0865.北师大版数学复习专题1:实数的有关概念及运算

合集下载

(完整版)北师大版初中数学知识点总结,推荐文档

(完整版)北师大版初中数学知识点总结,推荐文档

整式的乘法: a m a n a mn (m, n都是正整数)
(a m)n a mn (m, n都是正整数)
(ab)n a nbn (n都是正整数)
(a b)(a b) a 2 b2
(a b)2 a 2 2ab b2
(a b)2 a 2 2ab b2
整式的除法: a m a n a mn (m, n都是正整数, a 0)
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
注意: 3 a 3 a ,这说明三次根号内的负号可以移到根号外面。
考点四、科学记数法和近似数 1、有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右
1
边精确的数位止的所有数字,都叫做这个数的有效数字。
注意:(1)单项式乘单项式的结果仍然是单项式。 (2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。 (3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。 (4)多项式与多项式相乘的展开式中,有同类项的要合并同类项。 (5)公式中的字母可以表示数,也可以表示单项式或多项式。
错误的,应写成 13 a 2b 。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如 5a3b2c 是 6 次单 3
项式。 考点二、多项式 1、多项式:几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中不含字母的项叫做常 数项。多项式中次数最高的项的次数,叫做这个多项式的次数。 单项式和多项式统称整式。 用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。 注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

北师大版八年级数学上册实数基础知识点及练习题讲解

北师大版八年级数学上册实数基础知识点及练习题讲解

北师大版八年级数学上册实数基础知识点
及练习题讲解
本文档旨在为八年级学生提供关于北师大版数学上册实数基础知识点以及相应的练题讲解。

以下是一些关键的知识点和题解答。

实数的定义
实数是指有理数和无理数的集合。

有理数包括整数、分数和十进制无限循环小数,而无理数是指非循环无穷小数。

实数的运算
实数具有加法、减法、乘法和除法等基本运算。

以下是一些实数运算的例子:
- 加法:a + b = c
- 减法:a - b = d
- 乘法:a * b = e
- 除法:a / b = f
实数的性质
实数具有许多重要的性质,例如:
- 交换律:a + b = b + a
- 结合律:(a + b) + c = a + (b + c)
- 分配律:a * (b + c) = a * b + a * c
实数的应用
实数在数学中有广泛的应用。

例如,实数可以用来表示物体的长度、时间的流逝以及温度的变化等。

实数的概念也常常在代数和几何中使用。

题解答
以下是一些题的解答,供同学们练:
1. 计算:3 + 4 = ?
答案:7
2. 计算:5 * 6 = ?
答案:30
3. 计算:10 - 7 = ?
答案:3
请同学们仔细阅读每个题,并尝试独立解答。

如果有任何问题,请随时向老师请教。

以上是关于北师大版八年级数学上册实数基础知识点及练习题
讲解的内容。

希望对同学们的学习有所帮助!。

北师大版中考复习课件:《实数的有关概念》 (共19张PPT)

北师大版中考复习课件:《实数的有关概念》 (共19张PPT)
直线
数轴上的点与实数一一 对应
只有_符__号___不同的两个 数互为相反数
若a、b互为相反数,则 有a+b=0,|a|=|b|.0
的相反数是0
__乘__积____为1的两个数 0没有倒数,倒数等于本
互为倒数
身的数是1或-1
第1讲┃ 考点聚焦
名称 绝对值
科学记 数法
定义
数轴上表示数a的点与原点的___距__离___, 记作|a|
第1讲┃ 归类示例
科学记数法的表示方法:
(1)当原数的绝对值大于或等于10时,n等于原数的整数位
数减1.
(2)当原数的绝对值小于1时,n是负整数,它的绝对值等
于原数中左起第一位非零数字前所有零的个数(含小数点前 的0).
(3)有数字单位的科学记数法,先把数字单位转化为数字 表示,再用科学记数法表示
把一个数写成__a_×__1_0_n_的形式.(其中
1≤|a|<10.n为整数),这种记数法叫
科学记数法
性质
a(a>0) |a|=0(a=0)
-a(a<0)
设这个数为m,①当 |m|≥10时,n等于原
数的整数位数减1;②
当|m|≤1时,|n|等于
原数左起第一个非零 数字前所有零的个数
近似数
一个近似数四舍五入到哪一位,那么就说这个近似数精确到哪一 位.对于带计数单位的近似数,由近似数的位数和后面的单位共 同确定.如3.618万,数字8实际上是十位上的数字,即精确到十 位
正整数 正分数
实数
正无理数 零
负有理数
负实数
负整数 负分数
负无理数
[注意](1)任何分数都是有理数,如272,-131等; (2)0 既不是正数,也不是负数,但 0 是自然数.

