对数与对数函数的运算设计

合集下载

对数的运算教案

对数的运算教案

对数的运算教案对数的运算教案一、引言数学作为一门基础学科,其重要性不言而喻。

在数学的学习中,对数的运算是一个关键的内容。

对数的运算涉及到对数的性质、对数的运算规则以及对数的应用等方面。

本文将围绕这些内容展开讲解。

二、对数的定义和性质1. 对数的定义对数是指数运算的逆运算。

设a为正数且a≠1,b为正数,则称满足a^x=b的x为以a为底b的对数,记作x=loga(b)。

2. 对数的性质(1)对数的底数不变,对数的值也不变。

(2)对数的值与底数的大小关系有关,当底数大于1时,对数为正;当底数小于1时,对数为负。

(3)对数的值随着真数的增大而增大,但增长速度逐渐变慢。

三、对数的运算规则1. 对数的乘法规则对数的乘法规则是指loga(b) + loga(c) = loga(b * c)。

即,两个数相乘的对数等于这两个数的对数相加。

2. 对数的除法规则对数的除法规则是指loga(b) - loga(c) = loga(b / c)。

即,两个数相除的对数等于这两个数的对数相减。

3. 对数的幂运算规则对数的幂运算规则是指loga(b^c) = c * loga(b)。

即,一个数的指数的对数等于该数的对数乘以指数。

四、对数的应用1. 对数在科学计算中的应用对数在科学计算中有着广泛的应用,尤其是在大数据计算和复杂函数计算中。

对数的运算规则和性质能够简化计算过程,提高计算效率。

2. 对数在经济学中的应用对数在经济学中的应用主要体现在指数增长和指数衰减的模型中。

对数函数能够很好地描述经济增长或衰退的趋势,为经济决策提供重要依据。

3. 对数在生物学中的应用对数在生物学中的应用主要体现在生物学曲线的研究中。

生物学曲线通常呈现出指数增长或指数衰减的趋势,对数函数能够很好地描述这些趋势。

五、对数的综合应用实例以一个实际问题为例,展示对数的综合应用。

某城市的人口数量每年以1.5%的速度增长。

已知该城市在2010年的人口数量为100万人,问到2020年时,该城市的人口数量为多少?解:设2020年时的人口数量为x万人。

4.3.2对数的运算教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册

4.3.2对数的运算教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册
- 思考预习问题:学生针对提出的问题,进行独立思考,记录自己的理解和疑问。
- 提交预习成果:学生将预习成果(如笔记、思维导图、问题等)提交至在线平台或老师处。
教学方法/手段/资源:
- 自主学习法:学生自主阅读和思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
- 反馈作业情况:及时批改作业,给予学生反馈和指导。
学生活动:
- 完成作业:学生认真完成老师布置的课后作业,巩固学习效果。
- 拓展学习:学生利用老师提供的拓展资源,进行进一步的学习和思考。
- 反思总结:学生对自己的学习过程和成果进行反思和总结,提出改进建议。
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
教学方法/手段/资源:
- 讲授法:通过详细讲解,帮助学生理解对数的定义、性质和运算法则。
- 实践活动法:设计小组讨论,让学生在实践中掌握对数的运算技能。
- 合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
作用与目的:
- 帮助学生深入理解对数的定义、性质和运算法则,掌握对数的运算技能。
- 提供一些拓展性的题目,鼓励学生进行深入研究和探索,如对数函数的图像分析、对数运算的数学证明等。
作业反馈:
- 及时批改学生的作业,给出明确的评分和评价。
- 在批改过程中,注意指出学生作业中的错误和不足之处,并提供改进建议。
- 对于学生作业中的亮点和优秀表现,给予肯定和鼓励。
- 通过面对面的交流或书面反馈,将作业批改结果告诉学生,并与他们讨论改进的方法。
- 数学教科书和配套练习册,作为教学的主要材料。
- 计算器,用于辅助计算和对数的运算练习。

高中数学《对数的概念与运算性质》教学设计

高中数学《对数的概念与运算性质》教学设计

《对数与对数运算》(第一课时)(人教A版普通高中课程标准实验教科书数学必修1第二章第二节)一、教学内容解析《对数与对数运算》选自人教A版高中数学必修一第二章,共分两小节,第一小节主要内容是对数的概念、对数式与指数式的互化,第二小节内容是对数的运算性质,本课时为第一小节内容.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成为当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.与传统教科书相比,教材从具体问题引进对数概念,加强了对数的实际应用与数学文化背景,强调“对数源于指数”以及指数运算与对数运算的互逆关系,将对数安排在指数运算及指数函数之后进行学习,实现对数与原有知识体系的对接,有利于学生学习时发现与论证对数的运算性质.基于以上分析,本课时的教学重点是:对数概念的理解以及指数式与对数式的互化.二、教学目标设置1.感受引入对数的必要性,理解对数的概念;2.能够说出对数与指数的关系,能根据定义进行互化和求值;3.感受数学符号的抽象美、简洁美.本课时落实以上三个教学目标:通过“推断化石年代”和“解指数方程”两个实例,认识到引入对数,研究对数是基于实际需求的。

根据底数、指数与幂之间的关系,通过“知二求一”的分析,引导学生借助指数函数图象,分析问题中幂指数的存在性,以及为了表示指数的准确值,引入了对数符号,从而引出对数概念.通过图示连线,对指数式和对数式中各字母进行对比分析,来认识对数与指数的相互联系;利用指数式与对数式的互化,来帮助学生理解对数概念,体会转化思想在对数计算中的作用.对数源于指数,本课时中,对数问题往往回归本源,转化为指数问题来解决,因而要在理解对数概念的基础上学会互化和求值.恰当的数学符号,对数学发展起着巨大的推动作用,对数符号抽象而简洁,学生需要在不断的学习中逐渐体验对数符号的重要性.三、学生学情分析1.认知基础从运算的角度来讲,加、乘、乘方运算中只有乘方的逆运算对数运算还没有学习.从函数的角度来说,高一的学生刚刚学习了集合、函数的概念、函数的表示方法和函数的一般性质,对函数有了初步的认识,在此基础上又学习了指数运算和指数函数,了解了研究函数的一般方法,经历过从特殊到一般,具体到抽象的研究过程,之后将在学习对数的基础上继续学习对数函数.2.问题诊断对数的概念对于学生来说,是全新的.形式地进行指数式与对数式之间的互化是容易的,在真正理解对数概念的基础上进行解题是有一定难度的,表现在两个方面:(1)不能将对数与普通的数平等对待,不理解对数的概念,只能够进行表面上的形式转换;(2)不能把“对数的实质是指数”应用在数学问题的解决中.基于以上分析,本节的教学难点是:(1)对数概念的理解;(2)对数的常用性质的概括.为了突破第一个难点,要在引入对数概念时,通过不同的实例,让学生感受到为什么要学习对数,是基于研究指数的需求才引入对数,因此对数的实质是指数;在形成概念时,要引导学生明确“对数是数”这一事实;在引入对数概念后,学生通过自主举例,具体感知个例,从对数概念外延的角度进行理解.本节的第二个难点是:“0和负数没有对数”这一性质的深入认识.在教学中最明显的例证是涉及到求定义域时,看到对数符号,不能如同看到分母一样,瞬间闪现出真数要大于0的限制,因此应该在学习对数伊始,就打好“0和负数没有对数”的认识基础.为了突破第二个难点,不要急于将现成的结论抛出,可以让学生在自主举例(感受个例)的基础上,尝试思考(分析通例)对数中的底数和真数可以取什么样的数,引导学生思考是不是所有的实数都有对数,哪些数有对数?为什么?通过互化和求值的练习,让学生逐渐地从内涵和外延两方面加深对数概念的理解.四、教学策略分析本节教学中,学习对数概念的过程就是认识的辨证发展过程:从实践到认识:通过具体情境,具体问题,具体对数的体验感知,遵循从具体到抽象的过程,来建立对数概念,从概念内涵的角度学习;再实践:形成概念之后,遵循从一般到特殊的思路,进行自主举例,感知个例,从概念外延的角度加深概念理解;再认识:理性分析通例(思考底数和真数的范围),又从特殊到一般进行概念的再认识;循环往复:在随后的练习巩固中,认识两种特殊的对数(常用对数和自然对数)和两种特殊的对数值(1的对数和底数的对数),来获得基于对数概念的运算性质,从而丰富学生对于对数概念的认知.突破难点的策略为:旧知新悟,适度模仿,归纳概括,自主举例.五、教学过程设计1.对数概念的形成1.1创设情境,引发思考【实际情境】网上的一则消息:有驴友挖到几枚恐龙蛋,送到权威机构做了碳14同位素鉴定,结果是白垩纪的恐龙蛋化石,现坐等博物馆上门收购.生物死亡后,它机体内原有的碳14含量,每经过大约6000年,会衰减为原来的一半,这个时间称为“半衰期”,研究人员常常根据机体内碳14的含量来推断生物体的年代,其中半衰次数x与碳14的含量P间的关系为:1()2x P.但是,当生物组织内的碳14含量低于千分之一时(这里我们按11024来计算),一般的放射性探测器就测不到碳14了.众所周知,恐龙生活在距今大约一亿年前的地球上,那么用碳14同位素法能推断出恐龙蛋化石的年代吗?问题1:(1)经过1次半衰期,碳14的含量会变为原来的多少?3次呢?(2)经过几次半衰期,一般的放射性探测器就测不到碳14了呢?(3)用碳14同位素法能推断出恐龙蛋化石的年代吗?【预设的答案】12,18;10;不能【设计意图】对数概念不是凭空产生的,用考古鉴定这一实例,让学生感受“求指数”这样的问题是客观存在的,是源于实际生活的.【数学情境】解方程:(1)2x=2;(2)2x=3;(3)2x=4.【设计意图】创设数学情境,通过指数方程的实例,让学生感受在数学学习中,“求指数”这样的问题也是存在的,有必要研究这一类问题.问题2:以上几个问题的共同特征是什么?【活动预设】引导学生归纳概括出问题的共同特征:已知底数和幂,求指数x .1.2探究典例,形成概念活动:解方程:(1)2x =2; (2)2x =3; (3)2x =4.【活动预设】感受在求指数的过程中,有的指数可以直接写出结果,有的指数却不好表示.【设计意图】为引入对数符号表示指数做铺垫.问题3:以引例中的2x =3为例,分析x 的值存在吗?如果存在,符合条件的x 的值有几个?能估计出x 的大致范围吗?【活动预设】(1)根据函数图象,思考等式2x =3中指数x 的存在性,唯一性和大致范围;(2)类比:在学习求方程x 3=2的根时,为了表示底数x ,引入了数学符号:√,表示3次方为2的数;这里,我们引入对数符号来表示指数x ,将x 记作log 23.【设计意图】从引例中的具体问题入手,思考指数x 的存在性,唯一性和大致范围,为了表示指数,引入对数符号,在具体问题中体验用对数符号表示指数的过程.问题4:结合方程2x =3来思考,x =log 23中log 23表示什么?【活动预设】(1)分析log 23表示的含义;(2)感受:以2x =4为例,分析指数x 可以怎样用对数符号表示,以及该符号表示什么. 教师讲授:若a x =N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数,记作:N x a log ,其中a 叫做对数的底数,N 叫做真数.【设计意图】理解具体的对数符号所表示的含义,并且在探究特例的基础上,遵循从具体到抽象的思路,形成对数概念.问题5:指数式与对数式是等价的,但a ,x ,N 在两个式子中的名称一样吗?【预设的答案】此处画上连线图,呈现指数式与对数式之间的关系。

