初三中考数学 函数
初三数学锐角三角函数
初三数学锐角三角函数中考要求中考要求模块一 三角函数基础一、锐角三角函数的定义如图所示,在Rt ABC △中,a 、b 、c 分别为A ∠、B ∠、C ∠的对边.(1)正弦:Rt ABC ∆中,锐角A 的对边与斜边的比叫做A ∠的正弦,记作sin A ,即sin aA c=.(2)余弦:Rt ABC ∆中,锐角A 的邻边与斜边的比叫做A ∠的余弦,记作cos A ,即cos b A c =. (3)正切:Rt ABC ∆中,锐角A 的对边与邻边的比叫做A ∠的正切,记作tan A ,即tan a A b=. 注意:①正弦、余弦、正切都是在直角三角形中给出的,要避免应用时对任意三角形随便套用定义. ② sin A 、cos A 、tan A 分别是正弦、余弦、正切的数学表达符号,是一个整体,不能理解为sin 与A 、cos 与A 、tan 与A 的乘积.③ 在直角三角形中,正弦、余弦、正切分别是某个锐角的对边与斜边、邻边与斜边、对边与邻边的比值,当这个锐角确定后,这些比值都是固定值.二、特殊角三角函数a A这些特殊角的三角函数值一定要牢牢记住! 三、锐角三角函数的取值范围在Rt ABC ∆中,90C ∠=︒,000a b c a c b c >>><<,,,,,又sin a A c =,cos b A c =,tan aA b=,所以 0sin 10cos 1tan 0A A A <<<<>,,. 四、三角函数关系 1.同角三角函数关系: 22sin cos 1A A +=,sin tan cos AA A= 2.互余角三角函数关系:(1) 任意锐角的正弦值等于它的余角的余弦值:()sin cos 90A A =︒-;(2) 任意锐角的余弦值等于它的余角的正弦值:()cos sin 90A A =︒-; (3) 任意锐角的正切值等于它的余角的余切值:()tan cot 90A A =︒-. 3.锐角三角函数值的变化规律:(1)A 、B 是锐角,若A >B ,则sin A >sin B ;若A <B ,则sin A <sin B(2) A 、B 是锐角,若A >B ,则cos A <cos B ;若A <B ,则cos A >cos B (3) A 、B 是锐角,若A >B ,则tan tan A B >;若A <B ,则tan tan A B <【例1】 已知在ABC △中,A B ∠∠、是锐角,且5sin tan 22913A B AB cm ===,,,则ABC S =△ .【巩固】如图,点A 在半径为R 的O 上,以A 为圆心,r 为半径作A ,设O 的弦PQ 与A 相切,求证PA QA ⋅为定值.【例2】 求tan1tan2tan3tan89︒⋅︒⋅︒⋅⋅︒的值【巩固】化简:22sin cos sin 1tan sin cos αααααα++--【例3】已知tan α1)221cos sin cos 1sin cos sin a ααααα-+-+,(2090α︒<<︒).【巩固】已知tan 2α=,求4sin 2cos 5cos 3sin αααα-+.【例4】 已知α为锐角,且22sin 5cos 10αα-+=,求α的度数. OQPA【巩固】若α为锐角,且22cos 7sin 50αα+-=,求α的度数.【例5】 已知sin cos αα+(α为锐角),求作以1sin α和1cos α为两根的一元二次方程.【巩固】若方程222210x ax a -+-=的一个根是sin α,则它的另一个根必是cos α或cos α-.【巩固】已知:ABC △中,方程2(sin sin )(sin sin )(sin sin )0B A x A C x C B -+-+-=的两根相等,求证60B <︒.【巩固】在ABC △中,60A =︒,最大边与最小边的边长分别是方程2327320x x -+=的两个根,求ABC △的外接圆半径和内切圆的面积.【例6】 若0°<θ<30°,且1sin 3km θ=+(k 为常数,且k <0),则m 的取值范是 .模块二 解直角三角形一、解直角三角形的概念根据直角三角形中已知的量(边、角)来求解未知的量(边、角)的过程就是解直角三角形. 二、直角三角形的边角关系如图,直角三角形的边角关系可以从以下几个方面加以归纳: (1)三边之间的关系:222a b c += (勾股定理) (2)锐角之间的关系:90A B ∠+∠=︒(3)边角之间的关系:sin cos ,cos sin ,tan a b aA B A B A c c b=====三、解直角三角形的四种基本类型(1)已知斜边和一直角边(如斜边c ,直角边a ),由sin aA c=求出A ∠,则90B A ∠=︒-∠,b =; (2)已知斜边和一锐角(如斜边c ,锐角A ),求出90B A ∠=︒-∠,sin a c A =,cos b c A =; (3)已知一直角边和一锐角(如a 和锐角A ),求出90B A ∠=︒-∠,tan b a B =,sin ac A=; (4)已知两直角边(如a 和b ),求出c =tan aA b=,得90B A ∠=︒-∠. 具体解题时要善于选用公式及其变式,如sin a A c =可写成sin a c A =,sin a c A=等. 四、解直角三角形的方法解直角三角形的方法可概括为:“有斜(斜边)用弦(正弦,余弦),无斜用切(正切,余切),宁乘毋除,取原避中”.这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦;无斜边时,就用正切或余切; 当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可由已知数据又可用中间数据求得时,则用原始数据,尽量避免用中间数据. 五、解直角三角形的技巧及注意点在Rt ABC ∆中,90A B ∠+∠=︒,故sin cos(90)cos A A B =︒-=,cos sin A B =.利用这些关系式,可在解题时进行等量代换,以方便解题. 六、如何解直角三角形的非基本类型的题型对解直角三角形的非基本类型的题型,通常是已知一边长及一锐角三角函数值,可通过解方程(组)来cb aC BA(1)如果有些问题一时难以确定解答方式,可以依据题意画图帮助分析;(2)对有些比较复杂的问题,往往要通过作辅助线构造直角三角形,作辅助线的一般思路是:①作垂线构成直角三角形;②利用图形本身的性质,如等腰三角形顶角平分线垂直于底边等. 七、直角三角形中其他重要概念(1)仰角与俯角:在视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角.如图⑴.(2)坡角与坡度:坡面的垂直高度h 和水平宽度l 的比叫做坡度(或叫做坡比),用字母表示为h i l=,坡面与水平面的夹角记作α,叫做坡角,则tan hi lα==.坡度越大,坡面就越陡.如图⑵. (3)方向角(或方位角):方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达为北(南)偏东(西)××度.如图⑶.八、解直角三角形应用题的解题步骤及应注意的问题:(1)分析题意,根据已知条件画出它的平面或截面示意图,分清仰角、俯角、坡角、坡度、水平距离、垂直距离等概念的意义;(2)找出要求解的直角三角形.有些图形虽然不是直角三角形,但可添加适当的辅助线,把它们分割成一些直角三角形和矩形(包括正方形);(3)根据已知条件,选择合适的边角关系式解直角三角形;(4)按照题目中已知数据的精确度进行近似计算,检验是否符合实际,并按题目要求的精确度取近似值,注明单位.【例7】 如图,某高层楼房与上海东方明珠电视塔隔江想望,甲、乙两学生分别在这楼房的A B ,两层,甲在A 层测得电视塔塔顶D 的仰角为α,塔底C 的俯角为β,乙在B 层测得塔顶D 的仰角为θ,由于塔底的视线被挡住,乙无法测得塔底的俯角,已知A B ,之间的高度差为a ,求电视塔高CD(用含a αβθ,,,的代数式表示)图(3)图(2)图(1)俯角仰角视线视线水平线铅垂线【例8】一座建于若干年前的水库大坝的横断面如图所示,其中背水面的整个坡面是长为90米、宽为5米的矩形.现需将其整修并进行美化,方案如下:①将背水坡AB的坡度由1:0.75改为;②用一组与背水坡面长边垂直的平行线将背水坡面分成9块相同的矩形区域,依次相间地种草与栽花.(1)求整修后背水坡面的面积;(2)如果栽花的成本是每平方米25元,种草的成本是每平方米20元,那么种植花草至少需要多少元?【例9】如图,在某海域内有三个港口A、D、C.港口C在港口A北偏东60︒方向上,港口D在港口A 北偏西60︒方向上.一艘船以每小时25海里的速度沿北偏东30︒的方向驶离A港口3小时后到达B点位置处,此时发现船舱漏水,海水以每5分钟4吨的速度渗入船内.当船舱渗入的海水总量超过75吨时,船将沉入海中.同时在B处测得港口C在B处的南偏东75︒方向上.若船上的抽水机每小时可将8吨的海水排出船外,问此船在B处至少应以怎样的航行速度驶向最近的港口停靠,才能保证船在抵达港口前不会沉没(要求计算结果保留根号)?并指出此时船的航行方向.DC BA【巩固】海面上B 处有一货轮正在向正南方向航行,其航行路线是当它到达正南方C 时,在驶向正西方的目的地A 处,且200CA CB ==海里,在AB 中点O 处有一客轮,其速度为货轮的一半,现在客轮要截住货轮取一件货物,于是选择某一航向行驶去截住货轮,那么当客轮截住客轮时至少航行了多少海里,它所选择了怎样的方向角?(路程保留整数海里,角度精确到度)课堂检测1. (辽宁竞赛)如图,湖心岛上有一凉亭,现欲利用湖岸边的开阔平整地带,测量凉亭顶端到湖面所在平面的高度AB (见示意图),可供使用的工具有测倾器、皮尺.(1)请你根据现有条件,设计一个测量凉亭顶端到湖面所在平面的高度AB 的方案,画出测量方案的平面示意图,并将测量的数据标注在图形上(所测的距离用m ,n 表示,角用α,β表示,测倾器高度忽略不计);(2)根据你所测量的数据,计算凉亭到湖面的高度AB (用字母表示).2. 化简:222tan1tan 2....tan89sin 1sin 2...sin 89︒⋅︒︒︒+︒++︒3. 如图1、图2,是一款家用的垃圾桶,踏板AB (与地面平行)或绕定点P (固定在垃圾桶底部的某一位置)上下转动(转动过程中始终保持''AP A P BP B P ==,).通过向下踩踏点A 到'A (与地面接触点)使点B 上升到点'B ,与此同时传动杆BH 运动到''B H 的位置,点H 绕固定点D 旋转(DH 为旋转半径)至点'H ,从而使桶盖打开一个张角'HDH ∠.如图3,桶盖打开后,传动杆''H B 所在的直线分别与水平直线AB DH 、垂直,垂足为点M C 、,设''H C B M =.测得6cm 12cm '8cm AP PB DH ===,,.要使桶盖张开的角度'HDH ∠不小于60︒,那么踏板AB 离地面的高度至少等于多少cm ?(结果保留两位有效数字)课后作业1. 化简求值:1sin 1sin 1cos 1cos 1sin 1sin 1cos 1cos αααααααα⎛⎫⎛⎫-+-+-- ⎪⎪ ⎪⎪+-+-⎝⎭⎝⎭(090α︒<<︒)2. 若045α︒<<︒,且3sin cos 716αα=,求sin α的值. 图3图2C MAA'P BB'HDH'H'DHB'BPA'A(图1)3. (2011甘肃兰州)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad ).如图①在ABC △中,AB AC =,顶角A 的正对记作sadA ,这时=BCsadA AB=底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题: (1)60sad ︒= .(2)对于0180A ︒<<︒,∠A 的正对值sadA 的取值范围是 . (3)如图②,已知3sin 5A =,其中A ∠为锐角,试求sadA 的值.图②图①C BAC B A。
中考数学知识板块
中考数学知识板块主要包括以下几个方面:
1. 数与式:实数、代数式、整式与分式。
实数部分需要掌握有理数和无理数的概念,以及相反数、倒
数、绝对值的意义。
代数式部分需要理解代数式的概念,以及合并同类项的方法。
整式与分式部分则需要掌握整式与分式的运算。
2. 方程与不等式:一元一次方程、一元二次方程、分式方程、不等式与不等式组。
这些部分需要掌握方
程的解法,以及不等式的性质和解法。
3. 函数与图像:一次函数、反比例函数、二次函数。
这些部分需要理解函数的概念,掌握函数的图像和
性质,以及函数的应用。
4. 图形的性质:几何图形的性质,包括点、线、面、角、三角形、四边形、圆等。
需要掌握这些图形的
性质,以及相关的定理和公式。
5. 图形与变换:图形的轴对称、平移、旋转、相似等。
这些部分需要理解图形的变换方式,以及变换后
的图形与原图形的关系。
6. 统计与概率:统计的基础知识,如数据的收集、整理、描述和分析,以及概率的基础知识,如事件的
可能性、概率的计算等。
在中考数学中,以上知识板块是相互联系的,需要综合运用来解决问题。
同时,还需要注意数学思想和方法的运用,如分类讨论、数形结合、化归与转化等。
初三数学《二次函数》考点整理与例题解析
初三数学《二次函数》考点整理与例题解析二次函数重难点分析:1、二次函数的图像2、二次函数的性质以及性质的综合应用3、二次函数的应用性问题:①面积最值问题②高度、长度最值问题③利润最大化问题④求近似解知识点归纳:1、二次函数的概念y=ax2+bx+c(a≠0)2、求二次函数的解析式一般式y=ax2+bx+c、顶点式y=a(x+m)2+k交点式y=a(x-x1)(x-x2)3、二次函数的图像和性质当a>0时,图像开口向上,有最低点,有最小值当a<0时,图像开口向下,有最高点,有最大值顶点式对称轴:直线x=-m一般式对称轴:直线x=-b/2a交点式对称轴:直线x=(x1+x2)/24.二次函数图像的平移函数y=a(x+m)2+k的图像,可以由函数y=ax2的图像先向右(当m<0时)或向左(m>0时)平移|m|个单位,再向上(当k>0时)或向下(当k<0时)平移|k|个单位得到5、抛物线与系数的关系二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
常数项c决定抛物线与y轴交点抛物线与y轴交于(0,c)抛物线与x轴交点个数?= b2-4ac>0时,抛物线与x轴有2个交点。
?= b2-4ac=0时,抛物线与x轴有1个交点。
?= b2-4ac<0时,抛物线与x轴没有交点知识拓展:初中数学最重要的部分,在中考中占的比重大,跟其他知识点联系多,以数形结合的题型考查几何,解方程、代数等都相互联系,知识点多题型多变,压轴题多以此为出题点1、考查形式:以选择题、填空题形式考察二次函数图像的性质,以解答题形式考察以二次函数为载体的综合题。
2、考察趋势:二次函数图像与系数的关系,二次函数的应用仍是重点3、二次函数求最值的应用:依据实际问题中的数量关系,确定二次函数的解析式,结合方程、一次函数等知识解决实际问题(对于二次函数最大(小)值的确定,一定要注意二次函数自变量的取值范围,同时兼顾实际问题中对自变量的特殊约定,结合图像进行理解)经典例题。
中考数学三角函数公式汇总与解析
中考数学三角函数公式汇总与解析1.锐角三角函数锐角三角函数定义:锐角角A的正弦(si n),余弦(c o s)和正切(t a n),余切(c o t)以及正割(se c),余割(c sc)都叫做角A的锐角三角函数。
正弦(si n):对边比斜边,即si n A=a/c余弦(c o s):邻边比斜边,即c o sA=b/c正切(t a n):对边比邻边,即t a n A=a/b余切(c o t):邻边比对边,即c o t A=b/a正割(se c):斜边比邻边,即se c A=c/b余割(c sc):斜边比对边,即c s c A=c/a2.3.互余角的关系s i n(π-α)=c o sα,c o s(π-α)=si nα,t a n(π-α)=c o tα,c o t(π-α)=t a nα.4.平方关系sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)5.积的关系s i nα=t a nα·c o sαc o sα=c o tα·si nαt a nα=si nα·se cαc o tα=c o sα·c s cαs e cα=t a nα·c scαc s cα=se cα·c o tα6.倒数关系t a nα·c o tα=1s i nα·c scα=1c o sα·se cα=17.诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:s i n(2kπ+α)=si nαk∈zc o s(2kπ+α)=c o sαk∈zt a n(2kπ+α)=t a nαk∈zc o t(2kπ+α)=c o tαk∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:s i n(π+α)=-si nαc o s(π+α)=-c o sαt a n(π+α)=t a nα8.两角和差公式(1)si n(A+B)=si n A c o sB+c o sA si n B(2)si n(A-B)=si n A c o s B-si n B c o sA(3)c o s(A+B)=c o sA c o sB-si n A si n B(4)c o s(A-B)=c o sA c o sB+si n A si n B(5)t a n(A+B)=(t a n A+t a n B)/(1-t a n A t a n B)(6)t a n(A-B)=(t a n A-t a n B)/(1+t a n A t a n B)(7)c o t(A+B)=(c o t A c o t B-1)/(c o t B+c o t A)(8)c o t(A-B)=(c o t A c o t B+1)/(c o t B-c o t A)除了以上常考的三角函数公式外,掌握下面半角公式,积化和差和万能公式有利于快速解决选择题,达到事半功倍的效果哦!1.半角公式注:正负由α/2所在的象限决定。
初三中考数学函数综合题含答案