北师大版中考数学总复习之教师版

北师大版中考数学总复习之教师版

北师大版中考数学总复习第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例1.下列运算正确的是()A.33--=B.3)31(1-=-C3=±D3=-例)A.B C.2-D.2例3.2的平方根是()A.4 B C.D.例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18-2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为(A .1B .1-C .12a -D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 . 8.如果2()13⨯-=,则“”内应填的实数是( )A . 32B .23C .23-D .32-第4题图a 0 例5图第2课时实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(a b、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a, b,c为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A.伦敦时间2006年6月17日凌晨1时.B.纽约时间2006年6月17日晚上22时.C.多伦多时间2006年6月16日晚上20时.D.汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.-4-5例2图……思考与收获例4.下列运算正确的是( ) A .523=+B .623=⨯C .13)13(2-=- D .353522-=-例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-+【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -= D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) AB .C . 3.2-D .5.计算:(1)02200960cos 16)21()1(-+--- (2))1112-⎛⎫- ⎪⎝⎭第4题图第3课时 整式与分解因式【知识梳理】1.即n m n m a a a +=⋅(m 、n 为正整数)底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n )乘方法则:幂的乘方,底数不变,指数相乘,即nnnb a ab =)((n 为正整数)零指数:10=a (a≠0);⑤负整数指数:n n aa 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)它们的积的2倍,即2222)(b ab a b a +±=±3.式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2•a 3=a 6 D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A.22()()x y x y x y-=+-B.2269(3)x x x++=+C.2()x xy x x y+=+D.222()x y x y+=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x+-,21412x x++,2122x x-.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a-=,_____________223=---xxx2.对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时,(a,b)=(c,d).定义运算“⊗”:(a,b)⊗(c,d)=(ac-bd,ad+bc).若(1,2)⊗(p,q)=(5,0),则p=,q=.3. 已知a=1.6⨯109,b=4⨯103,则a2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014.4.先化简,再求值:22()()(2)3a b a b a b a++-+-,其中2332a b=-=,.5.先化简,再求值:22()()()2a b a b a b a+-++-,其中133a b==-,.思考与收获第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,4.解下列方程(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C.D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x有意义;当x 时,该式的值为0.3.计算22()ab ab的结果为 .4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3)11322xx x -=--- (4)11-x 1x 1x 22=+-- 思考与收获第5课时二次根式【知识梳理】1.二次根式:(1)定义:____________________________________叫做二次根式.2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式.(2)根号内不含分母(3)分母上没有根号4几个二次根式就叫做同类二次根式.5.二次根式的乘法、除法公式:(1)a b=ab a0b0⋅≥≥(,)(2)a a=a0b0bb≥(,)6..二次根式运算注意事项:(1化简不正确;④合并出错.(2来简化计算,运算结果一定写成最简二次根式或整式.【思想方法】非负性的应用【例题精讲】【例1】要使式子1xx+有意义,x的取值范围是()A.1x≠B.0x≠C.10x x>-≠且D.10x x≠≥-且【例2】估计132202⨯+的运算结果应在().A.6到7之间B.7到8之间C.8到9之间D.9到10之间【例3】若实数x y,满足22(3)0x y++-=,则xy的值是.【例4】如图,A,B,C,D四张卡片上分别写有523π7-,,,任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A,B,C,D表示);(2)求取到的两个数都是无理数的概率.思考与收获【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312()cos 304sin 6022++-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b -思考与收获第6课时 一元一次方程及二元一次方程(组)【知识梳理】1的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】方程思想和转化思想【例题精讲】例1. (1)解方程.x x+--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________. 例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 用电费外,超过部分还要按每度 0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元. 3.若关于x 的方程x k =-153的解是x =-3,则k =_________. 4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____.5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023; (3)⎩⎨⎧=+=+832152y x y x ; (4)x x-+=-21141356.当x =-2时,代数式x bx +-22的值是12,求当x =27.应用方程解下列问题:初一(4付9元,则多了5元,后来组长收了每人8元,自己多付了2板价值多少?8.甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程①中的m ,到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为 4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根;(2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 个根,求△ABC 的周长.aac b b x 242-±-=【当堂检测】 一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=--⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 . 4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = . 5.一元二次方程ax 2+bx+c=0有一根-2,则bc a 4+的值为 .6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根, 则k是__________.7.如果关于的一元二次方程的两根分别为3和4是 . 二、选择题:8.对于任意的实数x,代数式x 2-5x +10的值是一个( ) A.非负数 B.正数 C.整数 D.不能确定的数 9.已知(1-m 2-n 2)(m 2+n 2)=-6,则m 2+n 2的值是( ) A.3 B.3或-2 C.2或-3 D. 210.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) (A )x 2+4=0 (B )4x 2-4x +1=0(C )x 2+x +3=0(D )x 2+2x -1=0 11.下面是李刚同学在测验中解答的填空题,其中答对的是( ) A .若x 2=4,则x=2 B .方程x(2x-1)=2x-1的解为x=1 C .方程x 2+2x+2=0实数根为0个 D .方程x 2-2x-1=012.若等腰三角形底边长为8,腰长是方程x 2-9x+20=0的一个根,则这个三角形的周长是( ) A.16 B.18 C.16或18 D.21 三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x 2-4x-4=0(4)x 2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0第8课时 方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要. 【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0队打了14场,负5场,共得19分,那么这个队胜了( ) A .4场 B .5场 C .6场 D .13场例2. 某班共有学生49人.人数的一半.若设该班男生人数为x ,女生人数为y 算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1) B .⎩⎨⎧x+y= 49y=2(x+1) C .⎩⎨⎧x –y= 49y=2(x –1) D .⎩⎨⎧x+y= 49y=2(x –1)例3. 张老师和李老师同时从学校出发,步行15李老师每小时多走1千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=--例4.用一张信笺,教务处每发出一封信都用3封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,的信笺数为x 张,•信封个数分别为y 个,则可列方程组 . 例5. 团体购买公园门票票价如下: 100别购票,两团共计应付门票费1392元,门票费1080元.(1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.原计划每天铺设管道xm ,则可得方程 .2. “鸡兔同笼”是我国民间流传的诗歌形式的数学题, “头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x y 只,所列方程组正确的是( ) ⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3. (1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A B•型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆型汽车,每辆B 载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到远的郊区进行抢修.维修工骑摩托车先走,15min 结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000已知体彩中心有A 、B 、C 三种不同价格的彩费,进价分别是A•种彩票每张元,B 种彩票每张2元,C 种彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000票方案;(2)若销售A 型彩票一张获手续费0.2元,B 型彩票一张获手续费0.3元,C 彩票一张获手续费0.5最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A 、B 、C 三种彩票20方案.第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A .16 B .25 C .34 D .61例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米 例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++= 例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30kg 30kg以下但不超过50kg50kg以上每千克价格3元 2.5元2元第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( )A.12x >- B.2x >- C.2x <-D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg 例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( ) A .0 B .1 C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x4321B A O C)c a (b >-1 01- 10 1- 1 0 1- 1 0 1-第12课时 一次函数图象和性质【知识梳理】1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质【思想方法】数形结合【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积.例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限;(3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方.例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式;(2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0?k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图像的大致位置经过象限 第 象限 第 象限第 象限第 象限 性质y 随x 的增大 而y 随x 的增大而而y 随x 的增大 而y 随x 的增大 而xyO 32y x a=+1y kx b=+yxOBA例4.如图,反比例函数xy2=的图像与一次函数bkxy+=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y轴的交点为C.(1)求一次函数解析式;(2)求C点的坐标;(3)求△AOC的面积.【当堂检测】1.直线y=2x+8与x轴和y轴的交点的坐标分别是_______、_______;2.一次函数1y kx b=+与2y x a=+的图象如图,则下列结论:①0k<;②0a>;③当3x<时,12y y<中,正确的个数是()A.0 B.1 C.2 D.33.一次函数(1)5y m x=++,y值随x增大而减小,则m的取值范围是()A.1m>-B.1m<-C.1m=-D.1m<4.一次函数23y x=-的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.已知函数y kx b=+的图象如图,则2y kx b=+的图象可能是()6.已知整数x满足-5≤x≤5,y1=x+1,y2=-2x+4对任意一个x,m都取y1,y2中的较小值,则m的最大值是()A.1B.2C.24D.-97.如图,点A的坐标为(-1,0),点B在直线y=x上运动,当线段AB最短时,点B的坐标为( )A.(0,0)B.(22,22-)C.(-21,-21) D.(-22,-22)第2题图第5题图第13课时 一次函数的应用【例题精讲】例题1.某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图像如图所示.⑴月用电量为100度时,应交电费 元; ⑵ 当x≥100时,求y 与x 之间的函数关系式; ⑶ 月用电量为260度时,应交电费多少元?例题2. 在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出t 的取值范围.例题3.某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)2·4·6· 8· S(km) 2 0 t(h) A B1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.图(1) 2 O 5 x A B C P D 图(2)第1题图 例题4.奥林玩具厂安排甲、乙两车间分别加工1000只同一型号的奥运会吉祥物,每名工人每天加工的吉祥物个数相等且保持不变,由于生产需要,其中一个车间推迟两天开始加工.开始时,甲车间有10名工人,乙车间有12名工人,图中线段OB 和折线段ACB 分别表示两车间的加工情况.依据图中提供信息,完成下列各题:(1)图中线段OB 反映的是________车间加工情况;(2)甲车间加工多少天后,两车间加工的吉祥物数相同? (3)根据折线段ACB 反映的加工情况, 请你提出一个问题,并给出解答.【当堂检测】 1.如图(1),在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则△BCD 的面积是( )A .3B .4C .5D .6 2.如图,在中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( ) A .乙比甲先到终点B .乙测试的速度随时间增加而增大C .比赛到29.4秒时,两人出发后第一次相遇D .比赛全程甲测试速度始终比乙测试速度快 3.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟C .25分钟D .27分钟4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离.2 B x (天) AC18 20 O 960 1000 y (只) 第2题图 第3题图 第4题图。

北师大版8年级上册数学知识点归纳

北师大版8年级上册数学知识点归纳

北师大版八年级上册数学知识点归纳一、实数1.实数的分类:有理数和无理数。

其中,无理数包括无限不循环小数,如π和e等。

2.实数的性质:实数与数轴上的点一一对应;实数可以进行加、减、乘、除等运算,且满足结合律、交换律和分配律。

3.平方根:如果一个数的平方等于另一个数,那么这个数就是另一个数的平方根。

正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

4.立方根:如果一个数的立方等于另一个数,那么这个数就是另一个数的立方根。

任何实数都有且只有一个立方根。

5.估算:通过估算比较大小,判断结果的合理性。

二、一次函数1.函数及其相关概念:在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量;一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2.函数解析式:用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3.函数的三种表示法及其优缺点:解析法、列表法、图像法。

— 1 —4.一次函数:形如y=kx+b(k≠0)的函数叫做一次函数。

其中k是比例系数,b是常数项。

5.一次函数的图象是一条直线,这条直线叫做一次函数的图象。

其中k表示斜率,b表示截距。

6.一次函数的性质:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

7.一次函数的应用:解决实际问题时,首先要审题弄清题意,然后建立数学模型(一次函数关系式),最后利用一次函数的性质解决问题。

三、全等三角形1.全等三角形的定义:两个三角形如果它们的三边分别相等,那么这两个三角形全等;两个三角形如果它们的两边及其夹角分别相等,那么这两个三角形全等;两个三角形如果它们的两角及其夹边分别相等,那么这两个三角形全等。

