2016-2017学年北京市七年级下学期期末数学试卷
2016-2017学年度北师大版七年级下册数学期末试卷及答案
![2016-2017学年度北师大版七年级下册数学期末试卷及答案](https://img.taocdn.com/s3/m/39c569d94bfe04a1b0717fd5360cba1aa8118cee.png)
2016-2017学年度北师大版七年级下册数学期末试卷及答案2016-2017学年度七年级下册数学期末试卷一、选择题(本大题共6小题,每小题3分,共18分)1.下列各组长度的三条线段能组成三角形的是()A.1cm,2cm,3cmB.1cm,1cm,2cmC.1cm,2cm,2cm;D.1cm,3cm,5cm;2.下面是一位同学做的四道题:①a+a=a;②(xy)=xy;③x•x=x;④(﹣a)÷a=﹣a.其中做对的一道题是()A①.3.下列乘法中,能运用完全平方公式进行运算的是()A.(x+a)(x-a)B.(b+m)(m-b)。
C.(-x-b)(x-b)。
D.(a+b)(-a-b)4.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△XXX的是()A.∠A=∠CB.AD=CBCC.BE=DFD.AD∥BC5.如图,一只蚂蚁以均匀的速度沿台阶A1A2A3A4A5爬行,那么蚂蚁爬行的高度h随时间t 变化的图象大致是()A.tOB.tOC.tOD.t6.将一张正方形纸片按如图1,图2所示的方向对折,然后沿图3中的虚线剪裁得到图4,将图4的纸片展开铺平,再得到的图案是()A.B.C.D.二、填空题(本大题共8小题,每小题3分,共24分)7.计算(2)3=_______88.如图有4个冬季运动会的会标,其中不是轴对称图形的有2个9.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为16.10.已知:a b22,a b=11,则2a2b6311.如图,是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2=90°.12.如图所示,∠XXX∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论是1,2,3,4.13.XXX是叠放在一起的两张长方形卡片,图中有∠1、∠2、∠3,则其中一定相等的是∠2和∠3.14.如果 $a+b+2c+2ac-2bc=0$,求 $xxxxxxxa+b$ 的值。
北京西城初二年级下学期期末考试数学试题 含答案
![北京西城初二年级下学期期末考试数学试题 含答案](https://img.taocdn.com/s3/m/9ce7c9fa69dc5022aaea0062.png)
北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 函数11y x =+中,自变量x 的取值范围是( ).A. x ≠1-B. x ≠1C. x >1-D. x ≥1- 2. 一次函数+3y x =的图象不经过...的象限是( ). A.第一象限 B.第二象限 C.第三象限 D.第四象限4. 如图,矩形ABCD 的对角线AC ,BD 的交点为O ,点E 为BC 边的中点,30OCB ∠=︒,如果OE =2,那么对角线BD 的长为( ).A. 4C. 8D. 105. 如果关于x 的方程220x x k --=有两个相等的实数根,那么以下结论正确的是( ).A. 1k =-B. 1k =C. k >1-D. k >16. 下列命题中,不正确...的是( ). A. 平行四边形的对角线互相平分B. 矩形的对角线互相垂直且平分C. 菱形的对角线互相垂直且平分D. 正方形的对角线相等且互相垂直平分7. 北京市6月某日10个区县的最高气温如下表:(单位:℃)则这10个区县该日最高气温的中位数是( ).A. 32 C. 308. 如图,在Rt△ABC 中,∠ACB =90°,∠ABC =30°,将△ABC绕点C顺时针旋转α角(0°<α<180°)至△A ′B ′C ,使得点A ′恰好落在AB 边上,则α等于( ).A. 150°B. 90°C. 60°D. 30°9. 教育部发布的统计数据显示,近年来越来越多的出国留学人员学成后选择回国发展,留学回国与出国留学人数“逆差”逐渐缩小.2014年各类留学回国人员总数为万人,而2016年各类留学回国人员总数为万人.如果设2014年到2016年各类留学回国人员总数的年平均增长率为x,那么根据题意可列出关于x的方程为().A. 36.48(1)=43.25xx++ B. 36.48(12)=43.25C. 2x36.48(1)=43.25-36.48(1)=43.25+ D. 2x路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是().二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 如果关于x的方程2320-++=有一个根为0,那么m的值等于 .x x m12. 如果平行四边形的一条边长为4cm,这条边上的高为3cm,那么这个平行四边形的面积等于2cm.13. 在平面直角坐标系xOy中,直线24=-+与x轴的交点坐标为,y x与y轴的交点坐标为,与坐标轴所围成的三角形的面积等于 .14.如图,在Y ABCD中,CH⊥AD于点H,CH与BD的交点为E.如果1=70ADC∠∠,那么=∠°.ABC∠︒,=3215.如图,函数2=-的图象交于点P,那y kx=+与函数1y x b么点P的坐标为_______,关于x的不等式12->+的解集kx x b是.16. 写出一个一次函数的解析式,满足以下两个条件:①y随x的增大而增大;②它的图象经过坐标为(0,2)-的点. 你写出的解析式为 .17. 如图,正方形ABCD的边长为2cm,正方形AEFG的边长为1cm.正方形AEFG绕点A旋转的过程中,线段CF的长的最小值为_______cm.18. 利用勾股定理可以在数轴上画出表示图,并保留画图痕迹:第一步:(计算)=,使其中a,b都为正整数.你取的正整数a=____,b= ;以第一步中你所取的正整数a,b为两条直第二步:∠︒,则斜边OFOEF=90请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)M,并描述第三步:第三步...的画图步骤:.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. 解方程:2610--=.x x20.如图,在四边形ABCD中,AD21.《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短.横之不出四尺,纵之不出二尺,斜之适出注.问户斜几何.注释:横放,竿比门宽长出四尺;竖放,竿比门高长出二尺;斜放恰好能出去.解决下列问题:(1)示意图中,线段CE的长为尺,线段DF的长为尺;(2)求户斜多长.22. 2016年9月开始,初二年级的同学们陆续到北京农业职业技术学院进行了为期一周的学农教育活动.丰富的课程开阔了同学们的视野,其中“酸奶的制作”课程深受同学们喜爱.学农1班和学农2班的同学们经历“煮奶—降温—发酵—后熟”四步,制作了“凝固型”酸奶.现每班随机抽取10杯酸奶做样本(每杯100克),记录制作时所添加蔗糖克数如表1、表2所示.表 1 学农1班所抽取酸奶添加蔗糖克数统计表(单位:克)表 2 学农2班所抽取酸奶添加蔗糖克数统计表(单位:克)据研究发现,若蔗糖含量在5%~8%,即100克酸奶中,含糖5~8克的酸奶口感最佳.两班所抽取酸奶的相关统计数据如表3所示.表3 两班所抽取酸奶的统计数据表根据以上材料回答问题:(1)表3中,x=:(2)根据以上信息,你认为哪个学农班的同学制作的酸奶整体..口感较优?请说明理由.23. (1)阅读以下内容并回答问题:小雯用这个方法进行了尝试,点(1,2)A -向上平移3个单位后的对应点A '的坐标为 ,过点A '的直线的解析式为 .(2)小雯自己又提出了一个新问题请全班同学一起解答和检验此方法,请你也试试看:将直线2y x =-向右平移1个单位,平移后直线的解析式为 ,另外直接将直线2y x =-向 (填“上”或“下”)平移 个单位也能得到这条直线.(3)请你继续利用这个方法解决问题:对于平面直角坐标系xOy 内的图形M ,将图形M 上所有点都向上平移3个单位,再向右平移1个单位,我们把这个过程称为图形M 的一次..“斜平移”. 求将直线2y x =-进行两次..“斜平移”后得到的直线的解析式.(3)解:24.(1)画图-连线-写依据:先分别完成以下画图..(不要求尺规作图),再与判断四边形DEMN形状的相应结论连线..,并写出判定依据(只将最后一步判定特殊平行..........四边形的依据......填在横线上).①如图1,在矩形ABEN中,D为对角线的交点,过点N画直线NP∥DE,过点E画直线EQ∥DN,NP与EQ的交点为点M,得到四边形DEMN;②如图2,在菱形ABFG中,顺次连接四边AB,BF,FG,GA的中点D,E,M,N,得到四边形DEMN.(2)请从图1、图2的结论中选择一个进行证明.证明:25. 如图所示,在平面直角坐标系x O y中,B,C两点的坐标分别为(4,0)B,(4,4)C,CD⊥y轴于点D,直线l 经过点D.(1)直接写出点D的坐标;(2)作CE⊥直线l于点E,将直线CE绕点C逆时针旋转45°,交直线l于点F,连接BF.①依题意补全图形;②通过观察、测量,同学们得到了关于直线BF与直线l的位置关系的猜想,请写出你的猜想;③通过思考、讨论,同学们形成了证明该猜想的几种思路:思路1:作CM⊥CF,交直线l于点M,可证△CBF≌△CDM,进而可以得出45∠=︒,从而证明结论.CFB思路2:作BN⊥CE,交直线CE于点N,可证△BCN≌△CDE,进而证明四边形BFEN为矩形,从而证明结论.……请你参考上面的思路完成证明过程.(一种方法即可)解:(1)点D的坐标为.(2)①补全图形.②直线BF与直线l的位置关系是.③证明:北京市西城区2016-2017学年度第二学期期末试卷八 年 级 数 学 附 加 题试卷满分:20分一、填空题(本题6分)1. 