初三中考数学函数综合题含答案一、单选题1.函数32x y x +=-中,自变量x 的取值范围是( ) A .3x >-B .3x ≥-且2x ≠C .2x ≠D .3x >-且2x ≠2.如图,函数y ax b =+和y kx =的图象交于点P ,则根据图象可得,关于x 、y 的二元一次方程组0ax y b kx y -+=⎧⎨-=⎩的解是( )A .42x y =-⎧⎨=-⎩B .42x y =⎧⎨=⎩C .24x y =-⎧⎨=-⎩D .24x y =⎧⎨=⎩3.若反比例函数1k y x-=,当0x >时,y 随x 的增大而减小,则k 的取值范围是() A .1k >B .1k <C .1k >-D .1k <-4.将抛物线()2321y x =-+先向右平移2个单位长度,再向下平移2个单位长度,平移后所得的抛物线解析式是() A .()2341y x =-- B .()2343y x =-+ C .233y x =+D .231y x =-5.抛物线213y x =的开口方向、对称轴分别是( )A .向上,x 轴B .向上,y 轴C .向下,x 轴D .向下,y 轴 6.二次函数y =x 2+6x +4的对称轴是( ) A .x =6B .x =﹣6C .x =﹣3D .x =47.下列y 关于x 的函数中,一次函数为( ) A .()2y a x b =-+B .()211y k x =++C .2y x=D .221y x =+8.一次函数y kx b =+的图象与直线23y x =+平行,且与y 轴的交点为(0,2),则一次函数的表达式为( ) A .23y x =+B .22y x =+C .23y x =-+D .22y x =-+9.已知抛物线y =ax 2+bx +c (a ≠0)的顶点为(2,4),有以下结论:①当a >0时,b 2-4ac >0;②当a >0时,ax 2+bx +c≥4;③若点(-2,m ),(3,n )在抛物线上,则m <n ;④若关于x 的一元二次方程ax 2+bx +c =0的一根为-1,则另一根为5.其中正确的是( ) A .①②B .①④C .②③D .②④10.已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)都在反比例函数y kx=(k <0)的图象上,且x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( ) A .y 2>y 1>y 3 B .y 3>y 2>y 1 C .y 1>y 2>y 3 D .y 3>y 1>y 211.已知y =kx +b ,当x =2时,y =-2;当x =3时,y =0.则( )A .k =2,b =-6B .k =-6,b =2C .k =-2,b =6D .k =-2,b =-612.抛物线y =﹣2(x ﹣3)2﹣4的顶点坐标是( )A .(﹣3,4)B .(﹣3,﹣4)C .(3,﹣4)D .(3,4)13.将一次函数23y x =-的图象沿y 轴向上平移3个单位长度后,所得图象的函数表达式为( ) A .2y x = B .26y x =- C .53y x =- D .3y x =-- 14.二次函数22(3)1y x =-+-的顶点坐标是( )A .(31), B .(13)-, C .(3,1)-D .(3,1)--15.已知A (﹣11,3y ),B (﹣21,2y ),C (1,y 3)是一次函数y =b ﹣3x 的图象上三点,则y 1、y 2、y 3的大小关系为( ) A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 1<y 3二、填空题16.一次函数(27)2y k x =-+中,y 随x 的增大而减小,则k 的取值范围是___________. 17.将直线213y x =-+向上平移3个单位后所得直线解析式为_______.18.已知点(2,)A m 在一次函数53y x =+的图象上,则m 的值是__.19.已知一次函数(1)2y m x m =-+-的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是______.20.若函数y =(m ﹣2)x +|m |﹣2是正比例函数,则m =_____.三、解答题21.如图,抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,并且与y 轴交于点C .(1)求此抛物线的解析式; (2)直线BC 的解析式为 ;(3)若点M 是第一象限的抛物线上的点,且横坐标为t ,过点M 作x 轴的垂线交BC 于点N ,设MN 的长为h ,求h 与t 之间的函数关系式及h 的最大值;(4)在x 轴的负半轴上是否存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形?如果存在;如果不存在,说明理由.22.如图,抛物线y =ax 2+bx +3与x 轴交于A (﹣1,0)、B (3,0)两点,抛物线的对称轴l 与x 轴交于M 点.(1)求抛物线的函数解析式;(2)设点P 是直线l 上的一个动点,当PA +PC 的值最小时,求PA +PC 长;(3)已知点N (0,﹣1),在y 轴上是否存在点Q ,使以M 、N 、Q 为顶点的三角形与△BCM 相似?若存在;若不存在,请说明理由.23.已知二次函数222y x x m =-+-的图象与x 轴有交点,求非负整数m 的值. 24.已知抛物线y =12x 2﹣x ﹣32与x 轴交于点A ,点B (点A 在点B 左侧). (1)求点A ,点B 的坐标;(2)用配方法求该抛物线的顶点C 的坐标,判断△ABC 的形状,并说明理由;(3)在抛物线的对称轴上是否存在点P ,使以点O 、点C 、点P 为顶点的三角形构成等腰三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由. 25.已知抛物线222y x mx m =--.(1)求证:对任意实数m ,抛物线与x 轴总有交点. (2)若该抛物线与x 轴交于1,0A ,求m 的值.【参考答案】一、单选题 1.B 2.A3.A 4.A 5.B 6.C 7.B 8.B 9.D 10.A 11.A 12.C 13.A 14.D 15.A 二、填空题16.72k < 17.243y x =-+18.1319.2m >20.-2三、解答题21.(1)234y x x =-++ (2)4y x =-+(3)h 与t 之间的函数关系式为:()2404h t t t =-+<<,h 的最大值为4(4)在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由见解析 【解析】 【分析】(1)把A (﹣1,0),B (4,0) 代入抛物线解析式,即可求解;(2)根据抛物线解析式求出点C 的坐标,再利用待定系数法,即可求解;(3)根据题意可得点()2,34M t t t -++,点(),4N t t -+,从而得到24MN t t =-+,再根据二次函数的性质,即可求解;(4)分三种情况:当PC =BC 时,当PB =BC 时,当PC =PB 时,即可求解. (1)解:∵抛物线y =ax 2+3x +c 经过A (﹣1,0),B (4,0)两点,∴3016340a c a c -+=⎧⎨+⨯+=⎩, 解得:14a c =-⎧⎨=⎩, ∴抛物线的解析式为234y x x =-++; (2)解:当0x =时,4y =, ∴点()0,4C ,设直线BC 的解析式为()0y kx b k =+≠, 把点B (4,0),()0,4C 代入得:404k b b +=⎧⎨=⎩, 解得:14k b =-⎧⎨=⎩,∴直线BC 的解析式为4y x =-+; (3) 解:如图,∵点M 是第一象限的抛物线上的点,且横坐标为t ,∴点()2,34M t t t -++,∵MN ⊥x 轴, ∴点(),4N t t -+,∴()()223444MN t t t t t =-++--+=-+,∴()()2242404h t t t t =-+=--+<<, ∴当2t =时,h 的值最大,最大值为4; (4)解:在x 轴的负半轴上存在点P ,使以B ,C ,P 三点为顶点的三角形为等腰三角形,理由如下: 当PC =BC 时, ∵OC ⊥BP , ∴OP =OB ,∵点B (4,0),点P 在x 轴的负半轴上, ∴点()4,0P -; 当PB =BC 时, ∵B (4,0),()0,4C , ∴OC =4,OB =4,∴BP BC ==∴4OP BP OB =-=, ∵点P 在x 轴的负半轴上,∴点()4P -;当PC =PB 时,点P 位于BC 的垂直平分线上, ∵OB =OC =4,∴点O 位于BC 的垂直平分线上, ∴此时点P 与点O 重合,不合题意,舍去;综上所述,在x 轴的负半轴上存在点()4,0P -或()4P -,使以B ,C ,P 三点为顶点的三角形为等腰三角形. 【点睛】本题主要考查了求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质,熟练掌握用待定系数法求二次函数和一次函数的解析式,二次函数的图象和性质,等腰三角形的性质是解题的关键. 22.(1)y =﹣x 2+2x +3(2)PA +PC 的长为(3)存在,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭,理由见解析【解析】 【分析】(1)当x =0时,y =3,可得C (0,3).再设设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0),利用待定系数法,即可求解;(2)连接PA 、PB 、PC ,根据轴对称性可得PA =PB .从而得到PA +PC =PC +PB .进而得到当点P 在线段BC 上时,PC +AP 有最小值.即可求解;(3)先求出抛物线的对称轴,可得点()1,0M ,再由点N (0,﹣1),B (3,0),C (0,3).可得2,45,45MN BC BM CBM MNO ===∠=︒∠=︒,可得∠CBM =∠MNO ,然后分三种情况讨论,即可求解. (1)解:把x =0代入得:y =3, ∴C (0,3).设抛物线的解析式为y =a (x +1)(x ﹣3)(a ≠0), 将点C 的坐标代入上式得:3=﹣3a ,解得:a =﹣1.∴抛物线的解析式为y =-(x +1)(x -3)=﹣x 2+2x +3. (2)解:如图,连接PA 、PB 、PC ,∵点A 与点B 关于直线l 对称,点P 在直线l 上, ∴PA =PB . ∴PA +PC =PC +PB . ∵两点之间线段最短,∴当点P 在线段BC 上时,PC +AP 有最小值. ∵OC =3,OB =3, ∴BC =32∴PA +PC 的最小值=32 (3)解:存在,理由: 抛物线的对称轴为直线x =﹣2ba=1. ∵抛物线的对称轴l 与x 轴交于M 点. ∴点()1,0M ,∵点N (0,﹣1),B (3,0),C (0,3). ∴OM =ON =1,OB =OC =3,∴2,32,2,45,45MN BC BM CBM MNO ===∠=︒∠=︒, ∴∠CBM =∠MNO ,当点Q 在点N 下方时,∠MNQ =135°,不符合题意, ∴点Q 在点N 上方,设点Q 的坐标为(0,n ).则QN =n +1, ∵以M 、N 、Q 为顶点的三角形与△BCM 相似, ∴∠QMN =∠CMB 或∠MQN =∠CMB , 当1Q MN CMB ∠=∠时,1Q MNCMB ,如图(2),∴1Q N MNBC BM=, ∴12232n +=,解得:2n =, ∴点()10,2Q ;当2MQ N CMB ∠=∠时,2MQ NCMB ,如图(3),∴2Q N MN MB BC=, ∴12232n +=13n =-,∴点210,3Q ⎛⎫- ⎪⎝⎭,综上所述,点Q 的坐标为()0,2或10,3⎛⎫- ⎪⎝⎭.【点睛】本题主要考查了二次函数的综合题,相似三角形的判定和性质,两点之间,线段最短,待定系数法求二次函数解析式等知识,熟练掌握二次函数的图象和性质,相似三角形的判定和性质,利用数形结合思想解答是解题的关键. 23.0或1或2或3 【解析】【分析】根据二次函数y =x 2-2x +m -2的图象与x 轴有交点,根据Δ≥0列出m 的不等式,求出m 的取值范围即可. 【详解】解:∵二次函数y =x 2-2x +m -2的图象与x 轴有交点, ∴Δ=4-4(m -2)≥0, ∴m ≤3, ∵m 为非负整数, ∴m =0或1或2或3. 【点睛】本题主要考查了抛物线与x 轴交点的知识,解答本题的关键是根据二次函数y =x 2-2x +m -2的图象与x 轴有交点列出m 的不等式,此题难度不大. 24.(1)A (-1,0),B (3,0)(2)点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由见解析(3)点P 的坐标为(1,2),2),(1,2)或3(1,)4-【解析】 【分析】(1)把0y =代入到21322y x x =--得,213022x x --=,解得13x =,21x =-,又因为点A 在点B 的左侧,即可得; (2)21322y x x =--配方得21(1)22y x =--,即可得点C 的坐标为(1,-2),根据点A ,B ,C 的坐标得4AB =,AC ,BC =AC =BC ,又因为2224+=,所以222AC BC AB +=,即可得90ACB ∠=︒,从而得出ACB △是等腰直角三角形;(3)当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形,即可得点P 的坐标(1,2),当CO CP =时,CP =,即可得点P 的坐标为2)或(1,2),当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a ,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,解得34a =-,即可得点P 的坐标为3(1,)4-,综上,即可得. (1)解:把0y =代入到21322y x x =--得, 213022x x --= 2230x x --= (3)(1)0x x -+=解得13x =,21x =-, ∵点A 在点B 的左侧,∴A (-1,0),B (3,0). (2) 解:21322y x x =-- =21(3)2x x -- =21(1)22x x -+- =21(1)22x --∴点C 的坐标为(1,-2),ABC 为等腰直角三角形,理由如下:∵A (-1,0),B (3,0),C (1,-2), ∴3(1)4AB =--=,22(11)(02)8AC =----=, 22(31)(02)8BC =---=,∴AC =BC , ∵222(8)(8)4+=, ∴222AC BC AB +=, ∴90ACB ∠=︒,∴ACB △是等腰直角三角形. (3)解:当点P 与点C 关于x 轴对称时,OC =OP ,OCP △为等腰三角形, ∴点P 的坐标为(1,2);当CO CP =时,22(10)(20)5CP =-+-=, ∴点P 的坐标为(1,52)-或(1,52)--;当OP CP =时,点P 在OC 的垂直平分线上,设点(1,)P a , 如图所示,点P 交x 轴于点D ,在Rt ODP 中,根据勾股定理得,222(2)1a a +=+,22441a a a ++=+34a =- ∴点P 的坐标为3(1,)4-;综上,点P 的坐标为(1,2),2),(1,2)或3(1,)4-. 【点睛】本题考查了二次函数与三角形的综合,解题的关键是掌握二次函数的性质,等腰三角形的判定与性质.25.(1)见解析(2)122,1m m =-=【解析】【分析】(1)令0y =,得到关于x 的一元二次方程,根据一元二次方程根的判别式判断即可; (2)令1x =,0y =,解一元二次方程即可求得m 的值(1)令0y =,则有2220x mx m --=222890m m m ∆=+=≥即,对于任意实数方程2220x mx m --=总有两个实数根,∴对任意实数m ,抛物线与x 轴总有交点.(2)解:∵抛物线222y x mx m =--与x 轴交于1,0A ,∴202m m =--解得122,1m m =-=【点睛】本题考查了二次函数与坐标轴交点问题,掌握一元二次方程根的判别式以及解一元二次方程是解题的关键.。
中考数学复习考点知识讲解与练习10 一次函数-函数概念
中考数学复习考点知识讲解与练习专题10 一次函数-函数概念函数的概念;一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
因为函数具有唯一性,函数表达形式;表格法、图象法、公式法(解析法),本中考数学复习考点知识讲解与练习专题的题型:函数概念;函数的三种表达式;函数的值;函数的解析式;及其他典型函数概念题型。
题型一:函数的概念1.(2022·和平县和丰中学初一月考)水温随时间的变化而变化,其中__________是自变量,__________是因变量.2.(2022·四川锦江·初一期末)在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C,R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量3.(2022·广西平桂·期中)如图,下列各曲线中能够表示y是x的函数的是().A.B.C.D.4.(2022·山东邹平·初二期末)下列各曲线中,不能表示y是x的函数的是().A.B.C.D.5.(2022·辽宁西丰·初二期末)下列曲线中表示y是x的函数的为()A.B.C.D.6.(2022·广西田东·初二期末)下列各图中,能表示y是x的函数的是()A.B.C.D.7.(2022·江西南昌二中初二期中)下列四个图象中,不是函数图象的是()A .B .C .D .题型二:函数的取值范围8.(2022·四川雁江·初三期末)若y x=有意义,则x 的取值范围是() A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤D .x 0≠9.(2022·察哈尔右翼前旗第三中学初二期末)函数11y x =-中自变量x 的取值范围是() A .2x ≤B .2x ≤且1x ≠C .x <2且1x ≠D .1x ≠10.(2022·湖北荆州·初二月考)函数y =x 的取值范围是() A .1x >B .1x <C .1x ≤D .1≥x11.(2022·南通市八一中学初二月考)已知函数y =1x -,则自变量x 的取值范围是( ) A .﹣1<x <1B .x ≥﹣1且x ≠1C .x ≥﹣1D .x ≠112.(2022·山东曲阜·初二期中)式子2x -中x 的取值范围是( ) A .x ≥1且x ≠2B .x >1且x ≠2C .x ≠2D .x >113x 的取值范围为______.14.(2022·湖南渌口·初三期中)在函数y =x 的取值范围是.15.(2022·平江县南江中学初三二模)函数中,自变量x 的取值范围在数轴上表示正确的是()A.B.C.D.16.(2022·四川雁江·初三其他)函数y=-x的取值范围是______.17.(2022·四川省成都七中育才学校学道分校中考模拟)函数12x-中自变量x的取值范围是.18.(2022·合肥市第四十六中学南校区初二月考)13yx=-中x的取值范围是__________题型三:函数的三种表达形式(1)列表法19.(2022·全国初一课时练习)某人购进一批苹果到集贸市场零售,已知卖出的苹果数量x(千克)与售价y(元)之间的关系如下表:(1)变量x与y的关系式是__________.(2)卖__________kg苹果,可得14.5元;若卖出苹果10kg,则应得__________元.20.(2022·渝中·重庆巴蜀中学初一期末)弹簧挂上重物后会伸长,测得一弹簧的长度y(cm)于所挂的重物的质量x(kg)间有下面的关系(弹簧的弹性范围x≤10kg),当所挂的物体质量是8kg时,弹簧的长度是__________cm.21.(2022·山东宁阳·初一期中)下表记录了一次实验中的时间和温度的数据,写出T与t的关系式____.x的取值范围是_____.22.(2017·江苏常熟·中考模拟)函数23.(2022·广东盐田·初一期中)某地的温度T(℃)与海拔高度h(km)之间的关系如下所示:要算出海拔高度为6km时该地的温度,适宜用第________种形式。
