人教版七年级数学下册平行线及其判定平行线的判定教案

合集下载

人教版数学七年级下册5.2《平行线的判定》参考教案

人教版数学七年级下册5.2《平行线的判定》参考教案

平行线的判定一、教学目标:1.知识与技能:〔1〕从“用三角尺和直尺画平行线的活动过程中发现〞同位角相等,两直线平行;培养学生动手操作,主动探究及合作交流的能力。

〔2〕会用平行线的判定方法判定两直线平行,初步学会用几何语言进展简单推理和表述。

2.过程与方法:在探索图形的过程中,通过观察、操作、推理等手段,有条理地思考和表达自己地探索过程和结果,从而进一步加强学生分析,概括、表达能力。

3.情感态度价值观:让学生在活动中体验探索、交流、成功与提升的喜悦,激发学生学习数学的兴趣,培养学生勇于实践,大胆猜测、推理的科学态度。

二、教学重点:同位角相等两直线平行三、教学难点:运用平行线的判定方法进展简单的推理四、教学教具:多媒体、三角板、直尺五、教学方法:启发式六、教学过程:〔一〕复习并导入新课:上一节课我们学习了平行线,平行公理及其推论,如何用平行线的定义及平行公理的推论来说明两直线平行〔学生答复〕,根据学生的答复,教师总结,如果用平行线定义难以说明两条直线没有交点,平行公理的推论对条件要求较强,要有三条平行线,且其中的两条分别与第三条平行。

你能否运用这两种方法来说明下面这两个问题的道理?如果只有a、b两条直线如何判断他们是否平行呢?说明这两个途径都有一A B C DE 12定的局限性,那么有没有其他的途径判定两条直线是否平行的方法呢?今天我们一起来探讨平行线的判定方法。

〔二〕新授1、平行线的判定方法〔1〕让学生回忆并表达上节用三角板和直尺过一点P 画直线AB 的平行线的过程,你能发现这种画法实际上是画一对什么角相等吗?〔让学生观察图形后答复,这两个角是直线AB 、CD 被EF 截得的同位角〕。

判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

简单记为“同位角相等,两直线平行〞。

结合图形,引导学生用符号语言表述平行线判定公理:∵∠1=∠2 ()∴a ∥b (同位角相等,两直线平行)练习:1.∠1=54°,当 时, AB ∥CD ?〔2〕平行线的判定方法2的推导先采用探讨问题的方式,启发学生去思考,能不能从内错角之间的关系或同旁内角之间的关系来判定两条直线平行呢?让学生观察图形分析∠1与∠2在什么条件下满足判定方法1,引导学生分析角之间的关系,发现新结论:判定方法2:两条直线被第三条直线所截,如果内错角相等,那么两直线平行。

新人教版初中七年级数学下册《平行线》教案

新人教版初中七年级数学下册《平行线》教案

平行线教学目标1.经历观察教具模式的演示和通过画图等操作,交流归纳与活动,进一步发展空间观念.2.了解平行线的概念、平面内两条直线的相交和平行的两种位置关系,知道平行公理以及平行公理的推论.3.会用符号语方表示平行公理推论,会用三角尺和直尺过已知直线外一点画这条直线的平行线.重点:探索和掌握平行公理及其推论.难点:对平行线本质属性的理解,用几何语言描述图形的性质.教学过程一、创设问题情境1.复习提问:两条直线相交有几个交点?相交的两条直线有什么特殊的位置关系?学生回答后,教师把教具中木条b与c重合在一起,转动木条a确认学生的回答.教师接着问:在平面内,两条直线除了相交外,还有别的位置关系吗?2.教师演示教具.顺时针转动木条b两圈,让学生思考:把a、b想像成两端可以无限延伸的两条直线,顺时针转动b时,直线b与直线a的交点位置将发生什么变化?3.教师组织学生交流并形成共识.转动b 时,直线b 与c 的交点从在直线a 上A 点向左边距离A 点很远的点逐步接近A 点,并垂合于A 点,然后交点变为在A 点的右边,逐步远离A 点.继续转动下去,b 与a 的交点就会从A 点的左边又转动A 点的左边……可以想象一定存在一个直线b 的位置,它与直线a 左右两旁都没有交点.二、平行线定义表示法1.结合演示的结论,师生用数学语言描述平行定义:同一平面内,存在一条直线a 与直线b 不相交的位置,这时直线a 与b 互相平行.换言之,同一平面内,不相交的两条直线叫做平行线.直线a 与b 是平行线,记作“∥”,这里“∥”是平行符号.教师应强调平行线定义的本质属性,第一是同一平面内两条直线,第二是设有交点的两条直线.2.同一平面内,两条直线的位置关系教师引导学生从同一平面内,两条直线的交点情况去确定两条直线的位置关系.在同一平面内,两条直线只有两种位置关系:相交或平行,两者必居其一.即两条直线不相交就是平行,或者不平行就是相交.三、画图、观察、归纳概括平行公理及平行公理推论1.在转动教具木条b 的过程中,有几个位置能使b 与a 平行?cb ac ba C 本问题是学生直觉直线b 绕直线a 外一点B 转动时,有并且只有一个位置使a 与b 平行.2.用直线和三角尺画平行线.已知:直线a,点B,点C.(1)过点B 画直线a 的平行线,能画几条?(2)过点C 画直线a 的平行线,它与过点B 的平行线平行吗?3.通过观察画图、归纳平行公理及推论.(1)由学生对照垂线的第一性质说出画图所得的结论.(2)在学生充分交流后,教师板书.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.(3)比较平行公理和垂线的第一条性质.共同点:都是“有且只有一条直线”,这表明与已知直线平行或垂直的直线存在并且是唯一的.不同点:平行公理中所过的“一点”要在已知直线外,两垂线性质中对“一点”没有限制,可在直线上,也可在直线外.4.归纳平行公理推论.(1)学生直观判定过B 点、C 点的a 的平行线b 、c 是互相平行.(2)从直线b 、c 产生的过程说明直线b∥直线c.(3)学生用三角尺与直尺用平推方验证b∥c.(4)师生用数学语言表达这个结论,教师板书.结果两条直线都与第三条直线平行,那么这条直线也互相平行. 结合图形,教师引导学生用符号语言表达平行公理推论: c b a如果b∥a,c∥a,那么b∥c.(5)简单应用.练习:如果多于两条直线,比如三条直线a、b、c与直线L都平行,那么这三条直线互相平行吗?请说明理由.本练习是让学生在反复运用平行公理推论中掌握平行公理推论以及说理规范.四、作业:课本P19.7,P20.11.。

