递推最小二乘估计PPT课件

合集下载

《最小二乘估计》公开课教学PPT课件【高中数学必修3(北师大版)】

《最小二乘估计》公开课教学PPT课件【高中数学必修3(北师大版)】

如果用 x 表示
x x x
1
2
n
n
则可以求得 b
x1 y1 x2 y2 x12 x22
,用 y 表示 y1 y2
xn yn nxy xn2 nx 2
,
ቤተ መጻሕፍቲ ባይዱ
n
a
yn ,
y bx
这样得到的直线方程 y=a+bx称为线性回归方程, a, b是线性回归方程的系数
线性回归方程必有解_x____x__, _y___ y
y
x
随堂练习
例 下面是两个变量的一组数据:
x12345678 y 1 4 9 16 25 36 49 64
请用最小二乘法求出这两 个变量之间的线性回归方程
注意:在本题中, 从所给的数据中我们不难看出, 满足函数 y=x2, 是一条曲线, 而我们利
用最小二乘法进行估计时, 所求出的是一条直线, 因而估计也就失去了意义。
10
o 12345 6 7 8 9 x
随堂练习
(1)某研究小组在一项实验中获得一组关于y、t之间的数据,将其整理后 得到如图的散点图,下列函数中,最能近似刻画y与t之间关系的是 ( D ) A、y=2t B、y=2t2 C、y=t3 D、y=log2t
【解析】选D 结合对数函数图像的特点以及散点图 中样本点的分布规律可判断。
i
1
2
3
xi 32.2 31.1 32.9 yi 25.0 30.0 34.0
xiyi 805 933 1118.6
4 35.8 37.0 1324.6
5 37.1 39.0 1446.9
6 38.0 41.0 1558
7 39.0 42.0 1638

最小二乘估计PPT教学课件

最小二乘估计PPT教学课件

• ②存在x0∈I,使f(=x0) M. • 那么M是函数y=f(x)的最大值.
• 若M是函数y=f(x)的最小值又如何填写条
件?
-5
• (2)函数y=2x-1在[-2,3]上的最小值为 , 最大值为5.
-3
5
-3
• (40)函数y=x2-2x-3在[--24,0]上的最小值0. 为
,最大值为 ;在[2,3]上的最小
气温 26 18 13 10 4 -1 杯数 20 24 34 38 50 64
1)求线性回归方程
2)如果某天的气温是-30C,预测这天 能卖热茶多少杯?
i xi
1
1.4
2
1.5
3
1.6
4
1.7
5
1.8
6
1.9
7
2
8
2.1
x 1.75
y 1.9775
yi
xi 2
xi yi
1.7 1.79 1.88 1.95 2.03 2.1 2.16 2.21
分析:由于问题中 要求根据身高预报 体重,因此选取身 高为自变量,体重 为因变量.
1. 散点图;
2.回归方程:
y 0.849x 85.172
身高172cm女大学生体重 yˆ = 0.849×172 - 85.712 = 60.316(kg)
例2:上节中的练习热茶的杯数(y)与气温(x) 之间是线性相关的
• 2.一次函数f(x)=ax+b(a>0)在闭区间[m, n]上必定有最大值和最小值,它只能是f(n)、 f(m),当a<0时,最大值和最小值则为f(m), f(n).
• 3.单调性是函数的重要性质,应用它可 以解决许多函数问题.如判断函数在给定 区间上的单调性;求函数在给定区间上的 最大值、最小值;求已知函数的单调区间;