2.全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。

3.全等三角形的判定方法:SSS、SAS、ASA、AAS、HL。

北师版八年级数学上册中考数学复习专题1:实数的有关概念及运算

北师版八年级数学上册中考数学复习专题1:实数的有关概念及运算

专题01 实数的有关概念及运算☞解读考点 知 识 点名师点晴实数的分类1.有理数 会根据有限小数和无限循环小数判定一个数是有理数2.无理数会识别无理数,并在数轴上表示一个无理数 实数的有关概念1.相反数、倒数、绝对值会求一个实数的相反数、倒数和绝对值 2.科学计数法、近似数 掌握用科学计数法表示一个较大的数和较小的数 3.实数的非负性利用实数的非负性解决一些实际问题 实数的运算和大小比较1.实数的估算 求一个无理数的范围2.实数的大小比较 理解实数的大小比较的方法3.实数的运算掌握实数的混合运算☞2年中考【2015年题组】1.(2015南京)估计512 介于( )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间【答案】C .考点:估算无理数的大小.2.(2015常州)已知a=22,b=33,c=55,则下列大小关系正确的是( )A .a >b >cB .c >b >aC .b >a >cD .a >c >b 【答案】A .考点:实数大小比较.3.(2015泰州)下列4个数:9,227,π,()03,其中无理数是( )A .9B .227 C .π D .()03【答案】C . 【解析】试题分析:π是无理数,故选C . 考点:1.无理数;2.零指数幂.4.(2015资阳)如图,已知数轴上的点A 、B 、C 、D 分别表示数﹣2、1、2、3,则表示数35-的点P 应落在线段( )A .AO 上B .OB 上C .BC 上D .CD 上 【答案】B . 【解析】试题分析:∵2<5<3,∴0<35-<1,故表示数35-的点P 应落在线段OB 上.故选B .考点:1.估算无理数的大小;2.实数与数轴.5.(2015广元)当01x <<时,x 、1x 、2x 的大小顺序是( ) A .21x x x << B .21x x x << C .21x x x << D .21x xx <<【答案】C .【解析】试题分析:∵01x <<,令12x =,那么214x =,14x =,∴21x x x <<.故选C . 考点:实数大小比较. 6.(2015绵阳)若5210a b a b +++-+=,则()2015b a -=( )A .﹣1B .1C .20155 D .20155-【答案】A . 【解析】试题分析:∵5210a b a b +++-+=,∴⎩⎨⎧=+-=++01205b a b a ,解得:⎩⎨⎧-=-=32b a ,则()20152015321b a -=-+=-().故选A .考点:1.解二元一次方程组;2.非负数的性质.7.(2015武汉)在实数﹣3,0,5,3中,最小的实数是( ) A .﹣3 B .0 C .5 D .3 【答案】A .考点:实数大小比较. 8.(2015荆门)64的立方根是( ) A .4 B .±4 C .8 D .±8 【答案】A . 【解析】试题分析:∵4的立方等于64,∴64的立方根等于4.故选A . 考点:立方根. 9.(2015北京市)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d 【答案】A . 【解析】试题分析:根据图示,可得:3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a .故选A . 考点:实数大小比较.10.(2015河北省)在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④ 【答案】C .考点:1.估算无理数的大小;2.实数与数轴.11.(2015六盘水)如图,表示7的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A.【解析】试题分析:∵6.25<7<9,∴2.5<7<3,则表示7的点在数轴上表示时,所在C和D 两个字母之间.故选A.考点:1.估算无理数的大小;2.实数与数轴.12.(2015通辽)实数tan45°,38,0,35π-,9,13-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.3【答案】D.【解析】试题分析:在实数tan45°,38,0,35π-,9,13-,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:35π-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.考点:无理数.13.(2015淄博)已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的平方根为()A.±2 B .2C .2±D.2 【答案】A.考点:1.二元一次方程组的解;2.平方根;3.综合题.14.(2015成都)比较大小:512-____58(填“>”、“<”或“=”).【答案】<. 【解析】试题分析:512-为黄金数,约等于0.618,50.6258=,显然前者小于后者.或者作差法:515459808102888----==<,所以,前者小于后者.故答案为:<.考点:1.实数大小比较;2.估算无理数的大小.15.(2015资阳)已知:22(6)230a b b ++--=,则224b b a --的值为 . 【答案】12.【解析】试题分析:∵22(6)230a b b ++--=,∴60a +=,2230b b --=,解得,6a =-,223b b -=,可得2246b b -=,则224b b a --=6(6)--=12,故答案为:12.考点:1.非负数的性质:算术平方根;2.非负数的性质:偶次方. 16.(2015自贡)若两个连续整数x 、y 满足y x <+<15,则x+y 的值是 .【答案】7.【解析】试题分析:∵2<5<3,∴3<51+<4,∴x=3,y=4,∴x+y=7,故答案为:7. 考点:估算无理数的大小.17.(2015巴中)计算:01123(2015)2sin 60()3π----++. 【答案】4.【解析】试题分析:根据绝对值、零指数幂、负整数指数幂以及特殊角的三角函数值进行计算即可.试题解析:原式=3231232--+⨯+=1+3=4.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.18.(2015龙岩)计算:0312201522sin 30893-+-+-⨯.【答案】0.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值. 19.(2015临沂)计算:(321)(321)+--+. 【答案】22.【解析】试题分析:先根据平方差公式展开后,再根据完全平方公式展开后合并即可.试题解析:解:原式=[3(21)+-][3(21)--]=22(3)(21)--3(2221)=--+32221=-+-22=.考点:实数的运算.【2014年题组】 1.(2014年福建福州中考)地球绕太阳公转的速度约是110000千米/时,将110000用科学计数法表示为( )A .41110⨯ B .51.110⨯ C .41.110⨯ D .60.1110⨯ 【答案】B .考点:科学计数法.2.(2014年福建三明中考)13-的相反数是( )A. 13 B.13-C. 3D. 3-【答案】A.试题分析:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此,13-的相反数是13. 故选A.考点:相反数.3.(2014年黑龙江大庆中考)下列式子中成立的是()A. ﹣|﹣5|>4B. ﹣3<|﹣3|C. ﹣|﹣4|=4D. |﹣5.5|<5【答案】B.【解析】试题分析:先对每一个选项应用绝对值的性质化简,再进行比较即可:A.﹣|﹣5|=﹣5<4,故A选项错误;B.|﹣3|=3>﹣3,故B选项正确;C.﹣|﹣4|=﹣4≠4,故C选项错误;D.|﹣5.5|=5.5>5,故D选项错误.故选B.考点:1.绝对值;2.有理数的大小比较.4.(2014年湖北宜昌中考)如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A. m+n<0B. -m<-nC. m|-|n|>0D. 2+m<2+n【答案】D.考点:1.数轴;2.不等式的性质.5.(2014年贵州黔南中考)计算()20123-+--的值等于()A. 1-B. 0C. 1D. 5【答案】A.【解析】试题分析:针对有理数的乘方,零指数幂,绝对值3个考点分1.别进行计算,然后根据实数的运算法则求得计算结果: ;2.故选A.考点:实数的运算.6.(2014年黑龙江大庆中考)若x y y20-+-=,则y3x-的值为.【答案】12.【解析】试题分析:∵x y y 20-+-=,∴x y 0x 2y 20y 2-==⎧⎧⇒⎨⎨-==⎩⎩.∴y 32311x 222---===. 考点:1.实数的非负性;2.负整数指数幂.7.(2014年吉林省中考)若a <13<b ,且a ,b 为连续正整数,则b2﹣a2= . 【答案】7.【解析】试题分析:∵32<13<42,∴3<13<4,即a=3,b=4.∴b2﹣a2=42﹣32=7.考点:无理数的估算. 8.(2014年新疆区兵团中考)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.31⎡⎤=⎣⎦,按此规定,131⎡⎤-⎣⎦=_____________ 【答案】2.【解析】试题分析:∵9<13<16,∴3<13<4.∴2<131-<3,∴131⎡⎤-⎣⎦=2. 考点:1.新定义;2.无理数的估算.9.(2014年甘肃兰州中考)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.【答案】2015312-. 考点:1.有理数的运算;2.阅读理解型问题.10.(2014年内蒙古赤峰中考)计算:()1013328sin 454π-⎛⎫-+-- ⎪⎝⎭【答案】-3.【解析】 试题分析:()1123328sin 451428434242342π-⎛⎫-+--=+-⨯-=---=- ⎪⎝⎭.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.☞考点归纳归纳 1:实数及其分类 基础知识归纳:基本方法归纳:判断一个数是不是有理数,关键是看它是不是有限小数或无限循环小数;判断一个数是不是无理数,关键在于看它是不是无限不循环小数.注意问题归纳:在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;【例1】在实数313,,,8,0,tan 453π︒中,其中无理数的个数是( )A.2B.3C.4D.5【答案】A .考点:无理数.归纳 2:实数的有关概念 基础知识归纳: 1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称 2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0;正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0. 3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.基本方法归纳:如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立;零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0注意问题归纳:零没有倒数;一个非零的数的绝对值一定是正数【例2】若实数x ,y 满足2270x x y ++-+=,则x y = .【答案】19.考点:非负数.归纳 3:实数的大小比较 基础知识归纳:正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.基本方法归纳:(1)求差比较:设a 、b 是实数,,0b a b a >⇔>-,0b a b a =⇔=-b a b a <⇔<-0(2)求商比较法:设a 、b 是两正实数,;1;1;1b a b ab a b a b a b a <⇔<=⇔=>⇔>(3)平方法:设a 、b 是两负实数,则b a b a <⇔>22.注意问题归纳:实数的大小比较,一般要将其进行化简,并合理选择方法来进行比较.【例3】用“<”号,将1)61(-、0)2(-、2)3(-、22-连接起来______ 【答案】2102)3()61()2(2-<<-<--.【解析】试题分析:先根据有理数的乘方法则依次计算出各个数的值,再根据有理数的大小比较法则比较.∵6)61(1=-,1)2(0=-,9)3(2=-,422-=- ∴2102)3()61()2(2-<<-<--.考点:实数的大小比较.归纳 4:科学计数法与近似数基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.基本方法归纳:利用科学计数法表示一个数,在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)注意问题归纳:利用科学计数法表示数和转化为原数时,要注意数位的变化.【例4】据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,一年的经济损失约为54750000000元,用科学记数法表示这个数为 A .5.475×1011 B .5.475×1010 C .0.5475×1011 D .5475×108 【答案】B .考点:科学计数法. 归纳 5:实数的混合运算基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化简、二次根式等内容,要熟练掌握这些知识.注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错的地方,在解答此类问题时要注意基本性质和运算的顺序.【例5】计算:()114sin451282-⎛⎫-︒--+ ⎪⎝⎭【答案】1.【解析】针对负整数指数幂,特殊角的三角函数值,零指数幂,二次根式化简4个考点分别进行计算,然后根据实数的运算法则求得计算结果:()1124sin4512824122122-⎛⎫-︒--+=-⨯-+= ⎪⎝⎭考点:实数的运算.☞1年模拟1.(2015届山东省日照市中考一模)4的算术平方根是( ) A .2 B .±2 C .2 D .±2 【答案】C .【解析】试题分析:∵4=2,而2的算术平方根是2,∴4的算术平方根是2,故选C .考点:算术平方根.2.(2015届山东省潍坊市昌乐县中考一模)在实数π、13、2、tan60°中,无理数的个A .1B .2C .3D .4 【答案】C . 【解析】试题分析:∵tan60°=3,∴在实数π、13、2、tan60°中,无理数有: ,2和tan60°.故选C .考点:1.无理数;2.特殊角三角函数值.3.(2015届广东省佛山市初中毕业班综合测试)14的算术平方根是( ) A .-12 B .12 C .±12 D .116【答案】B .考点:算术平方根. 4.(2015届江苏省南京市建邺区中考一模)下列计算结果是负数的是( ) A .3-2 B .3×(-2) C .3-2 D .3 【答案】B . 【解析】试题分析:A :3-2=1,计算结果是正数,据此判断即可. B :3×(-2)=-6,计算结果是负数,据此判断即可.C :3-2=19,计算结果是正数,据此判断即可.D :3是一个正数,据此判断即可.试题解析:∵3-2=1,计算结果是正数,∴选项A 不正确; ∵3×(-2)=-6,计算结果是负数,∴选项B 正确;∵3-2=19,计算结果是正数,∴选项C 不正确;∵3是一个正数,∴选项D 不正确.故选B .考点:实数的运算. 5.(2015届江苏省南京市建邺区中考一模)面积为10m2的正方形地毯,它的边长介于( ) A .2m 与3m 之间 B .3m 与4m 之间 C .4m 与5m 之间 D .5m 与6m 之间【解析】试题分析:正方形的边长为10,∵9<10<16,∴3<10<4,∴其边长在3m 与4m之间.故选B.考点:估算无理数的大小.6.(2015届河北省中考模拟二)下列无理数中,不是介于-3与2之间的是()A.-5B .5C.-3D .3【答案】B.考点:估算无理数的大小.7.(2015届浙江省宁波市江东区4月中考模拟)实数5的相反数是().A.15B.-15C.﹣5 D.5【答案】C.【解析】试题分析:∵符号相反,绝对值相等的两个数互为相反数,∴5的相反数是﹣5.故选C.考点:实数的性质.8.(2015届浙江省宁波市江东区4月中考模拟)下列四个数中,值最小的数是().A.tan45°B .3C.πD.8 3【答案】A.【解析】试题分析:tan45°=1,根据实数比较大小的方法,可得,1<3<83<π,所以tan45°<3<83<π,因此四个数中,值最小的数是tan45°.故选A.考点:1.实数大小比较;2.特殊角的三角函数值.9.(2015届四川省成都市外国语学校中考直升模拟)已知直角三角形两边x、y的长满足|x2-4|+256y y-+=0,则第三边长为.【答案】22、13或5.考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理;4.分类讨论.10.(2015届山东省济南市平阴县中考二模)计算:2-1+2cos30°-tan60°-(π+3)0= .【答案】-1 2.【解析】试题分析:原式=1323122+⨯--=-12.故答案为:-12.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.11.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)的算术平方根为.【答案】2.【解析】试题分析:∵4=2,2的算术平方根是2,∴4的算术平方根为2.故答案为:2.考点:算术平方根.12.(2015届北京市平谷区中考二模)计算:()10 12sin603133π-⎛⎫--︒+-+-⎪⎝⎭.【答案】-3.【解析】试题分析:分别进行负整数次幂、特殊角的三角函数值、绝对值的化简、零指数幂,然后按照实数的运算法则计算即可.试题解析:原式=3323112--⨯+-+=333--+=3-.考点:实数的运算.13.(2015届安徽省安庆市中考二模)计算:﹣32+.【答案】-9.考点:1.实数的运算;2.特殊角的三角函数值.14.(2015届广东省深圳市龙华新区中考二模)计算:(-12)-1+(π-2015)0-3tan30°+|-3|【答案】-1.【解析】试题分析:原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.试题解析:原式=-2+1-3×33+3=-1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.15.(2015届湖北省黄石市6月中考模拟)计算:﹣2sin30°﹣(﹣13)﹣2+(2﹣π)0﹣38 +(﹣1)2012.【答案】-6.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.。