5.2.2平行线的判定 教案 七年级数学下学期人教版

5.2.2平行线的判定 教案 七年级数学下学期人教版

5.2.2平行线的判定教案七年级数学下学期人教版一、教材分析(一)教材地位与作用本课是七年级学过的“同位角”,“内错角”,“同旁内角和”“平行线”的继续,是后面研究平移以及三角形、四边形(特别是平行四边形)的相关学习的基础.起到了承上启下的作用。

从本节课起,培养和发展学生合情推理能力,同时也开始从有条理的口头表述逐渐过渡到书写自己的理由.因此本节课的学习对发展学生的合情推理能力和逻辑推理能力是非常重要的几何推理等内容的基础,也是空间与图形的重要组成部分。

(二)教学目标1、经历探索直线平行的条件的过程,掌握平行线的判定方法。

2、体会“由未知向已知”转化的数学思想是认识客观事物的基本方法。

经历观察、操作、想象、推理、交流等活动,并能积极、主动地进行自主探索或与同伴交流。

3、通过问题引入和解决,培养学生逻辑推理能力。

(三)教学重、难点根据新课标的要求及七年级学生的认知基础,确定本节课的教学重点:经历观察、操作、交流、猜想、推理等活动,探索得到直线平行的条件.。

难点:会进行文字语言,图形语言,符号语言之间的互译,理解“转化”的思想.二、学情分析从认知结构的角度,七年级的学生已经具备一定的生活经验和数学活动经验,并且对基本几何图形有一定的认识,学生已经学了平行线的定义、平行公理及其推论,具备了探究直线平行的条件的基础,但在逻辑思维和合作交流的意识方面发展不够均衡。

三、教法与学法分析根据本节课的内容特点和学生的已有的认知基础,我采用合作探究式的教学方法和动手实践、自主探索、合作交流的学习方法。

以多媒体为教学平台,以学生感兴趣的问题情境引入学习课题,给学生创设自主探索、合作交流、独立获取知识的时间和空间,让学生经历观察、操作、交流等活动,通过归纳、类比、概括出平行线的判定方法,让他们经历知识形成过程,体验从合情推理到演绎推理的思维过程。

提高学生主动获取知识的能力,逐步养成合作交流的习惯,形成勇于探索的意识,增强学生数学学习的兴趣和自信心。

平行线判定2-人教版七年级数学下册教案

平行线判定2-人教版七年级数学下册教案

平行线判定2-人教版七年级数学下册教案教学目标1.了解平行线的定义及性质;2.学会判定两条直线是否平行;3.通过实际生活中的例子,加深对平行线的理解。

教学重点1.平行线的定义;2.两条直线是否平行的判定方法。

教学难点学生可以通过实例理解并应用平行线的知识。

教学过程一、引入教师可使用PPT或者板书引入平行线的概念,让学生初步了解平行线的定义。

二、概念解释1.让学生看图、体验,引导学生说说看看哪些线段是平行的;2.引导学生找出其中的规律,明确平行线的概念及性质;3.通过学生的讲解,可以把平行线的性质表述清晰明了:在平面直角坐标系中,如果两条直线之间的夹角为90度,则这两条直线若在平面上不交又不重合,则这两条直线就是平行线。