教学设计3:3.2.1 对数及其运算

教学设计3:3.2.1 对数及其运算

3.2.1对数及其运算一、教学内容解析本节课是人教B版第三章第二节对数与对数函数中第一小节对数及其运算的第一课时。

对数对学生来说是一个全新的概念,学习起来略显困难,不过在此之前,学生已学习了指数和指数函数的有关知识,这为过渡到本节的学习起着铺垫的作用;本章后面的对数函数对于学生来说是一个全新的函数模型,而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广。

本节内容的学习主要是为让学生理解对数的概念,为学习对数函数作好准备。

同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化,数形结合的思想,培养学生的逻辑思维能力都具有重要的意义。

二、教学目标设置通过对本节课教材的分析,考虑到学生已有的认知结构和心理特征,依据新课标制定出如下三个方面的教学目标:1、知识与技能目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。

2、过程与方法目标:通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。

小组交流对对数的理解和认识,培养学生合作学习的能力,使学生经历认知逐渐深入的过程。

3、情感态度与价值观:积极引导学生主动参与学习的过程,激发他们研究数学问题的兴趣,形成主动学习的态度,培养学生自主探究以及合作交流的能力。

三、学生学情分析我校在营口市学生层次较好,我所授课的班级是我校的实验班,学生数学能力很强,思维较活跃。

我校的教学模式为小组合作交流学习模式,学生已经养成了小组合作学习的习惯。

即学生通过预习,结合学案,自主学习、探究的模式。

前面学生已经学习了指数和指数函数的有关知识。

在对教材和教学目标及学情分析后,我确定出本节课的教学重点是:重点:对数的概念,对数式与指数式的相互转化。

难点:对数概念的理解,对数性质的理解。

四、教学策略分析为了最大程度发挥学生的主观能动性,实践人本教育,我校采用“主动、合作、交流”学习方法学习,把学生分成四人小组,分工合作,进行讨论探究逐渐培养学生“会观察”、 “会分析”、“会论证” 、“会合作”的能力。

对数运算法则教案

对数运算法则教案

§2.2.1 对数与对数运算(第2课时)--对数的运算法则一、教学内容分析:本节课课程标准要求理解对数的运算法则,能灵活运用对数运算法则进行对数运算.本节课是在学习了“对数的概念"后进行的,它是上节内容的延续与深入,同时也是研究学习后续知识对数函数的必备基础知识.高考大纲中要求要理解对数的概念及其运算法则。

二、教学目标:知识与技能目标:理解并掌握对数法则及运算法则,能初步运用对数的法则和运算法则解题.过程与方法目标:通过法则的探究与推导,培养从特殊到一般的概括思想,渗透化归思想及逻辑思维能力. 情感态度与价值观目标:通过法则探究,激发学习的积极性.培养大胆探索,实事求是的科学精神.三、教学重难点:教学重点:对数的运算法则及推导和应用;教学难点:对数运算法则的探究与证明.四、教具准备:幻灯片、课件、多媒体五、教学方法本课采用“探究——发现”教学模式六、 教学过程:(一)复习引入1、对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0)2、指数的运算法则;m n m n m n m na a a a a a +-⋅=÷= ()mn n m a a =我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算法则,得出相应的对数运算法则吗?(二)运算法则(1)我们知道m n m n a a a +⋅=,那m n +如何表示,能用对数式运算吗?解: ,,m n m n m n a a a M a N a +⋅===设 于是,m n MN a +=由对数的定义得到log ,m a M a m M =⇔=log n a N a n N =⇔=log m n a MN a m n MN +=⇔+=N M MN a a a log log log +=即:两数积的对数,等于各数的对数的和。

提问:你能根据指数的法则按照以上的方法推出对数的其它法则吗?(2)我们知道 ,那m n -如何表示,能用对数式运算吗?即:两数商的对数,等于被除数的对数减去除数的对数。

对数的概念教案最终版

对数的概念教案最终版

对数的概念教案最终版一、教学目标1. 让学生理解对数的定义和性质,掌握对数的基本运算方法。

2. 培养学生运用对数解决实际问题的能力,提高逻辑思维和运算能力。

二、教学内容1. 对数的定义与性质2. 对数的运算方法3. 对数在实际问题中的应用三、教学重点与难点1. 对数的定义与性质2. 对数的运算方法3. 对数在实际问题中的应用四、教学方法1. 采用讲授法,讲解对数的定义、性质和运算方法。

2. 运用案例分析法,引导学生运用对数解决实际问题。

3. 利用数形结合法,直观展示对数函数的图像,帮助学生理解对数的概念。

五、教学过程1. 导入新课:通过复习指数函数,引出对数的概念。

2. 讲解对数的定义与性质:解释对数的定义,阐述对数的性质,如对数与指数的关系、对数的换底公式等。

3. 教授对数的运算方法:讲解对数的加减乘除运算规则,举例说明运算方法。

4. 应用练习:布置练习题,让学生运用对数解决实际问题,如计算复合利率、人口增长等。

5. 课堂小结:总结本节课所学内容,强调对数的概念、性质和运算方法。

6. 布置作业:布置课后作业,巩固所学知识。

7. 课后反思:教师对本节课的教学情况进行反思,针对学生的掌握情况,调整教学策略。

六、教学拓展1. 对数与自然底数e:介绍自然底数e的概念,解释e的对数——自然对数,及其在数学和物理中的重要性。

2. 对数与对数函数:讲解对数函数的定义,分析对数函数的性质,如单调性、奇偶性等。

3. 对数在科学计算中的应用:介绍对数在科学计算中的广泛应用,如测量、天文、生物等领域。

七、案例分析1. 利用对数计算复合利率:以存款利息为例,讲解如何利用对数计算复合利率。

2. 利用对数解决人口增长问题:以人口增长模型为例,讲解如何利用对数预测人口增长。

3. 利用对数分析信号传输:以电信行业为例,讲解如何利用对数分析信号传输过程中的衰减。

八、课堂互动1. 小组讨论:分组讨论对数在实际生活中的应用,分享各自的研究成果。

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)以下是网友分享的关于对数与对数运算说课稿的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一§2.2.1对数与对数运算说课稿大家好,我是。

,我今天的讲课内容是对数与对数的运算。

我将从以下5个方面来进行今天的说课,第一是教学内容分析,第二是学生的学情分析,第三是教学方法的策略,第四是教学过程的设计,第五的教学反思。

一、教学内容分析对数与对数的运算是人教版高中教材必修一第二章第二节第一课时的内容。

本节课是第一课时,主要讲的就是认识对数和对数的一些基本运算性质。

本节课的学习蕴含着转化化规的数学思想,类比与对比等基本数学方法。

在上节课,我们学习了指数函数以及指数函数的性质,是本节课学习对数与对数的运算的基础,而下节课,我们又将学习对数函数与对数函数的性质,这节课恰好为下节课的学习做了一个铺垫。