中考数学知识点:一次函数的解析公式
教学文档
中考数学知识点:一次函数的解析公式
一次函数的解析公式包含了我们所熟知的点斜式,也包含常用到的两点式和截距式。
一次函数的解析式
当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)。
①点斜式:y-y1=k(x-x1)(k为直线斜率,(x1,y1)为该直线所过的一个点);
②两点式:(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(已知直线上(x1,y1)与(x2,y2)两点),
③截距式:x/a+y/b=1(a、b分别为直线在x、y轴上的截距)。
解析式表达的局限性:
①所需条件较多(2个点,因为使用待定系数法需要列一个二元一次方程组);
②、③不能表达没有斜率的直线(即垂直于x轴的直线;注意“没有斜率的直线平行于y轴〞表述不准,因为x=0与y轴重合);
x轴的正半轴逆时针旋转到直线所成的角(直线与x轴正方向所成的角)称为直线的倾斜角。
设一直线的倾斜角为α,则该直线的斜率k=tanα。
倾斜角的范围为(0,π)。
并不是全部的解析式够可以表达平行于坐标轴的直线和过原点的直线。
.。
初三数学09 二次函数-2024年中考数学真题分项汇编(全国通用)(解析版)
专题09 二次函数一.选择题1.(2022·陕西)已知二次函数223y x x =--的自变量123,,x x x 对应的函数值分别为1y ,2y ,3y .当110x -<<,212x <<,33x >时,1y ,2y ,3y 三者之间的大小关系是( )A .123y y y <<B .231y y y <<C .312y y y <<D .213y y y <<【答案】D【分析】先将抛物线配成顶点式,求出对称轴为1x =,再求出抛物线与x 轴的两个交点坐标为(1,0)-和(3,0),根据开口向上即可判断.【详解】解: 抛物线2223(1)4y x x x =--=--,∴对称轴1x =,顶点坐标为(1,4)-,当0y =时,2(1)40--=x ,解得1x =-或3x =,∴抛物线与x 轴的两个交点坐标为:(1,0)-,(3,0),∴当110x -<<,212x <<,33x >时,213y y y <<,故选:D .【点睛】本题考查抛物线的性质,熟练掌握抛物线的性质是解决问题的关键,记住在抛物线的左右函数的增减性不同,确定对称轴的位置是关键,属于中考常考题型.2.(2022·山东潍坊)抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .14-B .14C .4-D .4【答案】B【分析】根据抛物线与x 轴只有一个公共点,得到根的判别式等于0,即可求出c 的值.【详解】解:∵y =x 2+x +c 与x 轴只有一个公共点,∴x 2+x +c =0有两个相等的实数根,∴△=1-4c =0,解得:c =14.故选:B .【点睛】此题考查了抛物线与x 轴的交点,弄清根的判别式的意义是解本题的关键.3.(2022·湖南郴州)关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大【答案】D 【分析】由抛物线的表达式和函数的性质逐一求解即可.【详解】解:对于y =(x -1)2+5,∵a =1>0,故抛物线开口向上,故A 错误;顶点坐标为(1,5),故B 错误;该函数有最小值,是小值是5,故C 错误;当1x >时,y 随x 的增大而增大,故D 正确,故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.4.(2022·山东青岛)已知二次函数2y ax bx c =++的图象开口向下,对称轴为直线1x =-,且经过点(30)-,,则下列结论正确的是( )A .0b >B .0c <C .0a b c ++>D .30a c +=【答案】D【分析】图象开口向下,得a <0, 对称轴为直线12b x a=-=-,得b =2a ,则b <0,图象经过(30)-,,根据对称性可知,图象经过点(1)0,,故c >0,当x =1时,a +b +c =0,将b =2a 代入,可知3a +c =0.【详解】解:∵图象开口向下,∴a <0,∵对称轴为直线12b x a=-=-,∴b =2a ,∴b <0,故A 不符合题意;根据对称性可知,图象经过(30)-,,∴图象经过点(1)0,,∴c >0,故B 不符合题意;当x =1时,a +b +c =0,故C 不符合题意;将将b =2a 代入,可知3a +c =0,故D 符合题意.故选:D .【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.5.(2022·黑龙江哈尔滨)抛物线22(9)3y x =+-的顶点坐标是( )A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-【答案】B【分析】根据二次函数的顶点式2()y a x h k =-+可得顶点坐标为(,)h k 即可得到结果.【详解】∵二次函数解析式为22(9)3y x =+- ,∴顶点坐标为(9,3)--;故选:B .【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键.6.(2022·浙江湖州)把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( )A .y=2x -3B .y=2x +3C .y=2(3)x +D .y=2(3)x -【答案】B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】∵抛物线y=x 2向上平移3个单位,∴平移后的抛物线的解析式为:y=x 2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.7.(2022·湖北武汉)二次函数()2y x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】D 【分析】根据抛物线的顶点在第四象限,得出m <0,n <0,即可得出一次函数y =mx +n 的图象经过二、三、四象限.【详解】解:∵抛物线的顶点(-m ,n )在第四象限,∴-m >0,n <0,∴m <0,∴一次函数y =mx +n 的图象经过二、三、四象限,故选:D .【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n 、m 的符号.8.(2022·广西玉林)小嘉说:将二次函数2y x =的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度 ④沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个【答案】D【分析】根据二次函数图象的平移可依此进行求解问题.【详解】解:①将二次函数2y x =向右平移2个单位长度得到:()22y x =-,把点(2,0)代入得:()2220y =-=,所以该平移方式符合题意;②将二次函数2y x =向右平移1个单位长度,再向下平移1个单位长度得到:()211y x =--,把点(2,0)代入得:()22110y =--=,所以该平移方式符合题意;③将二次函数2y x =向下平移4个单位长度得到:24y x =-,把点(2,0)代入得:2240y =-=,所以该平移方式符合题意;④将二次函数2y x =沿x 轴翻折,再向上平移4个单位长度得到:24y x =-+,把点(2,0)代入得:2240y =-+=,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D .【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.9.(2022·湖南岳阳)已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-【答案】A 【分析】先求出抛物线的对称轴及抛物线与y 轴的交点坐标,再分两种情况:0m >或0m <,根据二次函数的性质求得m 的不同取值范围便可.【详解】解:∵二次函数2243y mx m x =--,∴对称轴为2x m =,抛物线与y 轴的交点为()0,3-,∵点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,∴①当0m >时,对称轴20x m =>,此时,当4x =时,3y ≤-,即2244433m m ⋅-⋅-≤-,解得m 1≥;②当0m <时,对称轴20x m =<,当04x ≤≤时,y 随x 增大而减小,则当04p x ≤≤时,3p y ≤-恒成立;综上,m 的取值范围是:m 1≥或0m <.故选:A .【点睛】本题考查了二次函数的性质,关键是分情况讨论.10.(2022·四川宜宾)已知抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是( )A .13a ≥B .13a >C .103a <<D .103a <≤【答案】A【分析】根据题意,设抛物线的解析式为()()24y a x x =+-,进而求得顶点的的坐标,结合图形可知当顶点纵坐标小于或等于-3满足题意,即可求解.【详解】解: 抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,设抛物线的解析式为()()24y a x x =+-()222819y ax ax a a x a ∴=--=--顶点坐标为()1,9a -,6AB = ,以AB 为直径的圆与在x 轴下方的抛物线有交点,则圆的半径为3,如图,93a ∴-≤-解得13a ≥故选:A【点睛】本题考查了圆的的性质,二次函数图象的性质,求得抛物线的顶点纵坐标的范围是解题的关键.11.(2022·山东威海)如图,二次函数y =ax 2+bx (a ≠0)的图像过点(2,0),下列结论错误的是( )A .b >0B .a +b >0C .x =2是关于x 的方程ax 2+bx =0(a ≠0)的一个根D .点(x 1,y 1),(x 2,y 2)在二次函数的图像上,当x 1>x 2>2时,y 2<y 1<0【答案】D【分析】根据二次函数的图像和性质作出判断即可.【详解】解:根据图像知,当1x =时,0y a b =+>,故B 选项结论正确,不符合题意,0a < ,0b ∴>,故A 选项结论正确,不符合题意;由题可知二次函数对称轴为12b x a=-=,2b a ∴=-,20a b a a a ∴+=-=->,故B 选项结论正确,不符合题意;根据图像可知2x =是关于x 的方程()200++=≠ax bx c a 的一个根,故C 选项结论正确,不符合题意,若点()11,x y ,()22,x y 在二次函数的图像上,当122x x >>时,120y y <<,故D 选项结论不正确,符合题意,故选:D .【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的图像和性质是解题的关键.12.(2022·广西)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】D【分析】先由反比例函数图象得出b >0,再分当a >0,a <0时分别判定二次函数图象符合的选项,在符合的选项中,再判定一次函数图象符合的即可得出答案.【详解】解:∵反比例函数(0)b y b x =≠的图象在第一和第三象限内,∴b >0,若a <0,则-2b a >0,所以二次函数开口向下,对称轴在y 轴右侧,故A 、B 、C 、D 选项全不符合;当a >0,则-2b a<0时,所以二次函数开口向上,对称轴在y 轴左侧,故只有C 、D 两选项可能符合题意,由C 、D 两选图象知,c <0,又∵a >0,则-a <0,当c <0,a >0时,一次函数y =cx -a 图象经过第二、第三、第四象限,故只有D 选项符合题意.故选:D .【点睛】本题考查函数图象与系数的关系,熟练掌握反比例函数图象、一次函数图象、二次函数图象与系数的关系是解题的关键.13.(2022·山东潍坊)如图,在▱ABCD 中,∠A =60°,AB =2,AD =1,点E ,F 在▱ABCD 的边上,从点A 同时出发,分别沿A →B →C 和A →D →C 的方向以每秒1个单位长度的速度运动,到达点C 时停止,线段EF 扫过区域的面积记为y ,运动时间记为x ,能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】分0≤x ≤1,1<x <2,2≤x ≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x ≤1时,过点F 作FG ⊥AB 于点G ,∵∠A=60°,AE=AF=x,x,∴AG=12由勾股定理得FG,AE×FG2,图象是一段开口向上的抛物线;∴y=12当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=1,2由勾股定理得DH(DF+AE)×DH∴y=12当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI x),CF×EI x)22,图象是一段开口向下的抛物线;∴y= AB×DH -12观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.14.(2022·辽宁)如图,在Rt ABC 中,90,24ABC AB BC ∠=︒==,动点P 从点A 出发,以每秒1个单位长度的速度沿线段AB 匀速运动,当点P 运动到点B 时,停止运动,过点P 作PQ AB ⊥交AC 于点Q ,将APQ 沿直线PQ 折叠得到A PQ ' ,设动点P 的运动时间为t 秒,A PQ ' 与ABC 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】D【分析】由题意易得AP t =,1tan 2A ∠=,则有12PQ t =,进而可分当点P 在AB 中点的左侧时和在AB 中点的右侧时,然后分类求解即可.【详解】解:∵90,24ABC AB BC ∠=︒==,∴1tan 2A ∠=,由题意知:AP t =,∴1tan 2PQ AP A t =⋅∠=,由折叠的性质可得:,90A P AP APQ A PQ ''=∠=∠=︒,当点P 与AB 中点重合时,则有2t =,当点P 在AB 中点的左侧时,即02t ≤<,∴A PQ ' 与ABC 重叠部分的面积为211112224A PQ S A P PQ t t t ''=⋅=⋅= ;当点P 在AB 中点的右侧时,即24t ≤≤,如图所示:由折叠性质可得:,90A P AP t APQ A PQ ''==∠=∠=︒,1tan tan 2A A '∠=∠=,∴4BP t =-,∴24A B t '=-,∴tan 2BD A B A t ''=⋅∠=-,∴A PQ ' 与ABC 重叠部分的面积为()()2111324442224PBDQ S BD PQ PB t t t t t ⎛⎫=+⋅=+-⋅-=-+- ⎪⎝⎭梯形;综上所述:能反映A PQ ' 与ABC 重叠部分的面积S 与t 之间函数关系的图象只有D 选项;故选D .【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.15.(2022·贵州铜仁)如图,若抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,若OAC OCB ∠=∠.则ac 的值为( )A .1-B .2-C .12-D .13-【答案】A 【分析】观察图象,先设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,根据已知条件OAC OCB ∠=∠及OC AB ⊥证明OAC OCB ∽△△,得出21212x x c x x ⋅==-⋅,利用根与系数的关系知12c x x a ⋅=,最后得出答案.【详解】设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,∵二次函数2y ax bx c =++的图象过点(0,)C c ,∴OC c =,∵OAC OCB ∠=∠,OC AB ⊥,∴OAC OCB ∽△△,∴OA OC OC OB=,∴2OC OA OB =⋅,即21212x x c x x ⋅==-⋅,令20ax bx c ++=,根据根与系数的关系知12c x x a ⋅=,∴212c x x c a -=-=,故1ac =- 故选:A .【点睛】本题考查了二次函数2y ax bx c =++(0)a ≠与关于方程20ax bx c ++=(0)a ≠之间的相互转换,同时要将线段的长转化为点的坐标之间的关系,灵活运用数形结合的思想是解题关键.16.(2022·黑龙江牡丹江)若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点( )A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)【答案】A【详解】根据点在曲线上,点的坐标满足方程的关系,将P (-2,4)代入2y ax =,得()2421a a =-⇒=,∴二次函数解析式为2y x =.∴所给四点中,只有(2,4)满足2y x =.故选A .17.(2022·内蒙古通辽)在平面直角坐标系中,将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A .()221y x =--B .()223y x =-+ C .21y x =+ D .21y x =-【答案】D【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()2211121y x x =-++-=-故选D .【点睛】本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.18.