如图,在平面直角坐标系xOy 中,点1(2,2)A 在直线y x =上,过点1A 作11A B ∥y 轴,交直线12y x =于点1B ,以1A 为直角顶点,11A B 为直角边,在11A B 的右侧作等腰直角三角形111A B C ;再过点1C 作22A B ∥y轴,分别交直线y x =和12y x =于2A ,2B 两点,以2A 为直角顶点,22A B 为直角边,在22A B 的右侧作等腰直角三角形222A B C ,…,按此规律进行下去,点1C 的横坐标为 ,点2C 的横坐标为 ,点 n C 的横坐标为 .(用含n 的式子表示,n 为正整数)二、操作题(本题6分)2.如图,在由边长都为1个单位长度的小正方形组成的66⨯正方形网格中,点A ,B ,P 都在格点上.请画出以AB 为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件: 条件1:点P 到四边形的两个顶点的距离相等; 条件2:点P 在四边形的内部或其边上; 条件3:四边形至少一组对边平行.(1)在图①中画出符合条件的一个Y ABCD , 使点P 在所画四边形的内部; (2)在图②中画出符合条件的一个四边形ABCD ,使点P 在所画四边形的边上;(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.三、解答题(本题8分)3.如图,在平面直角坐标系xOy中,动点A(a,0)在x轴的正半轴上,定点B(m, n)在第一象限内(m<2≤a).在△OAB外作正方形ABCD和正方形OBEF,连接FD,点M为线段FD的中点.作BB1⊥x轴于点B1,作FF1⊥x轴于点F1.(1)填空:由△≌△,及B(m, n)可得点F的坐标为,同理可得点D的坐标为;(说明:点F,点D的坐标用含m,n,a的式子表示)(2)直接利用(1)的结论解决下列问题:①当点A在x轴的正半轴上指定范围内运动时,点M总落在一个函数图象上,求该函数的解析式(不必写出自变量x的取值范围);②当点A在x轴的正半轴上运动且满足2≤a≤8时,求点M所经过的路径的长.解:①②北京市西城区2016-2017学年度第二学期期末试卷八年级数学参考答案及评分标准一、选择题(本题共30分,每小题3分)题号12345678910答案A D B C A B A C C D二、填空题(本题共26分,其中第18题5分,其余每小题3分)11. 2-. 12. 12. 13. (2,0),(0,4),4.(各1分)14. 60. 15.(1,2)-(2分),x<1(1分).16. 答案不唯一,如2=-等.(只满足一个条件的y x得2分)17. 2.18. 第一步:a= 4 ,b= 2 (或a= 2 ,b= 4 );…………2分第二步:如图1. ……………………………………… 3分第三步:如图1,在数轴上画出点M. ………………………………………………………4分第三步的画图步骤:以原点O为圆心,OF长为半径作弧,弧与数轴正半轴的交点即为点M. ………………………………………………………………………………………… 5分说明:其他正确图形相应给分,如2OE =,4EF =.三、解答题(本题共44分,第19、20、22题各5分,第21、23、24题各7分,第25题8分)19. (本题5分) 解:1a =,6b =-,1c =-. …………………………………………………………………… 1分224(6)41(1)40b ac ∆=-=--⨯⨯-=>0. …………………………………………………2分 方程有两个不相等的实数根x = ……………………………………………………………………… 3分(6)6322--±±===所以原方程的根为13x =+,23x =-………………………………………… 5分20.(本题5分)解:(1)如图2.∵ △ABC 中,AB=10,BC=6,AC =8,∴222AC BC AB. ……………………… 1分+=∴△ABC是直角三角形,=90∠︒.……2分ACB(2)∵AD==90∠∠︒…………………………………………………………… 3分CAD ACB∵在Rt△ACD中,=90∠︒,AC=AD=8,CAD∴CD=…………………………………………………………… 4分=………… 5分21.(本题7分)解:(1)4,2.…………………………………………………………………………………2分(2)设户斜x尺.…………………………………… 3分则图3中BD=x,BC BE CE x=-=-,(x>4)4=-=-.(x>2)2CD CF DF x又在Rt△BCD中,=90∠︒,BCD由勾股定理得222BC CD BD.+=所以222(4)+(2)=x x x--.………………… 4分整理,得212200x x-+=.因式分解,得(10)(2)=0x x--.解得110x=,22x=.……………………………………………………………… 5分因为x> 4 且x>2,所以2x=舍去,10x=.…………………………………… 6分答:户斜为10尺.…………………………………………………………………… 7分22.(本题5分)解:(1)6.…………………………………………………………………………………………1分(2)学农2班的同学制作的酸奶整体口感较优.………………………………………… 2分理由如下:所抽取的样本中,两个学农班酸奶口感最佳的杯数一样,每杯酸奶中所添加蔗糖克数的平均值基本相同,学农2班的方差较小,更为稳定.……………………5分23.(本题7分)解:(1)(1,1),y x=-+.…………………………………………………………………… 2分23(2)22=-+,上,2.(各1y x 分)…………………………………………………………5分(3)直线2=-上的点(1,2)A-进行一次“斜平移”后的对应点的坐标为y x(2,1),进行两次“斜平移”后的对应点的坐标为(3,4).设经过两次“斜平移”后得到的直线的解析式为2=-+.y x b 将(3,4)点的坐标代入,得234-⨯+=.b解得10b=.所以两次“斜平移”后得到的直线的解析式为210=-+.y x……………………… 7分说明:其他正确解法相应给分.24.(本题7分)解:(1)见图4,图5,连线、依据略. ……………………………5分(两个画图各1分,连线1分,两个依据各1分,所写依据的答案不唯一)(2)①如图4.∵ NP ∥DE ,EQ ∥DN ,NP 与EQ 的交点为点M ,∴ 四边形DEMN 为平行四边形.∵ D 为矩形ABEN 对角线的交点,∴ AE=BN ,12DE AE =,12DN BN =.∴ DE= DN .∴ 平行四边形DEMN 是菱形.……………………………………………………… 7分②如图6,连接AF ,BG ,记交点为H .∵ D ,N 两点分别为AB ,GA 边的中点,∴ DN ∥BG ,12DN BG =.同理,EM ∥BG ,12EM BG =,DE ∥AF ,12DE AF =.∴ DN ∥EM ,DN =EM .∴ 四边形DEMN 为平行四边形.∵ 四边形ABFG 是菱形,∴ AF ⊥BG .∴90∠=︒.AHB∴118090∠=︒-∠=︒.AHB∴2180190∠=︒-∠=︒.∴平行四边形DEMN是矩形. ………………………………………………………7分25.(本题8分)解:(1)(0,4).……………………………………………………………………………………1分(2)①补全图形见图7.……………………………………………………………………… 2分②BF⊥直线l.…………………………………………………………………………… 3分③法1:证明:如图8,作CM⊥CF,交直线l于点M.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC DC OD∵CE⊥直线l,CM⊥CF,45∠=︒,ECF可得△CEF,△CEM 为等腰直角三角形,=45∠∠=︒,CMD CFECF=CM.①∵=90∠︒-∠,DCM DCFBCF DCF∠︒-∠,=90∴=∠∠.②BCF DCM又∵CB=CD,③∴△CBF≌△CDM.…………………………………………………………6分∴∠∠=︒.……………………………………………………7分CFB CMD=45∴=90∠∠+∠=︒.BFE CFB CFE∴BF⊥直线l.………………………………………………………………8分法2:证明:如图9,作BN⊥CE,交直线CE于点N.∵(4,0)D,C,(0,4)B,(4,4)∴==4BCD∠=︒.==,90OB BC CD OD∵CE⊥直线l,BN⊥CE,∴90BNC CED∠=∠=︒.①∴1390∠+∠=︒.∠+∠=︒,2390∴12∠=∠.②又∵CB=DC,③∴△BCN≌△CDE.………………6分∴BN= CE.又∵45∠=︒,ECF可得△CEF为等腰直角三角形,EF = CE.∴BN= EF.又∵180BNE NED∠+∠=︒,∴BN∥FE.∴四边形BFEN为平行四边形.又∵90CEF∠=︒,∴平行四边形BFEN为矩形.…………………………………………………7分∴=90BFE∠︒.∴BF⊥直线l.……………………………………………………………… 8分北京市西城区2016-2017学年度第二学期期末试卷八年级数学附加题参考答案及评分标准一、填空题(本题6分)1.解:3,92,322n⎛⎫⨯ ⎪⎝⎭.(各2分)二、操作题(本题6分)2. 解:(1)答案不唯一,如:或其他.(2)答案不唯一,如:或其他.(3)说明:每图2分,答案不唯一时,其他正确答案相应给分.三、解答题(本题8分)3.解:(1)如图 1.由△OFF≌1△1BOB ,及B (m, n )可得点F 的坐标为(,)n m -,同理可得点D 的坐标为(,)a n a m +-. (全等1分,两个坐标各1分)…………………3分(2)①设点M 的坐标为(,)M x y .∵ 点M 为线段FD 的中点,(,)F n m -,(,)D a n a m +-,可得点M 的坐标为(,)22a a . …………………………………………………… 5分 ∴ ,2.2a x a y ⎧=⎪⎪⎨⎪=⎪⎩消去a ,得y x =.所以,当点A 在x 轴的正半轴上指定范围内运动时,相应的点M 在运动时总落在直线y x =上,即点M 总落在函数y x =的图象上. ………………………6分②如图2,当点A 在x 轴的正半轴上运动且满足2≤a ≤8时,点A 运动的路径为线段12A A ,其中1(2,0)A ,2(8,0)A ,相应地,点M 所经过的路径为直线y x =上的一条线段12M M ,其中1(1,1)M ,2(4,4)M .……………………………… 7分 而12M M =∴ 点M 所经过的路径的长为……………………………………………8分。