二、学生学情分析接下来我将从认知、能力、情感三个方面来进行学生的学情分析。

首先是认知,该阶段的高中生已经学习了指数及指数函数的性质,具备了学习对数的基础知识;在能力方面,高一的学生已经初步具备运用所学知识解决问题的能力,但是大多数同学还缺乏类比迁移的能力;而在情感方面,大多数学生有积极的学习态度,能主动参与研究,但是还有部分的学生还是需要老师来加以引导的。

三、教学方法的策略根据教材的要求以及本阶段学生的具体学习情况,我制定了一下的教学目标。

首先是知识与技能,理解对数与指数的关系,能进行指对数互化并可利用对数的简单性质求值;接着是过程与方法,通过探究对数和指数之间的互化,培养发现问题、分析问题、解决问题的能力;最后是情感态度与价值观,通过对问题转化过程的引导,培养学生敢于质疑、勇于开拓的创新精神。

基于以上的分析,我制定了本节课的重难点。

本节课的教学重点是对数的定义,对数式与指数式的互化,对数的运算法则及其推导和应用;本节课的难点是对数概念的理解和对数运算法则的探究和证明;本节课我所采用的教学方法是探究式教学法,分为以下几个环节:教师创设问题情境,启发式地讲授,讲练结合,引导学生思考,最后鼓励学生自主探究学习。

对数与对数运算教案-人教版高中数学必修一第二章2.2.1 第二课时

对数与对数运算教案-人教版高中数学必修一第二章2.2.1 第二课时

第二章基本初等函数(Ⅰ)2.2 对数函数2.2.1.对数与对数运算第二课时对数运算1 教学目标1.1 知识与技能:[1]掌握对数的运算性质,能正确地利用对数的运算性质进行对数运算;[2]掌握对数换底公式的运用 .能用换底公式将一般对数转化为自然对数或常用对数。

[3]对数及其运算性质的综合应用1.2过程与方法:[1]通过对数的运算性质的探索及推导过程,培养学生的“合情推理能力”、“等价转化”和“演绎归纳”的数学思想方法,以及创新意识.1.3 情感态度与价值观:[1]通过对数的运算法则的学习,培养学生的严谨的思维品质 .[2]在学习过程中培养学生探究的意识.[3]让学生理解运算法则之间的内在联系,培养分析、解决问题的能力.通过“合情推理”、“等价转化”和“演绎归纳”的思想运用,培养学生对立统一、相互联系,相互转化以及“特殊—一般”的辩证唯物主义观点,以及大胆探索,实事求是的科学精神.2教学重点/难点/易考点2.1 教学重点[1]重点:对数式运算性质及时推导过程;[2]对数换底公式。

[3]对数及其运算性质的综合应用2.2 教学难点[1]难点:对数运算性质的发现过程及其证明;[2]对数换底公式的证明和应用。

3 专家建议启发学生从对数运算性质入手,了解对数在数学史上的重要作用,了解对数对大数运算的简化作用,降低运算的数量级,掌握一定量的对数计算基本模型,在熟练运用对数运算性质的基础上以对数的思维模式去考虑和处理问题,加深对于运算性质和换底公式的理解和运用,掌握对数运算的特殊性,为下一节学习对数函数打好基础.高考中对数的考查方式一般以选择题或填空题的形式出现。

4 教学方法实验探究——归纳总结——补充讲解——练习提高5 教学用具多媒体。

6 教学过程6.1 引入新课【师】同学们好。

从今天我们开始进入新一节内容的学习:对数与对数运算。

【板书】2.2.1.对数与对数运算第二课时【师】我们知道了对数的基本定义和性质,请认真回忆一下!【板书或投影】对数基本知识点1、对数的定义b N a =log其中 ),1()1,0(+∞∈ a 与 ),0(+∞∈N (负数与零没有对数);b ∈(文字表述:N 为正数,a 为非1正数,b 为任意实数)两类特殊对数:(1)常用对数:以10为底,记作lgN .(2)自然对数:以无理数e=2.71828……为底,记作lnN .2、三组互化式)10( log ≠>=⇔=a a b N N a a b 且lg 10b N N b =⇔=ln b N N e b =⇔=3、两个恒值(1) 01log =a (2) 1log =a a4、两个嵌套式(迭代式)(1)对数恒等式N a N a =log(2))10( log ≠>=a a b a b a 且5.指数运算法则,(R n m a a a n m n m ∈=⋅+),()(R n m a a mn n m ∈=)()(R n b a ab n n n ∈⋅=【生】对数定义式是......,指数式与对数式的转化......,对数恒等式,自然对数、常用对数【师】注意每个字母的取值X 围:底数,10≠>a a 且,真数N>0;再回忆一下指数运算的几个式子【板书或投影】)10( log ≠>=⇔=a a b N N a a b 且指数的运算性质n m n m a a a +=⋅; n m n m a a a -=÷mn n m a a =)( ; m nm na a = 6.2 新知介绍[1] 对数的运算性质【师】下面请同学们自行推导对数的运算性质!(5 分钟)【板演/PPT 】教师演示对数运算性质三式的证明。

高中数学对数计算教案大全

高中数学对数计算教案大全

高中数学对数计算教案大全一、教学内容:对数的概念和基本计算二、教学目标:1. 了解对数的概念和性质;2. 能够熟练地进行对数的基本运算;3. 能够应用对数计算解决实际问题。

三、教学重点和难点:1. 对数的概念和性质;2. 对数的基本运算;3. 对数计算在实际问题中的应用。

四、教学方法:1. 讲授法:通过教师讲解和示范,让学生掌握对数的概念和基本运算;2. 案例演练法:通过实例演练,让学生熟练掌握对数的应用方法;3. 课堂互动法:通过提问、讨论和小组合作等形式,激发学生学习的兴趣和动力。

五、教学内容和方法:1. 对数的定义和性质(10分钟)- 讲解对数的定义,解释对数的含义和特点;- 讲解对数的性质,包括对数的唯一性、对数的运算规则等。

2. 对数的基本运算(20分钟)- 讲解对数的加法、减法、乘法和除法的运算规则;- 给出相关示例,让学生进行练习。

3. 对数计算的应用(30分钟)- 讲解对数在实际问题中的应用,如物理、化学、生物等领域;- 给出一些实际问题,让学生应用对数进行计算和解答。

4. 讲解课后作业(10分钟)- 布置相关的课后作业,加强学生对对数计算的练习和巩固。

六、教学评估:1. 学生课堂表现:包括学生在课堂上的参与度、思维活跃度等方面;2. 学生作业完成情况:评价学生对对数计算的掌握和运用能力;3. 学生学习成绩:通过考试和测验等形式,检查学生的学习效果和掌握程度。

