1.认知目标
◊使学生掌握平行线的判定公理及判定定理;理解判定公理的形成、判定定理的证法,了解表达推理证明的方式。
◊使学生能根据判定公理及定理进行简单的推理论证。
2.智能目标
◊通过“转化”及“运动——变化”的数学思想方法的运用。
◊培养学生的“观察——分析”和“归纳——概括”能力。
◊此外,本节课的教学中还介绍了两种重要的数学思想方法,即化归和分类的思想方法。
【教学重点难点】
重点是在观察、实验的基础上进行公理的概括与定理的证明。
难点是定理形成过程中的逻辑推理及其书面表达。
【教学方法】
启发式谈话法、讨论法。
【教学用具】
三角板、两根细铁棍、投影胶片、投影仪、计算机及多媒体CAI课件。
【引导性材料】
通过上一节课的学习,学生对平行线的意义已有了较深的认识,但这种认识仅是直观的、感性的认识,而要来说明两直线平行,还只有两个途径:平行线的定义及平行公理的推论,其中平行公理的推论对条件要求较强,要有三条平行线,且其中的两条分别与第三条平行。
如果用平行线定义更难以说明两条直线没有交点,因而,需要通过其他途径寻找判定两条直线平行的更普遍的方法。
【知识产生和发展过程的教学设计】
一、复习上节课的知识
首先引导学生复习上节课所讲的平行线的定义、平行公理及其推论,然后让学生判断下列语句是否正确,并说明道理:
1.两条直线不相交,就叫做平行线;
2.与一条直线平行的直线只有一条;
3.如果直线a、b都和c平行,那么a、b就平行。
其中第一小题若学生答错,则作教具演示以矫正;第二小题若学生答错,使学生看横格纸以矫正;第三小题叫一名学生口答,而后师生共同纠正。
二、讲授新知识
1.平行线判定公理
(1)提出新问题:如果只有a、b两条直线,如何判断它们是否平行?
教法说明:
由于前面已经复习了平行公理的推论,因为估计学生会说“再作一条直线c,让c//a,再看c是否平行于b就行了”。
而后再以“如何作c,使它与a平行?作出c 后,又如何判断c是否与b平行”追问,使学生意识到刚才的回答似是而非、需要找新的方法后,进一步启发学生,能否由平行线的画法找到判断两直线平行的条件,并让学生过已知直线a外一点p画a的平行线b。
而后用三角板、细铁棍分别演示同位角是45°和60°地平行的情况。
(2)进行观察比较,得出初步结论
由刚才的演示发现:画平行线仍借助了第三条直线,但是要用与a、b都相交的第三线,根据“三线八角”的名称,在画平行线的过程中,实际上是保证了同位的两个角都是45°或60°,……因此,得出“猜想”:如果同位角相等,那么两直线平行。
(3)用计算机演示运动……变化过程,得出最后结论。
教法说明:
先提出问题“会不会有某一特定时刻,即使同位角不等两直线也平行呢?”以引出运动——变化的实验。
在观察实验之前,首先让学生认清∠a和∠β角(如图1所示),而后开始实验。
使学生充分观察,并得出结论:当∠β≠∠α时,a不平行于b;而不论a取何值,只要∠β=∠α,a、b就平行。
再引导学生自己表达出结论。
并告诉学生这个结论称为“平行线的判断公理”:两条直线被第三条直线所截,如果同位角相等,那么就两条直线平行。
图1
(4)及时巩固,及时反馈。
用变式图,让学生完成如下两个练习题。
练习1:如图2-1所示,∠1=150°,∠2=150°,a//b吗?
2-1 2-2
图2
练习2:如图2-2所示,∠C=31°,当∠ABE为多少度时,就能使BE//CD?
2.平行线判定定理
(1)首先以简单的实例表明需要,引出新问题(“内错角相等,两直线平行”的判定)。
如图3所示,如何判断这块玻璃板的上、下两边平行?
图3
添加出截线后,如图4-1所示,比照判定公理图,发现无法定出∠1的同位角,再结合图4-2,让学生思考、试答。
至发现内错角相等的条件后,让学生说明道理,而后师生共同修改。
4-1 4-2
图4
最后,用投影仪投出完整的“证明”,并作详细的解释,让学生总结出结论。
(2)以实际需要引出新问题,(“同旁内角互补,两直线平行”的判定)。
如何判断如图5-1所示的玻璃板的上下两边平行?
教法说明:
至发现“同旁内角互补”的条件后,让学生结合图5-2说明道理,而后师生共同修改。
最后,让学生仿照“内错角相等,两直线平行”的证明,写出完整的证明,并让一名学生写在胶片上,然后就此修改并总结结论。
5-1 5-2
图5
三、新知识的应用
练习1:如图6-1所示,由∠DCE=∠D,可判断哪两条直线平行?由∠1=∠2,
可判断哪两直线平行?由∠D+∠BAD=180°,可判断哪两条直线平行?
练习2:如图6-2所示,已知∠1=45°,∠2=135°,l 1∥l 2吗?为什么?
6-1 6-2
图6 教法说明:
其中练习二找三名方法不同的同学回答。
四、本节课小结
1.概括“判定两条直线平行”的各种方法。
2.师生共同回忆表达推理论证的要求,并结合判定定理的证明过程熟悉表达推理证明的要求,特别强调必须是“前因后果”的步骤。
五、布置作业
1.看课本第71~74页。
2.习题二A 组第4、5、6题。
【板书计划】
【教学后记】 通过学生练习反馈的情况看,能结合不同图形,正确识认同位角、内错角、同旁内角,是学习好本节内容的前提。
平行线的判定 两条直线被第三条直线所截
如果同位角相等 如果内错角相等 如果同旁内角互补 公理 定理 那么两条直线平行。