每一个角度的三角函数值表

合集下载

(完整版)三角函数特殊角值表

(完整版)三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan√3/31√3-√3-1-√3/31、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=21,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y2、列表法:说明:正弦值随角度变化,即0˚ 30˚ 45˚ 60˚ 90˚变化;值从02122 23 1变化,其余类似记忆.3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时,则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。

②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为2m 形式,正切、余切值可表示为3m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.30˚ 123145˚ 1212 60˚ 3函数名正弦余弦正切余切正割余割符号sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边三角函数对照表三角函数SIN COS TAN 三角函数SIN COS TAN 0°0 1 0 90° 1 0 无1°0.0174 0.9998 0.0174 89°0.9998 0.0174 57.2899 2°0.0348 0.9993 0.0349 88°0.9993 0.0348 28.6362 3°0.0523 0.9986 0.0524 87°0.9986 0.0523 19.0811 4°0.0697 0.9975 0.0699 86°0.9975 0.0697 14.3006 5°0.0871 0.9961 0.0874 85°0.9961 0.0871 11.4300 6°0.1045 0.9945 0.1051 84°0.9945 0.1045 9.5143 7°0.1218 0.9925 0.1227 83°0.9925 0.1218 8.1443 8°0.1391 0.9902 0.1405 82°0.9902 0.1391 7.1153 9°0.1564 0.9876 0.1583 81°0.9876 0.1564 6.3137 10°0.1736 0.9848 0.1763 80°0.9848 0.1736 5.6712 11°0.1908 0.9816 0.1943 79°0.9816 0.1908 5.1445 12°0.2079 0.9781 0.2125 78°0.9781 0.2079 4.7046 13°0.2249 0.9743 0.2308 77°0.9743 0.2249 4.3314 14°0.2419 0.9702 0.2493 76°0.9702 0.2419 4.0107 15°0.2588 0.9659 0.2679 75°0.9659 0.2588 3.7320二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin 22sin cos cos 2cos 2sin 22cos 2112sin 2αααααααα==-=-=-2tan tan 21tan 2ααα=--sin 33sin 4sin 3cos34cos33cos .3tan tan 3tan 313tan 2αααααααααα=-=--=--三角函数的和差化积公式 三角函数的积化和差公式sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=⋅+--=⋅+-+=⋅+--=-⋅[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=++-⋅=+--⋅=++-⋅=-+--化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)22sin cos sin()a x b x a b x φ±=+±其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan ba φ=确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

每一个角度的三角函数值表

每一个角度的三角函数值表

(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0. 二分之根号3cos45=0. 二分之根号2cos60=0.5cos90=0tan0=0tan30=0. 三分之根号3tan45=1tan60=1. 根号3tan90=无cot0=无cot30=1. 根号3cot45=1cot60=0. 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。