七、教学反思:教师应及时总结教学效果,分析学生的学习情况,及时调整教学方法和内容,不断提高教学质量和效果。

同时,鼓励学生主动思考和探索,培养其对数计算能力,提高其数学素养和实际运用能力。

数学教案高中对数函数

数学教案高中对数函数

数学教案高中对数函数
1. 了解对数函数的基本概念和性质。

2. 学会求解对数函数的基本运算和应用问题。

3. 能够分析对数函数的图像及性质。

教学重点:
1. 对数函数的定义和性质。

2. 对数函数的运算。

3. 对数函数的图像分析。

教学难点:
1. 对数函数与指数函数的关系。

2. 对数函数的变化规律。

教学准备:
1. 教材《高中数学》。

2. 教学课件。

3. 实例题目。

教学过程:
第一步:引入
通过举例引入对数函数的定义和性质,让学生了解对数函数的基本概念。

第二步:基本性质
讲解对数函数的基本性质,包括对数的定义、性质和常用公式等内容。

第三步:基本运算
讲解对数函数的基本运算,包括对数的加减乘除运算,以及对数方程的解法。

第四步:应用问题
通过实例题目,让学生掌握对数函数在实际问题中的应用方法。

第五步:图像分析
讲解对数函数的图像及性质,包括对数函数的增减性和极限性质等内容。

第六步:练习与总结
让学生进行练习题目,巩固对数函数的基本知识,并对本节课进行总结和归纳。

教学反思:
通过本节课的教学,学生应该能够掌握对数函数的基本概念、性质和运算方法,以及对数函数的图像分析方法,从而提高数学思维能力和解题能力。

同时,教师还应该注重引导学生进行思维训练和实际问题的应用,提高学生的分析和解决问题的能力。

对数运算与对数函数

对数运算与对数函数

§2.8 对数运算与对数函数考试要求 1.理解对数的概念及运算性质,能用换底公式将一般对数转化成自然对数或常用对数.2.通过实例,了解对数函数的概念,会画对数函数的图象,理解对数函数的单调性与特殊点.3.了解指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.知识梳理 1.对数的概念一般地,如果a (a >0,且a ≠1)的b 次幂等于N ,即a b =N ,那么数b 称为以a 为底N 的对数,记作log a N =b .其中a 叫作对数的底数,N 叫作真数. 以10为底的对数叫作常用对数,记作lg N . 以e 为底的对数叫作自然对数,记作ln N . 2.对数的性质与运算性质(1)对数的性质:log a 1=0,log a a =1,log a Na =N (a >0,且a ≠1,N >0).(2)对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: ①log a (MN )=log a M +log a N ; ②log a MN =log a M -log a N ;③log a M b =b log a M (b ∈R ).(3)对数换底公式:log a b =log c blog c a (a >0,且a ≠1;b >0;c >0,且c ≠1).3.对数函数的图象与性质a >10<a <1图象定义域 (0,+∞)值域 R性 质过定点(1,0),即x =1时,y =0当x >1时,y >0; 当0<x <1时,y <0当x >1时,y <0; 当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数4.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y =x 对称. 常用结论1.log a b ·log b a =1,log m n a b =nmlog a b .2.如图给出4个对数函数的图象则b >a >1>d >c >0,即在第一象限,不同的对数函数图象从左到右底数逐渐增大. 3.对数函数y =log a x (a >0,且a ≠1)的图象恒过点(1,0),(a ,1),⎝⎛⎭⎫1a ,-1. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)若M =N ,则log a M =log a N .( × )(2)函数y =log a 2x (a >0,且a ≠1)是对数函数.( × )(3)对数函数y =log a x (a >0,且a ≠1)在(0,+∞)上是增函数.( × ) (4)函数y =log 2x 与y =121log x的图象重合.( √ ) 教材改编题1.若函数f (x )=log 2(x +1)的定义域是[0,1],则函数f (x )的值域为( ) A .[0,1] B .(0,1) C .(-∞,1] D .[1,+∞)答案 A解析 根据复合函数单调性同增异减可知f (x )在[0,1]上单调递增, 因为0≤x ≤1,所以1≤x +1≤2,则log 21≤log 2(x +1)≤log 22, 即f (x )∈[0,1].2.函数y =log a (x -2)+2(a >0,且a ≠1)的图象恒过点________. 答案 (3,2)解析 ∵log a 1=0,令x -2=1,∴x =3,y =2,∴函数的图象过定点(3,2). 3.e ln 2+log 2 02216log 2 0224=________.答案 4 解析 e ln 2+log 2 02216log 2 0224=2+log 416=2+2=4.题型一 对数式的运算例1 (1)若2a =5b =10,则1a +1b 的值是( )A .-1 B.12 C.710 D .1答案 D解析 由2a =5b =10, ∴a =log 210,b =log 510, ∴1a =lg 2,1b =lg 5, ∴1a +1b=lg 2+lg 5=lg 10=1. (2)计算:log 535+22log 2log 5150-log 514=________.答案 2解析 原式=log 535-log 5150-log 514+212log 2=log 535150×14+12log 2 =log 5125-1=log 553-1=3-1=2. 思维升华 解决对数运算问题的常用方法 (1)将真数化为底数的指数幂的形式进行化简. (2)将同底对数的和、差、倍合并.(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.跟踪训练1 (1)(2022·保定模拟)已知2a =3,b =log 85,则4a -3b=________.答案925解析 因为2a =3,所以a =log 23, 又b =log 85, 所以b =13log 25,所以a -3b =log 235,4a -3b =232log 52=925.(2)(lg 5)2+lg 2lg 5+12lg 4-log 34×log 23=________.答案 -1解析 原式=lg 5(lg 5+lg 2)+12lg 4-2lg 2lg 3×lg 3lg 2=lg 5+lg 2-2=1-2=-1. 题型二 对数函数的图象及应用例2 (1)已知函数f (x )=log a (2x +b -1)(a >0,且a ≠1)的图象如图所示,则a ,b 满足的关系是( )A .0<a -1<b <1 B .0<b <a -1<1 C .0<b -1<a <1 D .0<a -1<b -1<1 答案 A解析 由函数图象可知,f (x )为增函数,故a >1. 函数图象与y 轴的交点坐标为(0,log a b ), 由函数图象可知-1<log a b <0, 解得1a <b <1.综上,0<a -1<b <1.(2)(2023·佛山模拟)已知函数f (x )=|ln x |,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是________.答案(3,+∞)解析f(x)=|ln x|的图象如图,因为f(a)=f(b),所以|ln a|=|ln b|,因为0<a<b,所以ln a<0,ln b>0,所以0<a<1,b>1,所以-ln a=ln b,所以ln a+ln b=ln(ab)=0,,所以ab=1,则b=1a,所以a+2b=a+2a令g(x)=x+2x(0<x<1),则g(x)在(0,1)上单调递减,所以g(x)>g(1)=1+2=3,所以a+2b>3,所以a+2b的取值范围为(3,+∞).思维升华对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.xlog跟踪训练2(1)已知lg a+lg b=0(a>0且a≠1,b>0且b≠1),则函数f(x)=a x与g(x)=1b的图象可能是()答案 B解析 ∵lg a +lg b =0(a >0且a ≠1,b >0且b ≠1), ∴ab =1,∴a =1b,∴g (x )=1log bx =log a x ,函数f (x )=a x 与函数g (x )=1log bx 互为反函数,∴函数f (x )=a x 与g (x )=1log bx 的图象关于直线y =x 对称,且具有相同的单调性.(2)(2023·濮阳模拟)已知a >0且a ≠1,函数y =a x 的图象如图所示,则函数f (x )=log a (-x +1)的部分图象大致为( )答案 D解析 由函数y =a x 的图象可得a >1.当a >1时,y =log a x 经过定点(1,0),为增函数.因为y =log a x 与y =log a (-x )关于y 轴对称,所以y =log a (-x )经过定点(-1,0),为减函数. 而f (x )=log a (-x +1)可以看作y =log a (-x )的图象向右平移一个单位长度得到的, 所以f (x )=log a (-x +1)的图象经过定点(0,0),为减函数.结合选项可知选D.题型三 对数函数的性质及应用 命题点1 比较对数式的大小例3 (2023·武汉质检)已知a =log 30.5,b =log 3π,c =log 43,则a ,b ,c 的大小关系是( ) A .a <b <c B .b <a <c C .a <c <b D .c <a <b答案 C解析 a =log 30.5<log 31=0,即a <0; b =log 3π>log 33=1,即b >1; 0=log 41<log 43<log 44=1,即0<c <1, ∴a <c <b .命题点2 解对数方程、不等式例4 若log a (a +1)<log a (2a )<0(a >0,且a ≠1),则实数a 的取值范围是________. 答案 ⎝⎛⎭⎫14,1解析 由题意log a (a +1)<log a (2a )<log a 1,得⎩⎪⎨⎪⎧ a >1,a +1<2a <1或⎩⎪⎨⎪⎧0<a <1,a +1>2a >1,解得14<a <1.命题点3 对数函数的性质及应用例5 (2023·郑州模拟)设函数f (x )=ln|x +3|+ln|x -3|,则f (x )( ) A .是偶函数,且在(-∞,-3)上单调递减 B .是奇函数,且在(-3,3)上单调递减 C .是奇函数,且在(3,+∞)上单调递增 D .是偶函数,且在(-3,3)上单调递增 答案 A解析 函数f (x )的定义域为{x |x ≠±3}, f (x )=ln|x +3|+ln|x -3|=ln|x 2-9|, 令g (x )=|x 2-9|, 则f (x )=ln g (x ),函数g (x )的单调区间由图象(图略)可知,当x ∈(-∞,-3),x ∈(0,3)时,g (x )单调递减, 当x ∈(-3,0),x ∈(3,+∞)时,g (x )单调递增, 由复合函数单调性同增异减得单调区间.由f (-x )=ln|(-x )2-9|=ln|x 2-9|=f (x )得f (x )为偶函数.思维升华 求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三个问题:一是定义域;二是底数与1的大小关系;三是复合函数的构成.跟踪训练3 (1)(2023·开封模拟)已知函数f (x )=log a (6-ax )(a >0,且a ≠1)在(0,2)上单调递减,则实数a 的取值范围是( ) A .