一元二次不等式解法应试能力测试-题库
(完整版)一元二次不等式练习题(完)
一、一元二次不等式及其解法1.形如0)的不等式称为关于x的一元二次不等式.ax2bx c0(或0)(其中a2.一元二次不等式ax2bxc0(a0)与相应的函数y ax2bxc(a0)、相应的方程ax2bxc0(a0)之间的关系:判别式b24ac0002二次函数y ax bx cax2bx c 0a 0ax2bx c 0(a 0)的解集ax2bx c 0(a 0)的解集3、解一元二次不等式步骤:1、把二次项的系数变为正的。
〔如果是负,那么在不等式两边都乘以-1,把系数变为正〕2、解对应的一元二次方程。
〔先看能否因式分解,假设不能,再看△,然后求根〕3、求解一元二次不等式。
〔根据一元二次方程的根及不等式的方向〕不等式的解法---穿根法一.方法:先因式分解,再使用穿根法.注意:因式分解后,整理成每个因式中未知数的系数为正.使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点 .②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿).③数轴上方曲线对应区域使“>〞成立, 下方曲线对应区域使“<〞成立.例1:解不等式(1)(x+4)(x+5)2(2-x)3<0x2-4x+1(2)3x2-7x+2≤1解:原不等式等价于(x+4)(x+5)2(x-2)3>0根据穿根法如图不等式解集为{x∣x>2或x<-4且x≠5}.-5-42(2x-1)(x-1)(2)变形为(3x-1)(x-2) ≥0根据穿根法如图不等式解集为1 11112 {xx<3或2≤x≤1或x>2}.32稳固练习一、解以下一元二次不等式:1、x25x 6 0 2 、x25x 6 0 3 、x27x 12 04、x27x 6 0 5 、x2x 12 0 6 、x2x 12 07、x28x 12 0 8 、x24x 12 0 9 、3x25x 12 010、3x216x 12 0 11 、3x237x 12 0 12 、2x215x 7 013、2x211x 12 0 14 、3x27x 10 15 、2x26x 5 016、10x233x 20 0 17 、x24x 5 0 18 、x24x 4 0 19、 x22x 3 0 20 、6x2x 2 0 21 、x2 3x 5 022、3x27x 2 0 23 、6x2x 1 0 24 、4x24x 3 025、2x211x 6 0 26 、3x211x 4 0 27 、x24 028、5x214x 3 0 29 、12x27x 12 0 30 、2x211x 21 031、8x22x 3 0 32 、8x210x 3 0 33 、4x215x 4 034、37、2x2x 21 0 35 、4x28x 21 0 36 、4x28x 5 05x217x 12 0 38 、10x211x 6 0 39 、16x28x 3 040、16x28x 3 0 41 、10x27x 12 0 42 、10x2x 2 043、4x229x 24 0 44 、4x221x 18 0 45 、9x26x 8 046、12x216x 3 0 47 、4x29 0 48 、12x220x 3 049、6x225x 14 0 50 、20x241x 9 0 51 、(x 2)(x 3) 6二填空题1、不等式(x1)(12x)0的解集是;2.不等式6x25x4的解集为____________.3、不等式3x2x10的解集是;4、不等式x22x10的解集是;5、不等式4x x25的解集是;9、集合M{x|x24},N{x|x22x30},那么集合MIN=;10、不等式mx2mx20的解集为R,那么实数m的取值范围为;11、不等式(2x1)29的解集为。
高中数学一元二次不等式及其解法检测题(附答案)
高中数学一元二次不等式及其解法检测题(附答案)1.下列不等式的解集是的为()A.x2+2x+10 B.x20C.(12)x-1<0 D.1x-3>1x答案:D2.若x2-2ax+20在R上恒成立,则实数a的取值范围是()A.(-2,2] B.(-2,2)C.[-2,2) D.[-2,2]解析:选D.=(-2a)2-410,-22.3.方程x2+(m-3)x+m=0有两个实根,则实数m的取值范围是________.解析:由=(m-3)2-4m0可得.答案:m1或m94.若函数y=kx2-6kx+k+8的定义域是R,求实数k的取值范围.解:①当k=0时,kx2-6kx+k+8=8满足条件;②当k>0时,必有=(-6k)2-4k(k+8)0,解得0<k1.综上,01.一、选择题1.已知不等式ax2+bx+c<0(a0)的解集是R,则()A.a<0,>0 B.a<0,<0C.a>0,<0 D.a>0,>0答案:B2.不等式x2x+1<0的解集为()A.(-1,0)(0,+) B.(-,-1)(0,1)C.(-1,0) D.(-,-1)答案:D3.不等式2x2+mx+n0的解集是{x|x>3或x<-2},则二次函数y=2x2+mx+n的表达式是()A.y=2x2+2x+12 B.y=2x2-2x+12C.y=2x2+2x-12 D.y=2x2-2x-12解析:选D.由题意知-2和3是对应方程的两个根,由根与系数的关系,得-2+3=-m2,-23=n2.m=-2,n=-12.因此二次函数的表达式是y=2x2-2x-12,故选D.4.已知集合P={0,m},Q={x|2x2-5x<0,xZ},若P,则m等于()A.1 B.2C.1或25 D.1或2X k b 1 . c o m解析:选D.∵Q={x|0<x<52,xZ}={1,2},m=1或2. 5.如果A={x|ax2-ax+1<0}=,则实数a的集合为() A.{a|0<a<4} B.{a|0a<4}C.{a|0<a D.{a|04}解析:选D.当a=0时,有1<0,故A=.当a0时,若A=,则有a>0=a2-4a0<a综上,a{a|04}.6.某产品的总成本y(万元)与产量x(台)之间的函数关系式为y=3000+20x-0.1x2(0<x<240,xN),若每台产品的售价为25万元,则生产者不亏本(销售收入不小于总成本)时的最低产量是()A.100台 B.120台C.150台 D.180台解析:选C.3000+20x-0.1x225xx2+50x-300000,解得x -200(舍去)或x150.二、填空题7.不等式x2+mx+m2>0恒成立的条件是________.解析:x2+mx+m2>0恒成立,等价于<0,即m2-4m2<00<m<2.答案:0<m<28.(2019年高考上海卷)不等式2-xx+4>0的解集是________.解析:不等式2-xx+4>0等价于(x-2)(x+4)<0,-4<x<2.答案:(-4,2)9.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程.若该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和与t之间的关系)式为s=12t2-2t,若累积利润s超过30万元,则销售时间t(月)的取值范围为__________.解析:依题意有12t2-2t>30,解得t>10或t<-6(舍去).答案:t>10三、解答题10.解关于x的不等式(lgx)2-lgx-2>0.解:y=lgx的定义域为{x|x>0}.又∵(lgx)2-lgx-2>0可化为(lgx+1)(lgx-2)>0,lgx>2或lgx<-1,解得x<110或x>100.原不等式的解集为{x|0<x<110或x>100}.11.已知不等式ax2+(a-1)x+a-1<0对于所有的实数x 都成立,求a的取值范围.解:当a=0时,不等式为-x-1<0x>-1不恒成立.当a0时,不等式恒成立,则有a<0,<0,即a<0a-12-4aa-1<0a<03a+1a-1>0a<0a<-13或a>1a<-13.即a的取值范围是(-,-13).12.某省每年损失耕地20万亩,每亩耕地价值24000元,为了减少耕地损失,政府决定按耕地价格的t%征收耕地占用税,这样每年的耕地损失可减少52t万亩,为了既可减少耕地的损失又可保证此项税收一年不少于9000万元,则t应在什么范围内?解:由题意知征收耕地占用税后每年损失耕地为(20-52t)万亩.则税收收入为(20-52t)24000t%.由题意(20-52t)24000t%9000,整理得t2-8t+150,解得35.当耕地占用税率为3%~5%时,既可减少耕地损失又可保证一年税收不少于9000万元.。
一元二次不等式及其解法测试题和答案
一元二次不等式及其解法测试题和答案一元二次不等式及其解法测试题和答案一、选择题1.不等式的解集为( ).A. B.C. D.考查目的:考查简单分式不等式的解法.答案:A.解析:根据符号法则可将不等式化为,利用数轴描点可知A正确.2.(2012重庆理)不等式的解集为( ).A. B. C. D.考查目的:考查简单分式不等式的解法.答案:A.解析:原不等式可化为且,解得.解此题时要注意未知数的取值不能使分母为0.3.(2009天津理)设,若关于的不等式的解集中的整数恰有3个,则( ).A. B. C. D.考查目的:考查一元二次不等式的解法,以及分析和推理论证能力.答案:C.解析:由得,.∵,且此不等式解集中只有有限个整数,∴必有,此时不等式的解集为.∵此区间内恰有三个整数,而,∴,整理得,结合得,∴.二、填空题4.(2008江西理)不等式的解集为 .考查目的:考查指数函数的`单调性、分式不等式、一元二次不等式的解法.答案:,或.解析:原不等式即,所以,即,解得或.5.(2010江苏卷)已知函数,则满足不等式的的取值范围是_ _ _____.考查目的:考查一元二次不等式的解法、函数的图象与性质,考查数形结合与分类讨论思想.答案:.解析:由函数的图象及单调性,分下面两种情况:①,解得;②,解得. 综上可知.6.若对任何实数恒成立,则实数的取值范围是 .考查目的:考查一元二次不等式、一元二次方程、二次函数之间的关系,以及分类讨论和数形结合思想.答案:.解析:若,则对任何实数不恒成立,∴.由题意得,函数的图象恒在轴下方,∴抛物线开口向下,与轴没有公共点,∴,且,解得.三、解答题7.已知函数和的图象关于原点对称,⑴求函数的解析式;⑵解不等式.考查目的:考查利用对称性求函数解析式的方法、绝对值不等式以及一元二次不等式的解法等基本方法.答案:⑴;⑵.解析:⑴设是函数图象上任一点,则它关于原点的对称点在函数的图象上,所以,即,故.⑵由,可得;当时,,此不等式无解;当时,,解得,因此原不等式的解集为.8.已知二次函数的二次项系数为,且不等式的解集为.若方程有两个相等的实数根,求的解析式;考查目的:考查一元二次不等式的解法、一元二次不等式的解集与一元二次方程的根之间的关系,以及运算求解能力.答案:.解析:设.∵的解集为,∴由一元二次不等式与一元二次方程的关系可知,1,3是方程的两个根,∴,且. 又∵方程有两个相等的实数根,∴,由①②③及解得,,,∴.。
一元二次不等式及其解法练习及同步练习题(含答案)
一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y =(2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃含参数的一元二次不等式的解法含参数的一元二次不等式的解法与具体的一元二次不等式的解法在本质上是一致的,这类不等式可从分析两个根的大小及二次系数的正负入手去解答,但遗憾的是这类问题始终成为绝大多数学生学习的难点,此现象出现的根本原因是不清楚该如何对参数进行讨论,而参数的讨论实际上就是参数的分类,而参数该如何进行分类?下面我们通过几个例子体会一下。
一.二次项系数为常数例1、解关于x 的不等式:0)1(2>--+m x m x 解:原不等式可化为:(x-1)(x+m )>0 (两根是1和-m ,谁大?)(1)当1<-m 即m<-1时,解得:x<1或x>-m(2)当1=-m 即m=-1时,不等式化为:0122>+-x x ∴x ≠1(3)当1>-m 即m>-1时,解得:x<-m 或x>1综上,不等式的解集为: (){}m x x x m -><-<或时当1|,11(){}1|,12≠-=x x m 时当 (){}1-|,13><->x m x x m 或时当例2:解关于x 的不等式:.0)2(2>+-+a x a x (不能因式分解)解:()a a 422--=∆ (方程有没有根,取决于谁?) ()()R a a a 时,解集为即当32432404212+<<-<--=∆()()32432404222+=-==--=∆a a a a 或时当 (i )13324-≠-=x a 时,解得:当(ii )13-324-≠+=x a 时,解得:当()()时或即当32432404232+>-<>--=∆a a a a 两根为()242)2(21aa a x --+-=,()242)2(22aa a x ----=.()()242)2(242)2(22aa a x aa a x --+->----<或此时解得:综上,不等式的解集为: (1)当324324+<<-a 时,解集为R ; (2)当324-=a 时,解集为(13,-∞-)⋃(+∞-,13); (3)当324+=a 时,解集为(13,--∞-)⋃(+∞--,13); (4)当324-<a 或324+>a 时, 解集为(248)2(,2+---∞-a a a )⋃(+∞+-+-,248)2(2a a a ); 二.二次项系数含参数例3、解关于x 的不等式:.01)1(2<++-x a ax解:若0=a ,原不等式.101>⇔<+-⇔x x 若0<a ,原不等式ax x a x 10)1)(1(<⇔>--⇔或.1>x 若0>a ,原不等式.0)1)(1(<--⇔x ax )(* 其解的情况应由a 1与1的大小关系决定,故 (1)当1=a 时,式)(*的解集为φ;(2)当1>a 时,式)(*11<<⇔x a; (3)当10<<a 时,式)(*a x 11<<⇔. 综上所述,不等式的解集为: ①当0<a 时,{11><x ax x 或}; ②当0=a 时,{1>x x };③当10<<a 时,{a x x 11<<};④当1=a 时,φ;⑤当1>a 时,{11<<x ax}.例4、解关于x 的不等式:.012<-+ax ax解:.012<-+ax ax(1)当0=a 时,.01R x ∈∴<-原式可化为(2)当0>a 时, 此时 a a 42+=∆>0 两根为a a a a x 2421++-=,aa a a x 2422+--=. 解得:a a a a 242+--aa a a x 242++-<< (3)当a<0时, 原式可化为:012>-+ax x aa 4+=∆此时 ①当0<∆即04<<-a 时,解集为R ; ②当0=∆即4-=a 时,解得:21-≠x ; ③当0>∆即4-<a 时解得:或a a a a x 242+-->aa a a x 242++-< 综上,(1)当0>a 时,解集为(a a a a 242+--,aa a a 242++-); (2)当04≤<-a 时,解集为R ;(3)当4-=a 时,解集为(21,-∞-)⋃(+∞-,21); (4)当4-<a 时,解集为(a a a a 24,2+--∞-)⋃(+∞++-,242aa a a ). 上面四个例子,尽管分别代表了四种不同的类型,但它们对参数a 都进行了讨论,看起来比较复杂,特别是对参数a 的分类,对于初学者确实是一个难点,但通过对它们解题过程的分析,我们可以发现一个规律:参数a 的分类是根据不等式中二次项系数等于零和判别式0=∆时所得到的a 的值为数轴的分点进行分类,如: 解关于x 的不等式:033)1(22>++-ax x a解:033)1(22>++-ax x a )(* 1012=⇒=-a a 或1-=a ;203)1(4922=⇒=⨯-⨯-=∆a a a 或2-=a ;∴当2-<a 时,012>-a 且0<∆,)(*解集为R ;当2-=a 时,012>-a 且0=∆,)(*解集为(1,∞-)⋃(+∞,1);当12-<<-a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当1-=a 时,)(*1033<⇔>+-⇔x x ,)(*解集为(1,∞-);当11<<-a 时,012<-a 且0>∆,)(*解集为(22312322----a a a ,22312322--+-a a a ); 当1=a 时,)(*1033->⇔>+⇔x x ,)(*解集为(+∞-,1);当21<<a 时,012>-a 且0>∆,)(*解集为(223123,22----∞-a a a )⋃(+∞--+-,22312322a a a ); 当2=a 时,012>-a 且0=∆,)(*解集为(1,-∞-)⋃(+∞-,1);当2>a 时,012>-a 且0<∆,)(*解集为R .综上,可知当2-<a 或2>a 时,解集为R ;当2-=a 时,(1,∞-)⋃(+∞,1);当12-<<-a 或21<<a 时,解集为 (223123,22----∞-a a a )⋃(+∞--+-,22312322a a a );当1-=a 时,解集为(1,∞-); 当11<<-a 时,)(*解集为(22312322----a a a ,22312322--+-a a a );当1=a 时,)(*解集为(+∞-,1);当2=a 时,解集为(1,-∞-)⋃(+∞-,1).通过此例我们知道原来解任意含参数的一元二次不等式对参数进行分类讨论时只需求出二次项系数等于零和判别式0=∆时所得到的参数的值,然后依此进行分类即可,这样这类问题便有了“通法”,都可迎刃而解了。
