7.3平行线的判定 教案

合集下载

平行线的判定 教案

平行线的判定 教案

平行线的判定教案教案标题:平行线的判定教案目标:1. 理解平行线的定义和性质。

2. 学会使用不同方法判定平行线。

3. 运用所学知识解决与平行线相关的问题。

教学重点:1. 平行线的定义和性质。

2. 平行线的判定方法。

教学难点:1. 运用所学知识解决与平行线相关的问题。

教学准备:1. 平行线的定义和性质的课件或教材。

2. 平行线判定的示意图或实物。

教学过程:一、导入(5分钟)1. 引入平行线的概念,让学生回顾并复习平行线的定义。

2. 提问:如何判断两条线段是平行的?二、知识讲解(15分钟)1. 讲解平行线的性质:平行线在同一平面内,永不相交,且任意一条直线与平行线的交线与另一条平行线的交线平行。

2. 介绍平行线的判定方法:a. 判定法一:同位角相等法。

当两条直线被一条横截线所切割时,同位角相等,则这两条直线平行。

b. 判定法二:内错角相等法。

当两条直线被一条横截线所切割时,内错角相等,则这两条直线平行。

c. 判定法三:平行线定理。

若两条直线分别与第三条直线相交,且同侧内角或同侧外角相等,则这两条直线平行。

三、示例演练(20分钟)1. 通过示意图或实物展示不同判定方法的应用。

2. 以具体的例题进行练习,引导学生运用不同的判定方法判断线段是否平行。

四、巩固练习(15分钟)1. 分发练习题,让学生独立完成。

2. 针对练习题进行讲解和答疑。

五、拓展延伸(10分钟)1. 提出一些与平行线相关的拓展问题,让学生思考并解答。

2. 鼓励学生探索和发现更多关于平行线的性质和判定方法。

六、总结归纳(5分钟)1. 总结平行线的定义和性质。

2. 归纳不同的平行线判定方法。

教学反思:本节课通过引入平行线的概念,讲解平行线的性质和判定方法,以及示例演练和练习题的训练,使学生能够熟练运用不同的判定方法判断线段是否平行。

同时,通过拓展延伸和总结归纳,培养学生的思维能力和归纳总结能力。

在教学过程中,要注重引导学生思考和解决问题的能力,提高学生的学习兴趣和主动性。

七年级数学下册《平行线的判定》教案、教学设计

七年级数学下册《平行线的判定》教案、教学设计
(二)过程与方法
1.提高观察能力,学会从几何图形中发现规律,总结性质。
2.培养逻辑思维能力,学会运用已知条件推导出结论。
3.学会运用画图、列表等方法整理、分析问题,提高解决问题的策略。
4.学会与同学合作交流,分享学习心得,提高合作能力。
(三)情感态度与价值观
1.培养学生严谨、认真的学习态度,对待数学问题要有耐心和毅力。
1.必做题:
a.请从生活中找到三个平行线的例子,并简要说明其应用。
b.根ቤተ መጻሕፍቲ ባይዱ平行线的判定方法,完成以下练习题:
-判断以下直线是否平行,并说明理由:
① a ∥ b, b ∥ c,求证:a ∥ c。
②在ΔABC中,AB ∥ CD,求证:∠BAC = ∠DCE。
-填空题:
①如果两条直线上的同位角相等,那么这两条直线()。
3.作业完成后,请认真检查,确保答案正确,提高作业质量。
4.作业提交时间:下节课前。
三、教学重难点和教学设想
(一)教学重点
1.理解并掌握平行线的定义及判定方法,包括同位角相等、内错角相等、同旁内角互补。
2.能够运用直尺、圆规等工具准确画出平行线。
3.熟练运用平行线的性质解决实际问题。
(二)教学难点
1.对平行线判定方法的灵活运用,尤其是同位角、内错角、同旁内角在实际问题中的应用。
2.画平行线时,学生对工具的使用不够熟练,需要加强实践操作。
1.设计具有层次性的练习题,让学生运用平行线的判定方法解题。
2.练习题包括:
a.判断题:判断哪些直线是平行线,并说明理由。
b.填空题:补充完整平行线的判定条件。
c.应用题:运用平行线性质解决实际问题。
3.学生独立完成练习题,教师巡回指导,解答学生疑问。