三、判定两条直线是否平行的方法1.如何判定两条线段是否平行?先使两线段的一个端点重合,再将另一线段移到与另一线段同方向的位置,若两线段的另一端点重合,这两线段就是平行线。

2.如何判定两条直线是否平行?如果两条直线之间的夹角为90度,则这两条直线若在平面上不交又不重合,则这两条直线是平行线。

四、小组讨论让学生分成小组,看下列图形,判断哪条线段与直线是平行线。

并用自己的语言解释出判断的依据。

五、生活实例1.地铁轨道;2.田地开垦;3.日常生活中常见的平行线。

六、总结总结判定两条直线是否平行的方法,加深学生对平行线的印象,巩固所学知识。

课后作业1.抄写判定两条直线是否平行的方法,并用自己的语言描述出来;2.到生活中捕捉平行线的例子,描述其出现的位置和作用。

参考资料1.人教版七年级数学下册教材;2.人教版七年级数学下册配套教师用书。

人教版七年级数学教案:5.2.2平行线的判定

人教版七年级数学教案:5.2.2平行线的判定
五、教学反思
在今天的课堂中,我们探讨了平行线的判定方法,这是几何学习中的一个重要部分。我注意到,学生在理解同位角、内错角和同旁内角的概念时,普遍感到有些困难。我尝试使用了动态图示和实物模型来帮助学生直观地感受这些角度的形成,效果似乎不错,但我认为还需要在后续的课堂中继续巩固这些概念。
课堂上,我设计了一些实践活动,让学生分组讨论并操作实验,我希望通过这样的方式,让他们在实践中学习和理解。从学生的反馈来看,他们对于能够亲手操作、亲眼观察的环节非常感兴趣,这也帮助他们更好地理解了判定条件。不过,我也观察到,在将理论知识应用到具体问题解决时,部分学生仍然感到困惑。这可能是因为他们还没有完全消化和吸收这些概念,或者是我没有提供足够的引导和示例。
直接输出:
二、教学重点与难点
教学重点:
1.平行线的判定方法:同位角相等、内错角相等、同旁内角互补。
2.平行线在实际几何图形中的应用。
3.逻辑推理在平行线判定中的应用。
教学难点:
1.同位角、内错角、同旁内角的准确识别和测量。
2.理解并运用逻辑推理来判断两条直线是否平行。
3.在复杂的几何图形中找出所有相关的角,并进行正确的判定。
-举例:设计练习题,如给出一个图形,要求学生找出所有的平行线,并说明使用的是哪个判定条件。
2.教学难点
-难点一:理解同位角、内错角、同旁内角的概念及其在判定平行线中的作用。
-举例:学生可能难以理解同位角和内错角的概念,教师需用模型或动态图示来直观展示这些角度的关系。
-难点二:在实际图形中准确找出相应的角度,特别是在图形复杂时。
二、核心素养目标
本节课的核心素养目标为:培养学生的逻辑推理能力、几何直观能力和问题解决能力。通过探索平行线的判定方法,使学生能够运用逻辑思维分析和解决问题,提高推理的准确性;通过观察和操作几何图形,发展几何直观,增强对空间关系的认识;在实际问题中,运用所学的平行线判定方法,提高解决几何问题的能力。同时,注重培养学生合作交流的意识,提升数学表达和概括能力,为后续几何学习奠定坚实基础。

人教版七年级数学教案:5.2平行线及其判定

人教版七年级数学教案:5.2平行线及其判定
五、教学反思
在今天的课堂中,我尝试了多种教学方法,希望让学生更好地理解和掌握平行线及其判定的知识。首先,通过日常生活中的实例导入新课,我发现同学们对此产生了浓厚的兴趣,这为后续的学习奠定了良好的基础。但在讲授过程中,我也发角、内错角等概念上存在一定的困惑。
此外,在学生小组讨论环节,我注意到有些小组在讨论主题上稍显偏离,没有完全聚焦在平行线的实际应用上。在今后的教学中,我应更加注重引导学生围绕主题展开讨论,提高讨论的针对性和实效性。
在总结回顾环节,我发现同学们对本节课的知识点有了较为全面的掌握,但仍有个别同学存在疑问。为此,我计划在课后进行个别辅导,帮助他们消除困惑,确保每个人都能跟上教学进度。
2.教学难点
a.平行线判定方法的推理过程;
-对于同位角相等、内错角相等、同旁内角互补等判定方法,学生可能难以理解其中的逻辑关系,需要教师通过具体实例和图示进行详细讲解。
b.画平行线的实际操作;
-在实际操作过程中,学生可能会出现画线不准确、方法不熟练等问题,需要教师耐心指导,反复练习,帮助学生掌握正确的方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平行线的基本概念、判定方法和在实际中的应用。通过实践活动和小组讨论,我们加深了对平行线的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调平行线的判定方法和画法这两个重点。对于难点部分,如同位角、内错角等概念,我会通过图示和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行线相关的实际问题。