北师大版中考数学专题复习一-实数

北师大版中考数学专题复习一-实数

中考数学专题复习(一)实数【知识结构图】正整数整数零有理数负整数有限小数或无限循环小数正分数实数的分类分数负分数正无理数无理数无限不循环小数负无理数实数数轴,相反数,倒数,非负数,绝对值实数的意义平方根、算术平方根、立方根近似数和有效数字,实数的大小比较实数的运算运算律加,减,乘,除,乘方,开方运算顺序【中考目标要求】了解有理数、无理数、实数的概念;会比较实数的大小,知道实数与数轴上的点一一对应,会用科学记数法表示有理数;理解相反数和绝对值的概念及意义.进一步对上述知识理解程度的评价既可以用纯粹数学语言、符号的方式呈现,也可以建立在应用知识解决问题的基础之上,即将考查的知识、方法融于不同的情境之中,通过解决问题而考查学生对相应知识、方法的理解情况.了解乘方与开方的概念,并理解这两种运算之间的关系.了解平方根、算术平方根、立方根的概念,了解整数指数幂的意义和基本性质.【中考知识点】(一).实数的有关概念1.数轴①定义:规定了原点、正方向和单位长度的直线叫做数轴。

原点、正方向和单位长度是数轴的三要素,缺一不可。

②用途:任何一个实数都可以用数轴上的点来表示,正实数位于原点的右侧,负实数位于远点的左侧,零位于原点处。

2. 相反数①定义:如果两个数只有符号不同,那么我们称其中的的一个数是另一个数的相反数。

②相反数的几何意义:在数轴上位于远点的两侧,并且与原点的距离相等的两点所表示的两个数,称为互为相反数③相反数的性质:(1)任何数都有相反数,并且只有一个相反数;(2)正数的相反数是负数,负数的相反数是正数,特别的,0的相反数是0;(3)互为相反数的两个数之和为0,反之,和为0的两个数互为相反数.④相反数的表示法.一般的对任意一个数a,它的相反数为-a,这里的a表示任意的数,可以是正数、负数、也可以是0.⑤求一个数的相反数只需在这个数的前面加上一个负号就可以了.3.绝对值在数轴上表示a的点与原点的距离叫做数a的绝对值,记作|a|.正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。

九年级数学复习课《实数的有关概念及其运算》讲学稿 北师大版

九年级数学复习课《实数的有关概念及其运算》讲学稿 北师大版
二、【练一练】
1、如果+20米表示上升20米,那么—30米表示_____________。
2、近似数2.40万精确到__________位,有效数字有__________个。
5、若|a|=5,则a=,由四舍五入得到的近似数0.5600的有效数字的个数是______,精确度是_______。
6、某种零件,标明要求是φ20±0.02 mm(φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm,该零件(填“合格”或“不合格”)。
3、下列各组数中,互为相反数的是( )
A.-3与 B.|- 3|与一 C.| -3|与 D.-3与
4、某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )A . 31 B. 33 C. 35 D. 37
3、实数:__________和__________统称为实数。任何一个有理数都可以写成有限小数(整数可以看做小数点后面是0的小数)或者无限循环小数的形式,无理数是无限不循环小数,所以实数集合也可以看做是小数集合。
4、科学记数法:把一个数表示成 的形式,其中1≤ <10的数,n是整数。
5、一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位。这时,从左边第一个不是的数起,到止,所有的数字都叫做这个数的有效数字。如:0.802精确到千分位,有3个有效数字,它们分别是8、0、2。
【知识要点的归纳】
1、若 , 互为相反数,则 =。
2、若 , 互为倒数,则 =。
3、一个正实数的绝对值是____________;一个负实数的绝对值是____________;0的绝对值是_______。
三人小组互评:

北师大版中考数学实数的相关概念复习

北师大版中考数学实数的相关概念复习

实数 有理数 正整数 零 负整数 有限小数或无限循环小数 整数 分数 正分数 负分数 无理数正无理负无理无限不循环小数实数的相关概念【知识点清单】考点一.实数的概念及分类1、有理数:整数与分数的统称.2、无理数:无限不循环小数.3、实数:有理数和无理数的统称.4、考点二.数轴、相反数、例数、绝对值1、数轴:规定了原点,方向和单位长度的直线叫做数轴,实数与数轴上的点是一一对应关系.2、相反数:如果两数只有符号不同,那么称其中一个数是另一个数的相反数.0的相反数是0.若实数a 与b 互为相反数,则a+b =0.3、倒数:乘积为1的两个数互为倒数,0没有倒数.4、绝对值:(1)几何意义:在数轴上,︱a ︱是表示数a 的点到原点的距离.考点三.科学记数法、近似数、有效数字1、科学记数法:把一具数表示成a ×10n 的形式,其中1≤︱a ︱<10.n 为整数。

2、近似数:将一个数按要求四舍五入所得到的数.3、有效数字:一个近似数从左边第一个不为零的数字起,到精确的数位为止,所有的数字都叫做这个近似数的有效数字.【基础巩固】填空题1、如果零上5℃记作+5℃,那么零下7℃可记作2、—31的倒数是 . —7的相反数是 . —51的倒数的绝对值是 . 3、38 = ︱21-1︱= 12-3=4、写一个比4小的正无理数 ; 在2,1,0,1-这四个数中,既不是正数也不是负数的是 .5.若2(2)0m n m -++=,则nm 的值是 . 6.2010年4月14日青海玉树发生的7.1级地震震源深度约为14000米,震源深度用科学记数法表示约为_____________米。