(2022·四川遂宁)如图,D 、E 、F 分别是ABC 三边上的点,其中8BC =,BC 边上的高为6,且DE //BC ,则DEF 面积的最大值为( )A .6B .8C .10D .12【答案】A 【分析】过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,根据∥DE BC ,证明ADE ABC ,根据相似三角形对应高的比等于相似比得到43DE a =,列出DEF 面积的函数表达式,根据配方法求最值即可.【详解】如图,过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,DE BC ∥,,ADE B AED C ∴∠=∠∠=∠,ADE ABC ∴ ,DE AN BC AM ∴=,86DE a ∴=,∴43DE a =,2211422(6)4(3)622333DEF S DE MN a a a a a ∴=⋅⋅=⨯⨯-=-+=--+ ,∴当3a =时,S 有最大值,最大值为6,故选:A .【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数求最值,熟练掌握知识点是解题的关键.19.(2022·四川自贡)已知A(−3,−2),B(1,−2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥−2;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为−5,点C横坐标的最大值为3;④当四边形ABCD为平行四边形时,a=12.其中正确的是()A.①③B.②③C.①④D.①③④【答案】D【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,可判断①;根据二次函数的增减性判断②;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断④.【详解】解:∵点A,B的坐标分别为(-3,-2)和(1,-2),∴线段AB与y轴的交点坐标为(0,-2),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c) ,∴C≥-2,(顶点在y轴上时取“=”),故①正确;∵抛物线的顶点在线段AB上运动,开口向上,∴当x>1时,一定有y随x的增大而增大,故②错误;若点D的横坐标最小值为-5,则此时对称轴为直线x=-3,根据二次函数的对称性,点C的横坐标最大值为1+2=3,故③正确;令y=0,则ax2+bx+c=0,设该方程的两根为x1,x2,则x1+x2=-ba,x1x2=ca,∴CD2=( x1-x2) 2=( x1+x2) 2-4x1x22224 ()4b c b aca a a-=--⨯=,根据顶点坐标公式,2424ac ba-=-,∴248ac ba-=-,即248b aca-=,∵四边形ACDB为平行四边形,∴CD=AB=1-(-3)=4,∴8a=42=16,解得a=12,故④正确;综上所述,正确的结论有①③④.故选:D ..【点睛】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,要注意顶点在y 轴上的情况.20.(2022·江苏泰州)已知点()()()1233,,1,,1,y y y --在下列某一函数图像上,且312y y y <<那么这个函数是( )A .3y x=B .23y x =C .3y x =D .3y x=-【答案】D【分析】先假设选取各函数,代入自变量求出y 1、y 2、y 3的值,比较大小即可得出答案.【详解】解:A .把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-9,y 2=-3,y 3=3,所以y 1<y 2<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;B .把点()()()1233,,1,,1,y y y --代入y =3x 2,解得y 1=27,y 2=3,y 3=3,所以y 1>y 2=y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;C . 把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-1,y 2=-3,y 3=3,所以y 2<y 1<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;D . 把点()()()1233,,1,,1,y y y --代入y =-3x ,解得y 1=1,y 2=3,y 3=-3,所以312y y y <<,这与已知条件312y y y <<相符,故选项正确,符合题意;故选:D .【点睛】此题考查了一次函数、反比例函数以及二次函数,解题的关键是掌握函数值的大小变化和函数的性质.21.(2022·广西贺州)已知二次函数y =2x 2−4x −1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4【答案】D【分析】先找到二次函数的对称轴和顶点坐标,求出y =15时,x 的值,再根据二次函数的性质得出答案.【详解】解:∵二次函数y =2x 2-4x -1=2(x -1)2-3,∴抛物线的对称轴为x =1,顶点(1,-3),∵1>0,开口向上,∴在对称轴x =1的右侧,y 随x 的增大而增大,∵当0≤x ≤a 时,即在对称轴右侧,y 取得最大值为15,∴当x =a 时,y =15,∴2(a -1)2-3=15,解得:a =4或a =-2(舍去),故a 的值为4.故选:D .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.22.(2022·内蒙古包头)已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .2【答案】A【分析】由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解.【详解】解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .【点睛】本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.23.(2022·黑龙江齐齐哈尔)如图,二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,对称轴为1x =-,函数最大值为4,结合图象给出下列结论:①2b a =;②32a -<<-;③24<0ac b -;④若关于x 的一元二次方程24ax bx c m ++=- (0)a ≠有两个不相等的实数根,则m >4;⑤当x <0时,y 随x 的增大而减小.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B 【分析】根据二次函数图象与性质逐个结论进行分析判断即可.【详解】解:∵二次函数2y ax bx c =++(0)a ≠的对称轴为1x =-,∴1,2b x a=-=- ∴2,b a =故①正确;∵函数图象开口向下,对称轴为1x =-,函数最大值为4,∴函数的顶点坐标为(-1,4)当x =-1时,4-+=a b c∴24a a c -+=∴4c a =+,∵二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,∴1<c <2∴1<4+a <2∴32a -<<-,故②正确;∵抛物线与x 轴有两个交点,∴240b ac ->∴24<0ac b -,故③正确;∵抛物线的顶点坐标为(-1,4)且方程24ax bx c m ++=-有两个不相等的实数根,∴044m <-<∴48m <<,故④错误;由图象可得,当x >-1时,y 随x 的增大而减小,故⑤错误.所以,正确的结论是①②③,共3个,故选:B【点睛】本题主要考查了二次函数图象与性质,,熟练掌握二次函数的图象与性质是解答本题的关键.24.(2022·湖北鄂州)如图,已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)的图像顶点为P (1,m ),经过点A (2,1);有以下结论:①a <0;②abc >0;③4a +2b+c =1;④x >1时,y 随x 的增大而减小;⑤对于任意实数t ,总有at 2+bt ≤a +b ,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C 【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a 、b 、c 的正负即可解答;③将点A 的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【详解】解:①由抛物线的开口方向向下,则a <0,故①正确;②∵抛物线的顶点为P (1,m )∴12b a-=,b =-2a ∵a <0∴b >0∵抛物线与y 轴的交点在正半轴∴c >0∴abc <0,故②错误;③∵抛物线经过点A (2,1)∴1=a ·22+2b +c ,即4a +2b +c =1,故③正确;④∵抛物线的顶点为P (1,m ),且开口方向向下∴x >1时,y 随x 的增大而减小,即④正确;⑤∵a <0∴at 2+bt -(a +b )= at 2-2at -a +2a = at 2-2at +a =a (t 2-2t +1)= a (t -1)2≤0∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故答案为C .【点睛】本题主要考查了二次函数图像的性质,灵活运用二次函数图像的性质以及掌握数形结合思想成为解答本题的关键.25.(2022·四川雅安)抛物线的函数表达式为y =(x ﹣2)2﹣9,则下列结论中,正确的序号为( )①当x =2时,y 取得最小值﹣9;②若点(3,y 1),(4,y 2)在其图象上,则y 2>y 1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x ﹣5)2﹣5;④函数图象与x 轴有两个交点,且两交点的距离为6.A .②③④B .①②④C .①③D .①②③④【答案】B【分析】由二次函数的开口向上,函数有最小值,可判断①,由二次函数的增减性可判断②,由二次函数图象的平移可判断③,由二次函数与x 轴的交点坐标可判断④,从而可得答案.【详解】解: y =(x ﹣2)2﹣9,图象的开口向上,∴当x =2时,y 取得最小值﹣9;故①符合题意;y =(x ﹣2)2﹣9的对称轴为2x =,而3242,-<- 21,y y ∴> 故②符合题意;将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x +1)2﹣5,故③不符合题意;当0y =时,则()2290,x --= 解得:125,1,x x ==- 而()516,--= 故④符合题意;故选B【点睛】本题考查的是二次函数的图象与性质,二次函数与x 轴的交点问题,掌握“二次函数的图象与性质”是解本题的关键.二.填空题26.(2022·辽宁营口)如图1,在四边形ABCD 中,,90,45BC AD D A ∠=︒∠=︒∥,动点P ,Q 同时从点A 出发,点P /s 的速度沿AB 向点B 运动(运动到B 点即停止),点Q 以2cm /s 的速度沿折线AD DC →向终点C 运动,设点Q 的运动时间为(s)x ,APQ 的面积为()2cm y ,若y 与x 之间的函数关系的图像如图2所示,当7(s)2x =时,则y =____________2cm .【答案】354【分析】根据题意以及函数图像可得出AED APQ ∽,则点Q 在AD 上运动时,APQ 为等腰直角三角形,然后根据三角形面积公式得出当面积最大为9时,此时3x =,则26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,则此时APQ APF ADQ PQDF S S S S =+- 四边形,分别表示出相关线段可得y 与x 之间的函数解析式,将7(s)2x =代入解析式求解即可.【详解】解:过点D 作DE AB ⊥,垂足为E ,在Rt ADE △中,∵90AED ∠=︒,45EAD ∠=︒,∴AE AD =,∵点P /s ,点Q 的速度为2cm /s ,∴,2AP AQ x =,∴AP AQ 在APQ 和AED 中,∵AE AP AD AQ =45A ∠=︒,∴AED APQ ∽,∴点Q 在AD 上运动时,APQ 为等腰直角三角形,∴AP PQ ==,∴当点Q 在AD 上运动时,21122y AP AQ x =⋅==,由图像可知,当9y =此时面积最大,3x =或3-(负值舍去),∴26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,如图:此时APQ APF ADQ PQDF S S S S =+- 四边形,在Rt APQ 中,AP =,45A ∠=︒,∴AF PF x ==,6FD x =-,26QD x =-,∴2111(26)(6)6(26)222APQ S x x x x x =++-⋅--⨯⨯- ,即26y x x =-+,所以当7(s)2x =时,227735(6(cm )224y =-+⨯=,故答案为:354.【点睛】本题考查了动点问题的函数图像,求出各段函数的函数关系式是解答本题的关键.27.(2022·江苏无锡)把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:________.【答案】m >3【分析】先求得原抛物线的顶点坐标为(-2,m -4),再求得平移后的顶点坐标为(1,m -3),根据题意得到不等式m -3>0,据此即可求解.【详解】解:∵y =x 2+4x +m =(x +2)2+m -4,此时抛物线的顶点坐标为(-2,m -4),函数的图象向上平移1个单位长度,再向右平移3个单位长度后的顶点坐标为(-2+3,m -4+1),即(1,m -3),∵平移后所得抛物线与坐标轴有且只有一个公共点,∴m -3>0,解得:m >3,故答案为:m >3.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.28.(2022·福建)已知抛物线22y x x n =+-与x 轴交于A ,B 两点,抛物线22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.【答案】8【分析】先求出抛物线22y x x n =+-与x 轴的交点,抛物线22y x x n =--与x 轴的交点,然后根据2AD BC =,得出224AD BC =,列出关于n 的方程,解方程即可。
中考数学复习题纲—10 函数(一次函数、正比例函数)
中考数学复习题纲—10 函数(一次函数、正比例函数)函 数x 数量(标量):一些量在取定度量单位后,可用一个实数来表示。
如距离、时间、面积、质量等。
向量(矢量):一些量不但有大小,而且有方向。
如位移、速度、力等。
量常量:在某一变化过程中,始终保持不变的量叫做常量。
在某一变化过程中,如果对每一个实数 ,可以按变量:y y x xy 照某一确定的对应法则,得到唯一一个实数 ,那么就称 是关于 的一个函数,其中 叫做自变量, 叫做因变量。
自变量的广义解释:任何一个系统(或模型)都是由各种变量构成的,当我们分析这些系统(或模型)时,可以选择研究其中一些变量对另一些变量的影响,那么我们选择的这些变量就称为自变量,而被影响的量就被称为因变量。
例如:我们可以分析人体这个系统中,呼吸对于维持生命的影响,那么呼吸就是自变量,而生命维持的状态被认为是因变量。
系统和模型可以是一个二元函数这么简单,也可是整个社会这样复杂。
:::⎧⎧⎨⎪⎩⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩满足解析式的坐标所表示的点都在图象上函数与点的坐标在图象上的点的坐标都满足解析式函数列表法不必通过计算就可以知道自变量与因变量的对应关系。
表示方法解析法便于用解析式去研究函数的性质。
图象法可以从整体上直观形象地表示出函数的变化情况。
函数与二次函数的一些基本性质:⇔点图象坐标解析式(即图象所对应的方程)1. 坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式,因此判断平面直角坐标系中的一个点是否在函数图象上,只需把点的坐标代入函数解析式进行检验,能满足函数解析式的表明点在图象上,不满足函数解析式的则表明点不在图象上。
2. 求两个函数的交点坐标,即求这两个函数解析式组成的二元方程组的解。
3. 在解决有关函数的问题时,要注意利用平面直角坐标系中X 轴与Y 轴之间的夹角为直角、以及勾股定理等平面几何知识,要能很熟练地求出函数与坐标轴的交点坐标。
中考数学专题复习:二次函数
第三课时 二次函数的综合应用
考点
1.与几何图形有关的线段、周长、面积 的最值问题; 2.特殊三角形、四边形的存在问题; 3.动点产生的角度问题等综合题
教学思路
跨领域复合型综合题涵盖了初中数学几乎所有的数学 思想方法,一般以压轴题的形式出现.在有限的中考复习 时间里,应该做到以下几点,以提升学生的思维高度:
二。抛物线型
例2 (2022·河南)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面 0.7 m,水柱在距喷水头P水平距离5 m处达到最高,最高点距地面3.2 m;建立如图所示的平面直角坐标系, 并设抛物线的解析式为y=a(x-h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高 度.
中考ห้องสมุดไป่ตู้学专题复习
二次函数
第一课时二次函数的图像和性质
二
次
函
第二课时二次函数的实际应用
数
复
习
第三课时二次函数的综合应用
第一课时 二次函数的图像和性质
考点
二次函数的图像与性质通常以选择题或填 空题的形式出现,为历年必考题目。题目设计 主要有同一坐标系中多函数像问题、根据图像 做判断的多结论问题、根据表格形式呈现的多 结论问题等,考查a、b、c的符号、对称轴、最 值、大小比较、与一元二次方程的关系(与x轴、 平行于x轴的直线交点个数)、根据图像解不等 式、图像的平移等。
(1)要加强学生的做题意识,树立必胜的信心,教 师要让学生知道综合题常常是“起点低,坡度缓,尾巴略 翘”,要多鼓励学生大敢作答;
(2)是基础知识和基本技能训练要全面,重点内容 适当分类进行专题训练;
(3)是要教会学生一些常用的解题策略,重视数学 思想和方法的提炼,注意知识的迁移,让学生学会融会贯 通.