七年级数学下册《平行线的判定方法3》教案、教学设计

七年级数学下册《平行线的判定方法3》教案、教学设计
(三)学生小组讨论
1.分组讨论:将学生分成若干小组,每组选取一个组长,组织学生围绕以下问题进行讨论:
-同位角相等,两直线平行的判定方法在实际问题中的应用;
-判定方法3与其他平行线判定方法之间的联系与区别;
-在解决具体问题时,如何灵活运用判定方法3。
2.小组分享:各小组选派一名代表进行分享,汇报本组讨论成果。其他小组可进行补充和提问。
二、学情分析
七年级的学生已经具备了一定的几何图形观察能力,掌握了基本的几何概念和性质。在此基础上,他们对平行线的判定方法已有初步了解,但可能对判定方法3的理解和应用尚不熟练。因此,在本章节的教学中,教师需要关注以下几点:
1.学生对同位角、内错角、同旁内角等概念的理解程度,是否能够正确识别和应用;
2.学生在解决实际问题时,能否灵活运用平行线的判定方法3,并注意运用其他相关性质;
-设计拓展性题目,激发学生的求知欲,提高学生的创新能力。
四、教学内容与过程
(一)导入新课
1.生活实例导入:展示生活中常见的平行线现象,如教室黑板的上下边缘、书本的对边等。引导学生观察并提问:“你们在生活中还见过哪些平行线的例子?”通过学生回答,为新课的学习营造生活化的氛围。
2.回顾旧知:简要回顾已学的平行线判定方法,如同位角相等、内错角相等、同旁内角互补等。为新课的学习做好知识铺垫。
-组织小组讨论,让学生相互交流解题心得,共同解决疑难问题;
-鼓励学生发表自己的观点,培养学生的表达能力和团队合作意识。
6.课堂小结,总结提高:
-引导学生总结本节课所学的平行线判定方法3,梳理知识体系;
-强调判定方法3在实际问题中的应用,提高学生的几何素养。
7.课后作业,拓展延伸:
-布置适量的课后作业,巩固课堂所学知识;

八年级数学上册《平行线的判定》教案、教学设计

八年级数学上册《平行线的判定》教案、教学设计
5.教师点评:强调平行线知识在实际生活中的应用,激发学生学习数学的兴趣和热情。
五、作业布置
为了巩固本节课所学内容,培养学生的几何思维和解决问题的能力,特布置以下作业:
1.基础巩固题:完成课本第56页的练习题1、2、3,重点在于运用平行线的判定方法解决问题。
要求:学生在完成作业时,注意理解题意,规范作图,仔细计算,确保答案正确。
三、教学重难点和教学设想
(一)教学重难点
1.重点:平行线的定义及其判定方法,包括同位角相等、内错角相等、同旁内角互补等。
2.难点:理解平行线性质的推理过程,以及在实际问题中的应用。
(二)教学设想
1.采用情境教学法,引入生活中的实际案例,让学生感知平行线在实际中的应用,激发学生学习兴趣。
例:在建筑工地,工人师傅如何保证两条直线平行?引导学生思考平行线在实际生活中的重要性。
二、学情分析
八年级学生已经具备了一定的几何基础,掌握了直线、射线、角等基本概念,能够进行简单的几何推理。在此基础上,学习平行线的判定,对于学生来说是一个新的挑战。他们需要将已知的几何知识进行拓展,运用逻辑推理和空间想象能力来探索平行线的性质和判定方法。考虑到学生的认知发展水平,他们可能在学习过程中遇到以下困难:对平行线性质的理解不够深入,判定方法的选择和应用存在困惑,以及在实际问题中运用平行线知识解决问题的能力不足。因此,在教学过程中,教师应关注学生的个体差异,提供适当的引导和帮助,鼓励学生积极参与讨论,培养他们的几何思维和解决问题的能力。同时,通过实际案例的引入,激发学生的学习兴趣,增强他们对数学知识实用性的认识。
(2)针对学生的疑惑,给予耐心解答,帮助他们克服学习难点。
(3)课后辅导,针对学生的薄弱环节,进行有针对性的辅导。
6.评价方式多样化,关注学生的全面发展。