2016-2017学年七年级下数学期末检测题
![2016-2017学年七年级下数学期末检测题](https://img.taocdn.com/s3/m/9e1a1fe4c8d376eeaeaa314c.png)
2016-2017学年七年级下数学期末检测题总分:120分班级:__________ 姓名:__________ 学号:__________ 得分:__________一、选择题(共10小题;共30分)1. 如图,,若,则的度数是 ( )A. B. C. D.2. 在下列图形中,与是同位角的有A. ①,②B. ①,③C. ②,③D. ②,④3. 如图,有一块含有角的直角三角板的两个顶点放在直尺的对边上,如果,那么的度数为A. B. C. D.4. 下列不等式中,是一元一次不等式的为A. B.C. D.5. 在数轴上标注了四段范围,如图,则表示的点落在 ( )A. 段①B. 段②C. 段③D. 段④6. 若点在第二象限,且点到轴、轴的距离分别为,,则点的坐标是 ( )A. B. C. D.7. 在国外留学的叔叔送给聪聪一个新奇的玩具——智能流氓兔.它的新奇之处在于若第一次向正南跳一下,第二次就掉头向正北跳两下,第三次又掉头向正南跳三下……而且每一跳的距离为 .如果流氓兔位于原点处,第一次向正南跳(记轴正半轴方向为正北,个单位为),那么跳完第次后,流氓兔所在位置的坐标为A. B. C. D.8. 若单项式与是同类项,则,的值分别为 ( )A. ,B. ,C. ,D. ,9. 不等式的解集为 ( )A. B. C. D.10. 下列调查中,适宜采用抽样调查方式的是 ( )A. 调查某市中学生每天体育锻炼的时间B. 调查某班学生对“五个重庆”的知晓率C. 调查一架“歼20”隐形战机各零部件的质量D. 调查广州亚运会米决赛参赛运动员兴奋剂的使用情况二、填空题(共6小题;共24分)11. 如图,请填写一个你认为恰当的条件,使.12. 的相反数是,绝对值是 .13. 如图所示的东莞地图,若在图中建立平面直角坐标系,使“虎门”的坐标是“东城”的坐标为.第13题第16题14. 若关于,的二元一次方程组的解满足,则的取值范围为.15. 若方程组的解满足,则的取值范围是.16. 某学校计划开设A、B、C、D 四门校本课程供学生选修,规定每个学生必须并且只能选修其中一门.为了了解学生的选修意向,现随机抽取部分学生进行调查,并将调查结果绘制成如图所示的条形统计图.已知该校学生的人数人,由此估计选修 A 课程的学生有人.三、解答题(共9小题;共66分)17.计算:(1);(218. 解不等式19. 如图,已知,,,经过平移得到的,中任意一点平移后的对应点为.(1)请在图中作出;(2)写出点、、的坐标.-20. 解方程组21. 如图所示,,,求证:.22. 求不等式组的解集,并把它们的解集在数轴上表示出来.23. 如图,,两点为海岸线上的两个观测点.现在,两点同时观测到大海中航行的船只,并得知位于点的东南方向,位于点的西南方向,请问船只的位置可以确定吗?若可以,请在图中画出船只的位置.24. 为了提高学生写好汉字的积极性,某校组织全校学生参加汉字听写比赛,比赛成绩从高到低只分A、B、C、D四个等级.若随机抽取该校部分学生的比赛成绩进行统计分析,并绘制了如下的统计图表:所抽取学生的比赛成绩情况统计表根据图表的信息,回答下列问题:(1)本次抽查的学生共有名;(2)表中和所表示的数分别为:,,并在图中补全条形统计图;(3)若该校共有名学生,请你估计此次汉字听写比赛有多少名学生的成绩达到B级及B级以上?25. 某商场有,两种商品,每件的进价分别为元,元.商场销售件商品和件商品,可获得利润元;销售件商品和件商品,可获得利润元.(1)求,两种商品的销售单价;(2)如果该商场计划最多投入元用于购进,两种商品共件,那么购进种商品的件数应满足怎样的条件?(3)现该商场对,两种商品进行优惠促销,优惠措施如下表所示:如果一次性付款元同时购买,两种商品,求商场获得的最小利润和最大利润.答案第一部分1. A 【解析】,,,.2. B3. C4. A5. C【解析】.6. C 【解析】点在第二象限,它的横坐标为负,纵坐标为正.点到轴、轴的距离分别为,,它的横坐标的绝对值是,纵坐标的绝对值是,点的坐标是.7. C 【解析】用“”表示正南方向,用“”表示正北方向.根据题意,得流氓兔最后所在位置的坐标为.8. A 【解析】有题意可知:解得9. C 【解析】去括号得移项、合并同类项得10. A【解析】被调查对象多,且分布较广,适宜采用抽样调查.第二部分11. 或或等(答案不唯一); 13. 14.【解析】提示:解方程组①②得,,,.可得:,解得:,故答案为:.【解析】提示: .16.【解析】选修A课程的学生人数为(人).第三部分17. (1)(2).18. 去分母,得移项得合并同类项得系数化成得则解集在数轴上表示出来为19. (1)(2),,.20. ①,得②,得④③,得把代入①,得所以是原方程组的解.21. 连接 .,.,..22. 解不等式得解不等式得.解集在数轴上表示为:23. 如图,船只的位置可以确定.因为对于固定的,两点,船只既在射线上,又在射线上,两条射线的交点就是船只的位置.24. (1)【解析】抽查的总人数是:.(2);.补全统计图如右图所示:【解析】,.(3)(名)答:此次汉字听写比赛成绩达到B级及B级以上的学生约有名.25. (1)设,两种商品的销售单价分别为每件元,元.根据题意,得解这个方程组,得答:,两种商品的销售单价分别为每件元,元.(2)设要购进件种商品.根据题意,得解这个不等式,得答:购进种商品的件数至少为件.(3)设购买种商品件,购买种商品件.当打折前一次性购物总金额不超过时,购物总金额为(元).则, .因为,均是正整数,所以时,或时,.当,时,利润为(元);当,时,利润为(元).当打折前一次性购物总金额超过时,购物总金额为(元).则, .因为,均是正整数,所以时,或时,.当,时,利润为(元);当,时,利润为(元).综上所述,商家可获得的最小利润是元,最大利润是元.。
数学七年级下学期《期末测试卷》含答案
![数学七年级下学期《期末测试卷》含答案](https://img.taocdn.com/s3/m/2061c08c25c52cc58ad6be07.png)
人 教 版 数 学 七 年 级 下 学 期期 末 测 试 卷学校________ 班级________ 姓名________ 成绩________本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A. 2- B. 0 C. 1 D. 382. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生视力情况,采用抽样调查的方式4. 如图,将△ABC 平移后得到△DEF ,若∠A =44°,∠EGC =70°,则∠ACB 的度数是( )A. 26°B. 44°C. 46°D. 66°5. 若(m –2018)x |m|–2017+(n+4)y |n|–3=2018是关于x ,y 的二元一次方程,则( )A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=46. 对于任意实数m,点P(m-2,9-3m)不可能()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -119. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤010. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.) 13. 3-7的相反数是____;|2-3|=____.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤) 19. (1)2(32)32--(2)25{342x y x y -=+= 20. 解不等式组323(1){12123x x x x x +≥---+->-,并把解集数轴上表示出来. 21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?22. 如图,已知BC∥GE,AF∥DE,∠1=50°.(1)求∠AFG的度数;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACB的度数.23. 已知在平面直角坐标系中有A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A, B, C 的位置. (2)画出ABC关于直线x=-1对称的111A B C∆,并写出111A B C∆各点坐标. (3)在y轴上是否存在点P,使以A,B, P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.参考答案本试卷满分为150分,考试时间为120分钟.卷Ⅰ选择题一、选择题(本大题共12个小题每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列实数中,最小的数是( ) A.B. 0C. 1D. 【答案】A【解析】【分析】根据各项数字的大小排列顺序,找出最小的数即可.【详解】由题意得:01<<<最小的数为:故选A.【点睛】本题考查了实数大小的比较,解题的关键是理解正数大于0,0大于负数的知识.2. 若x y >,则下列式子错误..的是( ). A. 33x y ->- B. 33x y > C. 22x y -<- D. 33x y ->- 【答案】D【解析】【分析】利用不等式的性质判断即可得到结果.【详解】解:若x >y ,则有x-3>y-3;33x y >;-2x <-2y ; 3-x <3-y 故选D .【点睛】本题考查不等式的性质,熟练掌握不等式的性质是解本题的关键.3. 在下列四项调查中,方式正确的是( )A. 了解本市中学生每天学习所用的时间,采用全面调查的方式B. 