《最小二乘估计》公开课教学PPT课件【高中数学必修3(北师大版)】

《最小二乘估计》公开课教学PPT课件【高中数学必修3(北师大版)】

新课学习
利用线性回归方程对总体进行估计
(1)求线性回归方程 y=a+bx:
①列表求 x , y , x1 y1+ x2 y2+···+ xn yn的值;
②由 b
x1 y1 x2 y2 x12 x22
求系数a和b。
xn yn nx y ; a y bx
xn2 nx 2
(2)利用线性回归方程, 我们可以进行预测, 并对总体进行估计。
即在 x=x0处的估计值为 y=a+bx0
新课学习
用最小二乘法推导3个点的线性回归方程
设有3个点(x1, y1), (x2, y2), (x3, y3), 则有最小二乘法可知直 线 y=a+bx与这3个点 的接近程度由下面表达式刻画:
y1 a bx1 2 y2 a bx2 2 y3 a bx3 2 (※)即
把(※)式整理为关于a的二次函数 f(a), 即
f (a) 3 a2 2a y bx y1 bx1 2 y2 bx2 2 y3 bx3 2
从而当 b
x1 y1 x2 y2 x3 y3 3 x x12 x22 x32 3 x 2
y
时, 函数 f(a)达到最小值。
10 4 38 50
-1 (1)试用最小二乘法求出线性回归方
64
程;(2)如果某天的气温是-5oC, 请预 测这天可能会卖出热茶多少杯。
解:(1)根据要求列出表格,计算得
x
35 , y 3
115 3
1910 6 35 115
b
3 3 1.648,
由系数公式得,
1286 6 35 35 33
新课学习
某小卖部6天卖出热茶的杯数(y)与当天的气温(x)之间是线性相关的。数据如下表:

最小二乘估计课件(43张)

最小二乘估计课件(43张)
栏目导航
30
2.已知变量 x,y 有如下对应数据:
x
1
2
3
4
y
1
3
4
5
(1)作出散点图;
(2)用最小二乘法求关于 x,y 的回归直线方程.
栏目导航
[解] (1)散点图如下图所示.
31
栏目导航
(2) x =1+2+4 3+4=52, y =1+3+4 4+5=143,
4
i∑=1xiyi=1+6+12+20=39, i∑=41x2i =1+4+9+16=30, b=393-0-4×4×52×521243=1130,
(1)判断它们是否有相关关系,若有相关关系,请作一条拟合直 线;
(2)用最小二乘法求出年龄关于脂肪的线性回归方程.
栏目导航
25
[思路探究] (1)作出散点图,通过散点图判断它们是否具有相关 关系,并作出拟合直线;
(2)利用公式求出线性回归方程的系数 a,b 即可.
栏目导航
26
[解] (1)以 x 轴表示年龄,y 轴表示脂肪含量(百分比),画出散 点图,如下图.
32
栏目导航
a=143-1130×52=0, 故所求回归直线方程为 y=1130x.
33
栏目导航
34
1.求回归直线的方程时应注意的问题 (1)知道 x 与 y 呈线性相关关系,无需进行相关性检验,否则应首先进 行相关性检验.如果两个变量之间本身不具有相关关系,或者说,它们之
间的相关关系不显著,即使求出回归方程也是毫无意义的,而且用其估计
栏目导航
8
2.下表是 x 与 y 之间的一组数据,则 y 关于 x 的线性回归方程 y
=bx+a 必过( )
x

最小二乘估计(最新课件ppt)

最小二乘估计(最新课件ppt)
(1)根据这些数据画出散点图并作出直线y′=78+4.2x,计
10
算 yi yi 2; i1
(2)根据这些数据用最小二乘法求线性回归方程 yˆ =a+bx,
10
并由此计算 yi yˆi 2 ; i1
(3)比较(1)和(2)中两个计算结果的大小.
【审题指导】解答本题的关键是明确yi,y′i的意义,代入公式 求解. 【规范解答】(1)散点图与直线y′=78+4.2x如图所示.当x 分别取1,3,4,4,6,8,10,10,11,13时,y′的值分别为 82.2,90.6,94.8,94.8, 103.2,111.6,120,120,124.2,132.6,
a=y-bx=3.5-0.7×4.5=0.35.
故线性回归方程为y=0.7x+0.35.
(2)当x=10(年)时, 维修费用是0.7×10+0.35=7.35(万元), 所以根据回归方程的预测,使用年限为10年时,维修费用是 7.35(万元).
【误区警示】对解答本题时易犯的错误具体分析如下:
1.下列命题:
3.若施化肥量x kg与水稻产量y kg在一定范围内线性相关, 若回归方程为y=5x+250.当施化肥量为80 kg时,预计水 稻的产量为_____. 【解析】当x=80时,y=5×80+250=650(kg). 答案:650 kg
4.某饮料店的日销售收入y(单位:百元)与当天平均气温 x(单位:℃)之间有下列数据:
【典例】(2011·包头高二检测)假设关于某设备的使用年 限x和所支出的维修费用y(万元)有如表格所示的统计数 据,由资料显示y对x呈线性相关关系.
(1)请根据上表数据,用最小二乘法求出y关于x的线性回归 方程. (2)试根据(1)求出的线性回归方程,预测使用年限为10 年时, 维修费用是多少?