(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。

在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。

在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。

无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

附:三角函数值表sin0=0,sin15=(√6-√2)/4 ,sin30=1/2,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 ,sin90=1,sin105=√2/2*(√3/2+1/2)sin120=√3/2sin135=√2/2sin150=1/2sin165=(√6-√2)/4sin180=0sin270=-1sin360=0sin1=0. sin2=0. sin3=0.sin4=0.41253 sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0.65448 sin12=0.sin13=0. sin14=0. sin15=0.sin16=0. sin17=0.27367 sin18=0.49474sin19=0.71567 sin20=0.56687 sin21=0.sin22=0.5912 sin23=0.92737 sin24=0.sin25=0. sin26=0.90774 sin27=0.sin28=0.58908 sin29=0. sin30=0.sin31=0.00542 sin32=0.32049 sin33=0.5027 sin34=0.07468 sin35=0.1046 sin36=0.24731 sin37=0.20483 sin38=0.56583 sin39=0.98375 sin40=0.65392 sin41=0.05073 sin42=0.88582 sin43=0.24985 sin44=0.89972 sin45=0.65475 sin46=0.86511 sin47=0.91705 sin48=0.73941 sin49=0.27719 sin50=0.8978 sin51=0.69708 sin52=0.67219 sin53=0.72928 sin54=0.49474 sin55=0.89918 sin56=0.50417 sin57=0.54239 sin58=0.6426 sin59=0.21122 sin60=0.44386 sin61=0.93957 sin62=0.89269 sin63=0.83678 sin64=0.9167 sin65=0.66499 sin66=0.26009 sin67=0.24404 sin68=0.67873 sin69=0.72017 sin70=0.59083 sin71=0.93167 sin72=0.51535 sin73=0.30354 sin74=0.83189 sin75=0.90683 sin76=0.59965 sin77=0.52352 sin78=0.38057 sin79=0.7664 sin80=0.2208 sin81=0.51378 sin82=0.15704 sin83=0.1322 sin84=0.82733 sin85=0.17455 sin86=0.98242 sin87=0.45738 sin88=0.90958 sin89=0.63913sin90=1cos1=0.63913 cos2=0.90958 cos3=0.45738 cos4=0.98242 cos5=0.17455 cos6=0.82733 cos7=0.1322 cos8=0.15704 cos9=0.51378cos10=0.2208 cos11=0.7664 cos12=0.38057 cos13=0.52352 cos14=0.59965 cos15=0.90683 cos16=0.83189 cos17=0.30355 cos18=0.51535 cos19=0.93168 cos20=0.59084 cos21=0.72017 cos22=0.67874 cos23=0.24404 cos24=0.26009 cos25=0.66499 cos26=0.9167 cos27=0.83679 cos28=0.8927 cos29=0.93957 cos30=0.44387 cos31=0.21123 cos32=0.6426 cos33=0.5424 cos34=0.50417 cos35=0.89918 cos36=0.49474 cos37=0.72928 cos38=0.67219 cos39=0.69709 cos40=0.8978 cos41=0.2772 cos42=0.73942 cos43=0.91705 cos44=0.86512 cos45=0.65476 cos46=0.89974 cos47=0.24985 cos48=0.88582 cos49=0.05074 cos50=0.65394 cos51=0.98375 cos52=0.56583 cos53=0.20484 cos54=0.24731 cos55=0.10462 cos56=0.07468 cos57=0.50272 cos58=0.32049 cos59=0.00544 cos60=0.00001 cos61=0.63371 cos62=0. cos63=0.95468cos64=0. cos65=0. cos66=0.58004cos67=0.92737 cos68=0.59122 cos69=0.cos70=0.56688 cos71=0. cos72=0.cos73=0. cos74=0. cos75=0.cos76=0. cos77=0. cos78=0.cos79=0. cos80=0. cos81=0.cos82=0. cos83=0. cos84=0.cos85=0. cos86=0. cos87=0.cos88=0. cos89=0.72836cos90=0tan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0.29046 tan8=0. tan9=0.tan10=0. tan11=0. tan12=0.00221tan13=0.55631 tan14=0. tan15=0.11227tan16=0.88079 tan17=0. tan18=0.29063tan19=0. tan20=0. tan21=0.54158tan22=0.51568 tan23=0.96047 tan24=0.85361 tan25=0.49986 tan26=0.58614 tan27=0.44288 tan28=0.14788 tan29=0.2769 tan30=0.96257 tan31=0.75604 tan32=0.93275 tan33=0.75104 tan34=0.24265 tan35=0.97097 tan36=0.53609 tan37=0.27942 tan38=0.67174 tan39=0.50072 tan40=0.72799 tan41=0.62267 tan42=0.78399 tan43=0.76618 tan44=0.70739 tan45=0.99999 tan46=1.05693 tan47=1.46826 tan48=1.91927 tan49=1.10092 tan50=1.421 tan51=1.5051 tan52=1.30785 tan53=1.04098 tan54=1.11733 tan55=1.21144 tan56=1.27403 tan57=1.45827 tan58=1.10506 tan59=1.05173 tan60=1.88767 tan61=1.14235 tan62=1.63318 tan63=1.51503 tan64=2.9296 tan65=2.95586 tan66=2.4215 tan67=2.3753 tan68=2.62946 tan69=2.38023 tan70=2.46216 tan71=2.5822 tan72=3.52526 tan73=3.41404 tan74=3.09087 tan75=3.88776 tan76=4.58455 tan77=4.4153 tan78=4.8456 tan79=5.0307 tan80=5.7707 tan81=6.5041 tan82=7.4207 tan83=8.4593 tan84=9.2587 tan85=11.132 tan86=14.1942 tan87=19.816 tan88=28.5515 tan89=57.9144tan90=无取值。