为保证运载火箭的成功发射,对其所有的零部件采用抽样调查的方式C. 了解某市每天的流动人口数,采用全面调查的方式D. 了解全市中学生的视力情况,采用抽样调查的方式【详解】分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.详解:A、了解本市中学生每天学习所用的时间,调查范围广适合抽样调查,故A不符合题意;B、为保证运载火箭的成功发射,对其所有的零部件采用全面调查的方式,故B不符合题意;C、了解某市每天的流动人口数,无法普查,故C不符合题意;D、了解全市中学生的视力情况,采用抽样调查的方式,故D符合题意;故选D.点睛:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4. 如图,将△ABC平移后得到△DEF,若∠A=44°,∠EGC=70°,则∠ACB 的度数是()A. 26° B. 44° C. 46° D. 66°【答案】A【解析】【分析】由平移前后对应角相等及三角形的一个外角等于与它不相邻的两个内角的和得出.【详解】∵△ABC平移后得到△DEF,∴∠EDF=∠A=44°,∴∠ACB=∠EGC−∠EDF=26°.故选:A.【点睛】本题主要考查了平移的基本性质:①平移不改变图形的形状、大小和方向;②经过平移,对应点所连的线段平行或在同一直线上,对应线段平行且相等,对应角相等.同时考查了三角形的外角性质.5. 若(m–2018)x|m|–2017+(n+4)y|n|–3=2018是关于x,y的二元一次方程,则()A. m=±2018,n=±4B. m=–2018,n=±4C. m=±2018,n=–4D. m=–2018,n=4【分析】依据二元一次方程的定义求解即可.【详解】解:()()m 2017n 3m 2018x n 4y 2018---++=是关于x ,y 的二元一次方程,20180201714031m m n n -≠⎧⎪-=⎪∴⎨+≠⎪⎪-=⎩, 解得:m 2018=-、n 4=,故选D .【点睛】本题主要考查的是二元一次方程的定义,掌握二元一次方程的定义是解题的关键.依据二元一次方程的定义求解即可.6. 对于任意实数m ,点P (m -2,9-3m )不可能在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】根据点所在象限中横纵坐标的符号即可列不等式组,若不等式组无解,则不能在这个象限.【详解】A 、当点在第一象限时 20930m m -⎧⎨-⎩>>,解得2<m <3,故选项不符合题意; B 、当点第二象限时20930m m -⎧⎨-⎩<>,解得m <3,故选项不符合题意; C 、当点在第三象限时,20930m m -⎧⎨-⎩<<,不等式组无解,故选项符合题意; D 、当点在第四象限时20930m m -⎧⎨-⎩><,解得m >0,故选项不符合题意. 故选:C .【点睛】本题考查了点的坐标,理解每个象限中点的坐标的符号是关键.7. 如图,将矩形ABCD折叠,折痕为EF,BC的对应边B'C′与CD交于点M,若∠B′MD=50°,则∠BEF的度数为()A. 50°B. 60°C. 70°D. 80°【答案】C【解析】【分析】先由对顶角及直角三角形两锐角互余求出∠CFM=40°,再由折叠的性质求出∠EFC′的度数,进而求出∠EFD的度数,然后根据两直线平行内错角相等即可求出结论.【详解】∵∠B′MD=50°,∴∠C′FM=40°,∴∠EFC=∠EFC′=(180°+40°) ÷2=110°,∴∠EFD=110°-40°=70°.∵AB∥CD,∴∠BEF=∠EFD=70°.故选C.【点睛】本题主要考查了矩形性质,折叠的性质,及平行线的性质,熟练掌握相关的性质是解题的关键.8. 若满足方程组33221x y mx y m+=+⎧⎨-=-⎩的x与y互为相反数,则m的值为()A. 11B. -1C. 1D. -11 【答案】A【解析】【分析】由x与y互为相反数,得到y=-x,代入方程组计算即可求出m的值.【详解】解:由题意得:y= -x,代入方程组得:33221x x mx x m-++⎧⎨-⎩=①=②,消去x得:32123m m+-=,即3m+9=4m-2,解得:m=11.故选A.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.9. 若关于x的不等式组式1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩在实数范围内有解,则a的取值范围为()A. a>0B. a≥0C. a<0D. a≤0【答案】A【解析】【分析】首先解关于x的不等式,不等式在实数范围内有解,则两个不等式的解集有公共部分,据此即可列出关于a的不等式,从而求得a的范围.【详解】解1332(1)3xax x-⎧-≥⎪⎨⎪--<⎩①②,解①得:x≤3a+1,解②得:x>1.根据题意得:3a+1>1,解得:a>0.故选:A.【点睛】本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x大于较小的数、小于较大的数,那么解集为x介于两数之间.10. 如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】【详解】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11. 某超市销售一批节能台灯,先以55元/个的价格售出60个,然后调低价格,以50元/个的价格将剩下的台灯全部售出,销售总额超过了5500元,这批台灯至少有( )A. 44个B. 45个C. 104个D. 105个【答案】D【解析】【分析】根据题意设出未知数,找出不等关系列出相应的不等式即可.【详解】设这批闹钟至少有x个,根据题意得5500×60+5000(x-60)>550000∴5000(x-60)>5500×40x-60>44∴x>104答:这批闹钟最少有105个.故选D.【点睛】本题考查了实际问题与一元一次不等式,解题的关键是理解题意,根据不等关系列出相应的不等式.12. 如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则A2017的坐标为()A. (505,504)B. (505,-504)C. (-504,504)D. (-504,-504)【答案】B【解析】【分析】根据题意可得各个点分别位于象限的角平分线上(A1和第四象限内的点除外),逐步探索出下标和个点坐标之间的关系,总结出规律,根据规律推理点A2017的坐标.【详解】通过观察可得数字是4的倍数的点在第三象限,数字是4的倍数余1的点在第四象限,数字是4的倍数余2的点在第一象限,数字是4的倍数的点在第二象限,且各个点分别位于象限的角平分线上(A1和第四象限内的点除外),∵2017÷4=504…1,∴点A2017在第四象限,点A2016在第三象限,∵20164=504,∴A2016是第三象限的第504个点,∴A2016的坐标为(−504,−504),∴点A2017的坐标为(505,-504).故选:B.【点睛】此题主要考查了点的坐标,属于规律型题目,解答此类题目一定要先注意观察,本题第三象限的点的坐标特点比较好判断,我们可以利用这一点达到简化步骤的效果.卷Ⅱ非选择题二、填空题(本大题有6个小题,共24分.)13. 3-7的相反数是____;2____.【答案】(1). 37(2). 2【解析】【详解】分析:根据相反数的定义,绝对值的性质和立方根的定义分别计算即可求解. 详解:3-7的相反数是37;因为2 1.4143≈< ,所以|2-3|=-(2-3),故答案为 (1).37 (2). 3-2. 点睛:本题考查了实数的性质,主要利用了绝对值的性质,相反数的定义,属于基础题.14. 如图,直线//a b ,直线c 分别交a ,b 于点A ,C ,BAC ∠的平分线交直线b 于点D ,若150∠=,则2∠的度数是_________.【答案】80°【解析】【分析】直接利用角平分线的定义结合平行线的性质得出∠BAD =∠CAD =50︒,进而得出答案.【详解】∵∠BAC 的平分线交直线b 于点D ,∴∠BAD =∠CAD ,∵直线a ∥b ,∠1=50︒,∴∠BAD =∠CAD =50︒,∴∠2=180︒−50︒−50︒=80︒故答案为:80︒.【点睛】此题主要考查了平行线的性质,正确得出∠BAD =∠CAD =50︒是解题关键.15. 3213{2312a b a b +=+=求3100()()a b a b ++-=___________. 【答案】126【解析】【分析】两式相加求出+a b =5,两式相减求出-a b =1,代入即可求解.【详解】解32132312a b a b +=⎧⎨+=⎩①②,①+②得5a+5b=25 ∴+a b =5,①-②得-a b =1∴3100()()a b a b ++-=53+1100=126.【点睛】此题主要考查二元一次方程的求解,解题的关键是熟知加减消元法的运用.16. 当x ____时,代数式-53x +1的值不大于12x +-1的值. 【答案】≥-1【解析】 【详解】分析:根据题意中的不等关系,列不等式可求解.详解:由题意可得-53x +1≤12x +-1 解不等式可得x≥-1故答案为≥-1.点睛:此题主要考查了一元一次不等式的应用,解不等式即可求出x 的范围,关键是根据题目的不等关系列不等式.17. 若点A (-3,m +1)在第二象限的角平分线上,则m =_______.【答案】2【解析】【分析】根据第二象限角平分线上的点的横坐标与纵坐标互为相反数,可得答案.【详解】由题意,得-3+m+1=0,解得m =2,故答案为:2.【点睛】本题考查了点的坐标,利用第二象限角平分线上的点的横坐标与纵坐标互为相反数得出方程是解题关键.18. 111()P x y ,,222()P x y ,是平面直角坐标系中的任意两点,我们把1212x x y y +--叫做P 1,P 2两点间的“直角距离”,记作d (P 1,P 2);比如:点P (2,-4),Q (1,0),则d (P ,Q )=21405+-=--,已知Q (2,1),动点P (x ,y )满足d (P ,Q )=3,且x ,y 均为整数,则满足条件的点P 有________个.