《平行线的判定教案》教师法师,轻松搞定平行线的讲解

《平行线的判定教案》教师法师,轻松搞定平行线的讲解

《平行线的判定教案》教师法师,轻松搞定平行线的讲解一、教学目标(1)了解平行线的基本定义和性质;(2)掌握平行线的判定方法及实际应用;(3)培养学生的逻辑思维能力和直观理解能力。

二、教学方法(1)导入法:激发学生学习兴趣;(2)适当抽象化方法:强调概念的本质和内涵;(3)实践方法:通过丰富多样的例题,提高学生的实际应用能力。

三、教学步骤1.导入通过以下问题开展导入:平面中,一条直线为什么不能有一个以上的平行线?2.讲解(1)基本定义和性质平行线的定义:在同一个平面内,如果两条直线在平面内无限延长,它们的交点是无限远,那么这两条线就是平行线。

平行线的性质:平行线之间的距离始终相等,并且不存在交点。

(2)判定方法(A)同位角判定法:在同一直线上有两个与另外一条直线相交的直线,如果同侧内角或同侧外角相等,则这两条直线平行。

(B)平行线判定法:两条直线的任意两个内角的和为180度即为平行线。

(3)实际应用在现实生活中,平行线经常出现在建筑、道路等方面,例如建筑中的梁柱、尺、竖直线、地下管道、电缆等。

因此,学生能够将判定平行线的方法应用于实际生活中,在实际中通过计算距离、建构图形等方式比较容易判定平行线。

3.实践让学生做以下实践例题,加深对平行线判定方法的理解:【例题】如图,已知AB平行COR,OB与CD垂直,求∠AOB和∠COD的大关系。

(1)根据AB平行COR,可以得到∠AOB+∠BOC=180度,因此∠AOB和∠COD的和为180度;(2)根据OB与CD垂直得到∠AOC=90度,因此∠COD-∠AOB=90度;(3)将第(1)步的结果带入第(2)步的公式中,得到∠COD=135度,∠AOB=45度;(4)∠COD大于∠AOB,因此答案为:∠COD>∠AOB。