常见三角函数值表

常见三角函数值表

常见三角函数值表
三角函数是数学中的重要概念,在几何学、物理学、工程学等领域都有广泛应用。

常见的三角函数有正弦、余弦和正切函数,它们的数值在特定角度下是固定的。

下面是常见角度对应的三角函数值表,希望能帮助大家更好地理解和应用三角函数。

正弦函数值表
角度(度)0 30 45 60 90 120 135 150 180
正弦值0 0.5 √2/2√3/2 1 √3/2√2/20.5 0
余弦函数值表
角度(度)0 30 45 60 90 120 135 150 180
余弦值 1 √3/2√2/20.5 0 -0.5 -√2/2-√3/2-1
正切函数值表
角度(度)0 30 45 60 90 120 135 150 180
正切值0 √3/3 1 √3不存在-√3-1 -√3/30
通过这些数值表格,我们可以看到不同角度下三角函数的数值变化规律。

在实
际应用中,我们常常需要根据具体情况来计算三角函数的值,这些数值表格可以为我们提供一个参考,帮助我们更快地得到结果。

希望大家可以通过学习三角函数值表,更深入地理解三角函数的性质和应用,
为自己的学习和工作增添一份帮助。

特殊三角函数值对照表(特殊角的三角函数值)

特殊三角函数值对照表(特殊角的三角函数值)

特殊三角函数值对照表(特殊角的三角函数值)《特殊角的三角函数值》是人教版数学九年级下册第二十八章的内容,特殊三角函数值一般指在0,30°,45°,60°,90°,180°角下的正余弦值。

这些角度的三角函数值是经常用到的。

并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。

具体的三角函数值如下表:扩展资料:黄金三角函数介绍:α=18°(π/10) sinα=(√5-1)/4 cosα=√(10+2√5)/4tαnα=√(25-10√5)/5cscα=√5+1 secα=√(50-10√5)/5 cotα=√(5+2√5)α=36°(π/5) sinα=√(10-2√5)/4 cosα=(√5+1)/4tαnα=√(5-2√5)cscα=√(50+10√5)/5 secα=√5-1 cotα=√(25+10√5)/5α=54°(3π/10) sinα=(√5+1)/4 cosα=√(10-2√5)/4 tαnα=√(25+10√5)/5是数学中属于初等函数中的超越函数的一类函数。

它们的本质是任意角的集合与一个比值的集合的变量之间的映射。

通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。

另一种定义是在直角三角形中,但并不完全。

扩展资料:三角函数在复数中有重要的应用。

三角函数也是物理学中的常用工具。

它有六种基本函数函数名正弦余弦正切余切正割余割符号 sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边特殊角的值如下表:在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A 的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。

扩展资料:sinα = tanα × cosα(即sinα / cosα = tanα )cosα = cotα × sinα (即cosα / sinα = cotα)tanα = sinα × secα (即tanα / sinα = secα)sin ( α ± β ) = sinα · cosβ ± cosα · sinβsin ( α + β + γ ) = sinα · cosβ · cosγ +cosα · sinβ · cosγ + cosα · cosβ · sinγ - sinα · sinβ · sinγcos ( α ± β ) = cosα cosβ ∓ sinβ sinαtan ( α ± β ) = ( tanα ± tanβ ) / ( 1 ∓ tanα tanβ )完整初中三角函数值表如下图所示:常见的三角函数有正弦函数、余弦函数和正切函数。

三角函数值对照表

三角函数值对照表

三角函数值对照表
弧度和角度的关系
在三角函数中,我们通常使用弧度来表示角度的大小。


度和角度的转换关系是π 弧度 = 180°,即π 弧度等于180度。

因此,在进行角度和弧度的转换时,可以通过简单的换算来实现。

正弦函数的值对照表
正弦函数是三角函数中的一种,用sin表示。

下面是角度
与正弦函数值的对照表:
角度(°)弧度(rad)正弦值
000
30π/61/2
45π/4√2/2
60π/3√3/2
90π/21
余弦函数的值对照表
余弦函数是三角函数中的一种,用cos表示。

下面是角度
与余弦函数值的对照表:
角度(°)弧度(rad)余弦值
001
30π/6√3/2
45π/4√2/2
60π/31/2
90π/20
正切函数的值对照表
正切函数是三角函数中的一种,用tan表示。