人教版七年级数学下册 教学设计5.2.2 第2课时《平行线的判定》

人教版七年级数学下册 教学设计5.2.2 第2课时《平行线的判定》

人教版七年级数学下册教学设计5.2.2 第2课时《平行线的判定》一. 教材分析《平行线的判定》是人教版七年级数学下册的教学内容,这部分内容是在学生学习了直线、射线、线段以及相互之间的位置关系的基础上进行的。

通过这部分的学习,学生能够理解平行线的定义,并掌握平行线的判定方法。

本节课的教学内容主要包括平行线的判定定理以及如何运用这些定理来判断两条直线是否平行。

二. 学情分析学生在进入七年级之前,已经对直线、射线、线段有了初步的了解,并且能够进行简单的相互之间的位置关系的判断。

但是对于平行线的定义以及判定方法可能还比较陌生,需要通过本节课的学习来掌握。

此外,学生可能对于一些几何图形的直观理解还不够深入,因此在教学过程中需要通过实物演示、图形展示等方式来帮助学生理解。

三. 教学目标1.知识与技能目标:使学生理解平行线的定义,掌握平行线的判定方法,并能够运用这些方法来判断两条直线是否平行。

2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 教学重难点1.教学重点:平行线的定义,平行线的判定方法。

2.教学难点:平行线的判定方法的运用,对于一些特殊情况的判断。

五. 教学方法1.情境教学法:通过实物演示、图形展示等方式,引导学生观察、操作,激发学生的学习兴趣。

2.问题驱动法:通过提出问题,引导学生思考,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论,培养学生的团队合作意识。

六. 教学准备1.准备相关的图形、实物等教学资源。

2.设计好针对学生可能出现的问题的教学方案。

七. 教学过程1.导入(5分钟)通过展示一些生活中的实例,如教室里的两扇窗户、操场上的跑道等,引导学生观察并思考:这些实例中是否存在平行线?如何判断两条直线是否平行?2.呈现(10分钟)呈现平行线的定义和判定方法,引导学生理解并掌握。

人教版七年级数学下册《平行线的判定》教案

人教版七年级数学下册《平行线的判定》教案

七年级下册数学教案:平行线的判定(第一课时)【教学目标】知识与技能目标:了解推理、证明的格式,掌握平行线判定方法过程与方法目标:能运用所学过的平行线的判定方法进行简单的推理论证.情感与态度目标:通过教学演示,即“运动—变化”的数学思想方法的运用,培养学生的“观察—分析”和“归纳—总结”的能力.【任务分析】1、学习结果:本课属于智慧技能的规则学习。

2、学习条件:( 1)必要性条件:规则学习的先决条件是概念,此处要学习的四个概念是“同位角” ,“内错角”,“同旁内角”和“平行线” ,四个都属于定义性概念。

概念的先决条件是辨别。

(因而决定教学的顺序为辨别—概念学习—规则学习)。

( 2)支持性条件:两直线平行可用推平行线法来检测,同位角相等,内错角相等和同旁内角互补都可以用量角器测得。

学生学习用具:两把尺子或三角板。

本节分两个课时讲,第一课时介绍前两个判定方法,课时二再介绍判定方法三。

3、学生的起点能力:学生已经掌握“同位角” ,“内错角”,“同旁内角”和“平行线”的概念。

学生会具有辨别能力,会使用几何工具辅助学习,具备一般的推理能力。

起点能力使能目标一使能目标二终点能力学生已经掌握“同位角”,“内错角”,“同旁内角”和作图在平行线和结合图形学生自知道两角关系运用判定“平行线”的概念非平行线上找到己归纳出平行线方法来证明,并使用正学生会使用几何这几对角判定方法确的证明格式工具辅助学习,具发现这些角的关备一般的推理能系力。

4、教学重点:对判定方法的概括与推导5、教学难点:方法的归纳与综合运用【教学内容】教学教师活动过程1、?本堂课分五块讲解习得1、回顾三线八角阶段2、平行线概念3、平行线判定方法4、本课重难点5、总结与练习(一)创设情景,激发求知欲望1、回顾上节课所学习的“三线八角”a314a12358a267问那些角是“同位角” ,“内错角”,“同旁内角”让学生在自己纸上也画一下,或者用手势比一下。

学生活动看 PPT个别举手回答大部分学生跟着老师用手势表示各种角学生回答平行线的概念,一部分学生会把在同一2、平行线概念:在同一平面内,不相交的两条直线叫做平行线。