递推最小二乘法

递推最小二乘法

递推最小二乘法递推最小二乘法是用于拟合函数的一种最广泛和有效的方法。

递推最小二乘法(RecursiveLeastSquares,RLS)是针对给定样本进行线性拟合的一种机器学习算法,它在求解具有最小均方差的最优参数时用于模型的更新。

递推最小二乘法以更新参数的方式估计参数,从而将当前参数和新数据结合起来。

它可以用来求解给定样本具有最小平均方差的最优参数表达式,以解决传统最小二乘法的计算开销大的问题。

递推最小二乘法的基本原理是求解通过要拟合的数据图形的几何图案的最小二乘参数,并逐渐拟合出数据图形的最小二乘参数。

它使用一种迭代计算的方法,用新的样本点替换旧的样本点,以不断更新拟合函数参数。

该方法有利于跟踪变化快的参数。

递推最小二乘法的思想很简单:从给定的样本中求出最小二乘拟合参数,并以迭代和递推的方式求解最优拟合参数,不断地更新最小二乘拟合参数,以达到拟合数据的最优状态。

此外,递推最小二乘法也可以利用状态空间表示来改进拟合性能,尤其是在模型存在时滞性和高阶非线性性质时,能更好地拟合函数从而获得更详细的函数图形。

在应用递推最小二乘法时,我们需要注意它存在的一些局限性。

首先,它要求拟合的模型必须是线性的,这意味着参数的变化关系必须是线性的。

其次,它的迭代方式容易出现收敛速度慢的问题。

在实际应用中,一般用共轭梯度法或牛顿法加速收敛速度。

最后,它只能处理维度为n的数据,而不能处理大规模的数据。

因此,在实际应用中,在使用递推最小二乘法之前,需要结合其他方法,以减少数据维度,从而提高计算效率。

总之,递推最小二乘法是一种应用广泛、计算量小、拟合效果好的数据拟合算法,它主要用于模型参数在时间上有变化,并且有高阶非线性特性时,拟合函数参数的更新。

由于这种算法的收敛速度慢,因此,在实际应用中,一般要结合其他方法或技术进行优化,以进一步提高拟合的准确性和稳定性。

高中数学必修课件最小二乘估计

高中数学必修课件最小二乘估计

03
非线性回归模型与最小二乘估计
非线性回归模型概述
1 2
非线性回归模型定义
描述因变量与自变量之间非线性关系的回归模型 。
常见非线性回归模型
指数回归、对数回归、幂回归等。Βιβλιοθήκη 3非线性回归模型特点
模型参数估计复杂,但拟合效果可能更优于线性 回归。
最小二乘估计在非线性回归中应用
01
02
03
最小二乘法原理
参数估计性质与评价标准
参数估计性质
最小二乘估计具有线性性、无偏性、有效性等优良性质,是 实际应用中最常用的参数估计方法之一。
评价标准
评价最小二乘估计效果的标准包括残差图、均方误差、决定 系数等。其中,残差图用于直观判断模型拟合效果,均方误 差用于量化模型预测误差大小,决定系数用于衡量自变量对 因变量的解释程度。
通过介绍非线性回归模型的案例,如指数增长、周期性变化等,引 导学生理解最小二乘法在非线性回归中的推广和应用。
多重共线性问题
通过实际案例,让学生理解多重共线性对最小二乘估计的影响,以 及如何处理多重共线性问题。
实验设计与数据收集
实验设计
指导学生设计实验方案,明确实验目的、实验对象和实验 方法,确保数据的有效性和可靠性。
拓展应用
将最小二乘法应用于金融、生物、医学等领域的实际问题中,如股票价格预测、基因表达数据分析等。同时,可 以探索最小二乘法与其他数据分析方法的结合,如主成分分析、聚类分析等,以提高数据分析的准确性和效率。
THANKS
感谢观看
数据收集
教授学生如何收集和整理实验数据,包括直接观测、问卷 调查、实验测量等方法,强调数据的真实性和完整性。
预处理与探索性分析
引导学生对收集到的数据进行预处理,如数据清洗、缺失 值处理、异常值检测等,并进行探索性分析,初步了解数 据的分布和特征。