下面是角度与正切函数值的对照表:
角度(°)弧度(rad)正切值
000
30π/6√3/3
45π/41
60π/3√3
90π/2未定义
总结
通过以上对照表可以清晰地显示出不同角度下三角函数的值,对于理解三角函数在不同角度下的表现具有重要意义,也方便我们在数学计算中的应用。

熟练掌握三角函数值的对照表有助于提高数学运算效率,希望对您有所帮助。

三角函数值

三角函数值

三角函数值(附三角函数值表)[标签:三角函数]中考热点资讯免费订阅(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0.866025404 二分之根号3cos45=0.707106781 二分之根号2cos60=0.5cos90=0tan0=0tan30=0.577350269 三分之根号3tan45=1tan60=1.732050808 根号3tan90=无cot0=无cot30=1.732050808 根号3cot45=1cot60=0.577350269 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。

(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。

在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。

在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。

无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

sin cos tan 三角函数值表

sin cos tan 三角函数值表

sin cos tan 三角函数值表在数学中,三角函数是一种非常常见且重要的函数类型,其中最常见的三个三角函数分别是正弦函数(sin)、余弦函数(cos)和正切函数(tan)。

这三个函数在解决各种数学问题中起着至关重要的作用,因此熟悉它们的数值表是非常有益的。

首先,我们来看正弦函数(sin)。

正弦函数是一个周期函数,其值在每个周期内都在-1到1之间变化。

在单位圆上,正弦函数的值与角度的正弦值相对应。

下面是一些常见角度对应的正弦值:0度:030度:0.545度:√2/260度:√3/290度:1这些值是在角度制下给出的,当然我们也可以将角度转换为弧度来使用正弦函数。

接下来是余弦函数(cos)。

余弦函数也是一个周期函数,其值同样在-1到1之间变化。

在单位圆上,余弦函数的值与角度的余弦值相对应。

以下是一些常见角度对应的余弦值:0度:130度:√3/245度:√2/260度:0.590度:0与正弦函数相似,余弦函数的值也可以根据需要转换为弧度制。

最后是正切函数(tan)。

正切函数是正弦函数和余弦函数的比值,其值可以是任何实数。

在单位圆上,正切函数的值与角度的正切值相对应。

以下是一些常见角度对应的正切值:0度:030度:√3/345度:160度:√390度:Undefined需要注意的是,在90度时,正切函数的值没有定义,因为在这个角度下正弦函数为1而余弦函数为0,导致分母为0。