【答案】12【解析】【分析】由条件可得到|x−2|+|y−1|=3,分四种情况:①x−2=±3,y−1=0,②x−2=±2,y−1=±1,③x−2=±1,y−1=±2,④x−2=0,y−1=±3,进行讨论即可求解.【详解】依题意有|x−2|+|y−1|=3,①x−2=±3,y−1=0,解得11xy-⎧⎨⎩==,51xy⎧⎨⎩==;②x−2=±2,y−1=±1,解得xy⎧⎨⎩==,2xy⎧⎨⎩==,4xy⎧⎨⎩==,42xy⎧⎨⎩==;③x−2=±1,y−1=±2,解得11xy⎧⎨-⎩==,13xy⎧⎨⎩==,31xy⎧⎨-⎩==,33xy⎧⎨⎩==;④x−2=0,y−1=±3,解得22xy⎧⎨-⎩==,24xy⎧⎨⎩==.故满足条件的点P有12个.故答案为:12.【点睛】考查了两点间的距离公式,本题为新概念题目,理解题目中所给新定义是解题的关键,注意分类讨论思想的应用.三、解答题:(本大题有7小题,共78分.解答应写出文字说明、证明过程或演算步骤)19. (1)2-(2)25 {342 x yx y-=+=【答案】(1)2(2)21 xy=⎧⎨=-⎩【解析】【分析】(1)根据实数的性质进行化简即可求解;(2)根据加减消元法即可求解.【详解】(1)2-2=2(2)解:25 342 x yx y-=⎧⎨+=⎩①②①×4,得:8x-4y=20③③+②,得11x=22,x=2将x=2代入①,得y=-1所以方程组的解是21 xy=⎧⎨=-⎩.【点睛】此题主要考查实数的运算及二元一次方程的求解,解题的关键是熟知实数的运算及二元一次方程的求解方法.20. 解不等式组323(1) {12 123x xx xx+≥---+->-,并把解集数轴上表示出来.【答案】x≥0;作图见解析【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:323(1)12123x xx xx+≥--⎧⎪⎨-+->-⎪⎩①②解不等式①,得:x≥0解不等式②,得x>-5把不等式组的解集在数轴上表示如下:∴不等式组的解集为x≥0.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21. 随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?【答案】(1)30;(2)①补图见解析;②120;③70人.【解析】【详解】分析:(1)由B类别人数及其所占百分比可得总人数;(2)①设D类人数为a,则A类人数为5a,根据总人数列方程求得a的值,从而补全图形;②用360°乘以A类别人数所占比例可得;③总人数乘以样本中C、D类别人数和所占比例.详解:(1)本次调查的好友人数为6÷20%=30人,故答案为30;(2)①设D类人数为a,则A类人数为5a,根据题意,得:a+6+12+5a=30,解得:a=2,即A类人数为10、D类人数为2,补全图形如下:②扇形图中,“A”对应扇形的圆心角为360°×1030=120°, 故答案为120; ③估计大约6月1日这天行走的步数超过10000步的好友人数为150×12230 =70人. 点睛:此题主要考查了条形统计图、扇形统计图的综合运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22. 如图,已知BC∥GE ,AF∥DE ,∠1=50°.(1)求∠AFG 的度数;(2)若AQ 平分∠FAC ,交BC 于点Q,且∠Q=15°,求∠ACB 的度数.【答案】(1)50°;(2)80°.【解析】【分析】(1)先根据BC ∥EG 得出∠E=∠1=50°,再由AF ∥DE 可知∠AFG=∠E=50°;(2)作AM ∥BC ,由平行线的传递性可知AM ∥EG ,故∠FAM=∠AFG ,再根据AM ∥BC 可知∠QAM=∠Q ,故∠FAQ=∠AFM+∠FAQ ,再根据AQ 平分∠FAC 可知∠MAC=∠QAC+∠QAM=80°,根据AM ∥BC 即可得出结论.【详解】(1)∵BC ∥EG ,∴∠E=∠1=50°.∵AF ∥DE ,∴∠AFG=∠E=50°;(2)作AM ∥BC ,∵BC ∥EG ,∴AM ∥EG ,∴∠FAM=∠AFG=50°.∵AM ∥BC ,∴∠QAM=∠Q=15°,∴∠FAQ=∠AFM+∠MAQ=65°.∵AQ 平分∠FAC ,∴∠QAC=∠FAQ=65°,∴∠M AC=∠QAC+∠QAM=80°.∵AM ∥BC ,∴∠ACB=∠MAC=80°.考点:平行线的性质.23. 已知在平面直角坐标系中有 A(-2,1), B(3, 1),C(2, 3)三点,请回答下列问题:(1)在坐标系内描出点A , B , C 的位置.(2)画出ABC 关于直线x=-1对称的111A B C ∆,并写出111A B C ∆各点坐标.(3)在y 轴上是否存在点P ,使以A ,B , P 三点为顶点的三角形的面积为10?若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)画图见解析;(2)画图见解析;(3)存在,P 点为(0,5)或(0,-3);【解析】【分析】(1)首先在坐标系中确定A 、B 、C 三点位置,然后再连接即可;(2)首先确定A 、B 、C 三点关于x=-1的对称点位置,然后再连接即可;(3)详细见解析;【详解】解:(1)如图:△ABC 即为所求;(2)如图:111A B C ∆即为所求;各点坐标分别为:1A (0,1),1B (-51),,1C (43)-,; (3)解:设P (0,y ),∵A(-2,1),B(3,1),∴AB=5, ∴151=122ABP S AB y y ∆=⨯--, ∵ABP S ∆=10, ∴51=102y -, ∴1=4y -,∴y=5或y=-3;∴P(0,5)或(0,-3);【点睛】本题主要考查了作图-轴对称变换,掌握作图-轴对称变换是解题的关键.24. “绿水青山就是金山银山”.为保护生态环境,A、B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元?(2)在人均支出费用不变的情况下,为节约开支,两村准备协调40人共同清理养鱼网箱和捕鱼网箱.要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【答案】(1)清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元(2)方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【解析】【分析】(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据A、B两村庄总支出列出关于x、y的方程组,解之可得;(2)设m人清理养鱼网箱,则(40−m)人清理捕鱼网箱,根据“总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数”列不等式组求解可得.【详解】解:(1)设清理养鱼网箱和捕鱼网箱的人均支出费用分别为x元、y元.根据题意,得15957000 101668000x yx y+=⎧⎨+=⎩解得20003000 xy=⎧⎨=⎩答:清理养鱼网箱和捕鱼网箱的人均支出费用分别为2000元,3000元.(2)设分配a人清理养鱼网箱,则分配(40-a)人清理捕鱼网箱.根据题意,得20003000(40)102000 40a aa a+-⎧⎨<-⎩解得18≤a<20.∵a为正整数,∴a=18或19∴一共有2种分配方案,分别为:方案一:分配18人清理养鱼网箱,22人清理捕鱼网箱;方案二:分配19人清理养鱼网箱,21人清理捕鱼网箱.【点睛】本题主要考查二元一次方程组和一元一次不等式组的应用,解题的关键是理解题意,找到题目蕴含的相等关系或不等关系,并据此列出方程或不等式组.25. 已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系___;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E. F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】(1)∠A+∠C=90°;(2)见解析;(3)105°.【解析】【分析】(1)根据平行线的性质以及直角三角形的性质进行解答即可;(2)先过点B作BG∥DM,根据同角的余角相等,得出∠ABD=∠CBG,再根据平行线的性质,得出∠C=∠CBG,即可得到∠ABD=∠C;(3)先过点B作BG∥DM,根据角平分线的定义,得出∠ABF=∠GBF,再设∠DBE=α,∠ABF=β,根据∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,根据AB⊥BC,可得β+β+2α=90°,最后解方程组即可得到∠ABE=15°,进而得出∠EBC=∠ABE+∠ABC=15°+90°=105°.【详解】(1)如图1,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α, ∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,在△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°, ∴∠EBC=∠ABE+∠ABC=15°+90°=105°.【点睛】此题考查平行线的判定与性质,余角和补角,解题关键在于作出辅助线,灵活运用所学知识进行求解.。
2016-2017学年七年级下期末数学试卷及答案解析
![2016-2017学年七年级下期末数学试卷及答案解析](https://img.taocdn.com/s3/m/b983b2177cd184254b3535ab.png)