中考复习:初中数学三角函数公式
中考复习:初中数学三角函数公式中考复习:初中数学三角函数公式中考复习:初中数学三角函数公式三角函数公式正弦(sin):角的对边比上斜边余弦(cos):角的邻边比上斜边正切(tan):角的对边比上邻边余切(cot):角的邻边比上对边正割(sec):角的斜边比上邻边余割(csc):角的斜边比上对边sin30=1/2sin45=根号2/2sin60=根号3/2cos30=根号3/2cos45=根号2/2cos60=1/2tan30=根号3/3tan45=1tan60=根号3两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinB ?cos(A+B) = cosAcosB-sinAsinBcos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)] 2019诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(/2-a) = cos(a)cos(/2-a) = sin(a)sin(/2+a) = cos(a)cos(/2+a) = -sin(a)sin(-a) = sin(a)cos(-a) = -cos(a)sin(+a) = -sin(a)cos(+a) = -cos(a)tanA=tanA = sinA/cosA2019万能公式2019其它公式2019其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)2019双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k+)= sincos(2k+)= costan(2k+)= tancot(2k+)= cot公式二:设为任意角,的三角函数值与的三角函数值之间的关系:sin(+)= -sincos(+)= -costan(+)= tancot(+)= cot公式三:任意角与 -的三角函数值之间的关系:sin(-)= -sincos(-)= costan(-)= -tancot(-)= -cot公式四:利用公式二和公式三可以得到与的三角函数值之间的关系:sin()= sincos()= -costan()= -tancot()= -cot公式五:利用公式-和公式三可以得到2与的三角函数值之间的关系:sin(2)= -sincos(2)= costan(2)= -tancot(2)= -cot公式六:/2及3/2与的三角函数值之间的关系:sin(/2+)= coscos(/2+)= -sintan(/2+)= -cotcot(/2+)= -tansin(/2-)= coscos(/2-)= sintan(/2-)= cotcot(/2-)= tansin(3/2+)= -coscos(3/2+)= sintan(3/2+)= -cotcot(3/2+)= -tansin(3/2-)= -coscos(3/2-)= -sintan(3/2-)= cotcot(3/2-)= tan(以上kZ)这个物理常用公式我费了半天的劲才输进来,希望对大家有用Asin(t+)+ Bsin(t+) ={(A^2 +B^2 +2ABcos(-)} ? sin{ t + arcsin[ (A?sin+B?sin) / {A^2 +B^2; +2ABcos(-)} }表示根号,包括{……}中的内容函数名正弦余弦正切余切正割余割在平面直角坐标系xOy中,从点O引出一条射线OP,设旋转角为,设OP=r,P点的坐标为(x,y)有正弦函数 sin=y/r余弦函数 cos=x/r正切函数 tan=y/x余切函数 cot=x/y正割函数 sec=r/x余割函数 csc=r/y(斜边为r,对边为y,邻边为x。
初三数学三角函数中考题
初三数学三角函数中考题引言:三角函数是初中数学中一个重要的概念,涉及到角度和长度之间的关系。
在初三学习数学时,学生们经常会遇到关于三角函数的考题。
本文将介绍几个常见的初三数学三角函数中的考题。
一、正弦函数1. 已知一个角的正弦值sinα=0.6,求该角的可能大小。
解析:根据正弦函数的定义,正弦值为某个角的对边与斜边之比。
可以利用反正弦函数求解,得到角的大小为sin⁻¹(0.6)≈36.87°。
2. 在直角三角形ABC中,∠ACB=90°,tanA=0.8,求sinB和cosB的值。
解析:根据tanA的定义,tanA为∠ACB的对边与邻边之比,即tanA=AC/CB=0.8。
根据直角三角形的性质,sinB=AC/CB,cosB=BC/CB。
可以利用已知条件求解,得到sinB=0.8/√(1+0.8²)≈0.707,cosB=√(1-0.707²)≈0.707。
二、余弦函数1. 在平面直角坐标系中,已知点P坐标为(2, 3),点P表示角A的终边上的一点,求角A的余弦值cosA。
解析:根据余弦函数的定义,余弦值为角A对应的点P在x轴上的横坐标与点P到原点的距离之比。
可以利用已知点P的坐标求解,得到cosA=2/√(2²+3²)≈0.5547。
2. 已知三角形ABC中,角C=45°,边AC=5,边BC=√10,求sinA和cosB的值。
解析:根据三角形的性质,sinA=BC/AC,cosB=AC/BC。
可以利用已知条件求解,得到sinA=√10/5=2/√10,cosB=5/√10=√10/2。
三、正切函数1. 在直角三角形ABC中,∠B=30°,边AC=5,求tanA的值。
解析:根据正切函数的定义,tanA为∠B的对边与邻边之比,即tanA=BC/AC。
可以利用已知条件求解,得到tanA=BC/AC=√3/5。
2. 已知一个角的正切值tanα=1.732,求该角的可能大小。
中考数学知识点三角函数的公式
中考数学知识点三角函数的公式中考数学知识点三角函数的公式关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的'特殊值。
下面一起来看看!三角函数的公式sin30°=1/2sin45°=√2/2sin60°=√3/2cos30°=√3/2cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1tan60°=√3[1]cot30°=√3cot45°=1cot60°=√3/3其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。
两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)除了以上常考的初中三角函数公示之外,还有半角公式和和差化积公式也在选择题中用到。
所以同学们还是要好好掌握。
半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB- ctgA+ctgBsin(A+B)/sinAsinB锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA.CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式A sinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina=3sina-4sin3acos3a=cos(2a+a)=cos2acosa-sin2asina=(2cos2a-1)cosa-2(1-sin2a)cosa=4cos3a-3cosasin3a=3sina-4sin3a=4sina(3/4-sin2a)=4sina[(√3/2)2-sin2a]=4sina(sin260°-sin2a)=4sina(sin60°+sina)(sin60°-sina)=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]=4sinasin(60°+a)sin(60°-a)cos3a=4cos3a-3cosa=4cosa(cos2a-3/4)=4cosa[cos2a-(√3/2)2]=4cosa(cos2a-cos230°)=4c osa(cosa+cos30°)(cosa-cos30°)=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}=-4cosasin(a+30°)sin(a-30°)=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]=-4cosacos(60°-a)[-cos(60°+a)]=4cosacos(60°-a)cos(60°+a)半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα诱导公式记背诀窍:奇变偶不变,符号看象限万能公式sinα=2tan(α/2)/[1+tan^(α/2)]cosα=[1-tan^(α/2)]/1+tan^(α/2)]tanα=2tan(α/2)/[1-tan^(α/2)]其它公式(1)(sinα)^2+(cosα)^2=1(2)1+(tanα)^2=(secα)^2(3)1+(cotα)^2=(cscα)^2证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可(4)对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=π-Ctan(A+B)=tan(π-C)(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立由tanA+tanB+tanC=tanAtanBtanC可得出以下结论(5)cotAcotB+cotAcotC+cotBcotC=1(6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)(7)(cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC(8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC(9)sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+si n[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+c os[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。
初三上册数学必考难题
初三上册数学必考难题有很多,其中包括:
1. 相似三角形的应用:相似三角形是初三数学的重点之一,也是中考的必考内容。
学生需要掌握相似三角形的性质、判定方法和应用,能够解决一些综合性问题。
2. 锐角三角函数:锐角三角函数是初三数学的重要知识点,也是中考的必考内容。
学生需要掌握正弦、余弦、正切
等三角函数的定义、性质和计算方法,能够解决一些与三角
形相关的问题。
3. 二次函数:二次函数是初三数学的重要知识点,也是
中考的必考内容。
学生需要掌握二次函数的性质、开口方向、顶点和对称轴等,能够解决一些与二次函数相关的问题。
4. 圆的有关性质:圆的有关性质是初三数学的重要知识点,也是中考的必考内容。
学生需要掌握圆的半径、直径、
周长、面积等计算方法,以及与圆相关的定理和性质。
5. 直线与圆的位置关系:直线与圆的位置关系是初三数
学的重要知识点,也是中考的必考内容。
学生需要掌握直线
与圆的位置关系的判定方法和应用,能够解决一些综合性问题。
以上是初三上册数学的一些必考难题,学生需要认真学习
和掌握这些知识点,以便在考试中取得好成绩。
同时,学生
还需要多做一些练习题,加深对知识点的理解和掌握,提高
解题能力和思维水平。
中考数学复习第三章函数讲义
第三章函数第一节函数及其图象【考点1】平面直角坐标系及点的坐标1. 在平面内两条且有公共原点的数轴组成了平面直角坐标系。
2. 建立了平面直角坐标系的平面称为坐标平面。
3.坐标平面内每一个点P都对应着一个坐标x和一个坐标y,我们称一对有序实数P(x,y),即点P的坐标。
4. 平面直角坐标系中点的特征【考点2】函数的有关概念及其表达式1. 变量:某一变化的过程中可以取不同数值的量叫做变量。
2. 常量:某一变化的过程中保持相同数值的量叫做常量。
3. 函数:在某一变化的过程中有两个量x和y,如果对于x的每一个值,y都有的值与它对应,那么称y是x的函数,其中x是,y是因变量。
4. 函数的表示方法有:、、。
在解决一些与函数有关的问题时,有时可以同时用两种或两种以上的方法来表示函数。
5. 画函数图象的一般步骤:列表、、。
【考点3】函数自变量的取值范围与函数值【中考试题精编】 1. 在函数中3-x =y ,自变量x 的取值范围是 ( )A. x ≠3B. x >3C. x <3D. x ≥32. 王芳同学为参加学校组织的科技知识竞赛,她周末到新华书店购买资料,如图是王芳离家的距离与时间的函数关系图象,若黑点表示王芳家的位置,则王芳走的路线可能是( )A. B. C. D.3. 函数1-x 2=y 中,自变量的取值范围是 。
4. 在函数x x y +-=31中,自变量x 的取值范围是 .5. 根据图中的程序,当输入x=2时,输出结果是 。
第二节 一次函数【考点1】一次函数的概念如果y=kx+b (k,b 为常数,且 ),那么y 叫做x 的一次函数。
当b=0时,也就是y=kx(k ≠0),这时称y 是x 的正比例函数。
【考点2】一次函数的图象和性质 的增大而减小【考点3】一次函数与一次方程和一次不等式的关系一次函数y=kx+b (k,b 为常数,k ≠0) (1)当y=0时,一元一次方程kx+b=0(2) 当y >0或y <0时,一元一次不等式kx+b >0或kx+b <0【提示】当一次函数中的一个变量的值确定时,可用一元一次方程确定另一个变量的值;当 已知一次函数中的一个变量取值的范围时,可用一元一次不等式(组)确定另一个变量的取值。
中考数学冲刺复习之第三章《函数》
也叫正比例函数,它的图象是经过_原__点___的一条直线.
2.一次函数y=kx+b(k≠0)的图象、性质如下表:
二、例题与变式
【考点1】待定系数法,一次函数的性质 【例1】已知一次函数的图象经过(0,6),(-1,4) 两点.(1)求一次函数的解析式; (2)当-2<x<1时,求y的取值范围; (3)当-3≤x≤2时,求 y的最大值与最小值. 解:(1)y=2x+6 (2)2<y<8 (3)最大值为10,最小值为0.
【变式3】如图是甲、乙两车在某时段速度随时间变化
的图象,根据图象的信息回答下列问题:
(1)乙车前4秒钟行驶的的路程为___4_8______米; (2)在0到8秒钟甲车的速度每秒钟增加__4____米; (3)在4到8秒钟内,甲车的速度与乙车的速度相比,谁大?
解:(3)甲
三、过关训练
A组
1.函数 y 2 x 在实数范围内有意义,则x的取值范围是
解:S=-3x+24(0<x<8) 如图1.
【变式2】设P(x,0)是x轴上的一个动点,它与x轴 上表示-2的点的距离为y,求y关于x的函数解析式, 并画出这个函数的图象.
解: y=|x-(-2)|=|x+2| x+2(x≥-2),
= -x-2(x<-2).
如图2 .
【考点3】求直线与坐标轴的交点,分类思想
式2x+m>-x-2的解集为__x_>__2_________.
B组 5.在平面直角坐标系中,直线y=-x+3过点A
(5,m),把点A向左平移2个单位长度,再向上平 移4个单位长度,得到点C.过点C且与y=2x平行的 直线交y轴于点B. (1)求直线CB的解析式; (2)求直线CB与坐标轴围成的面积.
中考一次函数与圆交点求b的范围
一、概述1. 中考数学中常见的一次函数与圆的交点问题是一类常见且重要的题型。
2. 其中,求一次函数与圆交点的横坐标范围是考察学生掌握一次函数性质和圆的性质的重要途径之一。
3. 本文将探讨一次函数与圆的交点问题,并围绕求解参数b的范围展开讨论。
二、一次函数与圆的交点问题概述1. 一次函数的一般形式为f(x) = kx + b,其中k和b为常数。
2. 圆的一般方程为(x-a)² + (y-b)² = r²,其中(a,b)为圆心坐标,r为半径。
3. 一次函数与圆的交点是指满足一次函数方程和圆方程同时成立的点。
三、求解一次函数与圆的交点1. 设一次函数为f(x) = kx + b,将其代入圆的方程得到关于x的二次方程。
2. 通过求根公式或配方法,解出关于x的二次方程的根,即一次函数与圆的交点的横坐标。
3. 将求得的横坐标代入一次函数方程,求得对应的纵坐标,即交点坐标。
四、参数b的范围求解1. 以一次函数f(x) = kx + b与圆(x-a)² + (y-b)² = r²为例进行讨论。
2. 由前述方法,得到一次函数与圆的交点,并将交点坐标的纵坐标代入一次函数方程。
3. 通过对参数b的范围进行讨论,得到使一次函数与圆有交点的b的范围。
五、结论1. 通过求解一次函数与圆的交点问题,掌握了对数学知识的灵活运用。
2. 对参数b的范围求解,使学生在实际问题中能够灵活应用所学知识,深化对数学概念的理解。
六、总结1. 一次函数与圆的交点问题是中考数学中的重要题型,需加强相关知识点的掌握。
2. 在解决一次函数与圆的交点问题中,参数b的范围求解是一个重要环节,对应着数学知识的深化应用。
七、参考资料1. 《中学数学教学大纲》2. 《中学数学教材》以上是本文对中考一次函数与圆交点求解参数b的范围的相关探讨,希望对广大学生有所帮助。
八、一次函数与圆的交点问题概述1. 一次函数与圆的交点问题,常常考察学生对一次函数及圆的性质的理解和运用能力。
初三数学,二次函数(图像、性质、规律、实际问题)
y=ax^2 (0,0) x=0
y=ax^2+K (0,K) x=0
y=a(x-h)^2 (h,0) x=h
y=a(x-h)^2+k (h,k) x=h
y=ax^2+bx+c (-b/2a,4ac-b²/4a) x=-b/2a
(1)图象与y轴一定相交,交点坐标为(0,c);
(2)当△=b^2-4ac>0,图象与x轴交于两点A(x?,0)和B(x?,0),其中的x1,x2是一元二次方程ax^2+bx+c=0
(a≠0)的两根.这两点间的距离AB=|x?-x?| =√△/∣a∣(a绝对值分之根号下△)另外,抛物线上任何一对对称点的距离可以由|2×(-b/2a)-A |(A为其中一点的横坐标)
3。一般式,顶点式,交点式,等,区分对称轴,顶点,图像等的差异性。
4。联系实际对函数图像的理解。
5。计算时,看图像时切记取值范围。
二次函数的图像
在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。
不同的二次函数图像
顶点的横坐标,是取得最值时的自变量值,顶点的纵坐标,是最值的取值。
6.用待定系数法求二次函数的解析式
(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:
y=ax^2+bx+c(a≠0)。
(2)当题给条件为已知图象的顶点坐标或对称轴或极大(小)值时,可设解析式为顶点式:y=a(x-h)^2+k(a≠0)。
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时
初中数学函数知识点和常见题型总结
函数知识点及常见题型总结函数在初中数学中考中分值大约有20~25分,一次函数、二次函数和反比例函数都会考查,其中一次函数和反比例函数分值共约占其中的50%,二次函数约占另一半。
函数的题型以下归纳总结了11种,当然这并不包括所有可能出现的情况,仅仅只是较为常见的。
函数有时是以下题型组合起来构成的较为复杂的题型,因此,我们必须掌握住以下题型才能寻求突破。
换句话说,我们掌握住以下题型,复杂的题型分解开来,我们也能各个突破,最终解决掉。
一、核心知识点总结1、函数的表达式1)一次函数:y=kx+b(,k b 是常数,0k ≠) 2)反比例函数:函数xky =(k 是常数,0k ≠)叫做反比例函数。
注意:0x ≠ 3)二次函数:)0,,(2≠++=a c b a c bx ax y 是常数,, 2、点的坐标与函数的关系1)点的坐标用(),a b 表示,横坐标在前,纵坐标在后,中间有“,”分开。