通过了解这些三角函数值的表,我们可以更好地理解三角函数的性质和用途。

在数学问题中,三角函数常常被用于描述角度和边长之间的关系,解决各种几何和物理问题。

因此,熟练掌握三角函数值表可以帮助我们更快更准确地解决这些问题。

总的来说,正弦函数、余弦函数和正切函数是数学中不可或缺的重要工具,它们的值表对我们理解和应用这些函数起着关键作用。

通过反复练习和应用,我们可以更加熟练地运用三角函数解决各种问题,提高数学水平和解题效率。

愿每位数学爱好者都能够善于利用三角函数值表,掌握这一重要数学工具。

三角函数特殊角度表

三角函数特殊角度表

三角函数特殊角度表
这是一个三角函数特殊角度表,其中包含了一些特殊角度的正弦值、余弦值和正切值。

这些角度的值相对较为简单和常见,在三角函数计算和应用中经常被使用。

通过使用这个表格,可以方便地找到这些特殊角度的三角函数值,从而简化计算过程。

说明:
- 角度以度(°)和弧度(rad)两种形式给出。

- 正弦值、余弦值和正切值分别对应三角函数sin、cos和tan。

- 0°的三角函数值为0,90°的正弦值为1,余弦值为0,正切值为无穷大。

请注意,在实际应用中,角度可以是任意的实数,并且三角函数值可以通过计算器或数学软件来获得精确结果。

但特殊角度的三角函数值是一些重要的常数,对于初学者而言,掌握这些值可以帮助理解和应用三角函数。

希望这份三角函数特殊角度表能对你有所帮助!。

三角函数特殊角值表

三角函数特殊角值表

角度 030456090120135150180270360函数角 a 的弧度0 π /6 π/4 π /3 π /2 2π /3 3π /4 5π /6π 3π /22πsin 0 1/2 √ 2/2 √3/2 1 √ 3/2 √ 2/2 1/2 0 -1 0cos1 √ 3/2 √ 2/2 1/2 0-1/2 -√ 2/2 -√ 3/2 -1 01tan 0√ 3/31√3-√ 3-1-√ 3/31、图示法: 借助于下边三个图形来记忆,即便有所忘记也可依据图形从头推出:sin30 =cos60° °= 1 , sin45 °=cos45°=2, tan30 °=cot60 °=3, tan 45 °=cot45 °=122 322123130?45?60? 311正弦函数sin θ=y/r 余弦函数 cos θ=x/r 正切函数 tan θ=y/x余切函数 cot θ=x/y 正割函数 sec θ=r/x 余割函数 csc θ=r/y2、列表法:说明:正弦值随角度变化,即0?30? 45? 60? 90?变化;值从 012 3 1 变化,其他近似记忆.2223、规律记忆法: 察看表中的数值特点,可总结为以下记忆规律:① 有界性:(锐角三角函数值都是正当)即当0°< < 90°时,则 0< sin < 1; 0< cos < 1 ; tan > 0 ; cot >0。

② 增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当 0< A < B <90°时,则 sinA < sinB ;tanA < tanB ; cosA > cosB ;cotA > cotB ;特别地:若 0°< < 45°,则 sinA < cosA ; tanA < cotA若 45°< A < 90°,则 sinA >cosA ; tanA > cotA . 4、口决记忆法: 察看表中的数值特点正弦、余弦值可表示为m形式,正切、余切值可表示为m形式,相关m 的值可概括成23顺口溜:一、二、三;三、二、一;三九二十七.函数名正弦余弦正切余切正割余割符号sin cos tan cot sec csc正弦函数sin( A) =a/c余弦函数cos(A )=b/c正切函数tan( A ) =a/b余切函数cot( A ) =b/a此中 a 为对边, b 为邻边, c 为斜边三角函数比较表三角函数SIN COS TAN三角函数SIN COS TAN 0°01090°10无1°89°2°88°3°87°4°86°5°85°6°84°7°83°8°82°9°81°10°80°11°79°12°78°13°77°14°76°15°75°16°74°17°73°18°72°19°71°20°70°21°69°22°68°23°67°24°66°25°65°26°64°27°63°28°62°29°61°30°60°31°59°32°58°33°57°34°56°35°55°36°54°37°53°38°52°39°51°40°50°41°49°42°48°43°47°44°46°45°145°1同角基本关系式倒数关系商的关系平方关系tan cot1sin sec22sin cos1sin csc1tan csccos122cos sec1cos csc tan sec22cotsecsin1cot csc引诱公式sin()sin cos( ) cos tan()tan cot()cotsin() cossin( ) sin 3 cos( ) cos sin(22 cos() sintan()tan 3cos(2cot()cot2tan() cottan(322cot() tancot(322sin() cos2cos()sin sin( ) sin sin( 322cos( )costan()cot cos(3tan( ) tan 22 cot()tancot() cot3tan(223cot(两角和与差的三角函数公式sin( ) sin cos cos sin sin( ) sin cos cos sincos( ) cos cos sin sincos() cos cossin sintan()tan tan1 tan tantan()tan tan1 tantan)cos sin(2 ) sincos(2 ) cos)sin tan(2 ) tancot(2)cot)cot(此中 k ∈ Z)) tan)cos sin(2 ) sin) sincos(2 ) costan(2 ) tan) cot cot(2) cot)tan全能公式sin2 tan( / 2)tan 2( / 2)1 1 tan 2( / 2)costan 2( / 2)1 tan2 tan( / 2)tan 2( / 2)1半角的正弦、余弦和正切公式三角函数的降幂公式1 cos21 cos2sin( ) 2sin22cos(1 cos21 cos2cos)222tan( 1 cos 1 cos sin)cossin1 cos21二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin 2 2sin cossin33sin 4sin 3cos2 cos2sin 22cos 21 1 2sin 2cos3 4cos3 3cos . tan 22 tantan33tantan31 3tan 21 tan 2三角函数的和差化积公式三角函数的积化和差公式sinsin 2sincossincos 1 sin( ) sin()222sinsin2cossincos sin1 sin( ) sin()222coscos 2coscoscoscos 1 cos( ) cos()222coscos2sinsinsinsin1 cos( ) cos()222化 asin α ±bcos 为α一个角的一个三角函数的形式(协助角的三角函数的公式)a sin xb cosxa 2b 2 sin(x )ba、 b 的符号确立,tan此中 角所在的象限由角的值由a 确立六边形记忆法: 图形构造 “上弦中切下 割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;暗影三角形上两极点的三角函数值的平方和等于 下极点的三角函数值的平方; 随意一顶 点的三角函数值等于相邻两个极点的三角函数值的乘积。