2016-2017学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣22.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.73.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×1066.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣18.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于.14.绝对值大于2且小于5的所有整数的和是.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=°.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于度.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.23.解方程组:.24.解不等式组:并把解集在数轴上表示出来.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?2016-2017学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.﹣12的值是()A.1 B.﹣1 C.2 D.﹣2【考点】有理数的乘方.【分析】根据乘方运算,可得幂,根据有理数的乘法运算,可得答案.【解答】解:原式=﹣1,故选;B.【点评】本题考查了有理数的乘方,注意底数是1.2.已知3x a﹣2是关于x的二次单项式,那么a的值为()A.4 B.5 C.6 D.7【考点】单项式.【分析】单项式的次数就是所有的字母指数和,根据以上内容得出即可.【解答】解:∵3x a﹣2是关于x的二次单项式,∴a﹣2=2,解得:a=4,故选A.【点评】本题考查单项式的次数的概念,关键熟记这些概念然后求解.3.在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱体C.圆锥体D.球【考点】认识立体图形.【分析】根据各立体图形的构成对各选项分析判断即可得解.【解答】解:A、长方体是有六个面围成,故本选项错误;B、圆柱体是两个底面和一个侧面组成,故本选项错误;C、圆锥体是一个底面和一个侧面组成,故本选项正确;D、球是由一个曲面组成,故本选项错误.故选C.【点评】本题考查了认识立体图形,熟悉常见几何体的面的组成是解题的关键.4.如图,是由四个相同的小正方体组成的几何体,该几何体从上面看得到的平面图形为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层左边一个,第二层中间一个,右边一个,故B符合题意,故选;B.【点评】本题考查了简单几何体的三视图,从上面看的到的视图是俯视图.5.全球每秒钟约有14.2万吨污水排入江河湖海,把14.2万用科学记数法表示为()A.142×103B.1.42×104C.1.42×105D.0.142×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于14.2万有6位,所以可以确定n=6﹣1=5.【解答】解:14.2万=142 000=1.42×105.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6.导火线的燃烧速度为0.8cm/s,爆破员点燃后跑开的速度为5m/s,为了点火后能够跑到150m外的安全地带,导火线的长度至少是()A.22cm B.23cm C.24cm D.25cm【考点】一元一次不等式的应用.【分析】设至少为xcm,根据题意可得跑开时间要小于爆炸的时间,由此可列出不等式,然后求解即可.【解答】解:设导火线至少应有x厘米长,根据题意≥,解得:x≥24,∴导火线至少应有24厘米.故选:C.【点评】此题主要考查了一元一次不等式的应用,关键是读懂题意,找到符合题意的不等关系式.7.已知实数x,y满足,则x﹣y等于()A.3 B.﹣3 C.1 D.﹣1【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【专题】常规题型.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x﹣2=0,y+1=0,解得x=2,y=﹣1,所以,x﹣y=2﹣(﹣1)=2+1=3.故选A.【点评】本题考查了算术平方根非负数,平方数非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.8.如图是丁丁画的一张脸的示意图,如果用(0,2)表示靠左边的眼睛,用(2,2)表示靠右边的眼睛,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【考点】坐标确定位置.【专题】数形结合.【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选A.【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.9.观察下图,在A、B、C、D四幅图案中,能通过图案平移得到的是()A.B.C.D.【考点】利用平移设计图案.【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【解答】解:A、属于旋转所得到,故错误;B、属于轴对称变换,故错误;C、形状和大小没有改变,符合平移的性质,故正确;D、属于旋转所得到,故错误.故选C.【点评】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转,而误选.10.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.11.已知x=2,y=﹣3是二元一次方程5x+my+2=0的解,则m的值为()A.4 B.﹣4 C.D.﹣【考点】二元一次方程的解.【专题】计算题;方程思想.【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【解答】解:把x=2,y=﹣3代入二元一次方程5x+my+2=0,得10﹣3m+2=0,解得m=4.故选A.【点评】解题关键是把方程的解代入原方程,使原方程转化为以系数m为未知数的方程,再求解.一组数是方程的解,那么它一定满足这个方程,利用方程的解的定义可以求方程中其他字母的值.12.如图,下列条件中不能判定AB∥CD的是()A.∠3=∠4 B.∠1=∠5 C.∠1+∠4=180° D.∠3=∠5【考点】平行线的判定.【分析】由平行线的判定定理易知A、B都能判定AB∥CD;选项C中可得出∠1=∠5,从而判定AB∥CD;选项D中同旁内角相等,但不一定互补,所以不能判定AB∥CD.【解答】解:∠3=∠5是同旁内角相等,但不一定互补,所以不能判定AB∥CD.故选D.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.二、填空题(本大题共8小题,每小题3分,共24分)13.若∠A=66°20′,则∠A的余角等于23°40′.【考点】余角和补角.【分析】根据互为余角的两个角的和等于90°列式计算即可得解.【解答】解:∵∠A=66°20′,∴∠A的余角=90°﹣66°20′=23°40′,故答案为:23°40′.【点评】本题主要考查了余角的定义,是基础题,熟记互为余角的两个角的和等于90°是解题的关键.14.绝对值大于2且小于5的所有整数的和是0.【考点】绝对值.【分析】首先根据绝对值的几何意义,结合数轴找到所有满足条件的数,然后根据互为相反数的两个数的和为0进行计算.【解答】解:根据绝对值性质,可知绝对值大于2且小于5的所有整数为±3,±4.所以3﹣3+4﹣4=0.【点评】此题考查了绝对值的几何意义,能够结合数轴找到所有满足条件的数.15.如图,已知a∥b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为50°.【考点】平行线的性质;余角和补角.【专题】探究型.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°,再根据平行线的性质即可得出结论.【解答】解:∵∠1=40°,∴∠3=180°﹣∠1﹣90°=180°﹣40°﹣90°=50°,∵a∥b,∴∠2=∠3=50°.故答案为:50°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如果点P(a,2)在第二象限,那么点Q(﹣3,a)在第三象限.【考点】点的坐标.【分析】由第二象限的坐标特点得到a<0,则点Q的横、纵坐标都为负数,然后根据第三象限的坐标特点进行判断.【解答】解:∵点P(a,2)在第二象限,∴a<0,∴点Q的横、纵坐标都为负数,∴点Q在第三象限.故答案为第三象限.【点评】题考查了坐标:直角坐标系中点与有序实数对一一对应;在x轴上点的纵坐标为0,在y轴上点的横坐标为0;记住各象限点的坐标特点.17.将方程2x﹣3y=5变形为用x的代数式表示y的形式是y=.【考点】解二元一次方程.【分析】要把方程2x﹣3y=5变形为用x的代数式表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项、系数化1就可用含x的式子表示y的形式:y=.【解答】解:移项得:﹣3y=5﹣2x系数化1得:y=.【点评】本题考查的是方程的基本运算技能:移项、合并同类项、系数化为1等.18.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=20°.【考点】平行线的性质;三角形的外角性质.【专题】计算题.【分析】本题主要利用两直线平行,同位角相等和三角形的外角等于与它不相邻的两内角之和进行做题.【解答】解:∵直尺的两边平行,∴∠2=∠4=50°,又∵∠1=30°,∴∠3=∠4﹣∠1=20°.故答案为:20.【点评】本题重点考查了平行线的性质及三角形外角的性质,是一道较为简单的题目.19.在扇形统计图中,其中一个扇形的圆心角是216°,则这年扇形所表示的部分占总体的百分数是60%.【考点】扇形统计图.【专题】计算题.【分析】用扇形的圆心角÷360°即可.【解答】解:扇形所表示的部分占总体的百分数是216÷360=60%.故答案为60%.【点评】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.一个多边形的每一个外角都等于36°,则该多边形的内角和等于1440度.【考点】多边形内角与外角.