数学教案:平行线的判定

数学教案:平行线的判定

数学教案:平行线的判定一、教学目标:1. 让学生理解平行线的概念,掌握平行线的判定方法。

2. 培养学生的观察能力、思考能力和动手能力。

3. 培养学生合作学习、交流分享的良好学习习惯。

二、教学内容:1. 平行线的概念:在同一平面内,永不相交的两条直线叫做平行线。

2. 平行线的判定方法:(1) 同位角相等,两直线平行。

(2) 内错角相等,两直线平行。

(3) 同旁内角互补,两直线平行。

三、教学重点与难点:1. 教学重点:平行线的判定方法。

2. 教学难点:同位角、内错角、同旁内角的判断。

四、教学方法:1. 采用直观演示法,让学生通过观察、实践,理解平行线的判定方法。

2. 采用讨论法,让学生在小组内交流分享,培养学生的合作学习能力。

3. 采用练习法,让学生通过独立练习,巩固所学知识。

五、教学步骤:1. 导入新课:通过生活实例引入平行线的概念,引导学生思考如何判断两条直线是否平行。

2. 讲解与演示:讲解平行线的判定方法,并通过多媒体演示,让学生直观地理解判定方法。

3. 实践操作:让学生在纸上画出两条直线,运用所学方法判断它们是否平行。

4. 小组讨论:让学生在小组内交流分享自己的判断过程,讨论如何正确运用判定方法。

5. 练习巩固:布置一些判断平行线的练习题,让学生独立完成,检验所学知识。

6. 总结与反思:对本节课所学内容进行总结,引导学生反思自己在判断平行线时的注意事项。

7. 作业布置:布置一些有关平行线的练习题,让学生课后巩固所学知识。

六、教学评估:1. 课堂练习:观察学生在练习中的表现,判断他们对平行线判定方法的掌握程度。

2. 小组讨论:评估学生在小组讨论中的参与程度,以及他们能否与他人有效沟通和分享。

3. 课后作业:检查学生完成作业的质量,了解他们对课堂所学知识的巩固情况。

七、教学拓展:1. 邀请数学家或者相关领域的专家进行讲座,分享平行线在现实生活中的应用。

2. 组织学生进行数学竞赛,以提高他们对平行线判定方法的兴趣和应用能力。

(完整版)平行线及其判定说课稿

(完整版)平行线及其判定说课稿

各位评委老师上午(下午)好!我说课的题目是人教版七年级下册第五章“相交线与平行线”第二节“平行线及其判定”的内容,此内容为本节的第一课时。

我说课的程序主要有以下教材分析、说教法、说学法、教学过程设计等四个部分:一、教材分析(一)教材地位、作用平行线是空间与图形领域的基础知识,是《相交线与平行线》的重点,学习平行线的判定会为后面学习平行线性质、三角形、四边形等知识打下坚实的“基石”;同时,本节学习将加深“角与平行线”的认识。

基于上面对教材的分析,考虑到学生已有的认知结构、心理特征,结合《新课标》的要求,我确定以下教学目标:(二)教学目标1、知识与技能目标:理解平行线的定义、平行公理及其推论;理解平行线的判定方法2、能力目标:能运用所学过的平行线的判定方法进行简单的推理计算3、情感与态度目标:初步理解“从特殊到一般,从一般到特殊”是认识客观事物的基本方法(三)教学重难点教学重点:在观察实验的基础上,进行判定方法的概括与推理・教学难点:方法的归纳与综合运用;二、说教法为了突出重点,突破难点,本节课以设置问题、创设情境为主线,通过师生互相交流和协商的方式展开教学,而在拓展延伸部分以学生的主动探究为主三、说学法借用生活场景引出问题,从而围绕着这一问题进行探索,教师启发引导,及时了解与评定学生的学习情况,进行反馈调节。

同时使用多媒体辅助教学,形象生动地展示教学内容,不但可以提高学习效率和质量,而且容易激发学生的学习兴趣和积极性。

四、教学过程设计为达到教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动f生、自觉性、积极性,本节课教学程序设计如下(一)回顾知识1 •同位角,内错角,同旁内角的概念•2•找出图中的同位角,内错角,同旁内角并指出他们分别是由哪两条直线被第三条直线所截得到。

(设计意图:通过练习,起到复习知识的作用。

这里主要复习:同位角、内错角、同旁内角的概念,为进一步学习做准备。

)(二)创设问题情境,导入新课这一环节是获取新知识的过程,教学中我将以我讲解与学生自主探索相结合的方式,这个环节我将分别介绍平行线的几个相矢概念:在周围世界中到处可见平行线的形象,你能举出在周围所看到平行线的例子吗?(学生举例)(教师补充举例)出示课件,让学生欣赏生活中平行线的图片,激发学生学习平行线的兴趣。