(1,3] B .(1,3) C .(0,1) D .(1,+∞)答案 A解析 令t (x )=6-ax ,因为a >0,所以t (x )=6-ax 为减函数. 又由函数f (x )=log a (6-ax )在(0,2)上单调递减, 可得函数t (x )=6-ax >0在(0,2)上恒成立,且a >1,故有⎩⎪⎨⎪⎧a >1,6-2a ≥0,解得1<a ≤3.(2)(2022·惠州模拟)若函数f (x )=log a ⎝⎛⎭⎫x 2-ax +12(a >0,且a ≠1)有最小值,则实数a 的取值范围是________. 答案 (1,2) 解析 令u (x )=x 2-ax +12=⎝⎛⎭⎫x -a 22+12-a 24, 则u (x )有最小值12-a 24,欲使函数f (x )=log a ⎝⎛⎭⎫x 2-ax +12有最小值, 则有⎩⎪⎨⎪⎧a >1,12-a 24>0,解得1<a <2,即实数a 的取值范围为(1,2).课时精练1.函数f (x )=log 0.5(2x -1)的定义域为( ) A.⎝⎛⎦⎤12,1 B.⎣⎡⎭⎫12,1 C.⎝⎛⎦⎤-∞,12 D .[1,+∞)答案 A解析 由题意,要使函数f (x )=log 0.5(2x -1)有意义,则满足log 0.5(2x -1)≥0,所以0<2x -1≤1,解得12<x ≤1,即函数f (x )的定义域为⎝⎛⎦⎤12,1. 2.(2023·洛阳模拟)若函数f (x )=log a x (a >0,且a ≠1)的反函数的图象过点(1,3),则f (log 28)等于( )A .-1B .1C .2D .3 答案 B解析 依题意,函数f (x )=log a x (a >0,且a ≠1)的反函数,即函数y =a x 的图象过点(1,3), 则a =3,f (x )=log 3x ,于是得f (log 28)=log 3(log 28)=log 33=1, 所以f (log 28)=1.3.函数f (x )=log 2(|x |-1)的图象为( )答案 A解析 函数f (x )=log 2(|x |-1)的定义域为(-∞,-1)∪(1,+∞),排除B ,C ; 由f (-x )=log 2(|-x |-1)=log 2(|x |-1)=f (x ),可知函数f (x )为偶函数,其图象关于y 轴对称,排除D.4.按照“碳达峰”“碳中和”的实现路径,2030年为碳达峰时期,2060年实现碳中和,到2060年,纯电动汽车在整体汽车中的渗透率有望超过70%,新型动力电池迎来了蓬勃发展的风口.Peukert 于1898年提出蓄电池的容量C (单位:Ah),放电时间t (单位:h)与放电电流I (单位:A)之间关系的经验公式:C =I n ·t ,其中n 为Peukert 常数,为了测算某蓄电池的Peukert 常数n ,在电池容量不变的条件下,当放电电流I =20 A 时,放电时间t =20 h ;当放电电流I =30 A 时,放电时间t =10 h .则该蓄电池的Peukert 常数n 大约为( ) (参考数据:lg 2≈0.30,lg 3≈0.48) A.43 B.53 C.83 D .2 答案 B解析 根据题意可得C =20n ·20,C =30n ·10, 两式相比得20n ·2030n ·10=1,即⎝⎛⎭⎫23n =12, 所以n =23321log log 22= =lg 2lg32=lg 2lg 3-lg 2≈0.30.48-0.3=53.5.已知函数f (x )=log 2(x +1)-|x |,则不等式f (x )>0的解集是( ) A .(-1,1) B .(0,1) C .(-1,0) D .∅答案 B解析 不等式f (x )>0⇔log 2(x +1)>|x |, 分别画出函数y =log 2(x +1)和y =|x |的图象,由图象可知y =log 2(x +1)和y =|x |的图象有两个交点,分别是(0,0)和(1,1), 由图象可知log 2(x +1)>|x |的解集是(0,1), 即不等式f (x )>0的解集是(0,1).6.(多选)已知函数f (x )=|log a (x +1)|(a >1),下列说法正确的是( ) A .函数f (x )的图象恒过定点(0,0) B .函数f (x )在区间(0,+∞)上单调递减C .函数f (x )在区间⎣⎡⎦⎤-12,1上的最小值为0 D .若对任意x ∈[1,2],f (x )≥1恒成立,则实数a 的取值范围是(1,2] 答案 ACD解析 将(0,0)代入函数f (x )=|log a (x +1)|(a >1),成立,故A 正确; 当x ∈(0,+∞)时,x +1∈(1,+∞),又a >1,所以f (x )=|log a (x +1)|=log a (x +1),由复合函数单调性可知,当x ∈(0,+∞)时,f (x )=|log a (x +1)|=log a (x +1)单调递增,故B 错误;当x ∈⎣⎡⎦⎤-12,1时,x +1∈⎣⎡⎦⎤12,2,所以f (x )=|log a (x +1)|≥log a 1=0,故C 正确; 当x ∈[1,2]时,f (x )=|log a (x +1)|=log a (x +1)≥1恒成立,所以由函数为增函数知log a 2≥1,解得1<a ≤2,故D 正确.7.(2023·淮北模拟)计算:⎝⎛⎭⎫12-2+log4=______. 答案 10解析 ⎝⎛⎭⎫12-2+4log 2log 2422=+=4+2+4=10.8.函数f (x )=()log 2x 的最小值为________. 答案 -14解析 依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎫log 2x +122-14≥-14,当且仅当log 2x =-12,即x =22时等号成立,所以函数f (x )的最小值为-14. 9.已知f (x )=()213log 5.x ax a -+(1)若a =2,求f (x )的值域;(2)若f (x )在(1,+∞)上单调递减,求a 的取值范围.解 (1)当a =2时,f (x )=()213log 210x x -+,令t =x 2-2x +10=(x -1)2+9,∴t ≥9,f (x )≤13log 9=-2,∴f (x )的值域为(-∞,-2].(2)令u (x )=x 2-ax +5a ,∵y =13log u (x )为减函数,∴u (x )=x 2-ax +5a 在(1,+∞)上单调递增,∴⎩⎪⎨⎪⎧a 2≤1,1+4a >0,解得-14<a ≤2, ∴a 的取值范围是⎝⎛⎦⎤-14,2. 10.(2023·南昌模拟)已知函数f (x )=log 3(9x +1)+kx 是偶函数.(1)求k ;(2)解不等式f (x )≥log 3(7·3x -1).解 (1)∵f (x )是偶函数,∴f (-x )=f (x ),即log 3(9-x +1)-kx =log 3(9x +1)+kx 对任意x ∈R 恒成立,∴2kx =log 3(9-x +1)-log 3(9x +1)=log 39-x +19x +1=log 33-2x =-2x , ∴k =-1.(2)由(1)得f (x )=log 3(9x +1)-x =log 3(9x +1)-log 33x =log 39x +13x =log 3(3x +3-x ), 则不等式f (x )≥log 3(7·3x -1)等价于3x +3-x ≥7·3x -1>0,由7·3x -1>0,解得x >-log 37;由3x +3-x ≥7·3x -1,得6·(3x )2-3x -1≤0,得0<3x ≤12, 即x ≤-log 32,综上,不等式的解集为(-log 37,-log 32].11.若非零实数a ,b ,c 满足2a =3b =6c =k ,则( ) A.1a +1b =1c B.2a +2b =1c C.1a +1b =2cD.2a +1b =2c答案 A解析 由已知,得2a =3b =6c =k ,得a =log 2k ,b =log 3k ,c =log 6k ,所以1a =log k 2,1b =log k 3,1c=log k 6, 而2×3=6,所以1a +1b =1c. 12.(多选)关于函数f (x )=log 2x +log 2(4-x ),下列说法正确的是( )A .f (x )的最大值为1B .f (x )在区间(0,2)上为增函数C .f (x )的图象关于直线x =2对称D .f (x )的图象关于点(2,0)对称答案 BC解析 函数f (x )=log 2x +log 2(4-x )=log 2(4x -x 2)(0<x <4),当x =2 时,4x -x 2 取到最大值4,故此时f (x )=log 2x +log 2(4-x )取到最大值log 24=2 ,A 错误;f (x )=log 2(4x -x 2)(0<x <4)可以看作是由函数y =log 2u ,u =-x 2+4x (0<x <4) 复合而成,而y =log 2u 是定义域上的增函数,u =-x 2+4x (0<x <4)在(0,2)上单调递增,在(2,4)上单调递减,故f (x )在区间(0,2)上为增函数,在(2,4)上为减函数,故B 正确; 因为函数f (4-x )=log 2(4-x )+log 2x =f (x ),故f (x )的图象关于直线x =2对称,C 正确; 因为f (4-x )=log 2(4-x )+log 2x =f (x )≠-f (x ),故f (x )的图象不关于点(2,0)对称,D 错误.13.(2023·宿州模拟)已知函数f (x )的定义域为R ,图象恒过点(0,1),对任意x 1,x 2∈R ,x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>1,则不等式f (ln(e x -1))<1+ln(e x -1)的解集为( )A .(ln 2,+∞)B .(-∞,ln 2)C .(ln 2,1)D .(0,ln 2)答案 D 解析 因为f (x 1)-f (x 2)x 1-x 2>1,不妨设x 1>x 2, 则f (x 1)-x 1>f (x 2)-x 2,令g (x )=f (x )-x ,则g (x )在R 上单调递增,又f (0)=1,则不等式f (ln(e x -1))<1+ln(e x -1),等价于f (ln(e x -1))-ln(e x -1)<1=f (0)-0,即g (ln(e x -1))<g (0),所以ln(e x -1)<0,则0<e x -1<1,解得 0<x <ln 2.14.(多选)已知函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2,x 2-8x +13,x ≥2,若f (x )=a 有四个解x 1,x 2,x 3,x 4且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A .0<a <1B .x 1+2x 2∈(3,+∞)C .x 1+x 2+x 3+x 4∈⎝⎛⎭⎫10,212 D .x 4∈[4,+∞)答案 AC解析 作函数f (x )=⎩⎪⎨⎪⎧|log 2x |,0<x <2,x 2-8x +13,x ≥2的图象如图所示,f (x )=a 有四个解,即y =a 与y =f (x )的图象有4个交点x 1,x 2,x 3,x 4且x 1<x 2<x 3<x 4, 可得0<a <1,故选项A 正确;由图象可得x 1·x 2=1,则1x 1=x 2,∴x 1+2x 2=x 1+2x 1, ∵12<x 1<1,且1<x 2<2,对勾函数y =x +2x 在区间⎝⎛⎭⎫12,1上单调递减,故当12<x 1<1时,x 1+2x 2=x 1+2x 1∈⎝⎛⎭⎫3,92,故B 错误; x 1+x 2=1x 1+x 1,∵12<x 1<1,∴1x 1+x 1∈⎝⎛⎭⎫2,52, ∵x 3+x 4=8,∴x 1+x 2+x 3+x 4∈⎝⎛⎭⎫10,212,故选项C 正确; 令x 2-8x +13=0,解得x =4±3,由图象可知x 4∈(4+3,6),故选项D 错误.。