一元二次不等式练习题
一元二次不等式练习题一元二次不等式练习题一元二次不等式是数学中的重要概念,它在解决实际问题和推导数学定理中起到了重要的作用。
本文将通过一些练习题来帮助读者更好地理解和掌握一元二次不等式的解法和应用。
1. 解不等式:x^2 - 5x + 6 > 0首先,我们可以将不等式转化为方程来求解。
将不等式的左边置为0,得到x^2 - 5x + 6 = 0。
通过因式分解或配方法,我们可以得到(x - 2)(x - 3) = 0,解得x = 2或x = 3。
这两个解将实数轴分成了三段:(-∞, 2),(2, 3),(3, +∞)。
我们只需要在每个区间内选取一个数进行验证,来确定不等式的解集。
例如,选取x = 0,代入原不等式中得到0^2 - 5(0) + 6 = 6 > 0,所以x = 0属于解集。
同样地,选取x = 2.5,代入原不等式中得到2.5^2 - 5(2.5) + 6 = 1.25 > 0,所以x = 2.5也属于解集。
因此,原不等式的解集为(-∞, 2)∪(2, 3)∪(3, +∞)。
2. 解不等式:x^2 + 4x - 12 ≤ 0与上一题类似,我们首先将不等式转化为方程来求解。
将不等式的左边置为0,得到x^2 + 4x - 12 = 0。
通过因式分解或配方法,我们可以得到(x + 6)(x - 2) = 0,解得x = -6或x = 2。
这两个解将实数轴分成了三段:(-∞, -6),(-6, 2),(2, +∞)。
同样地,我们只需要在每个区间内选取一个数进行验证,来确定不等式的解集。
例如,选取x = -7,代入原不等式中得到(-7)^2 + 4(-7) - 12 = 1 ≤ 0,所以x= -7属于解集。
同样地,选取x = 0,代入原不等式中得到0^2 + 4(0) - 12 = -12 ≤ 0,所以x = 0也属于解集。
因此,原不等式的解集为(-∞, -6]∪[2, +∞)。
解一元二次不等式专项练习及测试(含专练60道)
解一元二次不等式专项练习及测试(含专练60道)解一元二次不等式专项练及测试 (含专练60道)本文档提供了解一元二次不等式的专项练和测试,共计包含60道题目。
以下是一些题目示例和解答方法,供学生研究和练使用。
例题1解不等式:(x+2)(x-5)>0解答步骤:1. 找出不等式的根,即使不等式等于0的点。
根据本例,根为x=-2和x=5。
2. 根据根的位置,我们可以将数轴分成三个区间:(-∞, -2),(-2, 5),(5, +∞)。
这些区间划分有助于确定解的范围。
3. 在每个区间内选择一个测试点,并代入不等式进行验证。
例如,在(-∞, -2)选择测试点x=-3,代入不等式得到(-3+2)(-3-5)>0,计算结果为5>0,因而该区间内满足条件。
4. 根据测试点的验证结果,可以推断出不等式的解集。
在本例中,解集为(-∞, -2)并(5, +∞)。
例题2解不等式:x^2 - 4x + 3 < 0解答步骤:1. 找出不等式的根,即使不等式等于0的点。
根据本例,根为x=1和x=3。
2. 根据根的位置,我们可以将数轴分成三个区间:(-∞, 1),(1,3),(3, +∞)。
3. 在每个区间内选择一个测试点,并代入不等式进行验证。
例如,在(-∞, 1)选择测试点x=0,代入不等式得到0^2 - 4*0 + 3 < 0,计算结果为3>0,因而该区间内不满足条件。
4. 根据测试点的验证结果,可以推断出不等式的解集。
在本例中,解集为(1,3)。
...继续如此,解答剩余的题目,共计60道题目供学生练。
希望这份文档对您的学习有所帮助!如需进一步帮助或其他题目的解答,请随时向我提问。
一元二次不等式及解法作业(含答案)精选全文
可编辑修改精选全文完整版 一元二次不等式及其解法 一、选择题 1.不等式(x +5)(3-2x )≥6的解集是 ( )A.{x |x ≤-1或x ≥92}B.{x|-1≤x ≤92}C.{x |x ≤-92或x ≥1}D.{x |-92≤x ≤1}解析:因为不等式(x +5)(3-2x )≥6可化为2x 2+7x -9≤0,而2x 2+7x -9=0的两根为x 1=-92,x 2=1,所以函数f (x )=2x 2+7x -9与x 轴的交点为(-92,0),(1,0),又函数f (x )=2x 2+7x -9的图象开口向上,所以不等式(x +5)·(3-2x )≥6的解集是{x |-92≤x ≤1}.答案:D 2.设A ={x |x 2-2x -3>0},B ={x |x 2+ax +b ≤0},若A ∪B =R ,A ∩B =(3,4],则a +b 等于 ( )A.7B.-1C.1D.-7解析:A =(-∞,-1)∪(3,+∞),∵A ∪B =R ,A ∩B =(3,4],则B =[-1,4],∴a =-(-1+4)=-3,b =-1×4=-4,∴a +b =-7.答案:D3.若ax 2+x +a <0的解集为∅,则实数a 取值范围 ( )A.a ≥12B.a <12C.-12≤a ≤12D.a ≤-12或a ≥12解析:∵ax 2+x +a <0的解集为∅,01,.02a a >⎧∴∴⎨⎩≤≤答案:A 4.不等式12+-x x ≤0的解集是( ) A.(-∞,-1)∪(-1,2] B.[-1,2] C.(-∞,-1)∪[2,+∞)D.(-1,2]解析:由,012≤+-x x 得⎩⎨⎧≠+≤+-.01,0)1)(2(x x x 所以不等式的解集为(-1,2].答案:D5.不等式|x 2-x|<2的解集为 ( )A.(-1,2)B.(-1,1)C.(-2,1)D.(-2,2)解析:∵|x 2-x|<2,∴-2<x 2-x <2,即⎪⎩⎪⎨⎧<-->+-2.02,022x x x x 解得⎩⎨⎧<<-∈,21,x R x ∴x ∈(-1,2),故选A. 答案:A6.已知集合A ={x|3x-2-x 2<0},B ={x|x-a <0},且BA ,则实数a 的取值范围是( )A.a ≤1B.1<a ≤2C.a >2D.a ≤2解析:不等式3x-2-x 2<0化为x 2-3x+2>0⇒x >2或x <1,由不等式x-a <0,得x <a.要使B A,则a ≤1.答案:A二、填空题7.若关于x 的方程x 2+ax +a 2-1=0有一正根和一负根,则a 的取值范围为 .解析:令f (x )=x 2+ax +a 2-1,∴二次函数开口向上,若方程有一正一负根,则只需f (0)<0,即a 2-1<0,∴-1<a <1.答案:-1<a <18.不等式21213≤+-x x 的解集为__________________. 解析: x x x x x x x x x x x x x ⇔≤-+⇔≤-+⇔-≤+-⇔≤⇔≤-+-+-0)1)(3(03211322212221313∈(-∞,-3]∪(0,1].答案:(-∞,-3]∪(0,1]三、解答题1. 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围.(2)若方程两根均在区间(0,1)内,求m 的范围.解:(1)条件说明抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m <1是因为对称轴x =-m 应在区间(0,1) 2、已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围; (2)如果对[3,1]x ∈-,()0f x >恒成立,求实数a 的取值范围.解:(1)24(2)16004a a ∆=--<⇒<<;(2)(2)3(3)0a f --<-⎧⎨->⎩或3(2)10a -≤--≤⎧⎨∆<⎩或(2)1(1)0a f -->⎧⎨>⎩, 解得a φ∈或14a ≤<或112a -<<,∴a 的取值范围为1(,4)2-. 3.已知二次函数2()f x ax bx c =++的图象过点(1,0)-,问是否存在常数,,a b c ,使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立?解:假设存在常数,,a b c 满足题意,∵()f x 的图象过点(1,0)-,∴(1)0f a b c -=-+= ① 又∵不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立,∴当1x =时,211(1)(11)2f ≤≤+,即11a b c ≤++≤,∴1a b c ++= ② 由①②可得:11,22a c b +==,∴211()()22f x ax x a =++-, 由21()(1)2x f x x ≤≤+对一切x R ∈都成立得:22111()(1)222x ax x a x ≤++-≤+恒成立, ∴2211()022(21)20ax x a a x x a ⎧-+-≥⎪⎨⎪-+-≤⎩的解集为R ,∴0114()042a a a >⎧⎪⎨--≤⎪⎩且21018(21)0a a a -<⎧⎨+-≤⎩,即20(14)0a a >⎧⎨-≤⎩且212(14)0a a ⎧<⎪⎨⎪-≤⎩∴14a =,∴14c =, ∴存在常数111,,424a b c ===使不等式21()(1)2x f x x ≤≤+对一切x R ∈都成立。
(完整版)一元二次不等式及其解法练习题
(完整版)一元二次不等式及其解法练习题预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制一元二次不等式及其解法练习班级:姓名:座号:1 比较大小:(1)2 6+ (2)2 21)-;(3;(4)当0a b >>时,12log a _______12log b .2. 用不等号“>”或“<”填空:(1),____a b c d a c b d >><(3)0a b >>? (4)22110___a b a b>>?.3. 已知0x a <<,则一定成立的不等式是().A .220x a <<B .22x ax a >>C .20x ax <<D .22x a ax >>4. 如果a b >,有下列不等式:①22a b >,②11a b<,③33a b >,④lg lg a b >,其中成立的是 .5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 .6.比较(3)(5)a a +-与(2)(4)a a +-的大小.7. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为(). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化8.(1)已知1260,1536,aa b a b b<<<<-求及的取值范围.(2)已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围.9. 已知22ππαβ-≤<≤,则2αβ-的范围是().A .(,0)2π-B .[,0]2π-C .(,0]2π-D .[,0)2π- 10.求下列不等式的解集.(1)2230x x +->;(2)2230x x -+-> (3)2230x x -+-≤.(4)24410x x -+> (5)24415x x -> (6)21340x ->(7)23100x x --> (8)2450x x -+< (9)23710x x -≤(10)2250x x -+-< (11)23100x x --+> (12)(9)0x x ->11.(1)不等式230x x -<的解集是 . (2)不等式2524x x -<的解集是 . (3)不等式(5)(2)0x x --<的解集为 . 12.不等式12--x x ≥0的解集是() A.[2,+∞] B.(-∞,1)∪[2,+∞) C.(-∞,1) D.(-∞,1)∪[2,+∞) 13、不等式13+-x x ≤ 3的解集为 .14 y =的定义域为 .15. 函数y =的定义域是().A .{|4x x <-或3}x >B .{|43}x x -<<C .{|4x x ≤-或3}x ≥D .{|43}x x -≤≤ 16. 集合A ={2|540}x x x -+≤,B =2{|560}x x x -+≥,则A B I =(). A .{|12x x ≤≤或34}x ≤≤ B .{|12x x ≤≤且34}x ≤≤ C .{1,2,3,4} D .{|41x x -≤≤-或23}x ≤≤17.2{|430}A x x x =-+<,2{|280}B x x x a =-+-≤,且A B ?,求a 的取值范围.18.不等式2223931711()()33x x x x --+-≤的解集是().A .[2,4]B .(,2][4,)-∞+∞UC .RD .(,2][4,)-∞-+∞U19.(1)若关于x 的一元二次方程2(1)0x m x m -+-=有两个不相等的实数根,求m 的取值范围.(2)当m 是什么实数时,关于x 的一元二次方程2(1)0mx m x m --+=没有实数根.20. 已知方程20ax bx c ++=的两根为12,x x ,且12x x <,若0a <,则不等式20ax bx c ++<的解为().A .RB .12x x x <<C .1x x <或2x x >D .无解21若不等式220ax bx +->的解集为1{|1}4x x -<<-,则,a b 的值分别是 .22设关于x 的不等式210ax bx ++>的解集为1{|1}3x x -<<,求a b g .23.不等式220ax bx ++>的解集是11{|}23x x -<<,则a b +等于().A .-14B .14C .-10D .1024.若方程20ax bx c ++=(0a <)的两根为2,3,那么20ax bxc ++>的解集为(). A .{|3x x >或2}x <- B .{|2x x >或3}x <- C .{|23}x x -<< D .{|32}x x -<< 25已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式250bx x a -+>的解集为() A .11{|}32x x -<< B .11{|}32x x x <->或 C .{|32}x x -<< D .{|32}x x x <->或 26已知二次不等式20ax bx c ++<的解集为1{|3x x <或1}2x >,求关于x 的不等式20cx bx a -+>的解集.27.二次不等式的解集是全体实数的条件是(1)20ax bx c ++>对一切x R ∈都成立的条件为()(2)20ax bx c ++<对一切x R ∈都成立的条件为()A .00a >>?B .00a >C .00a ?D .00a28.关于x 的不等式20x x c ++>的解集是全体实数的条件是().A .14c <B .14c ≤C .14c >D .14c ≥29.若不等式2(2)2(2)40a x a x -+--<对一切x R ∈恒成立,则a 的取值范围是 30. 在下列不等式中,解集是?的是().A .22320x x -+>B .2440x x ++≤C .2440x x --<D .22320x x -+-> 31. 关于x 的不等式2(1)10x a x ---<的解集为?,则实数a 的取值范围是().A .3(,1]5-B .(1,1)-C .(1,1]-D .3(,1)5-32. 若关于m 的不等式2(21)10mx m x m -++-≥的解集为空集,求m 的取值范围.33. 解关于x 的不等式2(2)20x a x a +--<(a ∈R ).34(1). 设2280x x a -+-≤对于一切(1,3)x ∈都成立,求a 的范围.(2)若方程2280x x a -+-=有两个实根12,x x ,且13x ≥,21x ≤,求a 的范围.35.设函数2()(8),f x ax b x a ab =+---的两个零点分别是-3和2;(1)求()f x ;(2)当函数()f x 的定义域是[0,1]时,求函数()f x 的值域.1< < < < 2.> < > < 3B 4 ③5.ab ab a <<26 <7 A 8.35、解:(1)∵f(x)的两个零点是-3和2,∴函数图象过点(-3,0)、(2,0)∴有9a -3(b -8)-a -ab =0 ……⑴ 4a +2(b -8)-a -ab =0 ……⑵ ⑴ -⑵得:b =a +8 … ⑶ ⑶代入⑵得:4a +2a -a -a(a +8)=0即a 2+3a =0∵a≠0 ∴a =-3 ∴b =a +8=5 ∴f(x)=-3x 2-3x +18 (2)由(1)得f(x)=-3x 2-3x +18,图象的对称轴方程是:21-=x ,且10≤≤x ∴12)1()(min ==f x f ,18)0()(max ==f x f ∴f(x)的值域是[12,18]。