【专题】计算题.【分析】任何多边形的外角和等于360°,可求得这个多边形的边数.再根据多边形的内角和等于(n ﹣2)•180°即可求得内角和.【解答】解:∵任何多边形的外角和等于360°,∴多边形的边数为360°÷36°=10,∴多边形的内角和为(10﹣2)•180°=1440°.故答案为:1440.【点评】本题需仔细分析题意,利用多边形的外角和求出边数,从而解决问题.三、计算题(本大题共4小题,每小题7分,共28分)21.计算:(﹣1)2014+|﹣|×(﹣5)+8.【考点】有理数的混合运算.【分析】先算乘方和绝对值,再算乘法,最后算加法,由此顺序计算即可.【解答】解:原式=1+×(﹣5)+8=1﹣1+8=8.【点评】此题考查有理数的混合运算,注意运算的顺序与符号的判定.22.先化简,再求值:3a﹣[﹣2b+(4a﹣3b)],其中a=﹣1,b=2.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=3a﹣(﹣2b+4a﹣3b)=3a+2b﹣4a+3b=﹣a+5b,当a=﹣1,b=2时,原式=﹣(﹣1)+5×2=1+10=11.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.23.解方程组:.【考点】解二元一次方程组.【分析】观察原方程组,两个方程的y系数互为相反数,可用加减消元法求解.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.【点评】对二元一次方程组的考查主要突出基础性,题目一般不难,系数比较简单,主要考查方法的掌握.24.解不等式组:并把解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,然后在数轴上表示出来即可.【解答】解:解x﹣2>0得:x>2;解不等式2(x+1)≥3x﹣1得:x≤3.∴不等式组的解集是:2<x≤3.【点评】本题考查了不等式组的解法,关键是正确解不等式,求不等式组的解集可以借助数轴.四、解答题(本大题共3小题,25、26各10分,27题12分,共32分)25.根据所给信息,分别求出每只小猫和小狗的价格.买一共要70元,买一共要50元.【考点】二元一次方程组的应用.【专题】图表型.【分析】根据题意可知,本题中的相等关系是“1猫+2狗=70元”和“2猫+1狗=50”,列方程组求解即可.【解答】解:设每只小猫为x元,每只小狗为y元,由题意得.解之得.答:每只小猫为10元,每只小狗为30元.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确地找到等量关系并用方程组表示出来是解题的关键.26.丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题?【考点】一元一次不等式的应用.【专题】应用题.【分析】设他至少要答对x题,由于他共回答了30道题,其中答对一题加5分,一题答错或不答倒扣1分,他这次竞赛中的得分要超过100分,由此可以列出不等式5x﹣(30﹣x)>100,解此不等式即可求解.【解答】解:设他至少要答对x题,依题意得5x﹣(30﹣x)>100,x>,而x为整数,x>21.6.答:他至少要答对22题.【点评】此题主要考查了一元一次不等式的应用,解题的关键首先正确理解题意,然后根据题目的数量关系列出不等式即可解决问题.27.为了调查市场上某品牌方便面的色素含量是否符合国家标准,工作人员在超市里随机抽取了某品牌的方便面进行检验.图1和图2是根据调查结果绘制的两幅不完整的统计图,其中A、B、C、D分别代表色素含量为0.05%以下、0.05%~0.1%、0.1%~0.15%、0.15%以上,图1的条形图表示的是抽查的方便面中色素含量分布的袋数,图2的扇形图表示的是抽查的方便面中色素的各种含量占抽查总数的百分比.请解答以下问题:(1)本次调查一共抽查了多少袋方便面?(2)将图1中色素含量为B的部分补充完整;(3)图2中的色素含量为D的方便面所占的百分比是多少?(4)若色素含量超过0.15%即为不合格产品,某超市这种品牌的方便面共有10000袋,那么其中不合格的产品有多少袋?【考点】条形统计图;扇形统计图.【分析】(1)根据A8袋占总数的40%进行计算;(2)根据(1)中计算的总数和B占45%进行计算;(3)根据总百分比是100%进行计算;(4)根据样本估算总体,不合格产品即D的含量,结合(3)中的数据进行计算.【解答】解:(1)8÷40%=20(袋);(2)20×45%=9(袋),即(3)1﹣10%﹣40%﹣45%=5%;(4)10000×5%=500(袋),即10000袋中不合格的产品有500袋.【点评】此题考查了扇形统计图和条形统计图.扇形统计图能够清楚地反映各部分所占的百分比;条形统计图能够清楚地反映各部分的具体数目.注意:用样本估计总体的思想.。
七年级下册数学期末试卷人教版含答案免费
![七年级下册数学期末试卷人教版含答案免费](https://img.taocdn.com/s3/m/94dcdedc9f3143323968011ca300a6c30c22f189.png)
2018~2019学年四川甘孜初一下学期期末数学试卷(人教版)-学生用卷一、选择题(本大题共10小题,每小题3分,共30分)1、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第1题3分2017~2018学年湖北武汉黄陂区初一下学期期中第1题3分2017~2018学年湖北武汉青山区初一下学期期末第2题3分点A(−2,1)在().A. 第一象限B. 第二象限C. 第三象限D. 第四象限2、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第2题3分不等式组{x+3>02x−4⩽0的解集在数轴上表示为().A.B.C.D.3、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第3题3分下列运动属于平移的是().A. 荡秋千B. 地球绕着太阳转C. 急刹车时,汽车在地面上的滑动D. 风筝在空中随风飘动4、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第4题3分已知x=2,y=−3是二元一次方程5x+my+2=0的解,则m的值为().A. 83B. −83C. 4D. −45、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第5题3分2018~2019学年5月河北廊坊三河市三河市第八中学初一下学期月考第2题3分2017~2018学年江西宜春丰城市初一下学期期末第2题3分2017~2018学年湖北武汉江汉区初一下学期期中第3题3分2016~2017学年湖北武汉江岸区初一下学期期中第5题3分如图,下列条件中不能判定AB//CD的是().A. ∠3=∠4B. ∠1=∠5C. ∠1+∠4=180°D. ∠3=∠56、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第6题3分要反映甘孜州一周内每天的最高气温的变化情况,宜采用().A. 条形统计图B. 扇形统计图C. 折线统计图D. 频数分布直方图7、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第7题3分如果a>b,那么下列结论一定正确的是().A. 3−a<3−bB. a−3<b−3C. ac2>bc2D. a2>b28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第8题3分2017~2018学年12月陕西西安碑林区西安市第六中学初二上学期月考第6题3分2019~2020学年山东临沂兰山区临沂第三十六中学初一下学期期中第10题3分2017~2018学年福建泉州德化县初一下学期期末第9题4分2016~2017学年3月陕西西安高新区西安高新第一中学初一下学期月考(创新班)第8题3分一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为().A. {x=y−50 x+y=180B. {x=y+50 x+y=180C. {x=y+50 x+y=90D. {x=y−50 x+y=909、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第9题3分2016~2017学年北京丰台区初一下学期期末第4题3分2017~2018学年江苏连云港赣榆区初一下学期期末第5题3分2018~2019学年广西玉林博白县初一下学期期末第3题3分2017~2018学年福建莆田城厢区初一下学期期末第8题4分如果{x=1y=−2是关于x和y的二元一次方程ax+y=1的解,那么a的值是().A. 3B. 1C. −1D. −310、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第10题3分2017~2018学年河北保定定兴县初一下学期期末第9题3分2016~2017学年北京丰台区初一下学期期末第8题3分如果(x−1)2=2,那么代数式x2−2x+7的值是().A. 8B. 9C. 10D. 