第二十四讲:最小二乘估计、波形估计-课件

第二十四讲:最小二乘估计、波形估计-课件
z(i)H (i)X 0w (i)
z k z(1 ) z(2 ) ... z(k )T
H k H ( 1 ) H (2 ) ... H (k )T
zk HkX0wk
X ˆ0 (k ) [(H k)T H k] 1 (H k)T z k
批处理算法,运算量太大。
递推算法:
X ˆ 0 ( k ) X ˆ 0 ( k 1 ) K ( k ) ( z ( k ) H ( k ) X ˆ 0 ( k 1 ) )
{ z(k), k= n0, n0+1,...,nf }对区间内的某一个时刻 n(n0<n<nf)的信号进行估计,内插也称为平滑。
数据
n0
n
nf
sˆ ( n )
波形估计宜采用可建立递推算法的线性最小均方估 计或最小二乘估计。
z ( n ) s ( n ) v ( n ) n 0 ,1 ,...,N 1
A
n0

1
N 1
z(n)
N n0
例:正弦信号频率的估计
s(n)cos2f0n
N1
J(f0) (z(n)cos2f0n)2 n0
最小化难以得到闭合性形式的解,原因是信号与 未知参数f0之间存在高度的非线性关系。
zHθv
zz1,z2,...,zNT
θ1,2,...,MT
vv1,v2,...,vNT
θ ˆlsw(H TW H )1H TW z
讨论:
(1) 当观测噪声的均值为零时,最小二乘与加权最小二 乘是无偏估计。
E[θˆls ] (HT H)1HT E[z] (HT H)1HT E[Hθ v] (HT H)1HT Hθ θ
(2)估计的方差阵
V a r ( θ l s ) E { [ θ θ ˆ l s ] [ θ θ ˆ l s ] T } ( H T H ) 1 H T R H ( H T H ) 1

最小二乘参数辨识方法及原理PPT学习课件

最小二乘参数辨识方法及原理PPT学习课件

Gauss(1777-1855)
m
使 w(k ) | z(k ) y最(k小) |2 k 1
1、问题的提出
1795年,高斯提出的最小二乘的基本原理是
未知量的最可能值是使各项实际观测值和计 算值之间差的平方乘以其精确度的数值以后的和 为最小。
z(k) y(k) v(k)
Gauss(1777-1855)
Z m H m Vm
2.2 一般最小二乘法原理及算法
最小二乘的思想就是寻找一个 的估计值ˆ ,使得各次测量 的 Z i (i 1, m) 与由估计ˆ 确定的量测估计 Zˆi Hiˆ 之差的平方
和最小,即
J (ˆ) (Zm Hmˆ)T (Zm Hmˆ) min
J
ˆ
2H
T m
(Z
m
H mˆ)
i1
2.2 一般最小二乘法原理及算法
u(k )
y(k )
G(k )
v(k ) z(k )
图 3.4 SISO 系统的“灰箱”结构
G(z)
y(z) u(z)
b1z 1 b2 z 2 1 a1z 1 a2 z 2
bn z n an z
n
n
n
y(k ) ai y(k i) biu(k i)
i 1
0 0
J a J b
a b bˆ

N
2 (Ri a bti )
i 1 N
2 (Ri a bti )ti
i 1
0 0
Naˆ
N

N i 1
ti
N
N i 1
Ri
N

i 1
ti

t
2 i
i 1

递推最小二乘法的实际应用(共20张PPT)