《平行线的判定》教案

《平行线的判定》教案

《平行线的判定》教案一、教学目标知识与技能:1. 让学生掌握平行线的定义和性质;2. 能够运用平行线的判定方法判断两条直线是否平行。

过程与方法:1. 通过观察、操作、交流等活动,培养学生的空间想象能力和逻辑思维能力;2. 学会运用同位角、内错角、同旁内角等方法判定平行线。

情感态度与价值观:1. 激发学生对数学学科的兴趣;2. 培养学生的团队合作精神,提高学生的解决问题的能力。

二、教学内容1. 平行线的定义:在同一平面内,不相交的两条直线叫做平行线。

2. 平行线的性质:(1)平行线上的对应角相等;(2)平行线上的内错角相等;(3)平行线上的同位角相等;(4)平行线之间的距离相等。

3. 平行线的判定方法:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行。

三、教学重点与难点重点:平行线的定义和性质,平行线的判定方法。

难点:平行线的判定方法的灵活运用。

四、教学准备1. 教学课件;2. 直线模型;3. 量角器;4. 直尺。

五、教学过程1. 导入:通过展示直线模型,引导学生回顾直线的性质,为新课的学习做好铺垫。

3. 平行线的性质:引导学生通过量角器测量直线上的角,发现平行线的性质。

5. 巩固练习:设计一些判断题,让学生运用所学知识判断直线是否平行。

7. 布置作业:设计一些有关平行线的练习题,巩固所学知识。

六、教学策略1. 采用问题驱动的教学方法,引导学生主动探索平行线的性质和判定方法;2. 通过小组合作、讨论交流的形式,培养学生的团队合作精神;3. 利用多媒体课件,直观展示直线和平行线的性质,提高学生的空间想象能力。

七、教学评价1. 课堂提问:检查学生对平行线定义、性质和判定方法的理解程度;2. 课后作业:评估学生对平行线知识的掌握情况;3. 小组讨论:评价学生在团队合作中的表现,以及解决问题的能力。

1. 邀请数学家或相关领域专家,进行专题讲座,加深学生对平行线知识的理解;2. 组织学生进行数学竞赛,激发学生学习数学的兴趣;3. 开展数学实践活动,如制作直线和平行线的模型,提高学生的动手能力。

部编人教版七年级数学下册《平行线的判定》教案

部编人教版七年级数学下册《平行线的判定》教案

5.2.2 直线平行的条件一、教学目标1.核心素养: 通过学习平行线,培养学生抽象数学问题的能力、逻辑推理能力和几何语言表达能力.2.学习目标(1)掌握直线平行的判定方法(2)经历探究直线平行的判定方法的过程,感受转化的数学思想方法(3)运用直线平行的判定方法解决问题,会简单的几何语言表达。

3.学习重点探索直线平行的判定方法4.学习难点转化的数学思想方法二、教学设计(一)课前设计1.预习任务任务1预习教材P13-P17,掌握两直线平行的条件,初步了解推理论证的方法。

2.预习自测1.平行线三个判定的几何语言,如图:判定1:∵∠3=∠2(已知)∴a∥b()判定2:∵∠1=∠2(已知)∴a∥b()判定3:∵∠4+∠2=180o(已知)∴a∥b()【解析】:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角相等,两直线平行。

2.如图,点E在CD上,点F在BA上,G是AD延长线上一点.(1)若∠A=∠1,则可判断_______∥_______,因为________.(2)若∠1=∠_________,则可判断AG∥BC,因为_________.(3)若∠2+∠________=180°,则可判断CD∥AB,因为____________.G F E21D CB A【解析】:AB//CD ,同位角相等,两直线平行;C ,内错角相等,两直线平行;BFE ,同旁内角相等,两直线平行。

(二)课堂设计1.知识回顾1、两条直线被第三条直线所截,同位角、内错角、同旁内角的概念2、平行线的定义3、平行公理及其推论2.问题探究问题探究一 平面内两直线平行的判定方法重点、难点知识★▲●活动一 请经过直线a 外一点P 画直线a 的平行线。

你是怎么画的?在画图过程中用直尺和三角板时,三角板起了什么样的作用?学生演示画图过程并分析出在画平行线的过程中,三角板是为画∠PHF 与∠BGF 相等。

问题:这两个角具有什么样的位置关系,我们是否得到一个判定两直线平行的方法?平行线的判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