7、国家统计全国人口普查数据显示,云南省常在人口约为45960000人,这个数据用科学记数法表示为 。

8、2011年我国的体育产业的产值为2342万元人民币,用科学记数法表示为 (保留两个有效数字)。

选择题:9、PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为( )A 、0.25×10-5B 、0.25×10-6C 、2.5×10-5D 、2.5×10-610、下列式子中结果为负数的是( )A 、∣(-7)∣B 、-︱-2︱C 、-(-3)3D 、3-211、由四舍五入得到的近似数8.8×103,下列说法中正确的是( )A 、精确到十分位、有2个有效数字B 、精确到个位,有2个有效数字C 、精确到百位、有2个有效数字D 、精确到千位、有4个有效数字12、从北京教育考试院获悉,截至2010年3月5日,今年北京市中考报名确认考生人数达10.2万,与去年报考人数持平.请把10.2万用科学记数法表示应为( )A .60.10210⨯B .410.210⨯C .51.0210⨯D .41.0210⨯13、据2010年全国第六次人口普查数据公布,云南省常住人口为45966239人,45966239用科学记数法表示且保留两个有效数字为( )A 、4.6×107B 、4.6×106C 、4.5×108D 、4.5×107【拓展提高】填空题:1、实数-5、-0.1、31、3、2π、327、0.2121121112111112…中无理数是.2、-7的相反数的倒数是 . |-2︱的相反数是 .3的相反数是 . -(-71)的倒数是 . 3、|-32︱的值是 . 2-9= .4、2010年11月,我国进行了第六次全国人口普查,据统计全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学记数表示为 .5、已知a 、b 为两个连续的整数,且a <28<b ,则a+b = .6.某种流感病毒的直径大约为0.00036025毫米,将0.00036025用科学记数法表示为 .7.“激情盛会,和谐亚洲”第16届亚运会将于2010年11月在广州举行,广州亚运城的建筑面积约是358000平方米,将358000用科学记数法表示为_______.选择题:8.2010年一季度,全国城镇新增就业人数为289万人,用科学记数法表示289万正确的是()A 2.89×107.B 2.89×106 .C 2.89×105.D 2.89×104.9、已知a=-a,则数a等于()A、0B、-1C、1D、不确定10、某市2012年元旦的最高气温为2℃,最低气温为-8℃,那么这天的最高气温比最低气温高()A、-10℃B、-6℃C、6℃D、10℃11、用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A、0.1(精确到0.1)B、0.05(精确到百分位)C、0.05(精确到千分位)D、0.050(精确到0.001)12、《教学改革和发展纲要》中指出、“加大教育投入,提高国家财政性教育经费支出占国内年生产值比例,2012年达到4%”,如果2012年我国国内生产总值为435000亿元,那么2012年国家政财性教育经费支出应为(科学记数法表示)()A、4.35×105亿元B、1.74×105亿元C、1.74×104亿元D、174×102亿元。

北师大版数学复习专题1:实数的有关概念及运算

北师大版数学复习专题1:实数的有关概念及运算

专题01 实数的有关概念及运算☞解读考点☞2年中考【2015年题组】1.(2015 )A .0.4与0.5之间B .0.5与0.6之间C .0.6与0.7之间D .0.7与0.8之间【答案】C .考点:估算无理数的大小.2.(2015常州)已知a=22,b=33,c=55,则下列大小关系正确的是( )A .a >b >cB .c >b >aC .b >a >cD .a >c >b 【答案】A .考点:实数大小比较.3.(2015泰州)下列4227,π,0,其中无理数是( )AB .227 C .π D.【答案】C . 【解析】试题分析:π是无理数,故选C . 考点:1.无理数;2.零指数幂.4.(2015资阳)如图,已知数轴上的点A 、B 、C 、D 分别表示数﹣2、1、2、3,则表示数3的点P 应落在线段( )A .AO 上B .OB 上C .BC 上D .CD 上 【答案】B . 【解析】试题分析:∵2<3,∴0<3-<1,故表示数3-的点P 应落在线段OB 上.故选B .考点:1.估算无理数的大小;2.实数与数轴.5.(2015广元)当01x <<时,x 、1x 、2x 的大小顺序是( ) A .21x x x << B .21x x x << C .21x x x << D .21x xx <<【答案】C .【解析】试题分析:∵01x <<,令12x =,那么214x =,14x =,∴21x x x <<.故选C . 考点:实数大小比较. 6.(2015210a b +-+=,则()2015b a -=( )A .﹣1B .1C .20155 D .20155-【答案】A . 【解析】试题分析:∵210a b +-+=,∴⎩⎨⎧=+-=++01205b a b a ,解得:⎩⎨⎧-=-=32b a ,则()20152015321b a -=-+=-().故选A .考点:1.解二元一次方程组;2.非负数的性质.7.(2015武汉)在实数﹣3,0,5,3中,最小的实数是( ) A .﹣3 B .0 C .5 D .3 【答案】A .考点:实数大小比较. 8.(2015荆门)64的立方根是( ) A .4 B .±4 C .8 D .±8 【答案】A . 【解析】试题分析:∵4的立方等于64,∴64的立方根等于4.故选A . 考点:立方根. 9.(2015北京市)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d 【答案】A . 【解析】试题分析:根据图示,可得:3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a .故选A . 考点:实数大小比较.10.(2015河北省)在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④ 【答案】C .考点:1.估算无理数的大小;2.实数与数轴.11.(2015六盘水)如图,表示7的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A.【解析】试题分析:∵6.25<7<9,∴2.5<7<3,则表示7的点在数轴上表示时,所在C和D 两个字母之间.故选A.考点:1.估算无理数的大小;2.实数与数轴.12.(2015通辽)实数tan45°,0,35π-,13-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.3【答案】D.【解析】试题分析:在实数tan45°,0,35π-13-,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:35π-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.考点:无理数.13.(2015淄博)已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的平方根为()A.±2 BC.D.2【答案】A.考点:1.二元一次方程组的解;2.平方根;3.综合题.14.(201558(填“>”、“<”或“=”).【答案】<.【解析】为黄金数,约等于0.618,50.625 8=,显然前者小于后者.或者作差法:58-==<,所以,前者小于后者.故答案为:<.考点:1.实数大小比较;2.估算无理数的大小.15.(2015资阳)已知:2(6)0a+=,则224b b a--的值为.【答案】12.【解析】试题分析:∵2(6)0a++=,∴60a+=,2230b b--=,解得,6a=-,223b b-=,可得2246b b-=,则224b b a--=6(6)--=12,故答案为:12.考点:1.非负数的性质:算术平方根;2.非负数的性质:偶次方.16.(2015自贡)若两个连续整数x、y满足yx<+<15,则x+y的值是.【答案】7.【解析】试题分析:∵2<3,∴3<1+<4,∴x=3,y=4,∴x+y=7,故答案为:7.考点:估算无理数的大小.17.(2015巴中)计算:0112(2015)2sin60()3π---++.【答案】4.【解析】试题分析:根据绝对值、零指数幂、负整数指数幂以及特殊角的三角函数值进行计算即可.试题解析:原式=2123--+=1+3=4.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.18.(2015031201530893-+-⨯.【答案】0.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值.19.(2015临沂)计算:1)-+.【答案】【解析】试题分析:先根据平方差公式展开后,再根据完全平方公式展开后合并即可.试题解析:解:原式1)+-1)]=221)--3(21)=--321=-+=.考点:实数的运算.【2014年题组】 1.(2014年福建福州中考)地球绕太阳公转的速度约是110000千米/时,将110000用科学计数法表示为( )A .41110⨯ B .51.110⨯ C .41.110⨯ D .60.1110⨯ 【答案】B .考点:科学计数法.2.(2014年福建三明中考)13-的相反数是( )A. 13 B. 13-C. 3D. 3-【答案】A .试题分析:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此,13-的相反数是13. 故选A .考点:相反数. 3.(2014年黑龙江大庆中考)下列式子中成立的是( )A. ﹣|﹣5|>4B. ﹣3<|﹣3|C. ﹣|﹣4|=4D. |﹣5.5|<5 【答案】B . 【解析】试题分析:先对每一个选项应用绝对值的性质化简,再进行比较即可: A .﹣|﹣5|=﹣5<4,故A 选项错误; B .|﹣3|=3>﹣3,故B 选项正确; C .﹣|﹣4|=﹣4≠4,故C 选项错误; D .|﹣5.5|=5.5>5,故D 选项错误. 故选B .考点:1.绝对值;2.有理数的大小比较. 4.(2014年湖北宜昌中考)如图,M ,N 两点在数轴上表示的数分别是m ,n ,则下列式子中成立的是( )A. m+n <0B. -m <-nC. m|-|n|>0D. 2+m <2+n 【答案】D .考点:1.数轴;2.不等式的性质.5.(2014年贵州黔南中考)计算()20123-+--的值等于( )A. 1-B. 0C. 1D. 5【答案】A . 【解析】试题分析:针对有理数的乘方,零指数幂,绝对值3个考点分1.别进行计算,然后根据实数的运算法则求得计算结果: ;2.故选A . 考点:实数的运算.6.(2014年黑龙江大庆中考)若x y 0-+=,则y 3x-的值为 .【答案】12.【解析】试题分析:∵x y 0-+=,∴x y 0x 2y 20y 2-==⎧⎧⇒⎨⎨-==⎩⎩.∴y 32311x 222---===. 考点:1.实数的非负性;2.负整数指数幂.7.(2014年吉林省中考)若a <13<b ,且a ,b 为连续正整数,则b2﹣a2= . 【答案】7.【解析】试题分析:∵32<13<42,∴3<4,即a=3,b=4.∴b2﹣a2=42﹣32=7.考点:无理数的估算. 8.(2014年新疆区兵团中考)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.1=,按此规定,1⎤⎦=_____________ 【答案】2.【解析】试题分析:∵9<13<16,∴3<4.∴21-<3,∴1⎤-⎦=2. 考点:1.新定义;2.无理数的估算.9.(2014年甘肃兰州中考)为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.【答案】2015312-. 考点:1.有理数的运算;2.阅读理解型问题.10.(2014年内蒙古赤峰中考)计算:(1018sin 454π-⎛⎫--- ⎪⎝⎭【答案】-3.【解析】 试题分析:(118sin 45184334π-⎛⎫---=+--=--=- ⎪⎝⎭.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.☞考点归纳归纳 1:实数及其分类 基础知识归纳:基本方法归纳:判断一个数是不是有理数,关键是看它是不是有限小数或无限循环小数;判断一个数是不是无理数,关键在于看它是不是无限不循环小数.注意问题归纳:在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;【例11,tan 453π︒中,其中无理数的个数是( )A.2B.3C.4D.5【答案】A .考点:无理数.归纳 2:实数的有关概念 基础知识归纳: 1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称 2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0;正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0. 3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.基本方法归纳:如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立;零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0注意问题归纳:零没有倒数;一个非零的数的绝对值一定是正数【例2】若实数x ,y270x y +-+=,则x y = .【答案】19.考点:非负数.归纳 3:实数的大小比较 基础知识归纳:正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.基本方法归纳:(1)求差比较:设a 、b 是实数,,0b a b a >⇔>-,0b a b a =⇔=-b a b a <⇔<-0(2)求商比较法:设a 、b 是两正实数,;1;1;1b a b ab a b a b a b a <⇔<=⇔=>⇔>(3)平方法:设a 、b 是两负实数,则b a b a <⇔>22.注意问题归纳:实数的大小比较,一般要将其进行化简,并合理选择方法来进行比较.【例3】用“<”号,将1)61(-、0)2(-、2)3(-、22-连接起来______ 【答案】2102)3()61()2(2-<<-<--.【解析】试题分析:先根据有理数的乘方法则依次计算出各个数的值,再根据有理数的大小比较法则比较.∵6)61(1=-,1)2(0=-,9)3(2=-,422-=- ∴2102)3()61()2(2-<<-<--.考点:实数的大小比较.归纳 4:科学计数法与近似数基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.基本方法归纳:利用科学计数法表示一个数,在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)注意问题归纳:利用科学计数法表示数和转化为原数时,要注意数位的变化.【例4】据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,一年的经济损失约为54750000000元,用科学记数法表示这个数为 A .5.475×1011 B .5.475×1010 C .0.5475×1011 D .5475×108 【答案】B .考点:科学计数法. 归纳 5:实数的混合运算基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化简、二次根式等内容,要熟练掌握这些知识.注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错的地方,在解答此类问题时要注意基本性质和运算的顺序.【例5】计算:(114sin4512-⎛⎫-︒-+ ⎪⎝⎭【答案】1.【解析】针对负整数指数幂,特殊角的三角函数值,零指数幂,二次根式化简4个考点分别进行计算,然后根据实数的运算法则求得计算结果:(114sin45124112-⎛⎫-︒-+=--+= ⎪⎝⎭考点:实数的运算.☞1年模拟1.(2015的算术平方根是( ) A .2 B .±2 CD .【答案】C .=2,而2,故选C .考点:算术平方根.2.(2015届山东省潍坊市昌乐县中考一模)在实数π、13、tan60°中,无理数的个A.1 B.2 C.3 D.4 【答案】C.【解析】试题分析:∵tan60°∴在实数π、13、tan60°中,无理数有:和tan60°.故选C.考点:1.无理数;2.特殊角三角函数值.3.(2015届广东省佛山市初中毕业班综合测试)14的算术平方根是()A.-12B.12C.±12D.116【答案】B.考点:算术平方根.4.(2015届江苏省南京市建邺区中考一模)下列计算结果是负数的是()A.3-2 B.3×(-2)C.3-2 D【答案】B.【解析】试题分析:A:3-2=1,计算结果是正数,据此判断即可.B:3×(-2)=-6,计算结果是负数,据此判断即可.C:3-2=19,计算结果是正数,据此判断即可.D是一个正数,据此判断即可.试题解析:∵3-2=1,计算结果是正数,∴选项A不正确;∵3×(-2)=-6,计算结果是负数,∴选项B正确;∵3-2=19,计算结果是正数,∴选项C不正确;D不正确.故选B.考点:实数的运算.5.(2015届江苏省南京市建邺区中考一模)面积为10m2的正方形地毯,它的边长介于()A.2m与3m之间B.3m与4m之间C.4m与5m之间D.5m与6m之间【解析】34,∴其边长在3m与4m之间.故选B.考点:估算无理数的大小.6.(2015届河北省中考模拟二)下列无理数中,不是介于-3与2之间的是()A.BC.D【答案】B.考点:估算无理数的大小.7.(2015届浙江省宁波市江东区4月中考模拟)实数5的相反数是().A.15B.-15C.﹣5 D.5【答案】C.【解析】试题分析:∵符号相反,绝对值相等的两个数互为相反数,∴5的相反数是﹣5.故选C.考点:实数的性质.8.(2015届浙江省宁波市江东区4月中考模拟)下列四个数中,值最小的数是().A.tan45°BC.πD.83【答案】A.【解析】试题分析:tan45°=1,根据实数比较大小的方法,可得,183<π,所以tan45°<<83<π,因此四个数中,值最小的数是tan45°.故选A.考点:1.实数大小比较;2.特殊角的三角函数值.9.(2015届四川省成都市外国语学校中考直升模拟)已知直角三角形两边x、y的长满足|x2-4|+,则第三边长为.【答案】、考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理;4.分类讨论. 10.(2015届山东省济南市平阴县中考二模)计算:2-1+2cos30°-tan60°-(π+)0= .【答案】-12.【解析】试题分析:原式=1212+-=-12.故答案为:-12.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值. 11.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)的算术平方根为 . 【答案】2.【解析】 试题分析:∵4=2,2的算术平方根是2,∴4的算术平方根为2.故答案为:2.考点:算术平方根.12.(2015届北京市平谷区中考二模)计算:()1012sin 60133π-⎛⎫--︒-+- ⎪⎝⎭.【答案】-3.【解析】试题分析:分别进行负整数次幂、特殊角的三角函数值、绝对值的化简、零指数幂,然后按照实数的运算法则计算即可.试题解析:原式=3211--+-+=3--+3-.考点:实数的运算.13.(2015届安徽省安庆市中考二模)计算:﹣32+.【答案】-9.考点:1.实数的运算;2.特殊角的三角函数值.14.(2015届广东省深圳市龙华新区中考二模)计算:(-12)-1+(π)0-3tan30°【答案】-1.【解析】试题分析:原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.试题解析:原式=-1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.15.(2015届湖北省黄石市6月中考模拟)计算:﹣2sin30°﹣(﹣13)﹣2+﹣π)0(﹣1)2012.【答案】-6.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.。