一元二次不等式的解法练习题含答案
一元二次不等式的解法练习题(1)1. 不等式−2x 2+x +3≤0的解集是( )A. B.{x|x ≤−1或x ≥}C.{x|x ≤−或x ≥1}D.2. 不等式x 2−7x <0的解集是( ) A.{x|x <−7或x >0} B.{x|x <0或x >7} C.{x|−7<x <0}D.{x|0<x <7}3. 不等式x 2+2x −3≥0的解集是( ) A.{x|x ≥1} B.{x|x ≤−3} C.{x|−3≤x ≤1} D.{x|x ≤−3或x ≥1}4. 不等式x 2−4x −5>0的解集为( )A.{x|x ≥5或x ≤−1}B.{x|x >5或x <−1}C.{x|−1≤x ≤5}D.{x|−1<x <5}5. 不等式2x 2−x −1>0的解集是( ) A.(−12,1)B.(1,+∞)C.(−∞,1)∪(2,+∞)D.(−∞,−12)∪(1,+∞)6. 不等式组{x 2−2x −3<0log 2x <0 的解集为( )A.(−1, 0)B.(−1, 1)C.(0, 1)D.(1, 3)7. 已知集合A ={x ∈N|−2<x <4},B ={x|12≤2x ≤4},则A ∩B =( ) A.{x|−1≤x ≤2} B.{−1, 0, 1, 2} C.{1, 2} D.{0, 1, 2}8. 下列四个不等式中,解集为⌀的是()A.−x2+x+1≤0B.2x2−3x+4<0C.x2+6x+9≤0D.9. 已知函数f(x)=3x2−6x−1,则()A.函数f(x)有两个不同的零点B.函数f(x)在(−1, +∞)上单调递增C.当a>1时,若f(a x)在x∈[−1, 1]上的最大值为8,则a=3D.当0<a<1时,若f(a x)在x∈[−1, 1]上的最大值为8,则a=1310. 已知集合A={−1,0,2}, B={2,a2},若B⊆A,则实数a的值为________.11. 不等式|x−3|<2的解集为________.12. 不等式3x2−6x−5>4的解集为________.13. 已知不等式kx2−2x+6k<0(k≠0)若不等式的解集为{x|x<−3或x>−2},求实数k的值________.14. 不等式9−x2>0的解集是________.15. 已知集合A={x|x2−3x−10≤0}.(Ⅰ)若B={x|m−6≤x≤2m−1},A⊆B,求实数m的取值范围;(Ⅱ)若B={x|m+1≤x≤2m−1},B⊆A,求实数m的取值范围.16. 已知函数f(x)=ax2+bx−a+2.(1)若关于x的不等式f(x)>0的解集是(−1,3),求实数a的值;(2)若b=2,a>0,解关于x的不等式f(x)>0.17. 某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(利润和投资单(1)分别将A、B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元投资金,并将全部投入A,B两种产品的生产,怎样分配这18万元,才能使该企业获得最大利润?其最大利润约为多少万元?参考答案与试题解析一元二次不等式的解法练习题(1)一、选择题(本题共计 7 小题,每题 5 分,共计35分)1.【答案】B【考点】一元二次不等式的应用【解析】将不等式变形为(x+1)(2x−3)≥0,由一元二次不等式的解法得出答案.【解答】不等式−2x2+x+3≤0,即2x2−x−3≥0,即(x+1)(2x−3)≥0,解得x≤−1或,故不等式−2x2+x+3≤0的解集是{x|x≤−1或x≥}.2.【答案】D【考点】一元二次不等式的应用【解析】不等式化为x(x−7)<0,求出解集即可.【解答】不等式x2−7x<0可化为x(x−7)<0,解得0<x<7,所以不等式的解集是{x|0<x<7}.3.【答案】D【考点】一元二次不等式的解法【解析】将不等式左边因式分解可得:(x+3)(x−1)≥0,从而可解不等式.【解答】解:由题意,不等式可化为:(x+3)(x−1)≥0,∴x≤−3或x≥1.故选D.4.【答案】B【考点】直接解一元二次不等式即可. 【解答】解:∵ x 2−4x −5>0, ∴ (x −5)(x +1)>0, 解得,x <−1或x >5. 故选B . 5.【答案】 D【考点】一元二次不等式的解法 【解析】 此题暂无解析 【解答】 此题暂无解答 6.【答案】 C【考点】其他不等式的解法 【解析】由题意可得,{−1<x <30<x <1 ,解不等式可求.【解答】由题意可得,{−1<x <30<x <1 ,即可得,0<x <1. 7. 【答案】 D【考点】 交集及其运算 【解析】化简集合A 、B ,根据交集的定义写出A ∩B . 【解答】集合A ={x ∈N|−2<x <4}={0, 1, 2, 3}, B ={x|12≤2x ≤4}={x|−1≤x ≤2},则A ∩B ={0, 1, 2}.二、 多选题 (本题共计 2 小题 ,每题 5 分 ,共计10分 ) 8.【答案】 B,D【考点】此题暂无解析【解答】此题暂无解答9.【答案】A,C,D【考点】二次函数的图象二次函数的性质【解析】结合二次函数的零点及单调性及复合函数的单调性与最值的关系分别检验各选项即可判断.【解答】因为二次函数对应的一元二次方程的判别式△=(−6)2−4×3×(−1)=48>0,所以函数f(x)有两个不同的零点,A正确;因为二次函数f(x)图象的对称轴为x=1,且图象开口向上,所以f(x)在(1, +∞)上单调递增,B不正确;令t=a x,则f(a x)=g(t)=3t2−6t−1=3(t−1)2−4.当a>1时,1a ≤t≤a,故g(t)在[1a,a]上先减后增,又a+1a2>1,故最大值为g(a)=3a2−6a−1=8,解得a=3(负值舍去).同理当0<a<1时,a≤t≤1a ,g(t)在[a,1a]上的最大值为g(1a)=3a2−6a−1=8,解得a=13(负值舍去).三、填空题(本题共计 5 小题,每题 5 分,共计25分)10.【答案】【考点】集合的包含关系判断及应用【解析】此题暂无解析【解答】解:已知A={−1,0,2}, B={2,a2},若B⊆A,则a2=0,解得:a=0.故答案为:0.11.【答案】(1, 5)【考点】由题意利用绝对值不等式的基本性质,求得不等式|x−3|<2的解集.【解答】不等式|x−3|<2,即−2<x−3<2,求得1<x<5,12.【答案】{x|x>3或x<−1}【考点】一元二次不等式的解法【解析】先化简不等式,然后根据十字相乘法求出不等式的解集.【解答】解:由题意得,不等式化简为x2−2x−3>0,所以(x−3)(x+1)>0,解得x>3或x<−1,所以不等式的解集为{x|x>3或x<−1}.故答案为:{x|x>3或x<−1}.13.【答案】−2 5【考点】一元二次不等式的解法【解析】(1)由题设条件,根据二次函数与方程的关系,得:k<0,且−3,−2为关于x的方程k x2−2x+6k=0的两个实数根,再由韦达定理能求出k的值.【解答】解:∵不等式kx2−2x+6k<0(k≠0)的解集为{x|x<−3或x>−2},∴−3和−2是方程kx2−2x+6k=0的两个根,∴−3+(−2)=2k,∴k=−25,故答案为:−25.14.【答案】{x|−3<x<3}【考点】一元二次不等式的解法【解析】此题暂无解析【解答】解:不等式9−x2>0变形为x2<9,所以解集为{x|−3<x <3}. 故答案为:{x|−3<x <3}.四、 解答题 (本题共计 3 小题 ,每题 10 分 ,共计30分 ) 15.【答案】集合A ={x|x 2−3x −10≤0}={x|−2≤x ≤5}, (1)∵ A ⊆B ,∴ {m −6≤−22m −1≥5 ,解得:3≤m ≤4,∴ 实数m 的取值范围为:[3, 4]; (2)∵ B ⊆A ,①当B =⌀时,m +1>2m −1,即m <2,②当B ≠⌀时,{m +1≤2m −1m +1≥−22m −1≤5,解得:2≤m ≤3,综上所述,实数m 的取值范围为:(−∞, 3]. 【考点】集合的包含关系判断及应用 【解析】先求出集合A ,再利用集合A 与集合B 的包含关系,列出不等式组,即可求出m 的取值范围,注意对空集的讨论. 【解答】集合A ={x|x 2−3x −10≤0}={x|−2≤x ≤5}, (1)∵ A ⊆B ,∴ {m −6≤−22m −1≥5 ,解得:3≤m ≤4,∴ 实数m 的取值范围为:[3, 4]; (2)∵ B ⊆A ,①当B =⌀时,m +1>2m −1,即m <2,②当B ≠⌀时,{m +1≤2m −1m +1≥−22m −1≤5 ,解得:2≤m ≤3,综上所述,实数m 的取值范围为:(−∞, 3]. 16.【答案】解:(1)∵ f (x )=ax 2+bx −a +2>0的解集为(−1,3), ∴ 方程ax 2+bx −a +2=0的两根为−1和3,且a <0, ∴ {−1+3=−ba ,−1×3=−a +2a ,解得{a =−1,b =2,∴ a 的值为−1.(2)∵ b =2,a >0,∴ 方程f (x )=0的两根为−1和a−2a,∴ 当−1>a−2a即a <1时,x <a−2a或x >−1;当−1=a−2a即a =1时,x ≠−1; 当−1<a−2a即a >1时,x <−1或x >a−2a,∴ 综上,当0<a <1时,原不等式解集为{x|x <a−2a或x >−1};当a =1时,原不等式解集为{x|x ≠−1}; 当a >1时,原不等式解集为{x|x <−1或x >a−2a}.【考点】一元二次不等式的解法 【解析】左侧图片未给出解析 左侧图片未给出解析【解答】解:(1)∵ f (x )=ax 2+bx −a +2>0的解集为(−1,3), ∴ 方程ax 2+bx −a +2=0的两根为−1和3,且a <0, ∴ {−1+3=−ba ,−1×3=−a +2a ,解得{a =−1,b =2,∴ a 的值为−1.(2)∵ b =2,a >0,∴ f (x )=ax 2+2x −a +2=(x +1)(ax −a +2)>0, ∴ 方程f (x )=0的两根为−1和a−2a,∴ 当−1>a−2a即a <1时,x <a−2a或x >−1;当−1=a−2a即a =1时,x ≠−1; 当−1<a−2a即a >1时,x <−1或x >a−2a,∴ 综上,当0<a <1时,原不等式解集为{x|x <a−2a或x >−1};当a =1时,原不等式解集为{x|x ≠−1}; 当a >1时,原不等式解集为{x|x <−1或x >a−2a}.17.f(x)=k1x(x≥0),g(x)=k2√x(x≥0),由图1,得f(1)=14,所以k1=14,则f(x)=14x(x≥0).由图2,得g(4)=4,所以k2=2,则g(x)=2√x(x≥0).(2)设B产品投入x万元,A产品投入(18−x)万元,该企业可获总利润为y万元,则y=14(18−x)+2√x,0≤x≤18.令√x=t,t∈[0, 3√2],则y=14(−t2+8t+18)=−14(t−4)2+172.所以当t=4时,y max=172=8.5,所以x=16,18−x=2.所以当A、B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元. 【考点】二次函数在闭区间上的最值函数模型的选择与应用【解析】此题暂无解析【解答】解:(1)根据题意可设A,B两种产品的利润与投资的函数关系式分别为:f(x)=k1x(x≥0),g(x)=k2√x(x≥0),由图1,得f(1)=14,所以k1=14,则f(x)=14x(x≥0).由图2,得g(4)=4,所以k2=2,则g(x)=2√x(x≥0).(2)设B产品投入x万元,A产品投入(18−x)万元,该企业可获总利润为y万元,则y=14(18−x)+2√x,0≤x≤18.令√x=t,t∈[0, 3√2],则y=14(−t2+8t+18)=−14(t−4)2+172.所以x=16,18−x=2.所以当A、B两种产品分别投入2万元、16万元时,可使该企业获得最大利润8.5万元.试卷第11页,总11页。
最新一元二次不等式测试题及答案
一元二次不等式测试题及答案一、选择题1.如果不等式ax 2+bx+c<0(a ≠0)的解集为空集,那么( ) A .a<0,Δ>0 B .a<0,Δ≤0 C .a>0,Δ≤0 D .a>0,Δ≥0 2.不等式(x+2)(1-x)>0的解集是( ) A .{x|x<-2或x>1} B .{x|x<-1或x>2} C .{x|-2<x<1} D .{x|-1<x<2}3.设f(x)=x 2+bx+1,且f(-1)=f(3),则f(x)>0的解集是( ) A .),3()1,(+∞⋃--∞ B .RC .{x|x≠1}D .{x|x=1} 4.不等式(x+5)(3-2x)≥6的解集为( )A.{x|x ≤-1或x≥29} B. {x|-1≤x≤29} C.{x|x ≥1或x≤-29} D. {x|-29≤x≤1}5.设一元二次不等式ax 2+bx+1>0的解集为{x|-1≤x≤31},则ab 的值是( )A.-6 B.-5 C.6 D.5 6.已知M={x|x2-2x -3>0},N={x |x2+ax+b ≤0},若M ∪N =R ,M∩N=(3,]4,则a+b=( ) A.7 B.-1 C.1 D.-7 7.已知集合M ={x| x 2-3x -28≤0}, N={ x 2-x -6>0},则M ∩N 为( ) A.{x|-4≤x<-2或3<x≤7} B .{x|-4<x≤-2或3≤x<7}C .{x|x≤-2或x>3}D .{x|x<-2或x≥3} 8.已知集合M ={x|3x 0x 1≥(-)},N ={y|y=3x2+1,x∈R},则M ∩N =( ) A.∅ B. {x|x≥1} C.{x|x>1} D.{x| x≥1或x<0} 二.填空题9、有三个关于x 的方程:,已知其中至少有一个方程有实根,则实数a 的取值范围为 10.若二次函数y=ax 2+bx+c(x ∈R)的部分对应值如下表: x-3-2-11234y 6 0 -4 -6 -6 -4 0 6则不等式ax 2+bx+c>0的解集是 。
一元二次不等式测试题及答案