对数运算教案

对数运算教案

对数运算教案【篇一:高中数学对数与对数运算教案】《对数与对数运算》教案xx大学数学与统计学院xxx一、教学目标1、知识目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的相互转换;理解对数的运算性质,形成知识技能;2、能力目标:通过实例让学生认识对数的模型,让学生有能力去解决今后有关于对数的问题,同时让学生学会观察和动手,通过做练习,使学生感受到理论与实践的统一,锻炼学生的动手能力;3、分析目标:通过让学生分组进行探究活动,在探究中分析各种思维的技巧,掌握对数运算的重要性质。

二、教学理念为了调动学生学习的积极性,使学生化被动为主动,从学习中体会快乐。

本节课我引导学生从实例出发,引发学生的思考,从中认识对数的模型,体会对数的必要性。

在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。

让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

三、教法学法分析1、教法分析新课程标准之处教师是教学的组织者、引导者、合作者,在教学过程要充分调动学生的积极性、主动性。

本着这一原则,在教学过程中我主要采用以下教法:实例引入法、开放式探究法、启发式引导法。

2、学法分析“授人以鱼,不如授人以渔”,最有价值的知识是关于方法的知识。

学生作为教学活动的主题,在学习过程中的参与状态和参与度是影响教学效果最重要的因素。

在学法选择上,我主要采用:观察发现法、小组讨论法、归纳总结法。

四、教材分析本节讲对数的概念和运算性质主要是为后面学习对数函数做准备。

这在解决一些日常生活问题及科研中起着十分重要的作用。

同时,通过对数概念的学习,对培养学生对立统一、相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。

五、教学重点与难点重点:(1)对数的定义;(2)指数式与对数式的相互转化及其条件。

难点:(1)对数概念的理解;(2)对数运算性质的理解;(3)换底公式的应用。

对数运算及对数函数应用(学生版)

对数运算及对数函数应用(学生版)

对数运算及对数函数应用一、基础知识精析1.对数的概念:如果(01)x a N a a >≠=,且,那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.2.对数的运算法则:如果0,1,0,0a a N M >≠>>有:log ()log log a a a MN M N=+log log log aa a MM NN =-log log n m a a m M M n = 3.对数换底公式:aNN m m a log log log =( 0 ,10 ,1,0)a a m m N >≠>≠>,4.两个常用的推论:①1log log =⋅a b b a , 1log log log =⋅⋅a c b c b a ② b mnb a na m log log =, 01a b >(且均不为)5.对数函数的性质:a>10<a<1图像1111性质定义域:(0,+∞)值域:R过定点(1,0),即当1=x 时,0=y6.同底的指数函数x y a =与对数函数log a y x =互为反函数7.指数方程和对数方程主要有以下几种类型:()()()()log , log f x b a a a b f x b f x b f x a =⇔==⇔=(定义法)()()()()()(), log log ()()0f x g x a a a a f x g x f x g x f x g x =⇔==⇔=>(转化法) ()()()log ()log f x g x m m a b f x a g x b =⇔= (取对数法)()log ()log ()log log ()/log a b a a a f x g x f x g x b =⇔= (换底法) 二.基础强化训练1.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2 =________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.(6)421938432log )2log 2)(log 3log 3(log -++=____________(7)若 2log log 8log 4log 4843=⋅⋅m ,m =______________2.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a3.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( ) A .pq B.qp +qC.pp +qD.pq1+pq4.当1>a 时,函数x y a log = 和x a y )1(-= 的图像只可能是( )5.设0>a 且1≠a ,则函数x a y =和 xa y ⎪⎭⎫ ⎝⎛=1的图像关于_________对称;函数x y a log = 与x y a1log = 的图像关于__________对称;函数 x a y =和 x y a log =的图像关于________对称. 6、比较大小:(1)log 60.8 ,log 69.1; (2)log 1.07 , log 1.09;(3)log 1.0 5 ,log 3,2 5 ; (4)log a 4 ,log a 6(a>0,a ≠1)(5)log 34 ,log 43 ; (6)log 34 ,log a 6;7.如图,曲线是对数函数x y a log = 的图像,已知a 的取值 10153343,,,,则相应于曲线4321,,,C C C C 的a 值依次为( ).A .10153343,,,B .53101343,,,C .10153334,,,D . 53101334,,,8.如果 03log 3log >>b a ,那么a ,b 之间的关系是( ) A .10<<<b a B .b a <<1 C .10<<<a b D .a b <<19.已知2log log log 532-===z y x ,则x ,y, z 由小到大的排列顺序是___________.10.已知函数)42(log 221++=x x y ,则()1996-f 与()1995-f 的大小关系是_______.11.已知0<x<1,()3log 1x x f += ,()2log 2x x g = ,试比较()x f 与()x g 的大小.12.已知函数()2ln2ln)(2--+=x x x f ,证明:()x f 的图像关于原点对称13.函数()25.04log x x y -=的值域为__________14.求函数 ()32log 221--=x x y 的单调区间.15.设函数()x f y =且 ()()x x y -+=3lg 3lg lg lg . (1)求()x f 的解析式,定义域;(2)讨论()x f 的单调性,并求()x f 的值域.三.高考在线1.(2011北京)为了得到函数3lg10x y +=的图像,只需把函数lg y x =的图像上所有的( ) A .向左平移3个单位长度,再向上平移1个单位长度 B .向右平移3个单位长度,再向上平移1个单位长度 C .向左平移3个单位长度,再向下平移1个单位长度 D .向右平移3个单位长度,再向下平移1个单位长度 2.(2011重庆)设11333124log ,log ,log ,,,233a b c a b c ===则的大小关系是( ) A .a b c <<B .c b a <<C .b a c <<D .b c a <<3.(2011北京)如果1122log log 0x y <<,那么( )()1A y x << ()1B x y << ()1C x y << ()1D y x <<4.(2011天津)已知244log 3.6,log 3.2,log 3.6ab c 则( )A.a b c >> B .a c b C.b a c >> D.c a b >>5.(2011江苏)函数)12(log )(5+=x x f 的单调增区间是__________6.(2011陕西)设lg ,0()10,0xx x f x x>⎧=⎨⎩,则((2))f f -=______7.(2011四川)计算121(lg lg 25)100=4--÷ .8.(2013浙江)已知y x ,为正实数,则( )A.y x y x lg lg lg lg 222+=+B.y x y x lg lg )lg(222•=+C.y x y x lg lg lg lg 222+=•D.y x xy lg lg )lg(222•=四.课后作业1、求下列函数的值域:(1)2log (3)y x =+; (2)22log (3)y x =-;2、(1)求函数2132log (32)y x x =-+的单调区间。

对数与对数运算(一)教学设计

对数与对数运算(一)教学设计

对数与对数运算(一)教学设计(李恒福)一、教学内容分析本节课是新课标高中数学A版必修①中第二章对数函数内容的第一课时,也就是对数函数的入门。

对数函数对于学生来说是一个全新的函数模型,学习起来比较困难。

而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广。

通过本节课的学习,可以让学生理解对数的概念,从而进一步深化对对数模型的认识与理解,为学习对数函数作好准备。

同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻辑思维能力都具有重要的意义。

二、学生学习情况分析现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感。

通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。

因此,学生已具备了探索发现研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法。

三、设计思想学生是教学的主体,本节课要给学生提供各种参与机会。

调动学生学习的积极性,主动性。

本节课我利用多媒体辅助教学,教学中我引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性。

在教学重难点上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来加深理解,很好地突破难点和提高教学效率。

让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

四、教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。

2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。

3、通过学生分组探究进行活动,掌握对数的重要性质。

通过做练习,使学生感受到理论与实践的统一。

4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。

高中数学第4章对数运算和对数函数2对数的运算课件北师大版必修第一册

高中数学第4章对数运算和对数函数2对数的运算课件北师大版必修第一册
(2)lg 5 100=lg 100 =51lg 100=51×2=52. (3)lg 14-2lg73+lg 7-lg 18=lg(2×7)-2(lg 7-lg 3)+lg 7- lg(32×2)=lg 2+lg 7-2lg 7+2lg 3+lg 7-2lg 3-lg 2=0.
(4)法一:原式=lg 5(2lg 2+lg 5)+(lg 2)2=(lg 5+lg 2)2=(lg 10)2=
12345
5.若logab·log3a=4,则b的值为________.
81
[logab·log3a=llgg
b lg a·lg
3a=llgg
3b=4,
所以lg b=4lg 3=lg 34,
所以b=34=81.]
1234 5
[跟进训练] 1.求下列各式的值. (1)24+log23;(2)12log312-log32;(3)lg25+2lg2-lg22.
[解] (1)24+log23=24×2log23=16×3=48.
(2) 12log312-log32=log3
12-log32=log3
12 2
=log3 3=21 .
[跟进训练]
3.已知x,y,z都是大于1的正数,m>0,且logxm=24,logym= 40,logxyzm=12,求logzm的值.
[解] 由logxm=24得logmx=214,由logym=40得logmy=410,由
logxyzm=12得logm(xyz)=112,则logmx+logmy+logmz=112. 所以logmz=112-214-410=610, 所以logzm=60.
[解] 因为9b=5, 所以log95=b. 所以log3645=lloogg994356=lloogg9954× ×99=lloogg9945++lloogg9999=ab++11.