平面内点的坐标是有序实数对,当b a ≠时,(),a b 和(),b a 是两个不同点的坐标。
2)点的坐标:从点向x 轴和y 轴引垂线,横纵坐标的绝对值对应相对应线段的长度。
3)若某一点在某一函数图像上,则该点的坐标可代入函数的表达式中,要将函数图像上的点与坐标一一联系起来。
3、函数的图像 1)一次函数一次函数by=的=的图像是经过点(0,b)的直线;正比例函数kxy+kx图像是经过原点(0,0)的直线。
2)反比例函数3)二次函数4、函数图像的平移① 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ② 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:③平移规律 在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位二、常见题型:1、求函数的表达式常见求函数表达式的方法是待定系数法,假设出函数解析式,将函数上的点的坐标代入函数,求出未知系数。
2023中考九年级数学分类讲解 - 第六讲 二次函数(含答案)(全国通用版)
第六讲 二次函数专项一 二次函数的图象和性质知识清单一、二次函数的概念一般地,形如 (a ,b ,c 为常数,a≠0)的函数叫做二次函数.其中x是自变量,a ,b ,c 分别是函数解析式的二次项系数、 和常数项. 二、二次函数的图象和性质1. 二次函数的图象是一条 .其一般形式为y =ax 2+bx +c ,由配方法可化成y =a (x -h )2+k 的形式,其中h=2ba-,k=244ac b a -.2. 二次函数y =ax 2+bx +c (a ≠0)的图象和性质3. 二次函数y =ax 2+bx +c (a ≠0)的图象与系数a ,b ,c 符号的关系ab <0(a ,b 异号)对称轴在y 轴右侧 c决定抛物线与y 轴的交点c >0 交点在y 轴正半轴 c =0 交点在原点 c <0交点在y 轴负半轴考点例析例1 抛物线y=ax 2+bx+c 经过点(-1,0),(3,0),且与y 轴交于点(0,-5),则当x=2时,y 的值为( )A .-5B .-3C .-1D .5分析:画出抛物线的大致图象,可知抛物线的对称轴为x=1,根据抛物线的对称性可求出y 的值. 例2 一次函数y=ax+b 的图象如图1所示,则二次函数y=ax 2+bx 的图象可能是( )A B C D分析:根据一次函数y=ax+b 的图象经过的象限得出a <0,b >0,可知二次函数y=ax 2+bx 的图象开口向下,对称轴在y 轴右侧.例3 二次函数y=ax 2+bx+c (a≠0)的图象如图2所示,下列说法中,错误的是( ) A .对称轴是x=12B .当-1<x <2时,y <0C .a+c=bD .a+b >-c图2分析:由图可知,对称轴是x=1+22-=12,选项A 正确;当-1<x <2时,函数图象在x 轴的下方,所以当-1<x <2时,y <0,选项B 正确;当x=-1时,y=a-b+c=0,所以a+c=b ,选项C 正确;当x=1时,y=a+b+c <0,所以a+b <-c ,选项D 错误.例4二次函数y =ax 2+bx +c (a ≠0)的部分图象如图所示,对称轴为x =12,且经过点(2,0).有下列说法:①abc <0;②﹣2b +c =0;③4a +2b +c <0;④若112y ⎛⎫- ⎪⎝⎭,,252y ⎛⎫ ⎪⎝⎭,是抛物线上的两点,则y 1<y 2;图1⑤14b +c >m (am +b )+c (其中m ≠12).其中正确的有( ) A .2个B .3个C .4个D .5个图3分析:由抛物线的开口方向、对称轴的位置、与y 轴的交点可得a ,b ,c 的符号,从而可得abc 的正负;由对称轴x=2b a -=12,得b=-a ,由图象易知当x=-1时,y=a-b+c=﹣2b+c =0;根据抛物线经过点(2,0),可得4a+2b+c=0;根据“开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”可判断y 1与y 2的大小;由图象知当x =12时,y 有最大值为14a+12b+c=14b +c ,由此可判断14b +c 与m (am +b )+c 的大小关系.归纳:(1)几种常见代数式的判断①2a ±b 2b a-与±1比较②a ±b +c 令x =±1,看纵坐标 ③4a ±2b +c 令x =±2,看纵坐标 ④9a ±3b +c令x =±3,看纵坐标⑤3a +c ,3b -2c 等关于a ,c 或b ,c 的代数式 一般由②③④式与①式结合判断(2①当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小.ꎻ②利用抛物线上的对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性比较大小. ③利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小;开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”也可以比较大小. 跟踪训练1.已知二次函数y=(a-1)x 2,当x >0时,y 随x 的增大而增大,则实数a 的取值范围是( ) A .a >0 B .a >1 C .a≠1 D .a <12.二次函数y=x 2+4x+1的图象的对称轴是( )A .x=2B .x=4C .x=-2D .x=-4 3.关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值64.一次函数y=ax+b (a≠0)与二次函数y=ax 2+bx+c (a≠0)在同一平面直角坐标系中的图象可能是( )A B C D5.如图3,二次函数y=ax2+bx+c的图象经过点A(-1,0),B(3,0),与y轴交于点C.有下列结论:①ac>0;②当x>0时,y随x的增大而增大;③3a+c=0;④a+b≥am2+bm.其中正确的个数为()A.1 B.2 C.3 D.4第5题图6.定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1-m,2-m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>12时,y随x的增大而减小.其中所有正确结论的序号是.专项二确定二次函数的解析式知识清单用待定系数法求二次函数的解析式时,若已知条件给出了图象上任意三点(或任意三组对应值),可设解析式为;若给出顶点坐标为(h,k),则可设解析式为;若给出抛物线与x轴的两个交点为(x1,0),(x2,0),则可设解析式为.考点例析例在平面直角坐标系中,抛物线y=x2﹣4x+5与y轴交于点C,则该抛物线关于点C成中心对称的抛物线的解析式为()A.y=﹣x2﹣4x+5 B.y=x2+4x+5 C.y=﹣x2+4x﹣5 D.y=﹣x2﹣4x﹣5分析:由抛物线的解析式求得抛物线的顶点坐标与点C的坐标,然后结合中心对称的性质,求得新抛物线的顶点坐标,用待定系数法求出新抛物线的解析式.跟踪训练1.若抛物线y=x2+bx+c与x轴两个交点间的距离为4,对称轴为直线x=2,P为这条抛物线的顶点,则点P 关于x轴的对称点的坐标是()A.(2,4)B.(-2,4)C.(-2,-4)D.(2,-4)2.在“探索函数y=ax2+bx+c的系数a,b,c与图象的关系”活动中,老师给出了如图所示直角坐标系中的四个点:A(0,2),B(1,0),C(3,1),D(2,3),同学们探索了经过这四个点中的三个点的二次函数图象,发现这些图象对应的函数解析式各不相同,其中a的值最大为()A.52B.32C.56D.12第2题图专项三二次函数图象的平移知识清单二次函数图象的平移规律平移前的解析式平移方向及距离平移后的解析式口诀顶点坐标y=a(x-h)2+k (a≠0)向左平移m个单位长度y=a(x-h+m)2+k左加右减纵坐标不变向平移m个单位长度y=a(x-h-m)2+k向上平移m个单位长度y=a(x-h)2+k+m上加下减横坐标不变向平移m个单位长度y=a(x-h)2+k-m平移前后a值不变例将抛物线y=-x2-2x+3向右平移1个单位长度,再向下平移2个单位长度,得到的抛物线必定经过()A.(-2,2)B.(-1,1)C.(0,6)D.(1,-3)分析:先将y=-x2-2x+3转化成顶点式y=a(x-h)2+k,再利用二次函数的平移规律:左加右减,上加下减,得出平移后抛物线的解析式,最后把各选项的点代入判断即可.跟踪训练1.将抛物线y=ax2+bx+c(a≠0)向下平移2个单位长度,以下说法错误的是()A.开口方向不变B.对称轴不变C.y随x的变化情况不变D.与y轴的交点不变2.抛物线的函数解析式为y=3(x-2)2+1,若将x轴向上平移2个单位长度,将y轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数解析式为()A.y=3(x+1)2+3 B.y=3(x-5)2+3 C.y=3(x-5)2-1 D.y=3(x+1)2-13.已知抛物线y=a(x-h)2+k与x轴有两个交点A(-1,0),B(3,0),抛物线y=a(x-h-m)2+k与x轴的一个交点是(4,0),则m的值是()A.5 B.-1 C.5或1 D.-5或-14.已知抛物线y=x2+kx-k2的对称轴在y轴右侧,现将该抛物线先向右平移3个单位长度,再向上平移1个单位长度后,得到的抛物线正好经过坐标原点,则k的值是()A.-5或2 B.-5 C.2 D.-25.把抛物线y=2x2+1向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为.6.如图,二次函数y=(x-1)(x-a)(a为常数)的图象的对称轴为x=2.(1)求a的值.(2)向下平移该二次函数的图象,使其经过原点,求平移后图象所对应的二次函数的解析式.第6题图专项四二次函数与一元二次方程的关系知识清单二次函数y=ax2+bx+c(a≠0)与一元二次方程ax2+bx+c=0(a≠0)的关系:Δ=b2-4ac一元二次方程ax2+bx+c=0根的情况二次函数y=ax2+bx+c的图象与x轴的位置关系Δ>0有两个不等的实数根有两个不同的公共点Δ=0有两个相等的实数根只有唯一的公共点Δ<0无实数根没有公共点考点例析例已知关于x的一元二次方程x2+x-m=0.(1)若方程有两个不相等的实数根,求m的取值范围;(2)二次函数y=x2+x-m的部分图象如图所示,求一元二次方程x2+x-m=0的解.分析:(1)由方程x2+x-m=0有两个不相等的实数根,可得Δ>0,列不等式即可求出m的取值范围;(2)根据二次函数图象的对称性,可得二次函数y=x2+x-m的图象与x轴的另一个交点,从而得到一元二次方程x2+x-m=0的解.解:跟踪训练1.已知直线y=kx+2过第一、二、三象限,则直线y=kx+2与抛物线y=x2-2x+3的交点个数为()A.0 B.1 C.2 D.1或22.已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,有下列结论:①c=2;②b2-4ac>0;③方程ax2+bx=0的两根为x1=-2,x2=0;④7a+c<0.其中正确的有()3.在平面直角坐标系xOy中,若抛物线y=x2+2x+k与x轴只有一个交点,则k=.4.对于任意实数a,抛物线y=x2+2ax+a+b与x轴都有公共点,则b的取值范围是.5.武汉)已知抛物线y=ax2+bx+c(a,b,c是常数),a+b+c=0.下列四个结论:①若抛物线经过点(-3,0),则b=2a;②若b=c,则方程cx2+bx+a=0一定有根x=-2;③抛物线与x轴一定有两个不同的公共点;④点A(x1,y1),B(x2,y2)在抛物线上,若0<a<c,则当x1<x2<1时,y1>y2.其中正确的是.(填序号)专项五二次函数的应用知识清单构建二次函数模型解决实际问题的一般步骤:(1)审题,分析问题中的变量和常量;(2)建立二次函数模型表示它们之间的关系;(3)充分结合已知条件,利用函数解析式或图象等得出相应问题的答案,或把二次函数解析式用顶点坐标公式或用配方法化为顶点式,确定出二次函数的最大(小)值;(4)结合自变量的取值范围和问题的实际意义,检验结果的合理性.考点例析例1某超市经销一种商品,每件成本为50元.经市场调研,当该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件.设该商品每件的销售价为x 元,每个月的销售量为y件.(1)求y与x的函数解析式;(2)当该商品每件的销售价为多少元时,每个月的销售利润最大?最大利润是多少?分析:(1)根据“该商品每件的销售价为60元时,每个月可销售300件,若每件的销售价每增加1元,则每个月的销售量将减少10件”列出y与x的函数解析式;(2)设每个月的销售利润为w元,根据等量关系“利润=(售价-进价)×销量”列出函数解析式,配方后根据二次函数的性质求解.解:例2某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线(第一象限部分)的函数解析式为y=-16(x-5)2+6.(1)求雕塑高OA;(2)求落水点C,D之间的距离;(3)若需要在OD上的点E处竖立雕塑EF,OE=10 m,EF=1.8 m,EF⊥OD.问:顶部F是否会碰到水柱?请通过计算说明.分析:(1)根据给出的抛物线的函数解析式,令x=0,求出点A的纵坐标,可得出雕塑高OA;(2)根据给出的抛物线的函数解析式,令y=0,求出点D的横坐标,可得出OD的长度,由喷出的水柱为抛物线且形状相同,可得出OC的长,结合CD=OC+OD即可求出落水点C,D之间的距离;(3)将x=10代入函数解析式y=-16(x-5)2+6求出y的值,将求出的y值与1.8比较后即可得出顶部F是否会碰到水柱.解:跟踪训练1.某快餐店销售A,B两种快餐,每份利润分别为12元,8元,每天卖出份数分别为40份,80份.该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润.售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1元就少卖2份.如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是______元.2.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/吨,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(吨)之间的关系为m=50+0.2x,销售价y(万元/吨)与原料的质量x(吨)之间的关系如图所示.(1)求y与x之间的函数解析式;(2)设销售收入为p(万元),求p与x之间的函数解析式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入-总支出)第2题图3. 如图①是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24 m,在距离D点6米的E处,测得桥面到桥拱的距离EF 为1.5 m ,以桥拱顶点O 为原点,桥面为x 轴建立平面直角坐标系. (1)求桥拱顶部O 离水面的距离.(2)如图②,桥面上方有3根高度均为4 m 的支柱CG ,OH ,DI ,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1 m . ①求出其中一条钢缆抛物线的函数解析式;②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.① ②第3题图专项六 二次函数中的分类讨论思想分类讨论思想就是按照一定的标准,把研究对象分成为数不多的几个部分或几种情况,然后逐个加以解决,最后予以总结作出结论的思想方法.我们在运用分类讨论思想时,必须遵循下列两个原则:一是要有分类意识,善于从问题的情境中抓住分类对象;二是要找出科学合理的分类标准,应当满足互斥、无漏、最简原则. 引起分类讨论的因素较多,归纳起来主要有以下几个方面:①由数学概念、性质、定理、公式的限制条件引起的讨论;②由数学变形所需要的限制条件引起的讨论;③由图形的不确定性引起的讨论;④由于题目含有字母引起的讨论等等. 考点例析例 已知关于x 的二次函数y 1=x 2+bx+c (实数b ,c 为常数).(1)若二次函数的图象经过点(0,4),对称轴为x=1,求此二次函数的解析式; (2)若b 2-c=0,当b-3≤x≤b 时,二次函数的最小值为21,求b 的值;(3)记关于x 的二次函数y 2=2x 2+x+m ,若在(1)的条件下,当0≤x≤1时,总有y 2≥y 1,求实数m 的最小值.分析:(1)将(0,4)代入二次函数y 1=x 2+bx+c ,可求得c ,由对称轴为x=-2b=1,可求出b ;(2)二次函数y 1=x 2+bx+c 图象的对称轴为x=-2b ,需要分三种情况:b <-2b ,b-3>-2b 和b-3≤-2b≤b 进行分类讨论;(3)设函数y 3=y 2-y 1,根据二次函数图象的增减性进行求解. 解:跟踪训练科研人员为了研究弹射器的某项性能,利用无人机测量小钢球竖直向上运动的相关数据.无人机上升到离地面30米处开始保持匀速竖直上升,此时,在地面用弹射器(高度不计)竖直向上弹射一个小钢球(忽略空气阻力),在1秒时,它们距离地面都是35米,在6秒时,它们距离地面的高度也相同.其中无人机离地面高度y1(米)与小钢球运动时间x(秒)之间的函数关系如图所示;小钢球离地面高度y2(米)与它的运动时间x(秒)之间的函数关系如图中抛物线所示.(1)直接写出y1与x之间的函数解析式;(2)求出y2与x之间的函数解析式;(3)小钢球弹射1秒后直至落地时,小钢球和无人机的高度差最大是多少米?参考答案专项一二次函数的图象和性质例1 A 例2 D 例3 D 例4 B1.B 2.C 3.D 4.C 5.B6.①②③专项二确定二次函数的解析式例 A1.A 2.A专项三二次函数图象的平移例 B1.D 2.C 3.C 4.B 5.y=2x2+4x6. 解:(1)因为y=(x-1)(x-a)=x2-(a+1)x+a,图象的对称轴为x=2,所以+12a=2,解得a=3.(2)由(1),知a=3,则该二次函数的解析式为y=x²-4x+3.所以二次函数的图象向下平移3个单位后经过原点.所以平移后图象所对应的二次函数的解析式是y=x²-4x.专项四二次函数与一元二次方程的关系例(1)由题意,知Δ>0,即1+4m>0,解得m>-14.(2)二次函数y=x2+x-m图象的对称轴为x=-12,所以该函数图象与x轴的两个交点关于直线x=-12对称.由图可知抛物线与x轴的一个交点为(1,0),所以另一个交点为(-2,0).所以一元二次方程x2+x-m=0的解为x1=1,x2=-2.1.C 2.B 3.1 4.①②④专项五二次函数的应用例1 (1)y=300-10(x-60)=-10x+900.(2)设每个月的销售利润为w元.由(1),知w=(x-50)y=(x-50)(-10x+900)=-10x2+1400x-45 000=-10(x-70)2+4000.因为-10<0,所以当x=70时,w有最大值为4000.所以该商品每件的销售价为70元时,每个月的销售利润最大,最大利润是4000元.x2=11.所以OD=11 m..因为从A点向四周喷水,喷出的水柱为抛物线,且形状相同,所以OC=OD=11 m.所以CD=OC+OD=22 m1.12642.解:(1)设y与x之间的函数解析式为y=kx+b.w(万元).(3)设销售利润为所以原料的质量x为24吨时,所获销售利润最大,最大销售利润是65.2万元.3. 解:(1)根据题意,知点F的坐标为(6,-1.5),可设拱桥侧面所在抛物线的函数解析式为y1=a1x2.=a2(x-6)2+1.(2)①根据题意,知右边钢缆所在抛物线的顶点坐标为(6,1),可设其解析式为y2②设彩带的长度为L m.所以当x=4时,L 最小值=2.答:彩带长度的最小值是2 m .专项六 二次函数中的分类讨论思想例 (1)因为二次函数的图象经过点(0,4),所以c=4.