一元二次不等式测试题及答案一.选择题1.假如不等式ax 2+bx+c<0(a ≠0)的解集为空集,那么( ) A .a<0,Δ>0 B .a<0,Δ≤0 C .a>0,Δ≤0 D .a>0,Δ≥0 2.不等式(x+2)(1-x)>0的解集是( )A .{x|x<-2或x>1}B .{x|x<-1或x>2}C .{x|-2<x<1}D .{x|-1<x<2} 3.设f(x)=x 2+bx+1,且f(-1)=f(3),则f(x)>0的解集是( ) A .),3()1,(+∞⋃--∞ B .RC .{x|x≠1}D .{x|x=1}4.不等式(x+5)(3-2x)≥6的解集为( ) A.{x|x ≤-1或x≥29} B. {x|-1≤x≤29} C.{x|x ≥1或x≤-29}D. {x|-29≤x≤1}5.设一元二次不等式ax 2+bx+1>0的解集为{x|-1≤x≤31},则ab 的值是( )A.-6 B.-5 C.6 D.56.已知M={x|x2-2x -3>0},N={x |x2+ax+b ≤0},若M ∪N =R,M∩N=(3,]4,则a+b =( )A.7 B.-1 C.1 D.-77.已知聚集M ={x| x 2-3x -28≤0}, N={ x 2-x -6>0},则M ∩N 为( )A.{x|-4≤x<-2或3<x≤7} B .{x|-4<x≤-2或3≤x<7}C .{x|x≤-2或x>3}D .{x|x<-2或x≥3} 8.已知聚集M ={x|3x0x 1≥(-)},N ={y|y=3x2+1,x∈R},则M ∩N =()A.ÆB. {x|x≥1} C.{x|x>1} D.{x| x≥1或x<0}二.填空题9.有三个关于x 的方程:,已知个中至少有一个方程有实根,则实数a 的取值规模为10.若二次函数y=ax 2+bx+c(x ∈R)的部分对应值如下表:x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6则不等式ax 2+bx+c>0的解集是.11.若聚集A={x∈R|x2-4x+3<0},B={x∈R|(x-2)(x-5)<0},则A∩B=_______________________________.12.关于x 的方程x 2+ax+a 2-1=0有一正根和一负根,则a 的取值规模是.三.解答题:13.①不等式(a 2-1)x 2-(a-1)x-1 <0的解集为R,求a 的取值规模.②若a2-417a+1<0的解集为A,求使不等式x 2+ax+1>2x+a 在A a ∈时恒成立的x 的取值规模.114.①已知不等式02>++c bx ax 的解集为)3,2(,求不等式02<++a bx cx 的解集.②不等式ax 2+bx+c >0的解集为{x|α<x <β},个中0>β>α,求不等式cx 2+bx+a <0的解集. 115.已知A=,B=.(1)若B A,求a 的取值规模;(2)若A∩B 是单元素聚集,求a 取值规模. 参考答案: 一.选择题:1.C 解析:只能是启齿朝上,最多与x 轴一个交点情形∴a>0,Δ≤0; 2.C 解析:所给不等式即(x+2)(x-1)<0∴-2<x<13.C 解析:由f(-1)=f(3)知b=-2,∴f(x)=x 2-2x+1 ∴f(x)>0的解集是{x|x≠1} 4.D5.C 解析:设f(x)= ax 2+bx+1,则f(-1)=f(31)=0∴a=-3,b=-2∴ab=6.6.D 解析:A =(-∞,-1)∪(3,+∞)依题意可得,B =[1,4]∴a=-3,b=-4∴a+b =-77.A8.C 解析:M ={x │x>1或x ≤0},N ={x │x ≥1}∴M ∩N ={x │x>1} 二.填空题: 9.a≤-2,或a≥410.(-∞,-2)∪(3,+∞)解析:两个根为2,-3,由函数值变更可知a>0∴ax 2+bx+c>0的解集是(-∞,-2)∪(3,+∞). 11.{x │2<x<3}12.3-1<a<1解析:令f(x)= x 2+ax+a 2-1,由题意得f(0)<0即a 2-1<0∴-1<a<1.13.①当a 2-1=0时a=1,有x ∈R.当a 2-1≠ 0时,△=(a-1)2+4(a 2-1)=5a 2-2a-3<0a 2-1<0;即—<a<1时有x∈R. 综上所述:-<a≤1②.解析:由a 2-417a+1<0得a ∈(41,4),由x 2+ax+1>2x+a 得x<1-a 或x>1∴x ≤-3或x>1. 14①.(-3,-2)②解集为),1()1,(+∞∂⋃-∞β.15.解不等式得A=[1,2];而B={≤0}.(1)若B A,如图1,得a 的取值规模是1≤a<2.(2)若A∩B 是单元素聚集,如图2,A∩B 只能是聚集{1} ∴a 的取值规模是a≤1.。
解一元二次不等式(含参数)练习题
解一元二次不等式(含参数)练习题一、选择题:1.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.B. D.∪ C.∪2.关于x的不等式x2-x+a<0的解集中,恰有3个整数,则a的取值范围是A.C.∪ D.[-3,-2)∪x2-x+3 1A. ?11?C. B. 13-∞,-?∪D.?11??4.已知二次函数f=ax2-x+1,且函数f在上恰有一个零点,则不等式f>1的解集为A.∪C. B.∪ D.5.对于实数x,规定[x]表示不大于x的最大整数,那么不等式4[x]2-36[x]+45<0成立的x的取值范围是15A.??2,2C.[2,8) B.[2,8] D.[2,7]6.若圆x2+y2-4x+2my+m+6=0与y轴的两交点A,B位于原点的同侧,则实数m的取值范围是A.m>- B.m>3或-6<m<-2C.m>2或-6<m<-1 D.m>3或m<-1二、填空题k-37.若不等式>1的解集为{x|1<x<3},则实数k =________. x-38.已知集合A={x∈R||x+2| 9.不等式x2-2x +≤a2-2a-1在R上的解集是?,则实数a的取值范围是________.10.若关于x的不等式x2-ax-a>0的解集为,则实数a的取值范围是________;若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是________.??x+5,x<3,11.若函数f=?且f)>6,则m的取值范围为________. ?2x-m,x≥3,?1n1*12.若关于x的不等式x2x-?≥0对任意n∈N在x∈已知函数f=x2+ax+b的值域为[0,+∞),若关于x 的不等式f<c的解集为,则实数c的值为________.三,解答题14.解下列不等式:x2-2ax-3a2<0.x2-4ax-5a2>0.ax2-x+1<0. 15.已知f=x2-2ax+2,当x∈[-1,+∞)时,f≥a 恒成立,求a的取值范围.16.设二次函数f=ax2+bx+c,函数F=f-x的两个零点为m,n.若m=-1,n=2,求不等式F>0的解集;1若a>0,且0<x<m<n<,比较f与m的大小. a 含参数一元二次不等式练习题一、选择题:1.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.B. D.∪ C.∪解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m2-4>0,解得m<-2或m>2.2.关于x的不等式x2-x+a<0的解集中,恰有3个整数,则a的取值范围是A.C.∪ D.[-3,-2)∪<0,当a>1时得1<x<a,此时解集中的整数为2,3,4,则4<a≤5,当a<1时得a<x<1,则-3≤a<-2,故a∈[-3,-2)∪x2-x+3 1A. ?11?C. B.13∪D.?11?解析:选A ①m=-1时,不等式为2x-6 ??m+1 4.已知二次函数f=ax2-x+1,且函数f在上恰有一个零点,则不等式f>1的解集为A.∪C. B.∪ D.解析:选C ∵f=ax2-x+1,Δ=2-4a=a2+4>0,∴函数f=ax2-x+1必有两个不同的零点,又f在上有一个零点,则ff<0,35∴<0,解得-<a<-.6又a∈Z,∴a=-1.不等式f>1,即-x2-x>0,解得-1<x<0.5.对于实数x,规定[x]表示不大于x的最大整数,那么不等式4[x]2-36[x]+45<0成立的x的取值范围是15A.??2,2C.[2,8) B.[2,8] D.[2,7]315解析:选C 由4[x]2-36[x]+45<0,得[x][x]表示不大于x的最大整数,所以2≤x<8.26.若圆x2+y2-4x+2my+m+6=0与y轴的两交点A,B位于原点的同侧,则实数m的取值范围是A.m>- B.m>3或-6<m<-2C.m>2或-6<m<-1 D.m>3或m<-1解析:选B 依题意,令x=0得关于y的方程y2+2my +m+6=0有两个不相等且同号的实根,于是2??Δ=?2m?-4?m+6?>0,有? 由此解得m>3或-6<m<-2. ??m+6>0,二、填空题k-37.若不等式>1的解集为{x|1<x<3},则实数k=________. x-3k-3k-3x-k解析:1,得1-<0,即<0,<0,由题意得k=1. x-3x-3x-3答案:18.已知集合A={x∈R||x+2| 解析:因为|x+2| 答案:-1 19.不等式x2-2x+≤a2-2a-1在R上的解集是?,则实数a的取值范围是________.解析:原不等式即x2-2x-a2+2a+4≤0,在R上解集为?,∴Δ=4-4<0,即a2-2a-3<0,解得-1<a<3.答案:10.若关于x的不等式x2-ax-a>0的解集为,则实数a的取值范围是________;若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是________.解析:由Δ1 由Δ2≥0,即a2-4≥0,得a≤-6或a≥2.答案:??x+5,x<3,11.若函数f=?且f)>6,则m的取值范围为________. ??2x-m,x≥3,解析:由已知得f=6-m,①当m≤3时,6-m≥3,则f)=2-m=12-3m>6,解得m<2;②当m>3时,6-m <3,则f)=6-m+5>6,解得3<m<5.综上知,m<2或3<m<5.答案:∪1n1*12.若关于x的不等式x2x-?≥0对任意n∈N 在x∈已知函数f=x2+ax+b的值域为[0,+∞),若关于x的不等式f<c的解集为,则实数c的值为________.a2解析:因为f的值域为[0,+∞),所以Δ=0,即a=4b,所以x+ax+-c<0的解集为,易得m,4222m+6=-a,??am+6是方程x2+ax+-c=0的两根,由一元二次方程根与系数的关系得?解得c=9. a24??m?m+6?=4c,2答案:9三,解答题14.解下列不等式:x2-2ax-3a2<0.x2-4ax-5a2>0.ax2-x+1<0.原不等式转化为<0,∵a<0,∴3a<-a,得3a<x<-a.故原不等式的解集为{x|3a<x<-a}.由x2-4ax-5a2>0知>0.由于a≠0故分a>0与a<0讨论.当a<0时,x<5a或x>-a;当a>0时,x<-a或x>5a.综上,a<0时,解集为{x|x<5a,或x>-a};a>0时,解集为{x|x>5a,或x<-a}.原不等式变为<0,1x-<0. 因为a>0,所以??a1所以当a>1时,解为<x<1; a当a=1时,解集为?;1当0<a<1时,解为1<x<. a??11<x综上,当0<a<1时,不等式的解集为x?a?; ?当a=1时,不等式的解集为?;15.已知f=x2-2ax+2,当x∈[-1,+∞)时,f≥a 恒成立,求a的取值范围.含参数一元二次不等式练习题1.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.B. C.∪D.∪2.关于x的不等式x2-x+a<0的解集中,恰有3个整数,则a的取值范围是A.B.∪ C.∪x2-x+3 13-∞,-B. C. A.?11?13∪ D.?11?4.已知二次函数f=ax2-x+1,且函数f在上恰有一个零点,则不等式f>1的解集为A.∪B.∪C. D.5.对于实数x,规定[x]表示不大于x的最大整数,那么不等式4[x]2-36[x]+45<0成立的x的取值范围是 31 A.??2,B.[2,8] C.[2,8) D.[2,7]1 11111111 A、∪ B、C、∪ D、∪ abbabaab6.已知 a > 0,b > 0,不等式– a k-37>1的解集为{x|1<x<3},则实数k=________. x-38.已知集合A={x∈R||x+2| 9.不等式x2-2x +≤a2-2a-1在R上的解集是?,则实数a的取值范围是________.10.若关于x的不等式x2-ax-a>0的解集为,则实数a的取值范围是________;若关于x的不等式x2-ax -a≤-3的解集不是空集,则实数a的取值范围是________. ?x+5,x<3,? 11.若函数f=?且f)>6,则m的取值范围为________. ?2x-m,x≥3,?1n1* 12.若关于x的不等式x2+x-?≥0对任意n∈N 在x∈=x2+ax+b的值域为[0,+∞),若关于x的不等式f<c的解集为,则实数c的值为________.2?ax?x214、使不等式 15、已知关于x的不等式的解集是 _____x?c≥0的解为–1 ≤ x ≤或x ≥3,则不等式≤ 0 x?c16. 解下列不等式:x2-2ax-3a2<0.x2-4ax-5a2>0.ax2-x+1<0. 17.已知f=x2-2ax+2,当x∈[-1,+∞)时,f≥a 恒成立,求a的取值范围.18.设二次函数f=ax2+bx+c,函数F=f-x的两个零点为m,n.若m=-1,n=2,求不等式F>0的解集;1若a>0,且0<x<m<n<,比较f与m的大小. a 含参数一元二次不等式练习题一、选择题:1.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.B. D.∪ C.∪解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m2-4>0,解得m<-2或m>2.2.关于x的不等式x2-x+a<0的解集中,恰有3个整数,则a的取值范围是A.C.∪ D.[-3,-2)∪<0,当a>1时得1<x<a,此时解集中的整数为2,3,4,则4<a≤5,当a<1时得a<x<1,则-3≤a<-2,故a∈[-3,-2)∪x2-x+3 1A. ?11?C. B.13∪D.?11?解析:选A ①m=-1时,不等式为2x-6 ??m+1 4.已知二次函数f=ax2-x+1,且函数f在上恰有一个零点,则不等式f>1的解集为A.∪C. B.∪ D.解析:选C ∵f=ax2-x+1,Δ=2-4a=a2+4>0,∴函数f=ax2-x+1必有两个不同的零点,又f在上有一个零点,则ff<0,35∴<0,解得-<a<-.6又a∈Z,∴a=-1.不等式f>1,即-x2-x>0,解得-1<x<0.5.对于实数x,规定[x]表示不大于x的最大整数,那么不等式4[x]2-36[x]+45<0成立的x的取值范围是315A.??2,2C.[2,8) B.[2,8] D.[2,7]315解析:选C 由4[x]2-36[x]+45<0,得<[x][x]表示不大于x的最大整数,所以2≤x<8.26.若圆x2+y2-4x+2my+m+6=0与y轴的两交点A,B位于原点的同侧,则实数m的取值范围是A.m>- B.m>3或-6<m<-2C.m>2或-6<m<-1 D.m>3或m<-1解析:选B 依题意,令x=0得关于y的方程y2+2my+m+6=0有两个不相等且同号的实2??Δ=?2m?-4?m+6?>0,根,于是有? 由此解得m>3或-6<m<-2. ?m+6>0,?二、填空题k-37.若不等式>1的解集为{x|1<x<3},则实数k=________. x-3k-3k-3x-k解析:1,得1-<0,即<0,<0,由题意得k=1. x-3x-3x-3答案:18.已知集合A={x∈R||x+2| 解析:因为|x+2| 答案:-1 19.不等式x2-2x+≤a2-2a-1在R上的解集是?,则实数a的取值范围是________.解析:原不等式即x2-2x-a2+2a+4≤0,在R上解集为?,∴Δ=4-4<0,即a2-2a-3<0,解得-1<a<3.答案:10.若关于x的不等式x2-ax-a>0的解集为,则实数a的取值范围是________;若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是________.解析:由Δ1 由Δ2≥0,即a2-4≥0,得a≤-6或a≥2.答案:??x+5,x<3,11.若函数f=?且f)>6,则m的取值范围为________. ?2x-m,x≥3,?解析:由已知得f=6-m,①当m≤3时,6-m≥3,则f)=2-m=12-3m>6,解得m<2;②当m>3时,6-m <3,则f)=6-m+5>6,解得3<m<5.综上知,m<2或3<m<5.答案:∪1n1*12.若关于x的不等式x2+x-?