0到360度三角函数值对照表

0到360度三角函数值对照表

0到360度三角函数值对照表度数sin cos tan0°0 1 030°1/2 √3/21/√345°√2/2√2/2 160°√3/21/2 √390° 1 0 无穷120°√3/2-1/2 -√3135°√2/2-√2/2-1150°1/2 -√3/2-1/√3180°0 -1 0210°-1/2 -√3/21/√3225°-√2/2-√2/21240°-√3/2-1/2 -√3270°-1 0 无穷300°-√3/21/2 √3315°-√2/2√2/2-1330°-1/2 √3/2-1/√3360°0 1 0由于三角函数中的数度数与它们的函数值之间具有固定的联系,我们可以根据上面列举的表格来查看不同的角度的三角函数的值:以弧度为0°、30°、45°、60°、90°、120°、135°、150°、180°、210°、225°、240°、270°、300°、330°和360°为例,分别来看它们的sin值、cos值和tan值:0°:sin为0,cos为1,tan为0;30°:sin为1/2,cos为√3/2,tan为1/√3;45°:sin为√2/2,cos为√2/2,tan为1;60°:sin为√3/2,cos为1/2,tan为√3;90°:sin为1,cos为0,tan为无穷;120°:sin为√3/2,cos为-1/2,tan为-√3;135°:sin为√2/2,cos为-√2/2,tan为-1;150°:sin为1/2,cos为-√3/2,tan为-1/√3;180°:sin为0,cos为-1,tan为0;210°:sin为-1/2,cos为-√3/2,tan为1/√3;225°:sin为-√2/2,cos为-√2/2,tan为1;240°:sin为-√3/2,cos为-1/2,tan为-√3;270°:sin为-1,cos为0,tan为无穷;300°:sin为-√3/2,cos为1/2,tan为√3;315°:sin为-√2/2,cos为√2/2,tan为-1;330°:sin为-1/2,cos为√3/2,tan为-1/√3;360°:sin为0,cos为1,tan为0。

完整的三角函数表值查表0-360

完整的三角函数表值查表0-360

完整的三角函数表值查表0-360
三角函数是初中数学的重要知识点,熟练的掌握常见的初中三角函数值对大家解题有事半功倍的效果,接下来就把常见的特殊三角函数值表分享出来。

0-360度三角函数值
三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

常见的三角函数包括正弦函数、余弦函数和正切函数。

正弦函数:sinα
在直角三角形中,将大小为α(单位为弧度)的角对边长度比斜边长度的比值求出,函数值为上述比的比值,也是csc(α)的倒数。

余弦函数:cos(α)
在直角三角形中,将大小为α(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(α)的倒数。

正切函数:tan(α)
在直角三角形中,将大小为α(单位为弧度)的角对边长度比邻边长度的比值求出,函数值为上述比的比值,也是cot(α)的倒数。

三角函数的函数关系
(一)倒数关系
①tanαcotα=1
②sinαcscα=1
③cosαsecα=1 (二)商数关系tanα=sinα/cosαcotα=cosα/sinα(三)平方关系
①sin²α+cos²=1
②1+tan²α=sec²α
③1+cot²α=csc²α。

三角函数表查询

三角函数表查询

(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0.866025404 二分之根号3cos45=0.707106781 二分之根号2cos60=0.5cos90=0tan0=0tan30=0.577350269 三分之根号3tan45=1tan60=1.732050808 根号3tan90=无cot0=无cot30=1.732050808 根号3cot45=1cot60=0.577350269 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。