递推最小二乘法的实际应用(共20张PPT)
第9页,共20页。
2 递推最小二乘法应用实例
2.三相变压器等效模型 等效电路模型:
第10页,共20页。
2 递推最小二乘法应用实例
一次侧绕组等值磁通分别为:
2
递推最小二乘法应用实例
但在某些情况下二次谐波分量的内容并不能用于正确判定动作状态,在变压器发生内部故障期间也可能存在着较大的二次谐波;
2但双2变b计给2但2递2递这按这一2但1n在绕压算辨在推推样照样次在b从某 组 器 辨 识 某 最 最 , 下 , 侧 某辨些单绕识参些小小矩式矩绕些识情相组参数情二二阵计阵组情参况变参数和况乘乘求算求等况数下压数的协下法法逆增逆值下递递递递递递 递中二器的相方二的的的益的磁二推推推推推推 推分次等求对差次实算计矩计通次最最最最最最 最离谐效取变阵谐际法算阵算分谐小小小小小小 小出波模就化波应步量量别波PG二二二二二二 二赋来:分型是量分用骤很很为分乘乘乘乘乘乘 乘初。量对,量大大:量法法法法法法 法值的原看的,,的应应应应应应 简。内、是内存存内用用用用用用 介容副否容储储容实实实实实实并边满并量量并例例例例例例不电足不也也不能阻停能很很能用、机用大大用于漏准于。。于正电则正正确感。确确判参判判定数定定动的动动作求作作状解状状态。态态,,,在在在变变变压压压器器器发发发生生生内内内部部部故故故障障障期期期间间间也 也 也可可可能能能存存存在在在着着着较较较大大大的的的二二二次次次谐谐谐波波波;;;
画出被辨识参数的各次递推估计值图形。
一次侧绕组等值磁通分别为:
第15页,共20页。
2 递推最小二乘法应用实例
实验仿真及结果 1.动模试验系统示意图
第16页,共20页。
2 递推最小二乘法应用实例
2.原副边三相电流
第17页,共20页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3:特点
(1):无需存储全部数据,取得一组观测数据便 可估计一次参数,而且都能在一个采样周期中完 成,所需计算量小,占用的存储空间小。
(2):具有一定的实时处理能力
2021/3/12
20
谢谢
2021/3/12
21
感谢您的阅读收藏,谢谢!
•1802年又成功地预测了智神星的轨道。
• 高斯自己独创了一套行星轨道计算
理论。 • 高斯仅用1小时就算出了谷神星的
轨道形状,并进行了预测
•210271/93/412年,高斯提出了最小二乘的思想。
4
1:引言
最小二乘法(Least Square)Gauss 1795年提出 在预测卫星和彗星运动的轨道时,需要处理由望远镜获得的观测数 据,以估计天体运动的六个参数。
Gauss在《天体运动理论》一书中写道:“未知量的最大概值是这 样的数值,它使各实测值与计算值之差的平方乘以度量其精度的数 值后,所得的和值达到最小。”
——著名的最小二乘思想
在系统辨识中,LS已成功应用于系统参数估计。 在自校正控制中,LS是应用最广泛的算法之一。
2021/3/12
5
2:原理
2021/3/12
当C=I 时, [A+BD]-1 = A-1 -A-1B[I +DA-1B]-1DA-1
2021/3/12
13
2:原理
2021/3/12
14
2:原理
2021/3/12
15
2:原理
2021/3/12
16
2:原理
2021/3/12
17
2:原理
2021/3/12
18
3:特点
2021/3/12
19
6
2:原理
2021/3/12
7
2:原理
2021/3/12
8
2:原理
2021/3/12
9
3:特点
2021/3/12
10
二:递推最小二乘估计
1:引言
2:原理
3:特点
2021/3/12

1:引言
递推估计算法的优点:
(1):无需存储全部数据,取得一组观测数据便 可估计一次参数,而且都能在一个采样周期中完 成,所需计算量小,占用的存储空间小。
递推最小二乘估计(RLS)
2021/3/12
董博南
1
一:最小二乘法回顾
二:递推最小二乘估计
2021/3/12
2
一:最小二乘法回顾
1:引言 2:原理 3:特点
2021/3/12
3
1:引言
• 1801年初,天文学家皮亚齐发现了谷神星。
•1801年末,天文爱好者奥博斯,在高斯预 言的时间里,再次发现谷神星。
(2):具有一定的实时处理能力
2021/3/12
12
2:原理
引理,矩阵求逆
设A、C和(A+BCD)均为非奇异方阵,则 [A + BCD]-1 = A-1 -A-1B[C-1 + DA-1B]-1DA-1
推论:当D=BT时,有 [A+BCBT ]-1 = A-1-A-1B[C-1 +BTA-1B]-1 BTA-1
相关文档
最新文档