≥0对任意n∈N 在x∈已知函数f=x2+ax+b的值域为[0,+∞),若关于x的不等式f<c的解集为,则实数c的值为________.a2解析:因为f的值域为[0,+∞),所以Δ=0,即a=4b,所以x+ax+-c<0的解集为,4222m+6=-a,?2?a易得m,m+6是方程x2+ax-c=0的两根,由一元二次方程根与系数的关系得?a24??m?m+6?=4c,得c=9.答案:9三,解答题14.解下列不等式:x2-2ax-3a2<0.x2-4ax-5a2>0.ax2-x+1<0.原不等式转化为<0,∵a<0,∴3a<-a,得3a<x<-a.故原不等式的解集为{x|3a<x<-a}.由x2-4ax-5a2>0知>0.由于a≠0故分a>0与a<0讨论.当a<0时,x<5a或x>-a;当a>0时,x<-a或x>5a.综上,a<0时,解集为{x|x<5a,或x>-a};a>0时,解集为{x|x>5a,或x<-a}.原不等式变为<0,1x-<0. 因为a>0,所以??a1所以当a>1时,解为<x<1; a当a=1时,解集为?;1当0<a<1时,解为1<x<. a 解含参数一元二次不等式练习题1.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.B. C.∪D.∪2.关于x的不等式x2-x+a<0的解集中,恰有3个整数,则a的取值范围是A.B.∪ C.∪x2-x+3 13-∞,-B. C. A.?11?13∪ D.?11?4.已知二次函数f=ax2-x+1,且函数f在上恰有一个零点,则不等式f>1的解集为A.∪B.∪C. D.5.对于实数x,规定[x]表示不大于x的最大整数,那么不等式4[x]2-36[x]+45<0成立的x的取值范围是 31 A.??2,B.[2,8] C.[2,8) D.[2,7]1 11111111 A、∪ B、C、∪ D、∪ abbabaab6.已知 a > 0,b > 0,不等式– a k-37>1的解集为{x|1<x<3},则实数k=________. x-38.已知集合A={x∈R||x+2| 9.不等式x2-2x+≤a2-2a-1在R上的解集是?,则实数a的取值范围是________.10.若关于x的不等式x2-ax-a>0的解集为,则实数a的取值范围是________;若关于x的不等式x2-ax -a≤-3的解集不是空集,则实数a的取值范围是________. ?x+5,x<3,? 11.若函数f=?且f)>6,则m的取值范围为________. ?2x-m,x≥3,?1n1* 12.若关于x的不等式x2+x-?≥0对任意n∈N 在x∈=x2+ax+b的值域为[0,+∞),若关于x的不等式f<c的解集为,则实数c的值为________.2?ax?x214、使不等式 15、已知关于x的不等式的解集是 _____练习题)a)x?c≥0的解为– 1 ≤ x ≤或x ≥3,则不等式≤ 0 x?c16. 解下列不等式:x2-2ax-3a2<0.x2-4ax-5a2>0.ax2-x+1<0. 17.已知f=x2-2ax+2,当x∈[-1,+∞)时,f≥a 恒成立,求a的取值范围.18.设二次函数f=ax2+bx+c,函数F=f-x的两个零点为m,n.若m=-1,n=2,求不等式F>0的解集;1若a>0,且0<x<m<n<,比较f与m的大小. a 含参数一元二次不等式练习题一、选择题:1.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是A.B. D.∪ C.∪解析:选C 由一元二次方程有两个不相等的实数根,可得:判别式Δ>0,即m2-4>0,解得m<-2或m>2.2.关于x的不等式x2-x+a<0的解集中,恰有3个整数,则a的取值范围是A.C.∪ D.[-3,-2)∪<0,当a>1时得1<x<a,此时解集中的整数为2,3,4,则4<a≤5,当a<1时得a<x<1,则-3≤a<-2,故a∈[-3,-2)∪x2-x+3 1A. ?11?C. B.13∪D.?11?解析:选A ①m=-1时,不等式为2x-6 ??m+1 4.已知二次函数f=ax2-x+1,且函数f在上恰有一个零点,则不等式f>1的解集为A.∪C. B.∪ D.解析:选C ∵f=ax2-x+1,Δ=2-4a=a2+4>0,∴函数f=ax2-x+1必有两个不同的零点,又f在上有一个零点,则ff<0,35∴<0,解得-<a<-.6又a∈Z,∴a=-1.不等式f>1,即-x2-x>0,解得-1<x<0.5.对于实数x,规定[x]表示不大于x的最大整数,那么不等式4[x]2-36[x]+45<0成立的x的取值范围是315A.??2,2C.[2,8) B.[2,8] D.[2,7]315解析:选C 由4[x]2-36[x]+45<0,得<[x][x]表示不大于x的最大整数,所以2≤x<8.26.若圆x2+y2-4x+2my+m+6=0与y轴的两交点A,B位于原点的同侧,则实数m的取值范围是A.m>- B.m>3或-6<m<-2C.m>2或-6<m<-1 D.m>3或m<-1解析:选B 依题意,令x=0得关于y的方程y2+2my +m+6=0有两个不相等且同号的实2??Δ=?2m?-4?m+6?>0,根,于是有? 由此解得m >3或-6<m<-2. ?m+6>0,?二、填空题k-37.若不等式>1的解集为{x|1<x<3},则实数k=________. x-3k-3k-3x-k解析:1,得1-<0,即<0,<0,由题意得k=1. x-3x-3x-3答案:18.已知集合A={x∈R||x+2| 解析:因为|x+2| 答案:-1 19.不等式x2-2x+≤a2-2a-1在R上的解集是?,则实数a的取值范围是________.解析:原不等式即x2-2x-a2+2a+4≤0,在R上解集为?,∴Δ=4-4<0,即a2-2a-3<0,解得-1<a<3.答案:10.若关于x的不等式x2-ax-a>0的解集为,则实数a的取值范围是________;若关于x的不等式x2-ax-a≤-3的解集不是空集,则实数a的取值范围是________.解析:由Δ1 由Δ2≥0,即a2-4≥0,得a≤-6或a≥2.答案:??x+5,x<3,11.若函数f=?且f)>6,则m的取值范围为________. ?2x-m,x≥3,?解析:由已知得f=6-m,①当m≤3时,6-m≥3,则f)=2-m=12-3m>6,解得m<2;②当m>3时,6-m <3,则f)=6-m+5>6,解得3<m<5.综上知,m<2或3<m<5.答案:∪1n1*12.若关于x的不等式x2+x-?≥0对任意n∈N 在x∈已知函数f=x2+ax+b的值域为[0,+∞),若关于x的不等式f<c的解集为,则实数c的值为________.a2解析:因为f的值域为[0,+∞),所以Δ=0,即a=4b,所以x+ax+-c<0的解集为,4222m+6=-a,?2?a易得m,m+6是方程x2+ax-c=0的两根,由一元二次方程根与系数的关系得?a24??m?m+6?=4c,得c=9.答案:9三,解答题14.解下列不等式:x2-2ax-3a2<0.x2-4ax-5a2>0.ax2-x+1<0.原不等式转化为<0,∵a<0,∴3a<-a,得3a<x<-a.故原不等式的解集为{x|3a<x<-a}.由x2-4ax-5a2>0知>0.由于a≠0故分a>0与a<0讨论.当a<0时,x<5a或x>-a;当a>0时,x<-a或x>5a.综上,a<0时,解集为{x|x<5a,或x>-a};a>0时,解集为{x|x>5a,或x<-a}.原不等式变为<0,1x-<0. 因为a>0,所以??a1所以当a>1时,解为<x<1; a当a=1时,解集为?;1当0<a<1时,解为1<x<. a 解。
一元二次函数、方程和不等式专项测试卷及答案解析
高一上学期数学专项测试卷一元二次函数、方程和不等式考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 若10<<a ,则关于x 的不等式()x a -01>⎪⎭⎫ ⎝⎛-a x 的解集为 【 】 (A )⎭⎬⎫⎩⎨⎧<<a x a x 1 (B )⎭⎬⎫⎩⎨⎧<<a x a x 1 (C )⎭⎬⎫⎩⎨⎧<>a x a x x 1或 (D )⎭⎬⎫⎩⎨⎧<>a x a x x 或1 2. 如果二次函数222+++=m mx x y 有两个不同的零点,那么实数m 的取值范围是 【 】(A ){}12<<-m m (B ){}21<<-m m(C ){}21>-<m m m 或 (D ){}12>-<m m m 或3. 记不等式()()02<+-x m x 的解集为A ,不等式()1-x x ≤0的解集为B .若A B ⊆,则正数m 的取值范围为 【 】(A ){}1>m m (B ){}1≥m m (C ){}1<m m (D ){}1≤m m4. 要使关于x 的方程()02122=-+-+a x a x 的一个根比1大且另一根比1小,则实数a 的取值范围是 【 】(A ){}21<<-a a (B ){}12<<-a a(C ){}2-<a a (D ){}1>a a5. 若关于x 的不等式()012<++-a x a x 的解集中恰有一个整数,则a 的取值范围是 【 】(A ){}3201<≤≤<-a a a 或 (B ){}4312≤<-≤<-a a a 或(C ){}3201≤<<≤-a a a 或 (D ){}4312<<-<<-a a a 或6. 共享单车给市民出行带来了诸多便利,某公司购买了一批共享单车投放到某地给市民使用,据市场分析,每辆单车的累计收入y (单位: 元)与营运天数x (∈x N*)满足关系式80060212-+-=x x y ,要使累计收入高于800元,则营运天数x 的取值范围为 【 】 (A ){}*,9030N x x x ∈<< (B ){}*,4030N x x x ∈<<(C ){}*,8040N x x x ∈<< (D ){}*,6020N x x x ∈<<7. 已知1≤x ≤2,02>-ax x 恒成立,则实数a 的取值范围是 【 】(A ){}1≥a a (B ){}1>a a (C ){}1≤a a (D ){}1<a a8. 设集合{}01<<-=m m P ,{}恒成立对任意实数x mx mx R m Q 0442<-+∈=,则下列说法正确的是 【 】(A )P 是Q 的真子集 (B )Q 是P 的真子集(C )Q P = (D )∅=Q P9. 某小区的蓄水池每日零时均有水400吨,并从零时开始,以每小时60吨的速度匀速向蓄水池注水,同时向该小区不间断供水,t 小时内供水总量为t 6120(0≤t ≤24)吨.若蓄水池的供水量小于80吨,则会出现供水紧张的情况,则每日处于供水紧张情况的时长为 【 】(A )6小时 (B )7小时 (C )8小时 (D )9小时10. 在R 上定义运算⊗:()y x y x -=⊗1.若不等式()()1<+⊗-a x a x 对任意实数x 都成立,则实数a 的取值范围为 【 】(A )⎭⎬⎫⎩⎨⎧<<-2321a a (B ){}20<<a a (C ){}11<<-a a (D )⎭⎬⎫⎩⎨⎧<<-2123a a 11.(多选)已知02>++c bx ax 的解集为{}21<<-x x ,则下列x 的取值范围能使不等式()()ax c x b x a 2112<+-++成立的是 【 】(A ){}30<<x x (B ){}3>x x(C ){}0<x x (D ){}12<<-x x12.(多选)若关于x 的一元二次方程()()m x x =--32有实数根21,x x ,且21x x <,则下列结论正确的是 【 】(A )当0=m 时,3,221==x x(B )41->m (C )当0>m 时,3221<<<x x(D )二次函数()()m x x x x y +--=21的图象与x 轴交点的坐标为()0,2和()0,3第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 已知集合(){}0122=+++=x m x x A ,集合{}0>=x x B ,若∅=B A ,则实数m 的取值范围是_____________.14. 若实数21,x x 为方程0622=++-m mx x 的两根,则实数m 的取值范围是____________,()()222122-+-x x 的最小值是__________.(第一空2分,第二空3分)15. 如图所示,有长为30 m 的篱笆,一面利用墙(墙的最大可用长度为10 m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃.设花圃的一边AB 为x m,面积为y m 2.如果围成的花圃的面积不少于63 m 2,则x 的取值范围是_____________.DCB A16. 研究问题:已知关于x 的不等式02>+-c bx ax 的解集为{}21<<x x ,解关于x 的不等式02>+-a bx cx ,解法为:由02>+-c bx ax 得0112>⎪⎭⎫ ⎝⎛+-x c x b a ,令x y 1=,则121<<y ,所以不等式02>+-a bx cx 的解集为⎭⎬⎫⎩⎨⎧<<121x x .参考上述解法,已知关于x 的不等式++a x k 0<++c x b x 的解集为{}3212<<-<<-x x x 或,则关于x 的不等式0111<--+-cx bx ax kx 的解集为_____________.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分10分)(1)当3=a 时,求不等式022<++ax x 的解集;(2)若不等式022>++ax x 的解集为R ,求实数a 的取值范围.18.(本题满分12分)当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.解关于x 的不等式3222--+m mx x ≤()()922422--++-m x m x m .20.(本题满分12分)某辆汽车以x 千米/时的速度在高速公路上匀速行驶(考虑到高速公路上行车安全,要求60≤x ≤120)时,每小时耗油(所需要的汽油量)⎪⎭⎫ ⎝⎛+-x k x 450051升,其中k 为常数,60≤k ≤100. (1)若汽车以120千米/时的速度行驶,每小时耗油11. 5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.设p :实数x 满足03222<--a ax x (0>a ),q :实数x 满足2≤4<x .(1)若1=a ,且q p ,都为真命题,求x 的取值范围;(2)若q 是p 充分不必要条件,求实数a 的取值范围.22.(本题满分12分)已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.高一上学期数学专项测试卷一元二次函数、方程和不等式答案解析考生注意: 1.本试卷分第Ⅰ卷(选择题)和第二卷(非选择题)两部分,共150分,考试时间120分钟.2.请将各题答案填写在答题卡上.第Ⅰ卷(选择题 共60分)一、单项选择题(每小题5分,共40分)1. 若10<<a ,则关于x 的不等式()x a -01>⎪⎭⎫ ⎝⎛-a x 的解集为 【 】 (A )⎭⎬⎫⎩⎨⎧<<a x a x 1 (B )⎭⎬⎫⎩⎨⎧<<a x a x 1 (C )⎭⎬⎫⎩⎨⎧<>a x a x x 1或 (D )⎭⎬⎫⎩⎨⎧<>a x a x x 或1 答案 【 A 】解析 本题考查含参不等式的解法,注意解集的形式,在进行根的大小比较时要注意分类讨论.另外,在解一元二次不等式时,要把不等式化为左边是几个因式的乘积,且每个因式最高次项的系数为正,右边是0的形式.∵()x a -01>⎪⎭⎫ ⎝⎛-a x ,∴()a x -01<⎪⎭⎫ ⎝⎛-a x . ∵10<<a ,∴a a>1. ∴原不等式的解集为⎭⎬⎫⎩⎨⎧<<a x a x 1. ∴选择答案【 A 】.2. 如果二次函数222+++=m mx x y 有两个不同的零点,那么实数m 的取值范围是 【 】(A ){}12<<-m m (B ){}21<<-m m(C ){}21>-<m m m 或 (D ){}12>-<m m m 或答案 【 C 】解析 本题考查零点的定义: 我们把使一元二次方程02=++c bx ax 的实数x 叫做二次函数c bx ax y ++=2的零点.