(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。

在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。

在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。

无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

三角函数特殊角值表

三角函数特殊角值表

关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
公式六: π/2±α及 3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
sin(π/2-α)=cosα
cos(π/2+α)=-sinα
cos(π/2-α)=sinα
tan(π/2+α)=-cotα
sin(-α)=-sinα
——仅供参考
cos(-α)=cosα
tan(-α)=-tanα
公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关
系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
公式五: 利用公式一和公式三可以得到 2π-α与α的三角函数值之间的
tan(π/2-α)=cotα
sin(3π/2+α)=-cosα
sin(3π/2-α)=-cosα
cos(3π/2+α)=sinα
cos(3π/2-α)=-sinα
tan(3π/2+α)=-cotα
tan(3π/2-α)=cotα
(以上 k∈Z)
——仅供参考
利用公式二和公式三可以得到的三角函数值之间的关系
一、特殊角三角函数值
角度
120
180
0° 30° 45° 60° 90°
135° 150°
函数
°
°
270 360°
°
角 a 的弧 0

sin
0
1
0 —1 0
cos
1
0 —1 — 2
2
2
— 3
—1
0

完整的三角函数值表

完整的三角函数值表

完整的三角函数值表三角函数值表是数学中一个重要的表格,它记录了各种角度的正弦、余弦和正切的数值。

对于学习三角函数和解决数学问题来说,掌握三角函数值表是非常有帮助的。

下面是一个完整的三角函数值表,包括角度从0度到90度的正弦、余弦和正切的数值。

在三角函数值表中,我们通常使用度来表示角度。

角度是一个物体相对于某个参考点或参考方向旋转的量度。

下面是角度从0度到90度的三角函数值表:角度(度)正弦余弦正切0 0 1 01 0.017452406 0.999847695 0.0174550642 0.034899497 0.999390827 0.0349207693 0.052335956 0.998629535 0.0524077794 0.069756474 0.99756405 0.069926815 0.087155743 0.996194698 0.0874886646 0.104528463 0.994521895 0.1051042357 0.121869343 0.992546152 0.122784568 0.139173101 0.990268069 0.1405408349 0.156434465 0.987688341 0.1583844410 0.173648178 0.984807753 0.1763269811 0.190808995 0.981627183 0.19438030912 0.207911691 0.978147601 0.21255656113 0.224951054 0.974370065 0.23086819114 0.241921896 0.970295726 0.24932800215 0.258819045 0.965925826 0.26794919216 0.275637356 0.961261696 0.28674538517 0.292371705 0.956304756 0.30573068118 0.309016994 0.951056516 0.32491969619 0.325568154 0.945518576 0.34432761320 0.342020143 0.939692621 0.36397023430 0.5 0.866025404 0.57735026945 0.707106781 0.707106781 160 0.866025404 0.5 1.73205080890 1 0 undefined在三角函数值表中,正弦的值可以直接读取,表示角度对应的比值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

每一个角度的三角函数值表(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0. 二分之根号3cos45=0. 二分之根号2cos60=0.5cos90=0tan0=0tan30=0. 三分之根号3tan45=1tan60=1. 根号3tan90=无cot0=无cot30=1. 根号3cot45=1cot60=0. 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。