平行线判定1-人教版七年级数学下册教案

平行线判定1-人教版七年级数学下册教案

平行线判定1-人教版七年级数学下册教案一、教学目标1.了解平行线的定义;2.能够判断两条直线是否平行;3.掌握平行线的判定方法。

二、教学重点1.平行线的定义;2.平行线的判定方法。

三、教学难点1.如何判定两条直线是否平行。

四、教学过程1. 导入(5分钟)介绍本节课的主题是平行线的判定,引出本节课的话题。

2. 学习(30分钟)1.什么是平行线?解释平行线的定义:在同一个平面内,不相交的两条直线互相平行。

2.平行线的判定方法–方法一:两条直线的斜率相等且不相交,则这两条直线平行;–方法二:两条直线被另外一条直线所截而且同侧内角相等,则这两条直线平行。

3.实例演示接下来,通过具体的实例来演示平行线的判定方法。

示例一已知直线l1:y=2x+3,直线l2:y=-0.5x+4,如何判断这两条直线是否平行?解答:因为l1的斜率为2,l2的斜率为-0.5。

所以l1与l2不平行。

示例二已知直线l1:y=2x+3,直线l2:y=-4x+8,如何判断这两条直线是否平行?解答:因为l1的斜率为2,l2的斜率为-4。

所以l1与l2不平行。

示例三已知直线l1:y=2x+3,直线l2:y=-x+7,如何判断这两条直线是否平行?解答:因为l1的斜率为2,l2的斜率为-1。

所以l1与l2不平行。

通过以上的实例演示,帮助学生掌握平行线的判定方法。

3. 拓展(10分钟)利用画板上图,让学生利用判定方法判断两条直线的关系。

4. 总结(5分钟)通过本节课的学习,学生基本掌握了平行线的定义和判定方法。

五、课后作业1.完成教材上的练习题;2.搜集更多的平行线实例,提高自己判断平行线的能力。

六、教学反思本节课目的在于让学生初步了解平行线的定义和判定方法,通过实例演示的方式,让学生了解到不同情况下的判定方法。

这种教学方法更具有针对性和实用性。

同时,通过课后作业的布置,鼓励学生进一步加深对知识点的理解和应用。

人教版七年级数学下册5.2《平行线及其判定》教案

人教版七年级数学下册5.2《平行线及其判定》教案

5.2平行线及其判定教案◆教学目标◆◆知识与技能:(1)理解在同一平面内两条直线的位置关系只有相交和平行两种。

(2)能借助直尺和三角板过直线外一点作已知直线的平行线。

(3)体会平行公理及其推论。

◆过程与方法:通过对现实生活中平行线的认识,进一步建立空间观念,让学生经历观察、实践、讨论、体会平行公理的过程,发展学生的抽象概括能力。

◆情感态度和价值观:(1)通过对生活中平行线的认识,体验生活中处处有数学。

(2)通过师生的共同活动,促使学生在学习活动中学会与人交流,培养学生的良好情感和主动参与意识。

(3)学生经历观察、动手操作、发现讨论等数学活动,感受数学活动充满探索性与创造性,促进学生乐于探究。

◆教学重点与难点◆◆重点:探索平行公理的过程◆难点:平行公理推论的说理◆教学方法◆1、动:教师利用多媒体设计动画情景,鼓励学生动手做,动笔画,动脑想,动口说,亲身经历知识的发生、发展过程。

2、探:教师引导学生操作模型,动手画图与合作讨论,共同探索出平行公理及推论。

同时,通过设置拓广探索、应用延伸等练习来激发学生强烈的探索欲望。

3、乐:本节课的设计力求做到“与学生的生活实践联系得紧一点,直观的多一点,动手实验的多一点,使学生的兴趣高一点,自信心强一点”,促使学生乐于学习,乐于思考,乐于探索,乐于创新。

4、渗:在整个教学过程中,渗透观察、猜想、归纳、类比等数学思维方法,同时,通过平行公理推论的教学,向学生初步渗透反证思想,让学生尝试“说点儿理”。

◆学法指导◆让学生学会观察、比较、分析、归纳,学会从具体的实例中抽象出一般规律.从中提高他们的概括能力和语言能力,并养成动手、动脑、动口的良好的学习习惯.◆教学准备◆教师:课件自制教具、三角板◆学生:三角板◆教学过程◆(一)创设情景,引入新课让学生感受一组画面,从而引出本节课题:平行线(板书课题),欣赏电脑画面,认识平行线。

在活动中教师应重点关注:(1) 学生是否能从实际生活中发现并提出数学问题。

平行线判定1-人教版七年级数学下册教案

平行线判定1-人教版七年级数学下册教案

平行线判定1-人教版七年级数学下册教案一、教学目标1.理解平行线的概念;2.学会使用平行线的定义判定两条直线是否平行;3.能熟练解决使用平行线的定义进行证明的问题。