对零点的理解(1)二次函数的零点即相应一元二次方程02=++c bx ax 的实数根;(2)根据数形结合,二次函数的零点,即二次函数的图象与x 轴的交点的横坐标,且交点的个数等于零点的个数;(3)并非所有的二次函数都有零点.当ac b 42-=∆≥0时,一元二次方程有实数根,相应二次函数存在零点.∵二次函数222+++=m mx x y 有两个不同的零点∴方程0222=+++m mx x 有两个不相等实数根.∴()()084424222>--=+-=∆m m m m ,解之得:2>m 或1-<m .∴实数m 的取值范围是{}21>-<m m m 或.∴选择答案【 C 】.3. 记不等式()()02<+-x m x 的解集为A ,不等式()1-x x ≤0的解集为B .若A B ⊆,则正数m 的取值范围为 【 】(A ){}1>m m (B ){}1≥m m (C ){}1<m m (D ){}1≤m m答案 【 A 】解析 本题考查一元二次不等式的解法和根据集合之间的基本关系确定参数的取值范围. 解不等式()1-x x ≤0得: 0≤x ≤1. ∴{}10≤≤=x x B .∵m 为正数,∴2->m ,∴原不等式的解集为{}m x x A <<-=2.∵A B ⊆,∴1>m .∴正数m 的取值范围为{}1>m m .∴选择答案【 A 】.4. 要使关于x 的方程()02122=-+-+a x a x 的一个根比1大且另一根比1小,则实数a 的取值范围是 【 】(A ){}21<<-a a (B ){}12<<-a a(C ){}2-<a a (D ){}1>a a答案 【 B 】解析 本题考查一元二次方程实数根的分布(K 分布).结论 一元二次方程02=++c bx ax (0>a )的一个根大于k ,另一根小于k 的条件是()0<k f .设()()2122-+-+=a x a x x f由题意可知:()021112<-+-+=a a f ,解之得:12<<-a .∴实数a 的取值范围是{}12<<-a a .∴选择答案【 B 】.5. 若关于x 的不等式()012<++-a x a x 的解集中恰有一个整数,则a 的取值范围是 【 】(A ){}3201<≤≤<-a a a 或 (B ){}4312≤<-≤<-a a a 或(C ){}3201≤<<≤-a a a 或 (D ){}4312<<-<<-a a a 或答案 【 C 】解析 本题考查含参一元二次不等式的解法.原不等式可化为:()()01<--a x x .当1>a 时,原不等式的解集为{}a x x <<1.∵其解集中恰有一个整数,∴a <2≤3;当1=a 时,()012<-x ,原不等式的解集为空集,不符合题意;当1<a 时,原不等式的解集为{}1<<x a x .∵其解集中恰有一个整数,∴1-≤0<a .综上所述,实数a 的取值范围是{}3201≤<<≤-a a a 或.∴选择答案【 C 】.6. 共享单车给市民出行带来了诸多便利,某公司购买了一批共享单车投放到某地给市民使用,据市场分析,每辆单车的累计收入y (单位: 元)与营运天数x (∈x N*)满足关系式80060212-+-=x x y ,要使累计收入高于800元,则营运天数x 的取值范围为 【 】 (A ){}*,9030N x x x ∈<< (B ){}*,4030N x x x ∈<<(C ){}*,8040N x x x ∈<< (D ){}*,6020N x x x ∈<<答案 【 C 】解析 本题考查一元二次不等式的应用.由题意可知:80080060212>-+-x x ,整理得:032001202<+-x x . 解之得:8040<<x ,且∈x N*.∴营运天数x 的取值范围为{}*,8040N x x x ∈<<.∴选择答案【 C 】.7. 已知1≤x ≤2,02>-ax x 恒成立,则实数a 的取值范围是 【 】(A ){}1≥a a (B ){}1>a a (C ){}1≤a a (D ){}1<a a答案 【 D 】解析 本题考查一元二次不等式的恒成立问题.∵1≤x ≤2,02>-ax x 恒成立∴x a <恒成立,∴1min =<x a .∴实数a 的取值范围是{}1<a a .∴选择答案【 D 】.8. 设集合{}01<<-=m m P ,{}恒成立对任意实数x mx mx R m Q 0442<-+∈=,则下列说法正确的是 【 】(A )P 是Q 的真子集 (B )Q 是P 的真子集(C )Q P = (D )∅=Q P答案 【 A 】解析 本题考查含参一元二次不等式的恒成立问题,注意对二次项系数是否等于0进行讨论. 对于集合Q ,当0=m 时,04<-恒成立,符合题意;当0≠m 时,则有:()⎩⎨⎧<+=∆<016402m m m ,解之得:01<<-m . 综上所述,{}{}010442≤<-=<-+∈=m m x mx mx R m Q 恒成立对任意实数. ∵{}01<<-=m m P ,∴Q P ≠⊂.∴选择答案【 A 】.9. 某小区的蓄水池每日零时均有水400吨,并从零时开始,以每小时60吨的速度匀速向蓄水池注水,同时向该小区不间断供水,t 小时内供水总量为t 6120(0≤t ≤24)吨.若蓄水池的供水量小于80吨,则会出现供水紧张的情况,则每日处于供水紧张情况的时长为 【 】 (A )6小时 (B )7小时 (C )8小时 (D )9小时 答案 【 C 】解析 本题考查数学核心素养——数学建模. 由题意可知:80612060400<-+t t . 整理得:t t 66163<+.∵0163>+t ,∴()()2266163t t <+.整理得:025612092<+-t t ,∴()()032383<--t t .解之得:33238<<t . ∵838332=-,∴每日处于供水紧张情况的时长为8小时.∴选择答案【 C 】.10. 在R 上定义运算⊗:()y x y x -=⊗1.若不等式()()1<+⊗-a x a x 对任意实数x 都成立,则实数a 的取值范围为 【 】(A )⎭⎬⎫⎩⎨⎧<<-2321a a (B ){}20<<a a(C ){}11<<-a a (D )⎭⎬⎫⎩⎨⎧<<-2123a a答案 【 A 】解析 本题考查与一元二次不等式有关的恒成立问题. ∵()y x y x -=⊗1∴()()1<+⊗-a x a x ,即()()11<---a x a x . 整理得:()0122>----a a x x .由题意可知:()()014122<--+-=∆a a ,∴()()03212<-+a a ,解之得:2321<<-a .∴实数a 的取值范围为⎭⎬⎫⎩⎨⎧<<-2321a a . ∴选择答案【 A 】.另解: 由上面的解法知: ()0122>----a a x x .∴x x a a -<--221恒成立,只需()min 221x x a a -<--即可.∵412122-⎪⎭⎫ ⎝⎛-=-x x x ≥41-,∴()41min 2-=-x x .∴4112-<--a a ,∴03442<--a a ,解之得:2321<<-a . ∴实数a 的取值范围为⎭⎬⎫⎩⎨⎧<<-2321a a .∴选择答案【 A 】.11.(多选)已知02>++c bx ax 的解集为{}21<<-x x ,则下列x 的取值范围能使不等式()()ax c x b x a 2112<+-++成立的是 【 】(A ){}30<<x x (B ){}3>x x (C ){}0<x x (D ){}12<<-x x 答案 【 BC 】解析 本题考查一元二次不等式与对应的一元二次方程之间的关系.注意,一元二次不等式的解集的端点值就是对应一元二次方程的解(实数根). ∵02>++c bx ax 的解集为{}21<<-x x ∴0<a ,方程02=++c bx ax 的解分别为1-和2.由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯-=+-=-2121ac ab ,∴⎩⎨⎧-=-=ac a b 2.∵()()ax c x b x a 2112<+-++∴()()ax a x a x a 22112<---+,∴032<-ax ax . ∵0<a ,∴032<-ax ax 同解于032>-x x . 解之得:3>x 或0<x . ∴选择答案【 BC 】.12.(多选)若关于x 的一元二次方程()()m x x =--32有实数根21,x x ,且21x x <,则下列结论正确的是 【 】 (A )当0=m 时,3,221==x x (B )41->m (C )当0>m 时,3221<<<x x(D )二次函数()()m x x x x y +--=21的图象与x 轴交点的坐标为()0,2和()0,3 答案 【 ABD 】解析 本题考查一元二次函数、一元二次方程之间的关系.对于(A ),当0=m 时,()()032=--x x ,解之得:3,221==x x ,故(A )正确;对于(B ),整理()()m x x =--32得:0652=-+-m x x .由题意可知,该方程有两个不相等的实数根,∴()()06452>---=∆m ,解之得:41->m .故(B )正确; 对于(C ),采用数形结合的思想方法,设()()321--=x x y ,m y =2,则方程()()m x x =--32的解的问题就转化为两个函数21,y y 的图象的交点问题.如下图所示,显然,当0>m 时,有2132x x <<<.故(C )错误;对于(D ),∵方程()()m x x =--32,即()()032=---m x x 的实数根为21,x x ∴()()()()m x x x x x x ---=--3221.∴()()()()()()323221--=+---=+--=x x m m x x m x x x x y .∴二次函数()()m x x x x y +--=21的图象与x 轴交点的坐标为()0,2和()0,3.故(D )正确.∴选择答案【 ABD 】.第Ⅱ卷 非选择题(共90分)二、填空题(每小题5分,共20分)13. 已知集合(){}0122=+++=x m x x A ,集合{}0>=x x B ,若∅=B A ,则实数m 的取值范围是_____________. 答案 {}4->m m解析 本题考查一元二次不等式与一元二次方程的关系.在利用条件∅=B A 时,要注意分∅=A 和∅≠A 两种情况进行讨论.当∅=A 时,显然∅=B A .此时()044222<+=-+=∆m m m ,解之得:04<<-m ; 当∅≠A 时,设方程()0122=+++x m x 的两个实数根分别为21,x x . ∵{}0>=x x B ,∅=B A∴方程()0122=+++x m x 无正实数根.由根与系数的关系定理可得:()221+-=+m x x ,0121>=⋅x x ,显然,21,x x 均为负数.∴()⎩⎨⎧<+-≥+=∆02042m m m ,解之得:m ≥0.综上所述,实数m 的取值范围是{}4->m m .14. 若实数21,x x 为方程0622=++-m mx x 的两根,则实数m 的取值范围是____________,()()222122-+-x x 的最小值是__________.(第一空2分,第二空3分)答案 m ≥3或m ≤2-, 2解析 本题考查一元二次方程与一元二次函数的关系.由题意可知:()()6422+--=∆m m ≥0,解之得:m ≥3或m ≤2-. 由根与系数的关系定理可得:6,22121+==+m x x m x x .∴()()()844444222122212221212221++-+=+-++-=-+-x x x x x x x x x x ()()()2122121212212422444x x x x x x x x x x -+-+=-+++-+=.∴()()()()4414546242222222221-⎪⎭⎫ ⎝⎛-=+-+-=-+-m m m x x . ∴当3=m 时,()()222122-+-x x 取得最小值,最小值为244145342=-⎪⎭⎫ ⎝⎛-⨯. 另解: ()()222122-+-x x ≥()()()()8862842222212121+-+=++-=--m m x x x x x x 206+-=m . 当且仅当2221-=-x x ,即21x x =时,等号成立.此时,()()06422=+--=∆m m ,解之得:3,221=-=m m .显然,当3=m 时,()()222122-+-x x 取得最小值,最小值为22036=+⨯-.15. 如图所示,有长为30 m 的篱笆,一面利用墙(墙的最大可用长度为10 m ),围成中间隔有一道篱笆(平行于AB )的矩形花圃.设花圃的一边AB 为x m,面积为y m 2.如果围成的花圃的面积不少于63 m 2,则x 的取值范围是_____________.DCB A答案 ⎥⎦⎤⎢⎣⎡7,320解析 本题考查一元二次不等式的解法及其应用. 由题意可知:()x BC 330-=m,则有:()x x 330-≥63,且x 330-≤10.解之得:320≤x ≤7. ∴x 的取值范围是⎥⎦⎤⎢⎣⎡7,320. 16. 研究问题:已知关于x 的不等式02>+-c bx ax 的解集为{}21<<x x ,解关于x 的不等式02>+-a bx cx ,解法为:由02>+-c bx ax 得0112>⎪⎭⎫ ⎝⎛+-x c x b a ,令x y 1=,则121<<y ,所以不等式02>+-a bx cx 的解集为⎭⎬⎫⎩⎨⎧<<121x x .参考上述解法,已知关于x 的不等式++a x k0<++c x b x 的解集为{}3212<<-<<-x x x 或,则关于x 的不等式0111<--+-cx bx ax kx 的解集为_____________.答案 ⎭⎬⎫⎩⎨⎧-<<-<<3121121x x x 或解析 本题考查一元二次不等式的解法. 用x1-代替++a x k 0<++c x b x 中的x 可得:0111111<--+-=+-+-++-cx bx ax kx c xb x a x k . ∵++a x k 0<++cx bx 的解集为{}3212<<-<<-x x x 或 令x y 1-=,则有12-<<-y 或32<<y .∴112-<-<-x 或312<-<x ,解之得:121<<x 或3121-<<-x .∴不等式0111<--+-cx bx ax kx 的解集为⎭⎬⎫⎩⎨⎧-<<-<<3121121x x x 或.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)(1)当3=a 时,求不等式022<++ax x 的解集;(2)若不等式022>++ax x 的解集为R ,求实数a 的取值范围. 解:(1)当3=a 时,0232<++x x ,解之得:12-<<-x . ∴原不等式的解集为{}12-<<-x x ; (2)∵不等式022>++ax x 的解集为R ∴082<-=∆a ,解之得:2222<<-a . ∴实数a 的取值范围是{}2222<<-a a . 18.(本题满分12分)当10<<x 时,若关于x 的二次方程m mx x 2122-=++有两个不相等的实数根,求实数m 的取值范围.分析: 本题的意思即方程m mx x 2122-=++有两个不相等的实数根,且两个实数根均在()1,0内,考查了一元二次方程实数根的K 分布.解: 原方程可化为: 02122=+++m mx x ,设()m mx x x f 2122+++=.由题意可得:()()()()⎪⎪⎩⎪⎪⎨⎧>+++=>+=<-<>+-=∆021211021010021422m m f m f m m m ,解之得:2121-<<-m .∴实数m 的取值范围是⎭⎬⎫⎩⎨⎧-<<-2121m m .19.(本题满分12分)解关于x 的不等式3222--+m mx x ≤()()922422--++-m x m x m . 解: 原不等式整理得:()6232++-x m mx ≤0.当0=m 时,62+-x ≤0,解之得:x ≥3,原不等式的解集为{}3≥x x ;当0≠m 时,原不等式可化为:()⎪⎭⎫⎝⎛--m x x m 23 ≤0.当0<m 时,原不等式同解于()⎪⎭⎫ ⎝⎛--m x x 23≥0,∴原不等式的解集为⎭⎬⎫⎩⎨⎧≤≥m x x x 23或; 当0>m 时,原不等式同解于()⎪⎭⎫⎝⎛--m x x 23 ≤0.