实数知识点总结北师版

实数知识点总结北师版

实数知识点总结北师版一、实数的引入1、自然数、整数、有理数2、无理数的产生3、实数的定义4、实数集的特征二、实数的运算1、实数的加法2、实数的减法3、实数的乘法4、实数的除法5、实数的乘方和开方6、实数的四则混合运算7、实数的运算规律三、实数的性质1、实数的比较大小2、实数的绝对值3、实数的相反数4、实数的倒数5、实数的乘法性质6、实数的除法性质7、实数的分配律8、实数的乘方和开方的性质9、实数的整除性质四、实数的应用1、实数在代数中的应用2、实数在几何中的应用五、实数的应用题1、实数的应用题2、实数的解决问题六、实数的综合题1、实数的应用综合题2、实数的综合运用七、实数的总结1、实数的知识要点2、实数的学习方法3、实数的举一反三4、实数的拓展应用八、实数的反思1、实数的关系2、实数的启示3、实数的思考4、实数的未来实数的引入自然数、整数、有理数自然数N(1,2,3……)整数Z(……-3,-2,-1,0,1,2,3……)有理数Q(可写成分数的数)无理数I(无限不循环小数)无理数的产生“一米的直角边长1”的对角线长是多少?实数的定义实数的定义实数集的特征定理实数的运算实数的加法定理:加法封闭律,结合律,交换律。

实数的减法减法封闭律,结合律,交换律。

实数的乘法乘法封闭律,结合律,交换律。

实数的除法除法封闭律,结合律,交换律。

实数的乘方和开方分配律实数的四则混合运算实数的运算规律实数的性质实数的比较大小实数的绝对值实数的相反数实数的倒数实数的乘法性质实数的除法性质实数的分配律实数的乘方和开方的性质实数的整除性质实数的应用实数在代数中的应用实数在几何中的应用实数的应用题实数的应用题实数的解决问题实数的综合题实数的应用综合题实数的综合运用实数的总结实数的知识要点实数的学习方法实数的举一反三实数的拓展应用实数的反思实数的关系实数的启示实数的思考实数的未来。

北师大版初二上册数学期中考试知识点:实数

北师大版初二上册数学期中考试知识点:实数

北师大版初二上册数学期中考试知识点:实数学好知识就需求往常的积聚。

知识积聚越多,掌握越熟练,查字典数学网编辑了北师大版初二上册数学期中考试知识点:实数,欢迎参考!
一、实数的有关概念
1、在理数:有限不循环小数叫做在理数,这说明在理数有两个基本特征:一是小数位数有限多,二是不循环。

2、在理数的表现方式
在初中阶段,在理数的表现方式有几下三种:
①开方开不尽而失掉的数,如、、等
②含有π的数,如π、等
③有限不循环的小数,如1.1010010001······(每二个1之间依次多一个0)
二、实数的分类
有理数、在理数统称实数;它可以按以下两种方式分类
实数或实数
三、实数的重要性质
1、有理数范围内的一些定义,概念和性质在实数范围内依然适用,如相对值、相反数、倒数等。