(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。

在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。

在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。

无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

附:三角函数值表sin0=0,sin15=(√6-√2)/4 ,sin30=1/2,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 ,sin90=1,sin105=√2/2*(√3/2+1/2)sin120=√3/2sin135=√2/2sin150=1/2sin165=(√6-√2)/4sin180=0sin270=-1sin360=0sin1=0. sin2=0. sin3=0.sin4=0.41253 sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0.65448 sin12=0.sin13=0. sin14=0. sin15=0.sin16=0. sin17=0.27367 sin18=0.49474sin19=0.71567 sin20=0.56687 sin21=0.sin22=0.5912 sin23=0.92737 sin24=0.sin25=0. sin26=0.90774 sin27=0.sin28=0.58908 sin29=0. sin30=0.sin31=0.00542 sin32=0.32049 sin33=0.5027 sin34=0.07468 sin35=0.1046 sin36=0.24731 sin37=0.20483 sin38=0.56583 sin39=0.98375 sin40=0.65392 sin41=0.05073 sin42=0.88582 sin43=0.24985 sin44=0.89972 sin45=0.65475 sin46=0.86511 sin47=0.91705 sin48=0.73941 sin49=0.27719 sin50=0.8978 sin51=0.69708 sin52=0.67219 sin53=0.72928 sin54=0.49474 sin55=0.89918 sin56=0.50417 sin57=0.54239 sin58=0.6426 sin59=0.21122 sin60=0.44386 sin61=0.93957 sin62=0.89269 sin63=0.83678 sin64=0.9167 sin65=0.66499 sin66=0.26009 sin67=0.24404 sin68=0.67873 sin69=0.72017 sin70=0.59083 sin71=0.93167 sin72=0.51535 sin73=0.30354 sin74=0.83189 sin75=0.90683 sin76=0.59965 sin77=0.52352 sin78=0.38057 sin79=0.7664 sin80=0.2208 sin81=0.51378 sin82=0.15704 sin83=0.1322 sin84=0.82733 sin85=0.17455 sin86=0.98242 sin87=0.45738 sin88=0.90958 sin89=0.63913sin90=1cos1=0.63913 cos2=0.90958 cos3=0.45738 cos4=0.98242 cos5=0.17455 cos6=0.82733 cos7=0.1322 cos8=0.15704 cos9=0.51378cos10=0.2208 cos11=0.7664 cos12=0.38057 cos13=0.52352 cos14=0.59965 cos15=0.90683 cos16=0.83189 cos17=0.30355 cos18=0.51535 cos19=0.93168 cos20=0.59084 cos21=0.72017 cos22=0.67874 cos23=0.24404 cos24=0.26009 cos25=0.66499 cos26=0.9167 cos27=0.83679 cos28=0.8927 cos29=0.93957 cos30=0.44387 cos31=0.21123 cos32=0.6426 cos33=0.5424 cos34=0.50417 cos35=0.89918 cos36=0.49474 cos37=0.72928 cos38=0.67219 cos39=0.69709 cos40=0.8978 cos41=0.2772 cos42=0.73942 cos43=0.91705 cos44=0.86512 cos45=0.65476 cos46=0.89974 cos47=0.24985 cos48=0.88582 cos49=0.05074 cos50=0.65394 cos51=0.98375 cos52=0.56583 cos53=0.20484 cos54=0.24731 cos55=0.10462 cos56=0.07468 cos57=0.50272 cos58=0.32049 cos59=0.00544 cos60=0.00001 cos61=0.63371 cos62=0. cos63=0.95468cos64=0. cos65=0. cos66=0.58004cos67=0.92737 cos68=0.59122 cos69=0.cos70=0.56688 cos71=0. cos72=0.cos73=0. cos74=0. cos75=0.cos76=0. cos77=0. cos78=0.cos79=0. cos80=0. cos81=0.cos82=0. cos83=0. cos84=0.cos85=0. cos86=0. cos87=0.cos88=0. cos89=0.72836cos90=0tan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0.29046 tan8=0. tan9=0.tan10=0. tan11=0. tan12=0.00221tan13=0.55631 tan14=0. tan15=0.11227tan16=0.88079 tan17=0. tan18=0.29063tan19=0. tan20=0. tan21=0.54158tan22=0.51568 tan23=0.96047 tan24=0.85361 tan25=0.49986 tan26=0.58614 tan27=0.44288 tan28=0.14788 tan29=0.2769 tan30=0.96257 tan31=0.75604 tan32=0.93275 tan33=0.75104 tan34=0.24265 tan35=0.97097 tan36=0.53609 tan37=0.27942 tan38=0.67174 tan39=0.50072 tan40=0.72799 tan41=0.62267 tan42=0.78399 tan43=0.76618 tan44=0.70739 tan45=0.99999 tan46=1.05693 tan47=1.46826 tan48=1.91927 tan49=1.10092 tan50=1.421 tan51=1.5051 tan52=1.30785 tan53=1.04098 tan54=1.11733 tan55=1.21144 tan56=1.27403 tan57=1.45827 tan58=1.10506 tan59=1.05173 tan60=1.88767 tan61=1.14235 tan62=1.63318 tan63=1.51503 tan64=2.9296 tan65=2.95586 tan66=2.4215 tan67=2.3753 tan68=2.62946 tan69=2.38023 tan70=2.46216 tan71=2.5822 tan72=3.52526 tan73=3.41404 tan74=3.09087 tan75=3.88776 tan76=4.58455 tan77=4.4153 tan78=4.8456 tan79=5.0307 tan80=5.7707 tan81=6.5041 tan82=7.4207 tan83=8.4593 tan84=9.2587 tan85=11.132 tan86=14.1942 tan87=19.816 tan88=28.5515 tan89=57.9144tan90=无取值。

相关文档
最新文档