二、教学重点1.平行线的定义;2.平行线的判定。

三、教学难点1.平行线的概念理解;2.平行线的定义判定。

四、教学过程1. 导入本节课是关于平行线的判定,那么先来了解一下什么是平行线。

请同学们画出两条相交的直线,再在其中各选取一条线段,并分别向相反方向延长,问这两条直线在哪里相遇。

大家可以试着在纸上画一下。

2. 讲解在讲解之前,我们先了解一下两个概念:直线和射线。

直线:无限延长的、方向不变的线段。

射线:有一个起点,其余部分无线延长的线段。

接下来,我们引入平行线的定义。

定义1:如果两条直线在同一个平面内,且任何时候它们都不会相交,则这两条直线互相平行。

接下来,我们来看一下平行线的判定方法。

判定方法1:如果两条直线的对应角相等,则这两条直线互相平行。

注:对应角指的是同位角,即对于两条平行线,如果它们被第三条直线所交叉,请看交叉部分对应的两个角度,并比较这两个角度大小是否相等。

请同学们在纸上尝试验证这个判定方法。

(老师给出两组角度)判定方法2:如果两条直线上的任意一组对应角相等,则这两条直线互相平行。

请同学们在纸上尝试验证这个判定方法。

3. 拓展同学们可以在纸上画两条平行线,随意选取三条直线,求出其对应角度,并验证对应角相等的定义。

老师可以将本节课的数学知识转化为生活中的应用,如何使用平行线判定两个东西是否平行。

例如,路上的平行线、化妆品的平行线等等。

五、小结•知道了平行线的概念;•学会了使用平行线的定义判定两条直线是否平行。

六、作业1.课堂练习册(PXX~PXX)的XX题。

2.自行搜索关于平行线判定的相关应用,并撰写一篇300字左右的小论文。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程与
方法
经历平行线判定方法一的发现过程,体验数学语言进行推理的简洁性。
情感态度与价值观
让学生体会用数学实验得出几何规律的重要性与合理性。
四、教学重点难点
教学
重点
利用“同位角相等,两直线平行”判定两条直线平行。
教学
难点
用数学语言表达几何的推理过程。
五、教法学法
启发引导,问题驱动,合作交流,讲练结合。
解: ∥
理由:∵∠2+∠3=180°(邻补角的定义)
∴∠3= 180°- ∠2= 180°- 135°=45 °
∵∠1=45 °
∴∠1= ∠3
∴ ∥ (同位角相等,两直线平行)
想一想:∠3还可以是哪个位置,你能证明 ∥
例2、“在同一平面内,垂直于同一直线的两条直线互相平行”是否可以看成平行线判定方法的特殊情形?
平行线的判定
年级

科目
数学
任课教师
授课时间
课题
5.2.2平行线的判定
授课类型
新课
课标依据
掌握两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
一、教材分析
本课学习由平行线的定义难以判断两条直线平行引入对于平行线判定方法的探究.先由平行线的画法得到判定方法 1
二、学情分析
从学生的年龄特征上看,初一学生年龄小、爱动、注意力集中时间短、注意不够广泛。从学生的认知特点上看初一学生只局限于一问 一答是的简单推理,不善于进行连续推理。
培养了学生的观察能力。提出具有启发性的问题,刺激学生的原有认识结构,激发学生探索问题的激情。
通过方法点拨,加深学生对所学知识的理解,掌握解决相关问题的基本方法。
通过学生练习,对有关知识加以巩固,让学生从运用所学知识解决问题的过程,获得成功的体验,从而激发他们学习的积极性。
∵a⊥b,c⊥b,(已知)
∴∠1=∠2=90°(垂直的定义)
∴a ∥ c(同位角相等,两直线平行)
议一议:
通过观察,一排旗杆都平行。 那么,任意找两根旗杆,请说明一下它们为什么平行 ? 你是如何作判断的 。
结论:在同一平面内,垂直于同一直线的两直线平行。
㈢变式练习:
1、⑴∠DEA=130°,当∠BCE= _ 时,会使得DE∥BC.
六、教学过程设计
师生活动
设计意图
㈠创设情景、引入新课:
1.复习:你会用直尺和三角板推画平行线吗?请画一画。
2.学生画好后,教师出示图1,并提问:
在推画平行线的过程中,有哪些量保持不变?
合作探究、获取结论
1.讨论:
(1)上面的画法可以看作是哪一种图形变换?
(2)在画图过程中,什么角保持不变?
(3)把图中的直线 、 看成被AB所截,则 和 的位置有什么关系?
(4)你能用数学语言叙述上面的结论吗?
2.在学生讨论归纳的基础上,教师归纳小结平行线的判定公理:
两条直线被第三条直线所截,若同位角相等,则这两条直线平行.
即同位角相等,两直线平行.
师并强调几何语言的表述方法
∵∠1=∠2
∴AB∥CD(同位角相等,两条直线平行)
㈡例题教学,体验新知
例1 已知:如图,直线 , 被所截,∠1=45°,∠2=135°,试判断 与 是否平行,并说明理由.
⑵判断:若∠1=89°,∠2=89°
则a ∥b 。( )
2、火眼金睛,找出图中的平行线
如果∠ADE=∠ABC,则_∥ __
如果∠ACD=∠F,则__∥ __
如果∠DEC=∠BCF,则_∥ __
㈣小结:
(1)在本节课的活动中,你有哪些收获?
(2)如何判定两条直线平行?
复习已学过的知识点,为本节课的学习做铺垫。
从知识经验来看,学生已经具备了对顶角邻补角角分线的性质互余互补的性质等基础知识但只是用于小题或计算而非符号推理,因此在教学中要引导学生独立思考自主探究合作交流等学习方式,培养学生良好的学习习惯。
三、教学目标
知识与
技能
(1)理解平行线的判定方法一:同位角相等,两直线平行。
(2)会用“同位角相等,两直线平行”进行简单的几何推理
相关文档
最新文档