(2)当b 2-c=0时,b 2=c ,此时函数的解析式为y 1=x 2+bx+b 2. 根据题意,分三种情况:所以(b-3)2+b (b-3)+b 2=21,解得b 3=4,b 4=-1(舍去).(3)由(1),知二次函数的解析式为y 1=x 2-2x+4.设函数y 3=y 2-y 1=x 2+3x+m-4. 所以当x=0时,y 3即y 2-y 1有最小值m-4,所以m-4≥0,即m≥4.所以m 的最小值为4. 跟踪训练解:(1)y 1=5x+30.(2)当x=6时,y 1=5×6+30=60.因为y 2的图象是过原点的抛物线,所以可设y 2=ax 2+bx . 因为点(1,35),(6,60)在抛物线y 2=ax 2+bx 上,所以=35366=60.a b a b ++⎧⎨⎩,解得=5=40.a b ⎩-⎧⎨,所以y 2=-5x 2+40x .所以y 2与x 的函数解析式为y 2=-5x 2+40x . (3)设小钢球和无人机的高度差为y 米. 令y 2=0,则-5x 2+40x=0,解得x=0或x=8.因为6<x≤8,所以当x=8时,y的最大值为70.70米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章函数第1讲函数与平面直角坐标系A级基础题1.(2015年山东威海)若点A(a+1,b-2)在第二象限,则点B(-a,b+1)在() A.第一象限B.第二象限C.第三象限D.第四象限2.(2015年辽宁营口)函数y=x+3x-5中自变量x的取值范围是()A.x≥-3 B.x≠5 C.x≥-3,或x≠5 D.x≥-3,且x≠53.(2015年湖北随州)在平面直角坐标系中,将点(-2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,-3) B.(-4,3) C.(0,-3) D.(0,3)4.(2015年山东济宁)匀速地向一个容器内注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图3-1-7(图中OABC为一折线),这个容器的形状是下图中的()图3-1-7A. B. C. D.5.(2015年湖北)如图3-1-8,是一台自动测温记录仪的图象,它反映了我市冬季某天气温T随时间t变化而变化的关系,观察图象得到下列信息,其中错误的是()图3-1-8A.凌晨4时气温最低为-3 ℃B.14时气温最高为8 ℃C.从0时至14时,气温随时间增长而上升D.从14时至24时,气温随时间增长而下降6.(2015年海南)甲、乙两人在操场上赛跑,他们赛跑的路程S(单位:米)与时间t(单位:分钟)之间的函数关系如图3-1-9,则下列说法错误的是()A.甲、乙两人进行1000米赛跑B.甲先慢后快,乙先快后慢C.比赛到2分钟时,甲、乙两人跑过的路程相等D.甲先到达终点图3-1-9 图3-1-107.(2015年黑龙江绥化)点A (-3 ,2)关于x 轴的对称点的坐标为________.8.(2015年四川广元)若第二象限内的点P (x ,y )满足|x |=3,y 2=25,则点P 的坐标是________.9.(2015年上海)同一温度的华氏度数y (单位:℉)与摄氏度数x (单位:℃)之间的函数关系是y =95x +32,如果某一温度的摄氏度数是25℃,那么它的华氏度数是________℉.10.(2015年四川甘孜州)如图3-1-10,正方形A 1A 2A 3A 4,A 5A 6A 7A 8,A 9A 10A 11A 12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A 1,A 2,A 3,A 4;A 5,A 6,A 7,A 8;A 9,A 10,A 11,A 12;…)的中心均在坐标原点O ,各边均与x 轴或y 轴平行,若它们的边长依次是2,4,6,…,则顶点A 20的坐标为________.11.已知:点P (2m +4,m -1).试分别根据下列条件,求出P 点的坐标. (1)点P 在过点A (-2,-3)且与y 轴平行的直线上;(2)点P 在第四象限内,且到x 轴的距离是它到y 轴距离的一半.12.弹簧挂上适当的重物后会按一定的规律伸长,已知一弹簧的长度y (单位:cm)与所所挂物体的质量x /kg 0 1 2 3 4 5 6 弹簧的长度y /cm 15 15.6 16.2 16.8 17.4 18 18.6 (2)写出y 与x 之间的关系式;(3)当所挂物体的质量为11.5 kg 时,求弹簧的长度.B 级 中等题13.(2015年山东济南)在平面直角坐标系中有三个点A (1,-1),B (-1,-1),C (0,1),点P (0,2)关于A 的对称点为P 1,P 1关于B 的对称点为P 2,P 2关于C 的对称点为P 3,按此规律继续以A ,B ,C 为对称中心重复前面的操作,依次得到P 4,P 5,P 6,….则点P 2015的坐标是( )A .(0,0)B .(0,2)C .(2,-4)D .(-4,2)14.(2015年湖北黄冈)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/时,小汽车的速度为90千米/时,则下图中能分别反映出货车、小汽车离乙地的距离y (单位:千米)与各自行驶时间t (单位:小时)之间的函数图象是( )A. B. C.D.15.(2015年黑龙江)如图3-1-11,在平面直角坐标系中,点A(0,3),B(-1,0),过点A作AB的垂线交x轴于点A1,过点A1作AA1的垂线交y轴于点A2,过点A2作A1A2的垂线交x轴于点A3……按此规律继续作下去,直至得到点A2015为止,则点A2015的坐标为________.图3-1-1116.如图3-1-12,在平面直角坐标系中,已知点A(2,3),B(6,3),连接AB.如果线段AB 上有一个点与点P的距离不大于1,那么称点P是线段AB的“环绕点”.试判断点C(3,1.5),D(3.8,3.6)是否是线段AB的“环绕点”,并说明理由.图3-1-12C级拔尖题17.如图3-1-13建立平面直角坐标系,长方形OABC中A(8,0),点C(0,10),点P从原点出发,以每秒1个单位长度的速度沿着O→C→B→A→O的路线运动到点O停止,设点P 运动时间为t秒.图3-1-13(1)写出点B的坐标________,当t=13时点P坐标为________;(2)在点P运动过程中,当点P到x轴的距离为4个单位长度时,则点P运动的时间为______秒;(3)若点P出发11秒时,点Q以每秒2个单位长度的速度也沿着O→C→B→A→O的路线运动到点O停止,求t为何值时点P,Q在运动路线上相距的路程为5个单位长度?并直接写出此时P点的坐标.第2讲 一次函数A 级 基础题1.(2015年上海)下列y 关于x 的函数中,是正比例函数的为( )A .y =x 2B .y =2xC .y =x2 D .y =x +122.(2015年陕西)设正比例函数y =mx 的图象经过点A (m,4),且y 的值随x 值的增大而减小,则m =( )A .2B .-2C .4D .-43.(2015年山东枣庄)已知直线y =kx +b ,若k +b =-5,kb =5,则该直线不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.(2015年江苏徐州)若函数y =kx -b 的图象如图3-2-5,则关于x 的不等式k (x -3)-b>0的解集为( )A .x <2B .x >2C .x <5D .x >5图3-2-5 图3-2-65.如图3-2-6,两条直线y =k 1x +b 1和y =k 2x +b 2相交于点A (-2,3),则方程组⎩⎪⎨⎪⎧ y =k 1x +b 1,y =k 2x +b 2的解是( ) A.⎩⎪⎨⎪⎧x =2,y =3 B.⎩⎪⎨⎪⎧ x =-2,y =3 C.⎩⎪⎨⎪⎧ x =3,y =-2 D.⎩⎪⎨⎪⎧x =3,y =2 6.(2015年福建南平)直线y =2x +2沿y 轴向下平移6个单位后与x 轴的交点坐标是( )A .(-4,0)B .(-1,0)C .(0,2)D .(2,0)7.(2015年四川凉山州)已知函数y =2x 2a +b +a +2b 是正比例函数,则a =________,b =________.8.(2015年江苏无锡)一次函数y =2x -6的图象与x 轴的交点坐标为________. 9.已知直线y =kx +b ,若k +b =5,kb =6,则该直线不经过第________象限.10.(2015年广东广州)某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(0≤x ≤5)的函数关系式为________________.11.(2015年湖北武汉)已知一次函数y =kx +3的图象经过点(1,4). (1)求这个一次函数的解析式;(2)求关于x 的不等式kx +3≤6的解集.12.(2015年湖南益阳)如图3-2-7,直线l 上有一点P 1(2,1),将点P 1先向右平移1个单位,再向上平移2个单位得到像点P 2,点P 2恰好在直线l 上.(1)写出点P 2的坐标;(2)求直线l 所表示的一次函数的表达式;(3)若将点P 2先向右平移3个单位,再向上平移6个单位得到像点P 3.请判断点P 3是否在直线l 上,并说明理由.图3-2-7B 级 中等题13.(2015年湖北咸宁)如图3-2-8,在平面直角坐标系中,点A 的坐标为(0,6),将△OAB沿x 轴向左平移得到△O ′A ′B ′,点A 的对应点A ′落在直线y =-34x 上,则点B 与其对应点B ′间的距离为________.图3-2-8 图2-2-914.(2015年贵州六盘水)正方形A 1B 1C 1O 和A 2B 2C 2C 1按如图3-2-9所示方式放置,点A 1,A 2在直线y =x +1上,点C 1,C 2在x 轴上.已知A 1点的坐标是(0,1),则点B 2的坐标为________.15.(2015年湖北武汉)如图3-2-10,购买一种苹果,所付款金额y (单位:元)与购买量x (单位:千克)之间的函数图象由线段OA 和射线AB 组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省________元.图3-2-1016.(2015年陕西)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游 客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x 人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (单位:元)与x (单位:人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.C级拔尖题17.(2015年山东临沂)新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(单位:元/m2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.第3讲 反比例函数A 级 基础题1.(2015年湖南怀化)下列各点中,在函数y =-8x图象上的是( )A .(-2,4)B .(2,4)C .(-2,-4)D .(8,1)2.(2015年山东青海)已知一次函数y =2x -3与反比例函数y =-2x,那么它们在同一平面直角坐标系中的图象可能是( )A. B. C. D.3.(2015年天津)己知反比例函数y =6x,当1<x <3时,y 的取值范围是( )A .0<y <1B .1<y <2C .2<y <6D .y >64.(2015年广西钦州)对于函数y =4x,下列说法错误的是( )A .这个函数的图象位于第一、三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小 5.(2015年四川凉山州)以正方形ABCD 两条对角线的交点O 为坐标原点,建立如图3-3-6所示的平面直角坐标系,双曲线y =3x经过点D ,则正方形ABCD 的面积是( )A .10B .11C .12D .13图3-3-6 图3-3-7 图3-3-86.(2015年山东青岛)如图3-3-7,正比例函数y 1=k 1x 的图象与反比例函数y 2=k 2x的图象相交于A ,B 两点,其中点A 的横坐标为2,当y 1>y 2时,x 的取值范围是( )A .x <-2,或x >2B .x <-2,或0<x <2C .-2<x <0,或0<x <-2D .-2<x <0,或x >27.(2015年江苏扬州)已知一个正比例函数的图象与一个反比例函数的图象的一个交点坐标为(1,3),则另一个交点坐标是________.8.(2015年湖南益阳)已知y 是x 的反比例函数,当x >0时,y 随x 的增大而减小.请写出一个满足以上条件的函数表达式________.9.(2015年湖北黄石)反比例函数y =2a -1x的图象有一支位于第一象限,则常数a 的取值范围是________.10.(2015年陕西)如图3-3-8,在平面直角坐标系中,过点M (-3,2)分别作x 轴,y 轴的垂线与反比例函数y =4x的图象交于A ,B 两点,则四边形MAOB 的面积为________.11.(2014年广东汕尾)已知反比例函数y =kx的图象经过点M (2,1).(1)求该函数的表达式;(2)当2<x <4时,求y 的取值范围.(直接写出结果)12.(2014年广东广州)已知一次函数y =kx -6的图象与反比例函数y =-2kx的图象交于A ,B 两点,点A 的横坐标为2.(1)求k 的值和点A 的坐标;(2)判断点B 所在的象限,并说明理由.B 级 中等题13.(2015年福建)如图3-3-9,已知点A 是双曲线y =2x在第一象限的分支上的一个动点,连接AO 并延长交另一分支于点B ,过点A 作y 轴的垂线,过点B 作x 轴的垂线,两垂线交于点C ,随着点A 的运动,点C 的位置也随之变化.设点C 的坐标为(m ,n ),则m ,n 满足的关系式为( )A .n =-2mB .n =-2mC .n =-4mD .n =-4m图3-3-9 图3-3-1014.(2015年辽宁铁岭)如图3-3-10,点A (m,2),B (5,n )在函数y =kx(k >0,x >0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A ,B 的对应点分别为A ′,B ′.图中阴影部分的面积为8,则k 的值为________.15.(2015年福建宁德)如图3-3-11,在平面直角坐标系中,反比例函数y =kx(x >0)的图象交矩形OABC 的边AB 于点D ,交边BC 于点E ,且BE =2EC .若四边形ODBE 的面积为6,则k =________.图3-3-1116.(2015年广东珠海)如图3-3-12,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴上,函数y=kx的图象过点P(4,3)和矩形的顶点B(m,n)(0<m<4).(1)求k的值;(2)连接P A,PB,若△ABP的面积为6,求直线BP的解析式.图3-3-12C级拔尖题17.(2015年广西贵港)如图3-3-13,一次函数y=x+b的图象与反比例函数y=kx的图象交于点A和点B(-2,n),与x轴交于点C(-1,0),连接O A.(1)求一次函数和反比例函数的解析式;(2)若点P在坐标轴上,且满足P A=OA,求点P的坐标.图3-3-13第4讲 二次函数A 级 基础题1.(2015年甘肃兰州)下列函数解析式中,一定为二次函数的是( )A .y =3x -1B .y =ax 2+bx +cC .s =2t 2-2t +1D .y =x 2+1x2.(2014年海南)将抛物线y =x 2平移得到抛物线y =(x +2)2,则这个平移过程正确的是( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位3.(2014年新疆)对于二次函数y =(x -1)2+2的图象,下列说法正确的是( ) A .开口向下 B .对称轴是x =-1C .顶点坐标是(1,2)D .与x 轴有两个交点 4.(2014年贵州遵义)已知抛物线y =ax 2+bx 和直线y =ax +b 在同一平面直角坐标系中的图象如下,其中正确的是( )A. B. C. D.5.(2014年山东泰安)二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)中的x 与y 的部分对应值如下表:x -1 0 1 3 y -1 3 5 3下列结论:①ac <0;②当x >1时,y 的值随x 值的增大而减小;③3是方程ax 2+(b -1)x +c =0的一个根;④当-1<x <3时,ax 2+(b -1)x +c >0.其中正确的个数为( )A .4个B .3个C .2个D .1个6.(2015年贵州铜仁)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图3-4-11所示的平面直角坐标系,其函数的关系式为y =-125x 2,当水面离桥拱顶的高度DO 是4 m时,这时水面宽度AB 为( )图3-4-11A .-20 mB .10 mC .20 mD .-10 m7.(2015年湖南怀化)二次函数y =x 2+2x 的顶点坐标为________,对称轴是直线________.8.(2015年浙江杭州)函数y =x 2+2x +1,当y =0时,x =________;当1<x <2时,y 随x 的增大而________.(填写“增大”或“减小”)9.(2014年广东珠海)如图3-4-12,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为________.图3-4-1210.(2015年山东临沂)定义:给定关于x 的函数y ,对于该函数图象上任意两点(x 1,y 1),(x 2,y 2),当x 1<x 2时,都有y 1<y 2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有________(填上所有正确答案的序号)①y =2x ;②y =-x +1;③y=x 2(x >0);④y =-1x.11.(2014年浙江宁波)如图3-4-13,已知二次函数y =ax 2+bx +c 的图象过A (2,0),B (0,-1)和C (4,5)三点.(1)求二次函数的解析式;(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一平面直角坐标系中画出直线y =x +1,并写出当x 在什么范围内时,一次函数的值大于二次函数的值.图3-4-1312.(2015年广东梅州)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量售价/(元/件) 100 110 120 130 …… 月销量/件 200 180 160 140 ……(1)请用含x 的式子表示:①销售该运动服每件的利润是________元;②月销量是________件;(直接写出结果)(2)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?B 级 中等题13.(2015年广东梅州)对于二次函数y =-x 2+2x .有下列四个结论:①它的对称轴是直线x =1;②设y 1=-x 21+2x 1,y 2=-x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x <2时,y >0.其中正确的结论的个数为( )A .1B .2C .3D .414.(2015年辽宁朝阳)一个足球被从地面向上踢出,它距地面的高度h (单位:m)与足球被踢出后经过的时间t (单位:s)之间具有函数关系h =at 2+19.6t ,已知足球被踢出后经过4s 落地,则足球距地面的最大高度是________m.15.如图3-4-14(1),已知抛物线y =ax 2+bx +c 经过点A (0,3),B (3,0),C (4,3).