四、总结通过教学,学生可以掌握平行线的基本定义和性质,掌握平行线的判定方法及实际应用,培养学生的逻辑思维能力和直观理解能力,同时也可以提高他们的数学素养。

七年级数学《平行线的判定》几何逻辑教案

七年级数学《平行线的判定》几何逻辑教案

七年级数学《平行线的判定》几何逻辑教案一、教学目标1. 知识与技能:学习并掌握平行线的判定方法,包括线段的比较法、同位角判定法和内错角判定法。

2. 过程与方法:通过引导学生观察、归纳和比较,培养学生的逻辑思维和分析问题的能力。

3. 情感态度与价值观:培养学生对几何知识的兴趣和好奇心,增强学生的合作学习意识。

二、教学重难点1. 教学重点:平行线的判定方法。

2. 教学难点:理解同位角判定法和内错角判定法的原理及应用。

三、教学过程Step 1 引入新知1. 教师出示两组平行线的图片,并提问学生如何判断这些线是否平行。

2. 学生自由探讨并提出各自的判断方法,并与同学分享。

3. 教师引导学生思考和归纳,整理出线段的比较法、同位角判定法和内错角判定法。

Step 2 线段的比较法1. 教师出示一段实际线段,并引导学生细致观察线段的形状和方向。

2. 学生根据观察,判断其他线段与给定线段的关系,并找出判断依据。

3. 教师帮助学生总结线段比较法的判定条件和方法。

Step 3 同位角判定法1. 教师出示一对平行线及其对应的同位角示意图,并引导学生观察同位角之间的关系。

2. 学生通过观察和比较,提出同位角判定法的使用条件和判定方法。

3. 教师示范实例,帮助学生理解同位角判定法的原理和应用。

Step 4 内错角判定法1. 教师出示一对相交线及其对应的内错角示意图,并引导学生观察内错角之间的关系。

2. 学生根据观察和比较,提出内错角判定法的使用条件和判定方法。

3. 教师辅助学生分析内错角判定法的原理,并进行相关练习。

Step 5 练习与巩固1. 学生独立完成教材上的练习题,以检验对平行线判定方法的掌握程度。

2. 学生互相检查和讨论答案,解决存在的问题,并向教师请教不理解的地方。

四、教学反思通过引导学生观察和思考,本节课成功地引入了平行线的判定方法。

采用观察-归纳-比较的教学模式,培养了学生的逻辑思维能力和问题解决能力。

同时,教师注重与学生的互动和讨论,激发了学生的学习兴趣。

北师大版八年级上册数学 7.3 平行线的判定教案1

北师大版八年级上册数学   7.3  平行线的判定教案1

7.3 平行线的判定1.了解并掌握平行线的判定公理和定理;(重点)2.了解证明的一般步骤.(重点)一、情境导入 我们知道,光线从空气中进入水中会发生折射现象,光线从水中进入空气中,同样也会发生折射现象.如图为光线从空气中进入水中,再从水中进入空气中的示意图.由于折射率相同,因此有∠1=∠4,∠2=∠3,那么你能说明光线c 与d 平行吗?二、合作探究探究点一:平行线的判定【类型一】平行线的判定公理如图,直线l 1、l 2、l 3、l 4两两相交,且∠1=∠2=∠3.求证:l 1∥l 2,l3∥l 4.解析:∠1和∠2是直线l 1、l 2被直线l 3所截得的同位角,∠2和∠3是直线l 3、l 4被直线l 2所截得的同位角,所以由∠1=∠2可以判定l 1∥l 2,由∠2=∠3可以判定l 3∥l 4.证明:∵∠1=∠2(已知),∴l 1∥l 2(同位角相等,两直线平行).∵∠2=∠3(已知),∴l 3∥l 4(同位角相等,两直线平行).方法总结:利用平行线的判定公理进行推理证明的关键是分清同位角是哪两条直线被第三条直线所截构成的.