2、两个实数大小的比拟;正数大于0;0大小一切正数;二个负实数,相对值大的反而小
3、在实数范围内,加、减、乘、除(除数不能为0)、乘方五种运算疏通无阻,在开方运算中,正实数和0总能停止开方运算,负实数只能开立方,
不能开平方,
4、在有理数范围内的运算顺序和运算律在实数范围内依然适用。

四、实数和数轴的关系
实数和数轴上的点存在着逐一对应关系,即:任何一个实数都可以用数轴上的一个点表示,反之,数轴上的任何一个点都表示一个实数。

因此,我们不但可以将一个有理数用数轴上的一个点表示,同时,也可以将一个在理数用数轴上的点表示出来。

经过对北师大版初二上册数学期中考试知识点:实数的学习,能否曾经掌握了本文知识点,更多参考资料尽在查字典数学网!。

实数复习指南及师范大学数学学习要点总结

实数复习指南及师范大学数学学习要点总结

实数复习指南及师范大学数学学习要点总结实数复习是数学学习中的一个重要环节,尤其是在师范大学(简称“师大”)的数学课程中。

实数包括有理数和无理数,其中有理数可以进一步分为整数、分数等,而无理数则包括开方开不尽的数、圆周率π、特定结构的数(如无限不循环小数)等。

以下是一些实数复习的要点和建议,结合师范大学的数学教育特点进行归纳:一、实数的基本概念1.实数的定义:实数是可以表示在数轴上的数,包括有理数和无理数。

2.有理数:能表示为两个整数的比的数(分母不为0),如整数、分数等。

3.无理数:无限不循环小数,如π、e(自然对数的底数)、开方开不尽的数(如√2)等。

二、实数的性质1.实数集的可加性、可乘性:实数集在加法和乘法运算下是封闭的,即两个实数的和与积仍然是实数。

2.实数集的有序性:实数集可以按照大小进行排序,且满足传递性、三歧性等性质。

3.实数集的完备性:实数集是一个完备的阿基米德域,具有极限运算的性质。

三、实数的运算1.加减乘除:实数的加减乘除运算遵循基本的数学规则,但需要注意分母不能为0,除数不能为0等特殊情况。

2.开方运算:包括平方根、立方根等,需要注意开方运算的结果可能是正数、负数或无解(对于负数开偶数次方根)。

3.绝对值运算:表示一个数到0的距离,对于任何实数a,其绝对值|a|都是非负的。

四、实数与数学分析在师范大学的数学课程中,实数往往与数学分析紧密相连。

数学分析是研究实数、函数及其极限、微分、积分等概念的数学分支。

以下是一些与实数相关的数学分析要点:1.极限理论:实数集上的极限理论是数学分析的基础,它允许我们研究函数在特定点或无穷远处的行为。

2.连续函数:在实数集上,连续函数是一类重要的函数,它们具有介值性、最值性等良好性质。

3.微分与积分:微分和积分是数学分析中的两大基本运算,它们与实数的运算密切相关,并广泛应用于各个领域。

五、复习建议1.理解基本概念:首先要深入理解实数的基本概念和性质,这是后续学习的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题01 实数的有关概念及运算知识点名师点晴实数的分类1.有理数会根据有限小数和无限循环小数判定一个数是有理数2.无理数会识别无理数,并在数轴上表示一个无理数实数的有关概念1.相反数、倒数、绝对值会求一个实数的相反数、倒数和绝对值2.科学计数法、近似数掌握用科学计数法表示一个较大的数和较小的数3.实数的非负性利用实数的非负性解决一些实际问题实数的运算和大小比较1.实数的估算求一个无理数的范围2.实数的大小比较理解实数的大小比较的方法3.实数的运算掌握实数的混合运算☞2年中考【2015年题组】1.(2015512)A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间【答案】C.考点:估算无理数的大小.2.(2015常州)已知a=22,b=33,c=55,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【答案】A.考点:实数大小比较.3.(2015泰州)下列4个数:9,22 7,π,()03,其中无理数是()A.9B.227C.πD.()03【答案】C.【解析】试题分析:π是无理数,故选C.考点:1.无理数;2.零指数幂.4.(2015资阳)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数35-的点P应落在线段()A.AO上B.OB上C.BC上D.CD上【答案】B.【解析】试题分析:∵25<3,∴0<35-<1,故表示数35-的点P应落在线段OB上.故选B.考点:1.估算无理数的大小;2.实数与数轴.5.(2015广元)当01x<<时,x、1x、2x的大小顺序是()A.21x xx<<B.21x xx<<C.21x xx<<D.21x xx<<【答案】C.【解析】试题分析:∵01x<<,令12x=,那么214x=,14x=,∴21x xx<<.故选C.考点:实数大小比较.6.(20155210a b a b+++-+=,则()2015b a-=()A .﹣1B .1C .20155 D .20155-【答案】A . 【解析】试题分析:∵5210a b a b +++-+=,∴⎩⎨⎧=+-=++01205b a b a ,解得:⎩⎨⎧-=-=32b a ,则()20152015321b a -=-+=-().故选A .考点:1.解二元一次方程组;2.非负数的性质.7.(2015武汉)在实数﹣3,0,5,3中,最小的实数是( ) A .﹣3 B .0 C .5 D .3 【答案】A .考点:实数大小比较. 8.(2015荆门)64的立方根是( ) A .4 B .±4 C .8 D .±8 【答案】A . 【解析】试题分析:∵4的立方等于64,∴64的立方根等于4.故选A . 考点:立方根. 9.(2015北京市)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是( )A .aB .bC .cD .d 【答案】A . 【解析】试题分析:根据图示,可得:3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a .故选A . 考点:实数大小比较.10.(2015河北省)在数轴上标注了四段范围,如图,则表示8的点落在( )A .段①B .段②C .段③D .段④ 【答案】C .考点:1.估算无理数的大小;2.实数与数轴.11.(2015六盘水)如图,表示7的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C【答案】A.【解析】试题分析:∵6.25<7<9,∴2.5<7<3,则表示7的点在数轴上表示时,所在C和D 两个字母之间.故选A.考点:1.估算无理数的大小;2.实数与数轴.12.(2015通辽)实数tan45°38,0,35π-9,13-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),其中无理数的个数是()A.4 B.2 C.1 D.3【答案】D.【解析】试题分析:在实数tan45°38,0,35π-913-,sin60°,0.3131131113…(相邻两个3之间依次多一个1)中,无理数有:35π-,sin60°,0.3131131113…(相邻两个3之间依次多一个1),共3个,故选D.考点:无理数.13.(2015淄博)已知21xy=⎧⎨=⎩是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则2m n-的平方根为()A.±2 B2C.2±D.2 【答案】A.考点:1.二元一次方程组的解;2.平方根;3.综合题.14.(201551-58(填“>”、“<”或“=”).【答案】<. 【解析】51-为黄金数,约等于0.618,50.6258=,显然前者小于后者.或者作差法:515459808108----==<,所以,前者小于后者.故答案为:<.考点:1.实数大小比较;2.估算无理数的大小.15.(2015资阳)已知:22(6)230a b b +--=,则224b b a --的值为 . 【答案】12.【解析】试题分析:∵22(6)230a b b ++--=,∴60a +=,2230b b --=,解得,6a =-,223b b -=,可得2246b b -=,则224b b a --=6(6)--=12,故答案为:12.考点:1.非负数的性质:算术平方根;2.非负数的性质:偶次方. 16.(2015自贡)若两个连续整数x 、y 满足y x <+<15,则x+y 的值是 .【答案】7.【解析】试题分析:∵25<3,∴3<51+<4,∴x=3,y=4,∴x+y=7,故答案为:7. 考点:估算无理数的大小.17.(2015巴中)计算:01123(2015)2sin 60()3π----++o . 【答案】4.【解析】试题分析:根据绝对值、零指数幂、负整数指数幂以及特殊角的三角函数值进行计算即可.试题解析:原式=323123--+=1+3=4.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.18.(2015龙岩)计算:0312201522sin 30893-+-+-⨯o .【答案】0.考点:1.实数的运算;2.零指数幂;3.特殊角的三角函数值. 19.(2015临沂)计算:(321)(321)+--+. 【答案】22.【解析】试题分析:先根据平方差公式展开后,再根据完全平方公式展开后合并即可.试题解析:解:原式=[3(21)+-][3(21)--]=22(3)(21)--3(2221)=--+32221=-+-22=.考点:实数的运算.【2014年题组】 1.(2014年福建福州中考)地球绕太阳公转的速度约是110000千米/时,将110000用科学计数法表示为( )A .41110⨯ B .51.110⨯ C .41.110⨯ D .60.1110⨯ 【答案】B .考点:科学计数法.2.(2014年福建三明中考)13-的相反数是( )A. 13 B.13-C. 3D. 3-【答案】A.试题分析:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0. 因此,13-的相反数是13. 故选A.考点:相反数.3.(2014年黑龙江大庆中考)下列式子中成立的是()A. ﹣|﹣5|>4B. ﹣3<|﹣3|C. ﹣|﹣4|=4D. |﹣5.5|<5【答案】B.【解析】试题分析:先对每一个选项应用绝对值的性质化简,再进行比较即可:A.﹣|﹣5|=﹣5<4,故A选项错误;B.|﹣3|=3>﹣3,故B选项正确;C.﹣|﹣4|=﹣4≠4,故C选项错误;D.|﹣5.5|=5.5>5,故D选项错误.故选B.考点:1.绝对值;2.有理数的大小比较.4.(2014年湖北宜昌中考)如图,M,N两点在数轴上表示的数分别是m,n,则下列式子中成立的是()A. m+n<0B. -m<-nC. m|-|n|>0D. 2+m<2+n【答案】D.考点:1.数轴;2.不等式的性质.5.(2014年贵州黔南中考)计算()20123-+--的值等于()A. 1-B. 0C. 1D. 5【答案】A.【解析】试题分析:针对有理数的乘方,零指数幂,绝对值3个考点分1.