(1)求抛物线的函数表达式;(2)求抛物线的顶点坐标和对称轴;(3)把抛物线向上平移,使得顶点落在x 轴上,直接写出两条抛物线、对称轴和y 轴围成的图形的面积S .[图3-4-14(2)中阴影部分](1) (2)图3-4-1416.已知抛物线y 1=ax 2+bx +c (a ≠0,a ≠c )过点A (1,0),顶点为B ,且抛物线不经过第三象限.(1)用a ,c 表示b ;(2)判断点B 所在象限,并说明理由;(3)若直线y 2=2x +m 经过点B ,且与该抛物线交于另一点C ⎝⎛⎭⎫c a ,b +8,当x ≥1时,求y 1的取值范围.C 级 拔尖题17.(2015年广东佛山)如图3-4-15,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y =-x 2+4x 刻画,斜坡可以用一次函数y =12x 刻画.(1)请用配方法求二次函数图象的最高点P 的坐标; (2)小球的落点是A ,求点A 的坐标;(3)连接抛物线的最高点P 与点O ,A 得△POA ,求△POA 的面积;(4)在OA 上方的抛物线上存在一点M (M 与P 不重合),△MOA 的面积等于△POA 的面积.请直接写出点M 的坐标.图3-4-15第三章基础题强化提高测试时间:45分钟 满分:100分一、选择题(本大题共6小题,每小题5分,共30分)1.在平面直角坐标系中,点(3,-2)关于y 轴对称的点的坐标是( ) A .(3,2) B .(3,-2) C .(-3,2) D .(-3,-2) 2.直线y =2kx -3一定经过点( )A .(-3,0)B .(2,k )C .(0,k )D .(0,-3)3.将直线y =-2x 向下平移两个单位,所得到的直线为( )A .y =-2(x +2)B .y =-2(x -2)C .y =-2x -2D .y =-2x +24.在同一直角坐标系中,函数y =kx +1与y =-kx(k ≠0)的图象大致是( )A B C D5.如图J3-1,点A 是反比例函数y =-6x(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使B ,C 在x 轴上,点D 在y 轴上,则平行四边形ABCD 的面积为( )A .1B .3C .6D .12图J3-1 图J3-2 图J3-36.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图J3-2,下列4个结论:①abc <0;②b <a +c ;③4a +2b +c >0;④b 2-4ac >0. 其中正确的结论有( )A .①②③B .①②④C .①③④D .②③④ 二、填空题(本大题共4小题,每小题5分,共20分) 7.在正比例函数y =-3mx 中,函数y 的值随x 值的增大而增大,则P (m,5)在第________象限.8.若函数y =4x 与y =1x的图象有一个交点是⎝⎛⎭⎫12,2,则另一个交点坐标是________. 9.已知函数y =ax +b 和y =kx 的图象交于点P (-4,-2),如图J3-3,则二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是________.10.已知二次函数y =kx 2-7x -7的图象和x 轴有交点,则k 的取值范围是________. 三、解答题(本大题共5小题,每小题10分,共50分) 11.已知一次函数的图象经过点A (-3,2),B (1,6). (1)求此函数的解析式;(2)求函数图象与坐标轴所围成的三角形面积.12.已知二次函数的图象的顶点坐标为(3,-2)且与y 轴交于⎝⎛⎭⎫0,52. (1)求函数的解析式;(2)当x 为何值时,y 随x 增大而增大.13.如图J3-4,直线y =ax +b 与双曲线y =kx相交于两点A (1,2),B (m ,-4).(1)求直线与双曲线的解析式;(2)求不等式ax +b >kx的解集.(直接写出答案)图J3-414.某公司到果园基地购买某种优质水果,慰问医务工作者,果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案,甲方案:每千克9元,由基地送货上门.乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y (单位:元)与所购买的水果质量x (单位:千克)之间的函数关系式,并写出自变量x 的取值范围;(2)依据购买量判断,选择哪种购买方案付款最少?并说明理由.15.如图J3-5,直线y =x +2与抛物线y =ax 2+bx +6(a ≠0)相交于点A ⎝⎛⎭⎫12,52和点B (4,m ),点P 是线段AB 上异于A ,B 的动点,过点P 作PC ⊥x 轴于点D ,交抛物线于点C .(1)求抛物线的解析式;(2)是否存在这样的点P ,使线段PC 的长有最大值,若存在,求出这个最大值;若不存在,请说明理由.图J3-5第三章 函数第1讲 函数与平面直角坐标系【演练·巩固提升】1.A 2.D 3.C 4.C 5.C 6.C7.(-3,-2) 8.(-3,5) 9.77 10.(5,-5)11.解:(1)2m +4=-2,解得m =-3,m -1=-4.∴P (-2,-4);(2)-(m -1)=12(2m+4),解得m =-12,2m +4=3,m -1=-32.∴P ⎝⎛⎭⎫3,-32. 12.解:(1)反映了弹簧的长度与所挂物体的质量之间的关系;所挂物体的质量是自变量,弹簧的长度是因变量.(2)y =0.6x +15.(3)当x =11.5时,y =0.6×11.5+15=21.9.13.A 解析:点P (0,2)关于A 的对称点为P 1(2,-4),P 1关于B 的对称点为P 2(-4,2),P 2关于C 的对称点为P 3(4,0),按此规律继续以A ,B ,C 为对称中心重复前面的操作,依次得到P 4(-2,-2),P 5(0,0),P 6(0,2),∴2015÷5=403.则点P 2015的坐标是(0,0).故选A.14.C 解析:由题意得出发前都距离乙地180千米,出发2小时小汽车到达乙地距离变为0,再经过2小时小汽车又返回甲地距离又为180千米,经过3小时,货车到达乙地距离变为0.故选C.15.(-31008,0) 解析:∵A (0,3),B (-1,0),∴AB ⊥AA 1.∴A 1的坐标为(3,0),同理可得A 2的坐标为(0,-3 3),A 3的坐标为(-9,0),…,∵2015÷4=503……3,∴点A 2015的坐标为(-31008,0).16.解:由“环绕点”的定义可知,点P 到线段AB 的距离d 应满足d ≤1. ∵A ,B 两点的纵坐标都是3, ∴AB ∥x 轴.∴点C 到直线AB 的距离为|1.5-3|=1.5>1,点D 到直线AB 的距离为|3.6-3|=0.6<1.∴点C 不是线段AB 的环绕点,点D 是线段AB 的环绕点.17.解:(1)由长方形OABC 中A (8,0),点C (0,10),得B (8,10),由OC +CP =13,得CP =3,P (3,10).故答案为(8,10) (3,10). (2)当OP =4时,t =4÷1=4,当AP =4时,OC +BC +BP =24,t =24÷1=24, 故答案为4或24.(3)设P 运动了t 秒时点P ,Q 在运动路线上相距的路程为5个单位长度, 当P 在前面时,t -2(t -11)=5,解得t =17,P (7,10); 当Q 在前面时,2(t -11)-t =5,解得t =27,P (8,1).第2讲 一次函数【演练·巩固提升】1.C 2.B 3.A 4.C 5.B 6.D 7.23 -138.(3,0) 9.四 10.y =0.3x +6(0≤x ≤5)11.解:(1)∵一次函数y =kx +3的图象经过点(1,4), ∴4=k +3,解得k =1.∴这个一次函数的解析式是y =x +3. (2)∵k =1,∴x +3≤6.∴x ≤3,即关于x 的不等式kx +3≤6的解集是x ≤3. 12.解:(1)P 2(3,3).(2)设直线l 所表示的一次函数的表达式为y =kx +b (k ≠0), ∵点P 1(2,1),P 2(3,3)在直线l 上, ∴⎩⎪⎨⎪⎧ 2k +b =1,3k +b =3.解得⎩⎪⎨⎪⎧k =2,b =-3.∴直线l 所表示的一次函数的表达式为y =2x -3. (3)点P 3在直线l 上.由题意知点P 3的坐标为(6,9), ∵2×6-3=9,∴点P 3在直线l 上. 13.8 14.(3,2) 15.216.解:(1)甲两家旅行社的总费用:y 甲=640×0.85x =544x ; 乙两家旅行社的总费用:当0≤x ≤20时,y 乙=640×0.9x =576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x -20)=480x +1920. (2)当x =32时,y 甲=544×32=17 408,y 乙=480×32+1920=17 280. 因为y 甲>y 乙,所以胡老师应选择乙旅行社. 17.解:(1)当1≤x ≤8时,函数关系式为 y =4000-(8-x )×30=30x +3760 (元/m 2). 当9≤x ≤23时,函数关系式为 y =4000+(x -8)×50=50x +3600.∴y =⎩⎪⎨⎪⎧30x +3760(1≤x ≤8),50x +3600(9≤x ≤23).(2)第十六层楼房的每平方米的价格为50×16+3600=4400(元/m 2), 按照方案一所交房款为W 1=4400×120×(1-8%)-a =485 760-a (元), 按照方案二所交房款为W 2=4400×120×(1-10%)=475 200(元), 当W 1>W 2时,即485 760-a >475 200, 解得0<a <10 560.当W 1<W 2时,即485 760-a <475 200. 解得a >10 560.∴当0<a <10 560时,方案二合算; 当a >10 560时,方案一合算.第3讲 反比例函数【演练·巩固提升】1.A 2.D 3.C 4.C 5.C 6.D 7.(-1,-3)8.y =1x (答案不唯一) 9.a >1210.1011.解:(1)∵反比例函数y =kx的图象经过点M (2,1),∴k =2×1=2.∴该函数的表达式为y =2x.(2)∵y =2x ,∴x =2y.∵2<x <4,∴2<2y <4.解得12<y <1.12.解:(1)联立两函数解析式,得⎩⎪⎨⎪⎧y =kx -6,y =-2kx . 即kx -6=-2kx,x =2代入该方程,解得k =2.则两函数的解析式分别为y =2x -6,y =-4x.将x =2代入,得y =-2,则点A 的坐标为(2,-2).(2)由⎩⎪⎨⎪⎧y =2x -6,y =-4x .得x 2-3x +2=0.解得x 1=1,x 2=2. 代入方程组,得y 1=-4,y 2=-2.则B 的坐标为(1,-4),位于第四象限.13.B 解析:由反比例函数的性质可知,A 点和点B 关于原点对称,∵点C 的坐标为(m ,n ),∴点A 的坐标为⎝⎛⎭⎫2n ,n .∴点B 的坐标为⎝⎛⎭⎫-2n ,-n .根据图象可知,B 点和C 点的横坐标相同,∴-2n =m ,即n =-2m.14.2 解析:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A ,B 的对应点分别为A ′,B ′,图中阴影部分的面积为8,∴5-m =4,∴m =1,∴A (1,2),∴k =1×2=2.15.3 解析:连接OB ,如图D8.∵四边形OABC 是矩形,∴∠OAD =∠OCE =∠DBE=90°,△OAB 的面积=△OBC 的面积.∵D ,E 在反比例函数y =kx(x >0)的图象上,∴S △OAD =S △OCE .∴S △OBD =S △OBE =12S 四边形ODBE =3.∵BE =2EC ,∴S △OCE =12S △OBE =32.∴k =3.图D816.解:(1)∵函数y =kx的图象过点P (4,3),∴k =4×3=12;(2)∵函数y =12x的图象过点B (m ,n ),∴mn =12.∵△ABP 的面积为6,P (4,3),0<m <4, ∴12n (4-m )=6. ∴4n -12=12.解得n =6. ∴m =2.∴点B (2,6).设直线BP 的解析式为y =ax +b . ∵B (2,6),P (4,3),∴⎩⎪⎨⎪⎧2a +b =6,4a +b =3.解得⎩⎪⎨⎪⎧a =-32,b =9.∴直线BP的解析式为y=-3 2x+9.17.解:(1)∵一次函数y=x+b的图象与x轴交于点C(-1,0),∴-1+b=0.解得b=1.∴一次函数的解析式为y=x+1.∵一次函数y=x+1的图象过点B(-2,n),∴n=-2+1=-1.∴B(-2,-1).∵反比例函数y=kx的图象过点B(-2,-1),∴k=-2×(-1)=2.∴反比例函数的解析式为y=2x.(2)由⎩⎪⎨⎪⎧y=x+1,y=2x,解得⎩⎪⎨⎪⎧x=1,y=2或⎩⎪⎨⎪⎧x=-2,y=-1.∵B(-2,-1),∴A(1,2).分两种情况(如图D9):图D9①如果点P在x轴上,设点P的坐标为(x,0),∵P1A=OA,∴P1O=2OM.∴点P1的坐标为(2,0);②如果点P在y轴上,设点P的坐标为(0,y),∵P2A=OA,∴P2O=2NO.∴点P的坐标为(0,4).综上所述,所求点P的坐标为(2,0)或(0,4).第4讲二次函数【演练·巩固提升】1.C 2.A 3.C 4.D 5.B 6.C7.(-1,-1)x=-18.-1增大9.直线x=210.①③11.解:(1)∵二次函数y=ax2+bx+c的图象过A(2,0),B(0,-1)和C(4,5)三点,∴⎩⎪⎨⎪⎧4a+2b+c=0,c=-1,16a+4b+c=5.解得⎩⎪⎨⎪⎧a=12,b=-12,c=-1.∴二次函数的解析式为y=12x2-12x-1.(2)当y=0时,得12x2-12x-1=0,解得x1=2,x2=-1.∴点D 坐标为(-1,0). (3)图象如图D12,图D12当一次函数的值大于二次函数的值时,x 的取值范围是-1<x <4. 12.解:(1)①销售该运动服每件的利润是(x -60)元. ②设月销量W 与x 的关系式为W =kx +b ,由题意,得⎩⎪⎨⎪⎧ 100k +b =200,110k +b =180.解得⎩⎪⎨⎪⎧k =-2,b =400.∴W =-2x +400.(2)由题意,得y =(x -60)(-2x +400) =-2x 2+520x -24 000 =-2(x -130)2+9800.∴售价为130元时,当月的利润最大,最大利润是9800元. 13.C 14.19.615.解:(1)∵抛物线y =ax 2+bx +c 经过点A (0,3),B (3,0),C (4,3),∴⎩⎪⎨⎪⎧c =3,9a +3b +c =0,16a +4b +c =3.解得⎩⎪⎨⎪⎧a =1,b =-4,c =3.∴抛物线的函数表达式为y =x 2-4x +3.(2)∵y =x 2-4x +3=(x -2)2-1,∴抛物线的顶点坐标为(2,-1),对称轴为直线x =2.(3)如图D13,∵抛物线的顶点坐标为(2,-1),∴PP ′=1. 阴影部分的面积等于平行四边形A ′APP ′的面积, 平行四边形A ′APP ′的面积=1×2=2, ∴阴影部分的面积为2.图D13 图D1416.解:(1)抛物线过点A (1,0), 则有a +b +c =0,即b =-a -c . (2)点B 在第四象限.理由如下:∵x 1=1,x 2=ca,a ≠c ,∴抛物线与x 轴有两个交点.∵抛物线不经过第三象限,∴a >0,且顶点在第四象限. ∴点B 在第四象限.(3)∵C ⎝⎛⎭⎫c a ,b +8,且在抛物线上, ∴b +8=0,b =-8,∴a +c =-b =8.则B ⎝⎛⎭⎫82a,4ac -644a ,C ⎝⎛⎭⎫c a ,0. 把点B ,C 的坐标代入y 2=2x +m ,可得⎩⎨⎧ 8a +m =4ac -644a ,①2c a +m =0. ②①-②,得8a -2c a =4ac -644a. 化简,得c (a +2)=24.又∵a +c =8,则有c (8-c +2)=24.解得c =4或c =6.当c =4时,a =8-c =4.又a ≠c ,故舍去;当c =6时,a =8-c =2.画图易知(如图D14),点C 在点A 的右侧,∴当x ≥1时,y 1≥4ac -b 24a=-2. 17.解:(1)由题意,得y =-x 2+4x =-(x -2)2+4,故二次函数图象的最高点P 的坐标为(2,4).(2)联立两解析式可得⎩⎪⎨⎪⎧ y =-x 2+4x ,y =12x .解得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎨⎧ x =72,y =74.故可得点A 的坐标为⎝⎛⎭⎫72,74.(3)如图D15,作PQ ⊥x 轴于点Q ,AB ⊥x 轴于点B .S △POA =S △POQ +S 梯形PQBA -S △BOA=12×2×4+12×⎝⎛⎭⎫74+4×⎝⎛⎭⎫72-2-12×72×74=4+6916-4916=214.图D15(4)过点P 作OA 的平行线,交抛物线于点M ,连接OM ,AM ,则△MOA 的面积等于 △POA 的面积.设直线PM 的解析式为y =12x +b , ∵P 的坐标为(2,4),∴4=12×2+b .解得b =3. ∴直线PM 的解析式为y =12x +3.由⎩⎪⎨⎪⎧ y =12x +3,y =-x 2+4x ,解得⎩⎪⎨⎪⎧ x =2,y =4或⎩⎨⎧ x =32,y =154.∴点M 的坐标为⎝⎛⎭⎫32,154.第三章基础题强化提高测试1.D 2.D 3.C 4.D 5.C 6.B 7.二8.⎝⎛⎭⎫-12,-2 9.⎩⎪⎨⎪⎧x =-4,y =-2 10.k ≥-74,且k ≠0 11.解:(1)设一次函数的解析式为y =kx +b (k ≠0).把点A (-3,2),B (1,6)代入,得⎩⎪⎨⎪⎧ 2=-3k +b ,6=k +b .解得⎩⎪⎨⎪⎧k =1,b =5. 故函数的解析式为y =x +5.(2)函数与x ,y 轴的交点为:y =0时x =-5;x =0时y =5.∴函数图象与坐标轴所围成的三角形面积为12×5×|-5|=252. 12.解:(1)设函数的解析式为y =a (x -3)2-2.根据题意,得9a -2=52.解得a =12. ∴函数解析式为y =12(x -3)2-2. (2)∵a =12>0,∴二次函数开口向上. 又∵二次函数的对称轴是x =3.∴当x >3时,y 随x 增大而增大.13.解:(1)先把(1,2)代入双曲线y =k x中,得k =2. ∴双曲线的解析式是y =2x. 当y =-4时,m =-12. 把(1,2),⎝⎛⎭⎫-12,-4代入一次函数,可得 ⎩⎪⎨⎪⎧ a +b =2,-12a +b =-4.解得⎩⎪⎨⎪⎧a =4,b =-2. ∴一次函数的解析式是y =4x -2.(2)-12<x <0或x >1. 14.解:(1)甲方案:每千克9元,由基地送货上门,根据题意,得y =9x .(x ≥3000)乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元,根据题意,得y =8x +5000.(x ≥3000)(2)根据题意可得当9x =8x +5000时,x =5000.当购买5000千克时两种购买方案付款相同,当大于5000千克时,9x >8x +5000,∴甲方案付款多,乙付款少.当小于5000千克时,9x <8x +5000,∴甲方案付款少,乙付款多.15.解:(1)∵B (4,m )在直线y =x +2上,∴m =4+2=6.∴B (4,6).∵A ⎝⎛⎭⎫12,52,B (4,6)在抛物线y =ax 2+bx +6上. ∴⎩⎪⎨⎪⎧52=⎝⎛⎭⎫122a +12b +6,6=42a +4b +6. ∴a =2,b =-8.∴y =2x 2-8x +6.(2)设动点P 的坐标为(n ,n +2),则C 点的坐标为(n,2n 2-8n +6), ∴PC =(n +2)-(2n 2-8n +6)=-2n 2+9n -4=-2⎝⎛⎭⎫n -942+498. ∵PC >0,∴当n =94时,线段PC 最大,且最大值为498.。