若320<<m ,则m 23<,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤m x x 23;若32=m ,则()23-x ≤0,原不等式的解集为{}3=x x ; 若32>m ,则m 23>,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤32x m x .综上所述,当0=m 时,原不等式的解集为{}3≥x x ;当0<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≥m x x x 23或;当320<<m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤m x x 23;当32=m 时,原不等式的解集为{}3=x x ;当32>m 时,原不等式的解集为⎭⎬⎫⎩⎨⎧≤≤32x m x .20.(本题满分12分)某辆汽车以x 千米/时的速度在高速公路上匀速行驶(考虑到高速公路上行车安全,要求60≤x ≤120)时,每小时耗油(所需要的汽油量)⎪⎭⎫⎝⎛+-x k x 450051升,其中k 为常数,60≤k ≤100.(1)若汽车以120千米/时的速度行驶,每小时耗油11. 5升,欲使每小时的油耗不超过9升,求x 的取值范围;(2)求该汽车行驶100千米的油耗的最小值.解:(1)∵汽车以120千米/时的速度行驶,每小时耗油11. 5升∴5.115.75124120450012051=+-=⎪⎭⎫ ⎝⎛+-⨯k k ,解之得:100=k . ∴每小时耗油⎪⎭⎫⎝⎛+-x x 450010051升.由题意可知:⎪⎭⎫⎝⎛+-x x 450010051≤9.整理得:45001452+-x x ≤0,解之得:45≤x ≤100. ∵60≤x ≤120∴x 的取值范围为[]100,60;(2)设该汽车行驶100千米的油耗为y 升,则有201201900004500511002+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+-⨯=x k x x k x x y .设x t 1=,则1201≤t ≤601,2020900002+-=kt t y . ∴9002090009000022k k t y -+⎪⎭⎫ ⎝⎛-=. ∵60≤k ≤100,∴1501≤9000k ≤901(故6019000<k ) 当9000k ≥1201,即75≤k ≤100时,900202min k y -=,此时9000kt =,k x 9000=;当12019000<k ,即60≤75<k 时,1201=t ,64105201201201201900002min k k y -=+⨯-⎪⎭⎫ ⎝⎛⨯=. 综上所述,当75≤k ≤100时,该汽车行驶100千米的油耗的最小值为⎪⎭⎫ ⎝⎛-900202k 升,当60≤75<k 时,该汽车行驶100千米的油耗的最小值为⎪⎭⎫⎝⎛-64105k 升. 21.(本题满分12分)设p :实数x 满足03222<--a ax x (0>a ),q :实数x 满足2≤4<x . (1)若1=a ,且q p ,都为真命题,求x 的取值范围; (2)若q 是p 充分不必要条件,求实数a 的取值范围. 解:(1)当1=a 时,0322<--x x ,解之得:31<<-x . ∵q p ,都为真命题∴x 的取值范围是{}{}{}324231<≤=<≤<<-x x x x x x ; (2)不等式03222<--a ax x 可化为()()03<-+a x a x . ∵0>a ,∴该不等式的解集为{}a x a x 3<<-. 设{}a x a x A 3<<-=,{}42<≤=x x B . ∵q 是p 充分不必要条件,∴A B ≠⊂∴a 3≥4,解之得:a ≥34. ∴实数a 的取值范围是⎪⎭⎫⎢⎣⎡+∞,34. 22.(本题满分12分) 已知二次函数12+-=bx ax y .(1)是否存在实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ?若存在,求实数b a ,的值,若不存在,请说明理由;(2)若a 为整数,2+=a b ,且方程012=+-bx ax 在{}12-<<-∈x x x 上恰有一个实数根,求a 的值.解:(1)假设存在这样的实数b a ,.∵不等式012>+-bx ax 的解集是{}21<<x x ∴0<a ,方程012=+-bx ax 的两个实数根分别为2,1. 由根与系数的关系定理可得:⎪⎪⎩⎪⎪⎨⎧⨯=+=--21121aa b ,解之得:⎪⎪⎩⎪⎪⎨⎧==2321b a . ∵021>=a ,与0<a 矛盾 ∴不存在这样的实数b a ,,使不等式012>+-bx ax 的解集是{}21<<x x ; (2)∵2+=a b ∴()0122=++-x a ax .∵()[]()0314242222>+-=+-=-+-=∆a a a a a∴方程()0122=++-x a ax 总有两个不相等的实数根.∵方程()0122=++-x a ax 在{}12-<<-∈x x x 上恰有一个实数根 ∴()()[]()[]0121122222<+++-⨯⨯+++-⨯a a a a 整理得:()()03256<++a a ,解之得:6523-<<-a . ∵a 为整数 ∴a 的值为1-.。
(完整版)一元二次不等式及其解法练习及同步练习题(含答案)
13.2 一元二次不等式及其解法练习(一)、一元二次不等式的解法1、求解下列不等式(1)、23710x x -≤ (2)、2250x x -+-< (3)、2440x x -+-< (4)205x x -<+2、求下列函数的定义域(1)、y (2)y =3、已知集合{}{}22|160,|430A x x B x x x =-<=-+>,求A B ⋃(二)、检测题一、选择题1、不等式11023x x ⎛⎫⎛⎫--> ⎪⎪⎝⎭⎝⎭的解集为 ( ) A 、11|32x x ⎧⎫<<⎨⎬⎩⎭ B 、1|2x x ⎧⎫>⎨⎬⎩⎭ C 、1|3x x ⎧⎫<⎨⎬⎩⎭ D 、11|32x x x ⎧⎫<>⎨⎬⎩⎭或 2、在下列不等式中,解集为φ的是 ( )A 、22320x x -+>B 、2440x x ++>C 、2440x x --<D 、22320x x -+->3、函数()2log 3y x =+的定义域为 ( )A 、()(),13,-∞-⋃+∞B 、()3,1--C 、(][),13,-∞-⋃+∞D 、(][)3,13,--⋃+∞4、若2230x x -≤,则函数()21f x x x =++ ( ) A 、有最小值34,无最大值 B 、有最小值34,最大值1 C 、有最小值1,最大值194 D 、无最小值,也无最大值2 5、若不等式210x mx ++>的解集为R ,则m 的取值范围是( )A .RB .()2,2-C .()(),22,-∞-+∞D .[]2,2-6、不等式()221200x ax a a --<<的解集是( )A .()3,4a a -B .()4,3a a -C .()3,4-D .()2,6a a7、不等式220ax bx ++>的解集是1123x x ⎧⎫-<<⎨⎬⎩⎭,则a b -=( ) A .14-B .14C .10-D .10 二、填空题8、设()21f x x bx =++,且()()13f f =,则()0f x >的解集为 。
一元二次不等式解法应试能力测试-题库
一元二次不等式测试一、选择题1.不等式0x 2x 62<--的解集是( )A .}2x 23|x {<<- B .}23x 2|x {<<- C .}2x 23x |x {>-<或 D .}23x 2x |x {>-<或 2.设集合M ={x|0≤x<2},}03x 2x |x {N 2<--=,则有M ∩N =( )A .{x|0≤x<1}B .{x|0≤x<2}C .{x|0≤x ≤1}D .{x|0≤x ≤2}3.对于任意实数x ,不等式0)2a (ax 2ax 2<+-+恒成立,则实数a 的取值范围是( )A .-1≤a ≤0B .-1≤a<0C .-1<a ≤0D .-1<a<04.不等式0)6x )(4x (22≤--的解集为( )A .{x|-2≤x ≤2}B .{x|x ≤-2或x ≥2}C .{x|-2≤x ≤2或x =6}D .{x|x ≥2}5.已知}Z x 04x 3x |x {A 2∈≤--=,,}Z x 06x x 2|x {B 2∈>--=,,则A ∩B 的非空真子集个数为( )A .2B .3C .7D .86.已知}0q px x |x {A 2≤++=,}01x 3x |x {B >+-=,且A ∪B =R ,A ∩B ={x|3<x ≤4},则p 、q 的值为( )A .p =-3,q =-4B .p =-3,q =4C .p =3,q =-4D .p =3,q =47.若关于x 的二次不等式021mx 8mx 2<++的解集是{x|-7<x<-1},则实数m 的值是( )A .1B .2C .3D .48.不等式ax<b 与01x x 2<++同解,则( )A .a =0且b ≤0B .b =0且a>0C .a =0且b>0D .b =0且a<0二、填空题 1.不等式035|x |3x 22>--的解为_______________.2.使函数|x |313x 2x y 2-+--=有意义的x 的取值范围是_______________.3.已知}02x 3x |x {A 2≤+-=,}0a x )1a (x |x {B 2≤++-=,若B A ≠⊂,则a 的取值范围是_______________;若B A ⊇,则a 的取值范围是_______________.4.关于x 的不等式0b x x a <+-(a +b>0)的解集是_______________.三、解答题1.为使周长为20cm 的长方形面积大于2cm 15,不大于2cm 20,它的短边要取多长?2.解不等式x 21|x 2x |2<-.3.解关于x 的不等式04x )1a (2ax 2>++-(a>0).4.k 为何值时,关于x 的不等式13x 6x 4k kx 2x 222<++++对一切实数x 恒成立.参考答案一、1.D 2.B 3.C 4.C5.A提示:因为A ∩B ={3,4}6.A提示:因B ={x|x<-1或x>3},由已知得A ={x|-1≤x ≤4}∴-1,4是0q px x 2=++的两根∴p =-3,q =-4.7.C8.A提示:因01x x 2<++的解为∅,只有a =0且b ≤0时,ax<b 解为∅二、1.x<-5或x>5提示:原不等式化为035|x |3|x |22>--,∴|x|>52.{x|-3<x ≤-1}3.a>2,1≤a ≤2提示:∵A ={x|1≤x ≤2},B ={x|(x -1)(x -a)≤0},∵B A ≠⊂,∴a>24.{x|x<-b 或x>a}提示:原不等式可化为(a -x)(x +b)<0,即(x -a)(x +b)>0 ∵a +b>0,∴a>-b ,∴x>a 或x<-b .三、1.设长方形较短边长为x cm ,则其邻边长(10-x)cm 显然0<x<5由已知⎩⎨⎧≤->-20)x 10(x 15)x 10(x ∴⎪⎩⎪⎨⎧-≤+≥+<<-55x 55x 105x 105或 ∴55x 105-≤<-.2.当x ≤0时,不等式无解当x>0时,不等式化为x 21|2x |x <-,即21|2x |<- 解得:25x 23<< 3.原不等式化为(ax -2)(x -2)>0∵a>0, ∴0)2x )(a2x (>-- 当a =1时,2a2=,∴0)2x (2>-,∴{x|x ∈R 且x ≠2} 当a ≠1时:若a>1,则2a 2<,∴}2x a2x |x {><或 若0<a<1,则2a 2>,∴}22|{a x x x ><或. 4.∵3x 6x 42++恒正∴不等式化为3x 6x 4k kx 2x 222++<++即0)k 3(x )k 26(x 22>-+-+恒成立∴⊿0)k 3(8)k 26(2<---=∴03k 4k 2<+-,∴1<k<3.。
一元二次不等式及其解法 专题练习(含参考答案)
数学31 一元二次不等式及其解法一、选择题1.(2018·广西南宁摸底联考)若集合A ={x |x 2-2x <0},B ={x ||x |≤1},则A ∩B =( ) A . [-1,0) B .[-1,2) C .(0,1]D .[1,2)2.(2018·安徽江淮十校联考)不等式|x |·(1-2x )>0的解集为( ) A .(-∞,0)∪(0,12)B .(-∞,12)C .(12,+∞)D .(0,12)3.(2018·内蒙古包头模拟)若不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的大致图象为( )4.(2018·安徽淮北一中模拟)若(x -1)(x -2)<2,则(x +1)(x -3)的取值范围是( ) A .(0,3) B .[-4,-3) C .[-4,0)D .(-3,4]5.(2018·四川绵阳)国庆节期间,绵阳市某大型商场举行“购物送券”活动,一名顾客计划到该商场购物,他有三张商场的优惠券,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券A :若商品的标价超过100元,则付款时减免标价的10%; 优惠券B :若商品的标价超过200元,则付款时减免30元;优惠券C :若商品的标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠券C ,并希望比使用优惠券A 或B 减免的钱款都多,则他购买的商品的标价应高于( )A .300元B .400元C .500元D .600元6.(2018·江西南昌重点校联考)如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( )A .(0,1)B .(-2,1)C .(-2,0)D .(-2,2)7.(2018·山东临沂期中)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)8.(2018~2019山东洛阳一中月考题)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2)∪[5,+∞)C .(-∞,-1)∪[4,+∞)D .[-2,5] 二、填空题9.(2015·广东卷)不等式-x 2-3x +4>0的解集为10.(2018·全国名校大联考)不等式x 2-2ax -3a 2<0(a >0)的解集为 . 11.不等式-12<1x<2的解集为 .12.(2018·吉林辽源五校期末联考)若函数f (x )=x 2+ax +b 的两个零点是-1和2,则不等式af (-2x )>0的解集是 .三、解答题13.已知关于x 的不等式kx 2-2x +6k <0(k ≠0). (1)若不等式的解集为{x |x <-3或x >-2},求k 的值; (2)若不等式的解集为{x |x ∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围.14.(2018·天津红桥区期中)已知一元二次不等式x 2-ax -b <0的解集是{x |1<x <3}.(1)求实数a ,b 的值; (2)解不等式2x +ax +b >1.1.(2018·衡水金卷联考)已知集合M ={x |x 2-5x +4≤0},N ={x |2x >4},则( ) A .M ∩N ={x |2<x <4} B .M ∪N =R C .M ∩N ={x |2<x ≤4}D .M ∪N ={x |x >2}2.(2018·四川眉山中学期中)“0<m <1”是“关于x 的方程x 2+x +m 2-1=0有两个异号实数根”的什么条件( )A .充分不必要B .必要不充分C .充要D .既不充分也不必要3.(2018·黄冈模拟)若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则实数a 的取值范围是( )A .[1,19]B .(1,19)C .[1,19)D .(1,19]4.(2018·安徽淮北濉溪月考)若关于x 的不等式ax >b 的解集为(-∞,15),则关于x 的不等式ax 2+bx -45a >0的解集为 .5.(2018·河北正定中学月考)已知f (x )=ax 2+x -a ,a ∈R .