【类型二】 平行线的判定定理1如图,已知AB ,CD 与直线EF 分别相交于点B ,C ,且∠ABE=∠DCF.求证:AB∥CD.解析:由等角的补角相等可知∠ABC =∠BCD.再由平行线的判定定理1即可得到结论.证明:因为∠ABC +∠ABE =∠DCB+∠DCF=180°(邻补角的定义),∠ABE =∠DCF(已知),所以∠ABC=∠DCB(等角的补角相等),所以AB∥CD(内错角相等,两直线平行).方法总结:要证明两条直线平行,主要是指出图形中两条直线被第三条直线所截的角,观察是否有同位角相等、内错角相等、同旁内角互补或由角的数量关系推得同位角相等、内错角相等、同旁内角互补. 【类型三】平行线的判定定理2如图,直线AE ,CD 相交于点O ,如果∠A=110°,∠1=70°,就可以说明AB∥CD,这是为什么?解析:由题意可知∠1=∠AOD=70°,又因为∠A=110°,所以∠A+∠AOD=180°,故AB∥CD.解:因为∠1=∠AOD(对顶角相等),∠1=70°,所以∠AOD=70°.又因为∠A=110°,所以∠A+∠AOD=180°(等式的性质),所以AB∥CD(同旁内角互补,两直线平行).方法总结:(1)本题运用数形结合思想,平行线的判定是由角之间的数量关系到“形”的判定.要判定两直线平行,可围绕截线找同位角、内错角或同旁内角,若同位角相等、内错角相等或同旁内角互补,则两直线平行.(2)若题中的结论能用同位角相等、内错角相等或同旁内角互补中的一个方法说明两直线平行时,一般都要通过结合对顶角、互补角等知识来说明.探究点二:平行线的判定公理、定理的综合应用如图,已知DE,BF分别平分∠ADC和∠ABC,∠1=∠2,∠ADC=∠ABC,因此可推出图中哪些线段平行?为什么?解析:结合图形以及已知条件,能证明DE∥BF,DF∥BE和AD∥BC.解:DE∥BF,DF∥BE,AD∥BC.理由如下:(1)DE∥BF.∵∠1=∠2(已知),∴DE∥BF(同位角相等,两直线平行).(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分线定义).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代换).又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴DF∥BE(内错角相等,两直线平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分线定义),∠ADE=∠1(等量代换).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形内角和为180°及等量代换),即∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行).方法总结:解此类题应首先结合图形猜测结论,然后证明.证明两条直线平行,一般先找它们的截线,再求同位角相等(或内错角相等,同旁内角互补)来说明两直线平行.若没有公共截线,则需作出两直线的截线辅助证明.三、板书设计平行线,的判定)⎩⎪⎨⎪⎧判定公理:同位角相等,两直线平行判定定理⎩⎪⎨⎪⎧内错角相等,两直线平行同旁内角互补,两直线平行本节课通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力,逐步掌握规范的推理论证格式.。