对数教学设计优秀10篇

对数教学设计优秀10篇

对数教学设计优秀10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计优秀10篇《对数与对数函数》教学计划篇一指对数的运算教案设计一、反思数学符号:“”“”出现的背景1.数学总是在不断的发明创造中去解决所遇到的问题。

高中数学对数的教案

高中数学对数的教案

高中数学对数的教案教学目标:1. 理解对数的概念和特点。

2. 掌握对数运算的基本规律。

3. 能够解决实际问题中的对数计算题目。

教学重点和难点:重点:对数的定义、性质和运算规律。

难点:运用对数解决实际问题。

教学准备:1. 教师备课内容:对数的定义、性质、运算规律和应用。

2. 学生学习资料:教科书、练习册、笔记本等。

教学过程:1. 导入:通过引入一个真实生活中的问题,引发学生对对数的兴趣和好奇心,如:某个物种的数量翻倍的规律。

2. 讲解对数的定义和性质:介绍对数的定义、性质,引导学生理解对数的含义和作用,如:logaM=N 等价于 a^N=M。

3. 讲解对数运算规律:介绍对数的运算规律,包括对数的加减乘除运算规律,引导学生学会对数的基本计算方法。

4. 案例分析:结合实际问题,进行对数的应用案例分析,让学生感受对数在解决实际问题中的重要性和实用性。

5. 练习:布置一些对数计算练习题,让学生独立完成并相互交流讨论,巩固对数的运算能力。

6. 总结:总结本节课的重点内容,强化学生对对数的理解和应用能力。

教学延伸:1. 鼓励学生进行更多的实际问题解决,提高对数的应用能力。

2. 引导学生进行对数的拓展学习,如对数的图像性质、对数方程的求解等。

教学反思:1. 检查学生对对数的理解情况,及时纠正学生的错误认识。

2. 调整教学方法,根据学生的学习情况进行灵活的教学安排。

教学评价:通过学生的课堂表现、作业成绩和考试成绩等多方面进行综合评价,及时反馈学生的学习情况,以便调整教学策略和方法。

《对数与对数运算》教案(第1课时)

《对数与对数运算》教案(第1课时)

2.2 对数函数 2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持. 三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用. 教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排 3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? 抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.新知探究 提出问题(对于课本P 572.1.2的例8) ①利用计算机作出函数y=13×1.01x 的图象.②从图象上看,哪一年的人口数要达到18亿、20亿、30亿…? ③如果不利用图象该如何解决,说出你的见解? 即1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,x 分别等于多少? ④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形. 讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P 的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若1318=1.01x ,则x 称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)的x 次幂等于N,就是a x =N,那么数x 叫做以a 为底N 的对数(logarithm),记作x=log a N,其中a 叫做对数的底数,N 叫做真数. 有了对数的定义,前面问题的x 就可表示了: x=log 1.011318,x=log 1.011320,x=log 1.011330. 由此得到对数和指数幂之间的关系:例如:42=16⇔2=log 416;102=100⇔2=log 10100;421=2⇔21=log 42;10-2=0.01⇔-2=log 100.01①为什么在对数定义中规定a>0,a≠1?②根据对数定义求log a 1和log a a(a>0,a≠1)的值. ③负数与零有没有对数? ④Na alog =N 与log a a b =b(a>0,a≠1)是否成立?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21; 若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a≠1. ②log a 1=0,log a a=1.因为对任意a>0且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =a Na alog =N,即a Na alog =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(a Na alog =N 叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗? 活动:同学们阅读课本P 68的内容,教师引导,板书. 解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5. ②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10. 应用示例思路1例1将下列指数式写成对数式,对数式写成指数式: (1)54=625;(2)2-6=641;(3)(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数.对(3)根据指数式与对数式的关系,m 在指数位置上,m 是以31为底5.73的对数. 对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂. 对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂. 对(6)根据指数式与对数式的关系,10在真数位置上,10是e 的2.303次幂. 解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m; (4)(21)-4=16;(5)10-2=0.01;(6)e 2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据. 变式训练课本P 64练习 1、2.例2求下列各式中x 的值: (1)log 64x=32-;(2)log x 8=6; (3)lg100=x;(4)-lne 2=x. 活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log 64x=-32,所以x=6432-=(2))32(6-⨯=2-4=161.(2)因为log x 8=6,所以x 6=8=23=(2)6.因为x>0,因此x=2. (3)因为lg100=x,所以10x =100=102.因此x=2.(4)因为-lne 2=x,所以lne 2=-x,e -x =e 2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解. 变式训练求下列各式中的x : ①log 4x=21;②log x 27=43;③log 5(log 10x )=1. 解:①由log 4x=21,得x=421=2;②由log x 27=43,得x 43=27,所以x=2734=81;③由log 5(log 10x )=1,得log 10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是( ) (1)若log 5x=3,则x=15 (2)若log 25x=21,则x=5 (3)若log x 5=0,则x=5 (4)若log 5x=-3,则x=1251 A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4) 活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于(1)因为log 5x=3,所以x=53=125,错误;对于(2)因为log 25x=21,所以x=2521=5,正确;对于(3)因为log x 5=0,所以x 0=5,无解,错误; 对于(4)因为log 5x=-3,所以x=5-3=1251,正确. 总之(2)(4)正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2对于a >0,a≠1,下列结论正确的是( )(1)若M=N,则log a M=log a N (2)若log a M=log a N,则M=N (3)若log a M 2=log a N 2,则M=N(4)若M=N,则log a M 2=log a N 2 A.(1)(3) B.(2)(4) C.(2) D.(1)(2)(4) 活动:学生思考,讨论,交流,回答,教师及时评价. 回想对数的有关规定.对(1)若M=N,当M 为0或负数时log a M≠log a N,因此错误; 对(2)根据对数的定义,若log a M=log a N,则M=N,正确; 对(3)若log a M 2=log a N 2,则M=±N,因此错误;对(4)若M=N=0时,则log a M 2与log a N 2都不存在,因此错误. 综上,(2)正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3计算:(1)log 927;(2)log 4381;(3)log )32((2-3);(4)log 345625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log 927,则9x =27,32x =33,所以x=23; (2)设x=log 4381,则(43)x =81,34x =34,所以x=16; (3)令x=log )32(+(2-3)=log )32(+(2+3)-1,所以(2+3)x =(2+3)-1,x=-1; (4)令x=log 345625,所以(345)x =625,534x=54,x=3.解法二:(1)log 927=log 933=log 9923=23; (2)log 4381=log 43(43)16=16; (3)log )32(+(2-3)=log )32(+(2+3)-1=-1;(4)log 345625=log 345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据. 变式训练课本P 64练习 3、4. 知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x=log 42;(4)x=log 20.5;(5)4=log 5625; (6)-2=log 391;(7)-2=log 4116. 2.把下列各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =31;(5)24=16;(6)(31)-3=27;(7)(3)6 =x;(8)x -6=64;(9)27=128;(10)3a =27. 3.求下列各式中x 的值: (1)log 8x=32-;(2)log x 27=43;(3)log 2(log 5x )=1;(4)log 3(lgx )=0.解:(1)因为log 8x=32-,所以x=832-=(23)32-=)32(32-⨯=2-2=41;(2)因为log x 27=43,所以x 43=27=33,即x=(33)34=34=81;(3)因为log 2(log 5x )=1,所以log 5x=2,x=52=25; (4)因为log 3(lgx )=0,所以lgx=1,即x=101=10. 4.(1)求log 84的值;(2)已知log a 2=m,log a 3=n,求a 2m +n 的值.解:(1)设log 84=x,根据对数的定义有8x =4,即23x =22,所以x=32,即log 84=32; (2)因为log a 2=m,log a 3=n,根据对数的定义有a m =2,a n =3,所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用. 拓展提升请你阅读课本75页的有关阅读部分的内容,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础. 课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数. 作业课本P 74习题2.2A 组 1、2. 【补充作业】1.将下列指数式与对数式互化,有x 的求出x 的值. (1)521-=51;(2)log 24=x;(3)3x =271; (4)(41)x=64;(5)lg0.000 1=x;(6)lne 5=x. 解:(1)521-=51化为对数式是log 551=21-; (2)x=log 24化为指数式是(2)x=4,即22x=22,2x=2,x=4; (3)3x =271化为对数式是x=log 3271,因为3x =(31)3=3-3,所以x=-3; (4)(41)x =64化为对数式是x=log 4164,因为(41)x =64=43,所以x=-3; (5)lg0.0001=x 化为指数式是10x =0.0001,因为10x =0.000 1=10-4,所以x=-4;(6)lne 5=x 化为指数式是e x =e 5,因为e x =e 5,所以x=5.2.计算51log 53log333+的值.解:设x=log 351,则3x =51,(321)x =(51)21,所以x=log513.所以351log 5log 3333+=513log 35+=515+=556. 3.计算Nc b c b a a log log log ∙∙(a>0,b>0,c>0,N>0).解:Nc b c b a alog log log ∙∙=Nc c b b log log ∙=Nc clog =N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备. (设计者:路致芳)。