(1)若不等式,f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的x ∈[-1,1]恒成立,求实数a 的取值范围;(2)若a <0,解不等式f (x )>1.【参考答案】一、选择题1.(2018·广西南宁摸底联考)若集合A ={x |x 2-2x <0},B ={x ||x |≤1},则A ∩B =( C ) A . [-1,0) B .[-1,2) C .(0,1]D .[1,2)[解析] 由x 2-2x <0得0<x <2,所以A ={x |0<x <2},由|x |≤1得-1≤x ≤1,所以集合B ={x |-1≤x ≤1},所以A ∩B ={x |0<x ≤1},故选C .2.(2018·安徽江淮十校联考)不等式|x |·(1-2x )>0的解集为( A ) A .(-∞,0)∪(0,12)B .(-∞,12)C .(12,+∞)D .(0,12)[解析] 很明显x ≠0,则原不等式等价于⎩⎪⎨⎪⎧1-2x >0,x ≠0,解得x <12且x ≠0,所以实数x 的取值范围是(-∞,0)∪(0,12).3.(2018·内蒙古包头模拟)若不等式f (x )=ax 2-x -c >0的解集为{x |-2<x <1},则函数y =f (-x )的大致图象为( C )[解析] 由题意得⎩⎨⎧a <0,-2+1=1a,-2×1=-ca,解得a =-1,c =-2.则函数y =f (-x )=-x 2+x+2,由二次函数的图象可知选C .4.(2018·安徽淮北一中模拟)若(x -1)(x -2)<2,则(x +1)(x -3)的取值范围是( C ) A .(0,3) B .[-4,-3) C .[-4,0)D .(-3,4][解析] 由(x -1)(x -2)<2解得0<x <3,令f (x )=(x +1)·(x -3),则f (x )图象的对称轴是直线x =1,故f (x )在(0,1)上单调递减,在(1,3)上单调递增,f (x )在x =1处取得最小值,为-4,在x =3处取得最大值,为0,故(x +1)(x -3)的取值范围为[-4,0).5.(2018·四川绵阳)国庆节期间,绵阳市某大型商场举行“购物送券”活动,一名顾客计划到该商场购物,他有三张商场的优惠券,商场规定每购买一件商品只能使用一张优惠券.根据购买商品的标价,三张优惠券的优惠方式不同,具体如下:优惠券A :若商品的标价超过100元,则付款时减免标价的10%; 优惠券B :若商品的标价超过200元,则付款时减免30元;优惠券C :若商品的标价超过200元,则付款时减免超过200元部分的20%.若顾客想使用优惠券C ,并希望比使用优惠券A 或B 减免的钱款都多,则他购买的商品的标价应高于( B )A .300元B .400元C .500元D .600元[解析] 设购买的商品的标价为x 元,则(x -200)×20%>x ·10%,且(x -200)×20%>30,解得x >400,选B .6.(2018·江西南昌重点校联考)如果方程x 2+(m -1)x +m 2-2=0的两个实根一个小于-1,另一个大于1,那么实数m 的取值范围是( A )A .(0,1)B .(-2,1)C .(-2,0)D .(-2,2)[解析] 记f (x )=x 2+(m -1)x +m 2-2,依题意有⎩⎪⎨⎪⎧f (-1)<0,f (1)<0,即⎩⎪⎨⎪⎧1-(m -1)+m 2-2<0,1+(m -1)+m 2-2<0,解得0<m <1.选A . 7.(2018·山东临沂期中)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( C )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)[解析] ∵关于x 的不等式ax -b <0的解集为(1,+∞),∴a <0且ba =1,即a =b ,∴不等式(ax +b )(x -3)>0可转化为(x +1)(x -3)<0.解得-1<x <3,故选C .8.(2018~2019山东洛阳一中月考题)不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( A )A .[-1,4]B .(-∞,-2)∪[5,+∞)C .(-∞,-1)∪[4,+∞)D .[-2,5][解析] x 2-2x +5=(x -1)2+4的最小值为4,所以x 2-2x +5≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.故选A .二、填空题9.(2015·广东卷)不等式-x 2-3x +4>0的解集为__{x |-4<x <1}___. [解析] -x 2-3x +4>0⇔x 2+3x -4<0⇔(x +4)(x -1)<0⇔-4<x <1.10.(2018·全国名校大联考)不等式x 2-2ax -3a 2<0(a >0)的解集为__{x |-a <x <3a }___. [解析] ∵x 2-2ax -3a 2<0⇔(x -3a )·(x +a )<0,a >0,∴-a <3a ,则不等式的解集为{x |-a <x <3a }.11.不等式-12<1x <2的解集为 (-∞,-2)∪(12,+∞) .[解析] 原不等式可化为⎩⎨⎧1x >-12,1x <2,即⎩⎪⎨⎪⎧x +2x >0,1-2x x <0,∴⎩⎪⎨⎪⎧x (x +2)>0,x (x -12)>0,解得x <-2或x >12∴不等式的解集为(-∞,-2)∪(12,+∞).12.(2018·吉林辽源五校期末联考)若函数f (x )=x 2+ax +b 的两个零点是-1和2,则不等式af (-2x )>0的解集是 (-1,12) .[解析] ∵f (x )=x 2+ax +b 的两个零点是-1,2,∴-1,2是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧ -1+2=-a ,-1×2=b ,即⎩⎪⎨⎪⎧a =-1,b =-2,∴f (x )=x 2-x -2.不等式af (-2x )>0,即-(4x 2+2x -2)>0,则2x 2+x -1<0,解集为(-1,12).三、解答题13.已知关于x 的不等式kx 2-2x +6k <0(k ≠0). (1)若不等式的解集为{x |x <-3或x >-2},求k 的值; (2)若不等式的解集为{x |x ∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围.[解析] (1)由不等式的解集为{x |x <-3或x >-2}可知k <0,且-3与-2是方程kx 2-2x +6k =0的两根,∴(-3)+(-2)=2k ,解得k =-25.(2)由不等式的解集为{x |x ∈R ,x ≠1k }可知⎩⎪⎨⎪⎧k <0,Δ=4-24k 2=0,解得k =-66.(3)依题意知⎩⎪⎨⎪⎧ k <0,Δ=4-24k 2<0,解得k <-66.(4)依题意知⎩⎪⎨⎪⎧k >0,Δ=4-24k 2≤0,解得k ≥66.14.(2018·天津红桥区期中)已知一元二次不等式x 2-ax -b <0的解集是{x |1<x <3}. (1)求实数a ,b 的值; (2)解不等式2x +ax +b>1.[解析] (1)因为一元二次不等式x 2-ax -b <0的解集是{x |1<x <3},所以1和3是x 2-ax -b =0的两个实数根,得1+3=a,1×3=-b ,即a =4,b =-3.(2)不等式2x +a x +b >1,即2x +4x -3>1,即x +7x -3>0,即(x -3)·(x +7)>0,解得x >3或x <-7,故原不等式的解集为{x |x >3或x <-7}.1.(2018·衡水金卷联考)已知集合M ={x |x 2-5x +4≤0},N ={x |2x >4},则( C ) A .M ∩N ={x |2<x <4} B .M ∪N =R C .M ∩N ={x |2<x ≤4}D .M ∪N ={x |x >2}[解析] M ={x |x 2-5x +4≤0}={x |1≤x ≤4},N ={x |x >2}.所以M ∩N ={x |2<x ≤4},M ∪N ={x |x ≥1}.故选C .2.(2018·四川眉山中学期中)“0<m <1”是“关于x 的方程x 2+x +m 2-1=0有两个异号实数根”的什么条件( A )A .充分不必要B .必要不充分C .充要D .既不充分也不必要[解析] x 2+x +m 2-1=0两根异号⇔⎩⎪⎨⎪⎧Δ=1-4(m 2-1)>0,m 2-1<0.解得-1<m <1,∵(0,1)(-1,1),∴“0<m <1”是“关于x 的方程x 2+x +m 2-1=0有两异号实根”的充分不必要条件,故选A .3.(2018·黄冈模拟)若函数f (x )=(a 2+4a -5)x 2-4(a -1)x +3的图象恒在x 轴上方,则实数a 的取值范围是( C )A .[1,19]B .(1,19)C .[1,19)D .(1,19][解析] 函数图象恒在x 轴上方,即不等式(a 2+4a -5)x 2-4(a -1)x +3>0对于一切x ∈R 恒成立.当a 2+4a -5=0时,有a =-5或a =1.若a =-5,不等式化为24x +3>0,不满足题意;若a =1,不等式化为3>0,满足题意.当a 2+4a -5≠0时,应有⎩⎪⎨⎪⎧a 2+4a -5>0,16(a -1)2-12(a 2+4a -5)<0,解得1<a <19.综上1≤a <19.故选C .4.(2018·安徽淮北濉溪月考)若关于x 的不等式ax >b 的解集为(-∞,15),则关于x 的不等式ax 2+bx -45a >0的解集为 (-1,45) .[解析] 因为关于x 的不等式ax >b 的解集为(-∞,15),所以a <0,b a =15,所以不等式ax 2+bx -45a >0可化为x 2+b a x -45<0,即x 2+15x -45<0,解得-1<x <45,所以不等式ax 2+bx -45a >0的解集为(-1,45).5.(2018·河北正定中学月考)已知f (x )=ax 2+x -a ,a ∈R .(1)若不等式,f (x )>(a -1)x 2+(2a +1)x -3a -1对任意的x ∈[-1,1]恒成立,求实数a 的取值范围;(2)若a <0,解不等式f (x )>1.[解析] (1)原不等式等价于x 2-2ax +2a +1>0对任意的x ∈[-1,1]恒成立, 设g (x )=x 2-2ax +2a +1=(x -a )2-a 2+2a +1,x ∈[-1,1]; ①当a <-1时,g (x )min =g (-1)=1+2a +2a +1>0,无解;②当-1≤a ≤-1时,g (x )min =g (a )=-a 2+2a +1>0,得1-2<a ≤1; ③当a >1时,g (x )min =g (1) =1-2a +2a +1>0,得a >1. 综上,实数a 的取值范闱为(1-2,+∞).(2)f (x )>1,即ax 2+x -a -1>0,即(x -1)(ax +a +1)>0, 因为a <0,所以(x -1)(x +a +1a )<0,因为1-(-a +1a )=2a +1a ,所以当-12<a <0时,1<-a +1a ,解集为{x |1<x <-a +1a};当a =-12时,不等式可化为(x -1)2<0,不等式无解;当a <-12时,1>-a +1a ,解集为{x |-a +1a<x <1}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次不等式解法应试能力测试
一、选择题
1.不等式0x 2x 62<--的解集是( )
A .}2x 2
3|x {<<- B .}23x 2|x {<<- C .}2x 23x |x {>-<或 D .}2
3
x 2x |x {>-<或 2.设集合M ={x|0≤x<2},}03x 2x |x {N 2<--=,则有M ∩N =( )
A .{x|0≤x<1}
B .{x|0≤x<2}
C .{x|0≤x ≤1}
D .{x|0≤x ≤2}
3.对于任意实数x ,不等式0)2a (ax 2ax 2<+-+恒成立,则实数a 的取值范围是( )
A .-1≤a ≤0
B .-1≤a<0
C .-1<a ≤0
D .-1<a<0
4.不等式0)6x )(4x (22≤--的解集为( )
A .{x|-2≤x ≤2}
B .{x|x ≤-2或x ≥2}
C .{x|-2≤x ≤2或x =6}
D .{x|x ≥2}
5.已知}Z x 04x 3x |x {A 2∈≤--=,,}Z x 06x x 2|x {B 2∈>--=,,则A ∩B 的非空真子集个数为( )
A .2
B .3
C .7
D .8
6.已知}0q px x |x {A 2≤++=,}01x 3x |
x {B >+-=,且A ∪B =R ,A ∩B ={x|3<x ≤4},则p 、q 的值为( )
A .p =-3,q =-4
B .p =-3,q =4
C .p =3,q =-4
D .p =3,q =4
7.若关于x 的二次不等式021mx 8mx 2<++的解集是{x|-7<x<-1},则实数m 的值是( )
A .1
B .2
C .3
D .4
8.不等式ax<b 与01x x 2<++同解,则( )
A .a =0且b ≤0
B .b =0且a>0
C .a =0且b>0
D .b =0且a<0
二、填空题 1.不等式035|x |3x 22>--的解为_______________.
2.使函数|x |31
3x 2x y 2-+--=有意义的x 的取值范围是_______________.
3.已知}02x 3x |x {A 2≤+-=,}0a x )1a (x |x {B 2≤++-=,若B A ≠⊂,则a 的取值范围是_______________;
若B A ⊇,则a 的取值范围是_______________.
4.关于x 的不等式
0b x x a <+-(a +b>0)的解集是_______________.
三、解答题
1.为使周长为20cm 的长方形面积大于2cm 15,不大于2cm 20,它的短边要取多长?
2.解不等式x 2
1|x 2x |2<
-.
3.解关于x 的不等式04x )1a (2ax 2>++-(a>0).
4.k 为何值时,关于x 的不等式13
x 6x 4k kx 2x 222<++++对一切实数x 恒成立.
参考答案
一、
1.D 2.B 3.C 4.C
5.A
提示:因为A ∩B ={3,4}
6.A
提示:因B ={x|x<-1或x>3},由已知得A ={x|-1≤x ≤4}
∴-1,4是0q px x 2=++的两根
∴p =-3,q =-4.
7.C
8.A
提示:因01x x 2<++的解为∅,只有a =0且b ≤0时,ax<b 解为∅
二、
1.x<-5或x>5
提示:原不等式化为035|x |3|x |22>--,
∴|x|>5
2.{x|-3<x ≤-1}
3.a>2,1≤a ≤2
提示:∵A ={x|1≤x ≤2},B ={x|(x -1)(x -a)≤0},∵B A ≠⊂,∴a>2
4.{x|x<-b 或x>a}
提示:原不等式可化为(a -x)(x +b)<0,即(x -a)(x +b)>0 ∵a +b>0,∴a>-b ,∴x>a 或x<-b .
三、
1.设长方形较短边长为x cm ,则其邻边长(10-x)cm 显然0<x<5
由已知⎩
⎨⎧≤->-20)x 10(x 15)x 10(x ∴⎪⎩⎪⎨⎧-≤+≥+<<-5
5x 55x 105x 105或 ∴55x 105-≤<-.
2.当x ≤0时,不等式无解
当x>0时,不等式化为x 21|2x |x <
-,即21|2x |<- 解得:2
5x 23<< 3.原不等式化为(ax -2)(x -2)>0
∵a>0, ∴0)2x )(a
2x (>-- 当a =1时,2a
2=,∴0)2x (2>-,∴{x|x ∈R 且x ≠2} 当a ≠1时:若a>1,则2a
2<,∴}2x a 2x |x {><或 若0<a<1,则2a 2>,∴}22|{a
x x x ><或. 4.∵3x 6x 42++恒正
∴不等式化为3x 6x 4k kx 2x 222++<++
即0)k 3(x )k 26(x 22>-+-+恒成立
∴⊿0)k 3(8)k 26(2<---= ∴03k 4k 2<+-,∴1<k<3.。