别进行计算,然后根据实数的运算法则求得计算结果:;2.故选A.考点:实数的运算.6.(2014年黑龙江大庆中考)若x y y20-+-=,则y3x-的值为.【答案】1 2.【解析】试题分析:∵x y y20-+-=,∴x y0x2y20y2-==⎧⎧⇒⎨⎨-==⎩⎩.∴y32311x222---===.考点:1.实数的非负性;2.负整数指数幂.7.(2014年吉林省中考)若a<13<b,且a,b为连续正整数,则b2﹣a2= .【答案】7.【解析】试题分析:∵32<13<42,∴3<13<4,即a=3,b=4.∴b2﹣a2=42﹣32=7.考点:无理数的估算.8.(2014年新疆区兵团中考)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.31⎡⎤=⎣⎦,按此规定,131⎡⎤-⎣⎦=_____________【答案】2.【解析】试题分析:∵9<13<16,∴3<13<4.∴2<131-<3,∴131⎡⎤-⎣⎦=2.考点:1.新定义;2.无理数的估算.9.(2014年甘肃兰州中考)为了求1+2+22+23+...+2100的值,可令S=1+2+22+23+ (2100)则2S=2+22+23+24+…+2101,因此2S﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是.【答案】2015312-.考点:1.有理数的运算;2.阅读理解型问题.10.(2014年内蒙古赤峰中考)计算:(113328sin454π-⎛⎫--- ⎪⎝⎭【答案】-3.【解析】试题分析:()1123328sin 451428434242342π-⎛⎫-+--=+-⨯-=---=- ⎪⎝⎭.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.☞考点归纳归纳 1:实数及其分类 基础知识归纳:基本方法归纳:判断一个数是不是有理数,关键是看它是不是有限小数或无限循环小数;判断一个数是不是无理数,关键在于看它是不是无限不循环小数.注意问题归纳:在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类:(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等;(3)有特定结构的数,如0.1010010001…等;【例1313,,,8,0,tan 453π︒中,其中无理数的个数是( )A.2B.3C.4D.5【答案】A .考点:无理数.归纳 2:实数的有关概念 基础知识归纳: 1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称 2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0;正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0. 3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立.倒数等于本身的数是1和-1.基本方法归纳:如果a 与b 互为相反数,则有a+b=0,a=-b ,反之亦成立;零的绝对值是它本身,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0注意问题归纳:零没有倒数;一个非零的数的绝对值一定是正数【例2】若实数x ,y 满足2270x x y ++-+=,则x y = .【答案】19.考点:非负数.归纳 3:实数的大小比较 基础知识归纳:正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小.基本方法归纳:(1)求差比较:设a 、b 是实数,,0b a b a >⇔>-,0b a b a =⇔=-b a b a <⇔<-0(2)求商比较法:设a 、b 是两正实数,;1;1;1b a b ab a b a b a b a <⇔<=⇔=>⇔>(3)平方法:设a 、b 是两负实数,则b a b a <⇔>22.注意问题归纳:实数的大小比较,一般要将其进行化简,并合理选择方法来进行比较.【例3】用“<”号,将1)61(-、0)2(-、2)3(-、22-连接起来______ 【答案】2102)3()61()2(2-<<-<--.【解析】试题分析:先根据有理数的乘方法则依次计算出各个数的值,再根据有理数的大小比较法则比较.∵6)61(1=-,1)2(0=-,9)3(2=-,422-=- ∴2102)3()61()2(2-<<-<--.考点:实数的大小比较.归纳 4:科学计数法与近似数基础知识归纳:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.基本方法归纳:利用科学计数法表示一个数,在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)注意问题归纳:利用科学计数法表示数和转化为原数时,要注意数位的变化.【例4】据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,一年的经济损失约为54750000000元,用科学记数法表示这个数为 A .5.475×1011 B .5.475×1010 C .0.5475×1011 D .5475×108 【答案】B .考点:科学计数法. 归纳 5:实数的混合运算基础知识归纳:实数混合运算时,将运算分为三级,加减为一级运算,乘除为二级运算,乘方为三级运算.同级运算时,从左到右依次进行;不是同级的混合运算,先算乘方,再算乘除,而后才算加减;运算中如有括号时,先做括号内的运算,按小括号、中括号、大括号的顺序进行基本方法归纳:实数的混合运算经常涉及到零指数幂、负整数指数幂、特殊角的三角函数值、绝对值的化简、二次根式等内容,要熟练掌握这些知识.注意问题归纳:实数的混合运算经常以选择、填空和解答的形式出现,是中考是热点,也是比较容易出错的地方,在解答此类问题时要注意基本性质和运算的顺序.【例5】计算:(114sin451282-⎛⎫-︒-+ ⎪⎝⎭【答案】1.【解析】针对负整数指数幂,特殊角的三角函数值,零指数幂,二次根式化简4个考点分别进行计算,然后根据实数的运算法则求得计算结果:(1124sin451282412212-⎛⎫-︒-+=--+= ⎪⎝⎭考点:实数的运算.☞1年模拟1.(20154的算术平方根是( ) A .2 B .±2 C 2 D .±2 【答案】C .4=2,而2242,故选C .考点:算术平方根.2.(2015届山东省潍坊市昌乐县中考一模)在实数π、132、tan60°中,无理数的个A .1B .2C .3D .4 【答案】C . 【解析】试题分析:∵tan60°=3,∴在实数π、13、2、tan60°中,无理数有: ,2和tan60°.故选C .考点:1.无理数;2.特殊角三角函数值.3.(2015届广东省佛山市初中毕业班综合测试)14的算术平方根是( ) A .-12 B .12 C .±12 D .116【答案】B .考点:算术平方根. 4.(2015届江苏省南京市建邺区中考一模)下列计算结果是负数的是( ) A .3-2 B .3×(-2) C .3-2 D 3 【答案】B . 【解析】试题分析:A :3-2=1,计算结果是正数,据此判断即可. B :3×(-2)=-6,计算结果是负数,据此判断即可.C :3-2=19,计算结果是正数,据此判断即可.D 3是一个正数,据此判断即可.试题解析:∵3-2=1,计算结果是正数,∴选项A 不正确; ∵3×(-2)=-6,计算结果是负数,∴选项B 正确;∵3-2=19,计算结果是正数,∴选项C 不正确;3D 不正确.故选B .考点:实数的运算. 5.(2015届江苏省南京市建邺区中考一模)面积为10m2的正方形地毯,它的边长介于( ) A .2m 与3m 之间 B .3m 与4m 之间 C .4m 与5m 之间 D .5m 与6m 之间【解析】试题分析:正方形的边长为10,∵9<10<16,∴3<10<4,∴其边长在3m与4m之间.故选B.考点:估算无理数的大小.6.(2015届河北省中考模拟二)下列无理数中,不是介于-3与2之间的是()A.-5B.5C.-3D.3【答案】B.考点:估算无理数的大小.7.(2015届浙江省宁波市江东区4月中考模拟)实数5的相反数是().A.15B.-15C.﹣5 D.5【答案】C.【解析】试题分析:∵符号相反,绝对值相等的两个数互为相反数,∴5的相反数是﹣5.故选C.考点:实数的性质.8.(2015届浙江省宁波市江东区4月中考模拟)下列四个数中,值最小的数是().A.tan45°B3C.πD.8 3【答案】A.【解析】试题分析:tan45°=1,根据实数比较大小的方法,可得,1383<π,所以tan45°<3<83<π,因此四个数中,值最小的数是tan45°.故选A.考点:1.实数大小比较;2.特殊角的三角函数值.9.(2015届四川省成都市外国语学校中考直升模拟)已知直角三角形两边x、y的长满足|x2-4|+256y y-+,则第三边长为.【答案】2、135考点:1.解一元二次方程-因式分解法;2.算术平方根;3.勾股定理;4.分类讨论.10.(2015届山东省济南市平阴县中考二模)计算:2-1+2cos30°-tan60°-(π+3)0= .【答案】-1 2.【解析】试题分析:原式=1323122+⨯--=-12.故答案为:-12.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.11.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)的算术平方根为.【答案】2.【解析】试题分析:∵4=2,2的算术平方根是2,∴4的算术平方根为2.故答案为:2.考点:算术平方根.12.(2015届北京市平谷区中考二模)计算:()10 12sin603133π-⎛⎫--︒+-+-⎪⎝⎭.【答案】-3.【解析】试题分析:分别进行负整数次幂、特殊角的三角函数值、绝对值的化简、零指数幂,然后按照实数的运算法则计算即可.试题解析:原式=3323112--⨯+-+=333--+=3-.考点:实数的运算.13.(2015届安徽省安庆市中考二模)计算:﹣32+.【答案】-9.考点:1.实数的运算;2.特殊角的三角函数值.14.(2015届广东省深圳市龙华新区中考二模)计算:(-12)-1+(π-2015)0-3tan30°+|-3| 【答案】-1.【解析】试题分析:原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.试题解析:原式=-2+1-3×33+3=-1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.15.(2015届湖北省黄石市6月中考模拟)计算:﹣2sin30°﹣(﹣13)﹣2+(2﹣π)0﹣38 +(﹣1)2012.【答案】-6.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.。

相关文档
最新文档