对数与对数运算

对数与对数运算
对于任意两个正实数a、b(a≠1, b≠1)及对数底数c(c>0,c≠1) ,有logc(a)=logb(a)/logb(c)。
换底公式推导
根据对数定义及指数运算规则,可以 推导出换底公式。具体过程略。
换底公式在简化计算中作用
化简复杂对数式
利用换底公式可以将复杂对数式转化为简单对数式,从而简 化计算过程。
复合函数处理方法
• 对于形如$f(g(x))$的复合函数,若外层函数$f(x)$和对内层函数$g(x)$都可导,则复合函数可导。在处理复合 对数函数如$\ln(\sin x)$、$\log_2(\cos x)$等时,需利用链式法则求导。
04
换底公式推导及应用技巧
换底公式介绍和推导过程
换底公式定义
形如$a^x+b^x=c$或$a^x \times b^x = c$等 更复杂的方程。
利用对数性质解指数方程步骤梳理
第一步
确定方程类型,选择合适的对数性质进行转 换。
第二步
应用对数性质,消去指数,将方程转化为代 数方程。
第三步
解代数方程,求得$x$的值。
第四步
验根,将求得的解代入原方程进行验证,确 保解的正确性。
统一底数
在实际问题中,有时需要将不同底数的对数式统一为一个底 数,以便进行计算和比较。换底公式可以实现这一目的。
实际应用案例展示
案例一
求解log5(25)+log2(32)-log3(9)。通过换 底公式,可将原式转化为以10为底的对数 式进行计算。
案例二
比较log0.5(0.4)与log0.4(0.5)的大小。通过 换底公式将两个对数式转化为以10为底的
运算性质总结
正对数性质
若$a>0, a\neq1, M>0, N>0$,则$\log_a(MN)=\log_a M+\log_a N$,$\log_a\frac{M}{N}=\log_a M\log_a N$,$\log_a M^n=n\log_a M$。

对数与对数运算教学设计

对数与对数运算教学设计

对数与对数运算教学设计《对数与对数运算》教学设计课题2.2.1对数与对数运算:第一课时三维目标:知识与技能1.理解对数的概念,了解对数与指数的关系;2.学会对数式与指数式的的互化,培养学生类比,分析,归纳的能力。

(二)过程与方法1.解自然对数和常用对数的概念,以及对数恒等式;2.通过实例推导对数运算性质,准确运用对数的运算性质进行计算,求值,化简。

并掌握化简,求值的技能。

(三)情感、态度和价值观1.培养学生分析,综合解决问题的能力;2.通过对数的运算法则的学习,培养学生的严谨的思维品质;3.在学习过程中培养学生探究的意识。

教学内容分析:教学重点对数式与指数式的互化以及对数性质加以灵活运用教学难点对数运算性质推导过程,以及分析过程课型:新授课新课讲解(一)创设情境,课题引入(学生活动)P72~P73页提出以下问题:对对数的发明有杰出贡献的科学家是谁发明对数的目的是什么?为什么说对数发明是17世纪重大数学成就?苏格兰数学家napier(纳皮尔)在研究天文学过程中,为了简化其中的计算发明了对数。

恩格斯曾经把对数的发明与解析几何的创立、微积分的建立是并称为17世纪数学史上的3大成就。

伽利略也说过:“给我空间、时间及对数,我可以创造一个宇宙”;(老师引导:那么,什么是对数?对数式怎样简化运算的?对数真的有用吗?)教师:为了研究对数,我们先来研究下面这个问题?(学生活动)P72页思考:根据上一节的例1我们能从中算出任意一个某(经过的年份)的人口总数,可不可能哪一年人口数低于13亿?那么哪一年的人口达到18亿?可不可能哪一年人口达到1000亿?你会算吗(教师活动)由指数函数性质知,有,所以人口数达到18时候,,所以有在个式子中,等于多少?学生可能会说,解出即可。

实际不然,实际问题实际考虑,地球上供养不起这么多人,所以现在同学们们要珍惜现在资源,爱护地球。

对数概念(教师活动)(板书)一般地,若,那么数叫做以为底的对数,记作,叫做对数的底数,叫做真数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章函数的基本性质(Ⅰ)
2.1.2对数与对数运算一(2课时)
主备教师肖平聪
一、内容及其解析
本节课要学的内容指的是对数概念及指数与对数的互化、对数运算等内容。

,其核心是通过实例推导对数的运算性质,理解它关键就是要准确地运用对数运算性质进行运算,求值、化简,并掌握化简求值的技能。

本节课是在学生学习了指数函数及其性质之后学习的,本节学习内容蕴含转化化归数学思想,类比与对比等基本数学方法。

对数与指数的互化是对指数函数及其性质的巩固,也是后面学习对数函数的基础。

因此本节课在知识结构上起了承上启下的作用。

教学的重点是理解和掌握对数的概念,对数的运算性质,解决重点的关键是紧抓指数、对数的联系,结合指数的运算性质与指数式、对数式的互化推导对数的运算性质。

二、目标及其解析
1.目标定位
(1)理解对数的概念,了解对数与指数的关系;
(2)掌握指数式与对数式的互化;
2.目标解析
(1)是指若,则叫做以为底的对数(Logarithm),
记作:其中—底数,—真数,—对数式
(2)是指
三、问题诊断分析
在本节课的教学中,学生可能遇到的问题对数的概念的理解。

产生这一问题的原因是学生刚接触新的概念,有些陌生。

要解决这一问题,就要多练习,多接触,多理解,使学生尽快的熟悉所学知识。

四、教学支持条件
本节课多数与对数运算的教学中,准备使用多媒体辅助教学,,因为使用多媒体,有利于学生对概念的理解和对指数式与对数式的互化有更直观的认识。

五、教学过程
创设情境,引入课题
问题一:什么是对数?
(设计意图:由学生小组合作交流,归纳总结,培养学生的自主学习能力)
问题1:
(设计意图:让学生认识到引入对数概念的必要性)
分析:
这是底数和幂的值,求指数的问题,也就是我们这节课将要学习的对数问题。

今天我们要学习的是《对数与对数运算》。

(板书课题)
问题2:如何给对数下定义呢?阅读课本62页。

(设计意图:学生归纳探究,自主学习)
对数的概念
一般地,如果那么数叫做以为底N的对数,记作其中叫做对数的底数,N叫做真数。

举例:如:,则。

读作2是以4为底,16的对数.
引出两个特殊对数:
1.常用对数:以10为底的对数;
2.自然对数:以无理数为底的对数;
例1.(1)对数式中的取值范围是。

(2)对数式中的取值范围是。

(设计意图:加深对概念的理解)
变式训练:
1.对数式中的取值范围是。

2.对数式中的取值范围是。

3.对数式中的取值范围是。

师生活动:(设计意图:在应用过程中进一步理解和掌握对数概念)
提问:你能说出我们解决例1及变式训练的依据吗?
问题二:解决本小节提出的问题中,的值为多少?
(设计意图:引出指数式与对数式的互化)
问题1:在指数式与对数式中,的名称与位置有什么变化?(设计意图:明确指数式与对数式中三个量之间的同一关系,理解对数定义)
指数式与对数式的互化
问题2:试着完成对数与指数的对比表格
N
底数
指数

底数
对数
真数
通过以上直观图示可以看出,指数式与对数式虽然表示的是两种不同的运算,但都表示三个数之间的数量关系,在的条件下,这两种运算可以相互转化,它们互为逆运算。

例2.将下列指数式化为对数式,对数式化为指数式:
(设计意图:利用新知解决问题)
(1);(2);(3);
(4);(5);(6)。

变式训练:将下列指数式化为对数式,对数式化为指数式:
(1);(2);(3);(4);
(5);(6);(7);(8)。

师生活动:(设计意图:熟悉指数式与对数式互化,加深理解对数概念)
问题:你能说说指数式与对数式互化中应注意哪些问题?
以下四个命题中,属于真命题的是()
(1)若log5x=3,则x=15(2)若log25x=,则x=5
(3)若logx=0,则x=(4)若log5x=-3,则x=
A.(2)(3)
B.(1)(3)
C.(2)(4)
D.(3)(4)
六、课堂小结
1.对数的概念;
2.指数式与对数式的互化;
七、目标检测
1.写成对数式正确的是()
A. B.; C. D.
2.对数式中的取值范围是。

3、已知函数,若,则等于()
A. B. C. D.
八、配餐组作业
A组
1.把下列各题的指数式写成对数式:
(1)(2)(3)(4)
2.把下列各题的对数式写成指数式:
(1);(2);(3)。

B组
3.已知则等于()
A、; B.; C.; D.。

4.求下列各式中x的值:
(1);(2);(3)。

C组
5.若,则等于()
A、1;
B、3;
C、10;
D、3或10;
6.计算(1)求的值;
(2)已知,求的值.
九、课后反思。

相关文档
最新文档