7.3平行线的判定(教案)

7.3平行线的判定(教案)
二、核心素养目标
《7.3平行线的判定》教学旨在培养学生以下核心素养:
1.培养学生的空间观念和几何直观能力,使其能够从图形中抽象出几何关系,形成对平行线概念的理解;
2.培养学生的逻辑推理能力,通过观察、分析、归纳,掌握平行线的判定方法,并运用这些方法进行推理证明;
3.培养学生的数学建模能力,使学生能够将现实问题转化为数学问题,运用平行线的判定方法解决实际问题;
在小组讨论中,我发现有些同学在分享成果时表达不够清晰,这可能是由于他们对平行线判定方法的掌握不够熟练。为了提高学生的表达能力,我计划在接下来的课程中,多组织一些课堂讨论和分享活动,鼓励学生大胆地表达自己的观点,同时培养他们的逻辑思维和语言组织能力。
总之,在《7.3平行线的判定》这节课的教学中,我收获了许多宝贵的经验,也发现了需要改进的地方。在今后的教学中,我会针对学生的实际情况,调整教学策略,努力提高教学效果,让每位学生都能在轻松愉快的氛围中掌握几何知识。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《7.3平行线的判定》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两条直线始终不会相交的情况?”(如铁轨、操场跑道等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索平行线的判定方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平行线在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一环节:情景引入 活动内容:
回顾两直线平行的判定方法
师:前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢? 生1:在同一平面内,不相交的两条直线就叫做平行线.
生2:两条直线都和第三条直线平行,则这两条直线互相平行.
生3:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行. 师:很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.
上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.
我们知道:“在同一平面内,不相交的两条直线叫做平行线”是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨. 活动目的:
回顾平行线的判定方法,为下一步顺利地引出新课埋下伏笔. 教学效果:
由于平行线的判定方法是学生比较熟悉的知识,教师通过对话的形式,可以使学生很快地回忆起这些知识.
第二环节:探索平行线判定方法的证明 活动内容:
① 证明:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.
师:这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:
如图,已知,∠1和∠2是直线a 、b 被直线c 截出的同旁内角,且∠1与∠2互补,求证:a ∥b .
如何证明这个题呢?我们来分析分析. 师生分析:要证明直线a 与b 平行,可以想到应用平行线的判定公理来证
明.这时从图中可以知道:∠1与∠3是同位角,所以只需证明∠1=∠3,则a 与b 即平行.
因为从图中可知∠2与∠3组成一个平角,即∠2+∠3=180°,所以:
∠3=180°-∠2.又因为已知条件中有∠2与∠1互补,即:∠2+∠1=180°,所以∠1=180°-∠2,因此由等量代换可以知道:∠1=∠3. 师:好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“∵”读作“因为”,“∴”读作“所以”)
证明:∵∠1与∠2互补(已知) ∴∠1+∠2=180°(互补定义) ∴∠1=180°-∠2(等式的性质)∵∠3+∠2=180°(平角定义) ∴∠3=180°-∠2(等式的性质) ∴∠1=∠3(等量代换)
∴a ∥b (同位角相等,两直线平行)
这样我们经过推理的过程证明了一个命题是真命题,我们把这个真命题称为:直线平行的判定定理.
这一定理可简单地写成:同旁内角互补,两直线平行. 注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内. ② 证明:内错角相等,两直线平行.
师:小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?(见相关动画)
1
2
3
a b c
生:我认为他的作法对.他的作法可用上图来表示:∠CFE=45°,∠BEF=45°.因为∠BEF与∠FEA 组成一个平角,所以∠FEA=180°-∠BEF=180°-45°=135°.而∠CFE与∠FEA是同旁内角.且这两个角的和为180°,因此可知:CD∥A B.
师:很好.从图中可知:∠CFE与∠FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.
师生分析:已知,∠1和∠2是直线a、b被直线c截出的内错角,且∠1=∠2.
求证:a∥b
证明:∵∠1=∠2(已知)∠1+∠3=180°(平角定义)
∴∠2+∠3=180°(等量代换)∴∠2与∠3互补(互补的定义)∴a∥b(同旁内角互补,两直线平行).
这样我们就又得到了直线平行的另一个判定定理:内错角相等,两直线平行.
③借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?
生1:已知,如图,直线a⊥c,b⊥c.求证:a∥b.
证明:∵a⊥c,b⊥c(已知)
∴∠1=90°∠2=90°(垂直的定义)
∴∠1=∠2(等量代换)
∴b∥a(同位角相等,两直线平行)
生2:由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.
师:同学们讨论得真棒.下面我们通过练习来熟悉掌握直线平行的判定定理.
活动目的:
通过对学生熟悉的平行线判定的证明,使学生掌握平行线判定公理推导出的另两个判定定理,并逐步掌握规范的推理格式.
教学效果:
由于学生有了以前学习过的相关知识,对几何证明题的格式有所了解,今天的学习只不过是将原来的零散的知识点以及学生片面的认识进行归纳,学生的认识更提高一步.
第三环节:反馈练习
活动内容:
课本第231页的随堂练习第一题
活动目的:
巩固本节课所学知识,让教师能对学生的状况进行分析,以便调整前进.
教学效果:
由于此题只是简单地运用到平行线的判定的三个定理(公理),因此,学生都能很快完成此题.
第四环节:学生反思与课堂小结
活动内容:
①这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表:
② 由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角. ③ 注意:证明语言的规范化.推理过程要有依据. 活动目的:
通过对平行线的判定定理的归纳,使学生的认识有进一步的升华,再一次体会证明格式的严谨,体会到数学的严密性.
作 业 设 计
1.如图,下列说法中,正确的是( ).
A .因为∠A +∠D =180°,所以AD ∥BC
B .因为∠
C +∠
D =180°,所以AB ∥CD C .因为∠A +∠D =180°,所以AB ∥CD D .因为∠A +∠C =180°,所以AB ∥CD
2.如图,直线a ,b 与直线c 相交,形成∠1,∠2,…,∠8共八个角,请你填上你认为适当的一个条件:__________,使a ∥b .
3.如图,一个零件ABCD 需要AB 边与CD 边平行,现只有一个量角器,测得拐角∠ABC
A=∠D,∠B=∠C,试判断
平行线是众多平面图形与空间图形的基本构成要素之一,它主要借助角来研究两条直线之间的位置关系,即通过两条直线与第三条直线相交所成的角来判定两条直线平行与否,在教学中,要紧紧围绕这些角(同位角、内错角、同旁内角)与平行线之间的关系展开。

相关文档
最新文档