11二、填空题(本大题共8小题,每小题3分,共24分)11、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第11题3分2019~2020学年四川内江市中区内江市第六初级中学校初一下学期期中第13题4分2018~2019学年内蒙古呼和浩特玉泉区内蒙古师范大学附属第二中学初一下学期期中第15题3分2019~2020学年四川自贡贡井区自贡市田家炳中学初二上学期开学考试第10题3分2020~2021学年广东广州荔湾区广州市真光中学初一下学期期中(真光教育集团)第11题3分将方程2x−3y=5变形为用x的代数式表示y的形式是.12、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第12题3分2019~2020学年6月湖北武汉江夏区武汉市外国语学校美加分校初一下学期月考第11题3分2018~2019学年广西南宁宾阳县开智中学初一下学期期末第15题3分用不等式表示“a与5的差不是正数”:.13、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第13题3分2019~2020学年广东惠州惠城区惠州市惠台学校初一下学期期末第14题4分2019~2020学年黑龙江哈尔滨道里区哈尔滨第一一三中学初一上学期期中第14题3分2017~2018学年浙江宁波海曙区宁波市东恩中学初一上学期期中第14题3分2014~2015学年北京初一下学期期中东城朝阳海淀第16题已知a、b为两个连续的整数,且a<√11<b,则a+b=.14、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第14题3分2020~2021学年河南郑州金水区郑州十一中学分校初一上学期期中第12题3分2020~2021学年10月江苏苏州相城区南京师范大学苏州实验学校初一上学期月考第14题2016~2017学年11月天津宁河区初一上学期月考第13题3分2016~2017学年北京大兴区北京亦庄实验中学初一上学期期中第12题3分若|m−3|+(n−2)2=0,则m+2n的值为.15、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第15题3分2015年湖南株洲芦淞区初三中考一模第12题3分2019年广东揭阳榕城区初三中考一模(空港经济区)第12题2017~2018学年辽宁营口西市区营口市实验中学初一下学期期中第13题3分2017~2018学年4月浙江杭州江干区杭州市采荷中学初一下学期月考第12题4分如图,已知a//b,小亮把三角板的直角顶点放在直线b上.若∠1=40°,则∠2的度数为.16、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第16题3分2012年江苏苏州中考真题第15题某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查的结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有人.17、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第17题3分2016~2017学年湖北武汉新洲区初一下学期期末第14题3分方程3x+y=20在正整数范围内的解有组.18、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第18题3分2017~2018学年重庆沙坪坝区重庆市名校联合中学校初一上学期期末第13题4分2017~2018学年重庆初一上学期期末第13题4分福布斯2017年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以330亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为美元.三、计算题(本大题共4小题,每小题5分,共20分)19、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第19题5分2019~2020学年北京海淀区海淀实验中学初一下学期期末第23题4分2017~2018学年北京昌平区初一下学期期末第20题5分2018~2019学年北京延庆区初一下学期期末第21题5分2019~2020学年河北石家庄裕华区石家庄市第四十中学初一下学期期末第26题6分解方程组:{x +y =13x +y =5.20、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第20题5分解不等式组:{x −2>02(x +1)⩾3x −1,并把解集在数轴上表示出来.21、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第21题5分2016~2017学年北京丰台区初一下学期期末第21题4分因式分解:−3a 3b −27ab 3+18a 2b 2.22、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第22题5分2017~2018学年北京昌平区初一下学期期末第21题5分2019~2020学年辽宁大连金普新区初一下学期期中第22题6分已知关于x ,y 的二元一次方程组{2ax +by =3ax −by =1的解为{x =1y =1求a +2b 的值.四、解答题(本大题共4小题,共26分)23、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第23题6分2019~2020学年云南大理巍山县初一下学期期末第17题5分2016~2017学年福建莆田秀屿区莆田第二十五中学初一下学期期末第22题10分如图所示,直线a、b被c、d所截,且c⊥a,c⊥b,∠1=70°,求∠3的大小.24、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第24题6分2016年河南南阳淅川县初三中考一模第18题9分2017~2018学年江苏南京建邺区南京师范大学附属中学新城初级中学初二下学期期中第20题6分某校为了开设武术、舞蹈、剪纸三项活动课程以提升学生的体艺素养,随机抽取了部分学生对这三项活动的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1) 将条形统计图补充完整.(2) 本次抽样调查的样本容量是;(3) 已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.25、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第25题7分2019~2020学年广东深圳福田区深圳外国语学校初二上学期单元测试《实数》第17题2014~2015学年广东广州越秀区广州市育才实验学校初一下学期期中第23题2019~2020学年广东广州海珠区广州市海珠区六中珠江中学初一下学期期中模拟第19题8分我们知道a +b =0时,a 3+b 3=0也成立,若将a 看成a 3的立方根,b 看成b 3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1) 试举一个例子来判断上述猜测结论是否成立.(2) 若√1−2x 3与√3x −53互为相反数,求1−√x 的值.26、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第26题7分2016~2017学年10月重庆石柱土家族自治县石柱中学校初一上学期月考2014~2015学年重庆渝中区重庆市巴蜀中学校初一上学期期末第28题2017~2018学年重庆初一上学期期末第25题4分2018~2019学年辽宁大连高新技术产业园区初一上学期期中第25题10分某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%.方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1) 问投资者选择哪种购铺方案,5年后所获得的投资收益率更高?为什么?(注:投资收益率=投资收益实际投资额×100%) (2) 对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差7.2万元.问甲乙两人各投资了多少万元?五、填空题(本大题共4小题,每小题4分,共16分)27、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第27题4分2015~2016学年江苏苏州初二下学期期中模拟第11题3分2018~2019学年辽宁沈阳浑南区育才实验学校初二下学期期中第11题3分2019年陕西宝鸡金台区初三中考一模第11题3分2018年山东滨州初三中考二模第13题5分分解因式:2m3−8m=.28、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第28题4分2019~2020学年四川绵阳涪城区绵阳南山中学双语学校初一下学期期末模拟第14题3分2016~2017学年湖北武汉新洲区初一下学期期末第12题3分在平面直角坐标系中,若A点坐标为(−1,3),AB//y轴,线段AB=5,则B点坐标为.29、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第29题4分关于x的一元一次方程2(x−m)=4+x的解是非负数,则m的取值范围是.30、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第30题4分已知如图,在频率分布直方图中,各小长方形的高之比AE:BF:CG:DH=2:4:3:1,则第3组的频率为.六、解答题(本大题共4小题,共34分)31、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第31题8分2019~2020学年江苏苏州工业园区金鸡湖学校初三下学期开学考试第20题6分2020年江苏苏州高新区苏州市高新区第一初级中学校初三中考二模第23题6分某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1) 该小区新建1个地上停车位和1个地下停车位各需多少万元?(2) 该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有哪几种建造停车位的方案?32、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第32题8分2018~2019学年西藏昌都地区左贡县左贡县中学初一下学期期末第26题4分丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对多少题.33、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第33题8分河南许昌长葛市长葛市天隆学校初一下学期期末(1)第18题7分2020~2021学年3月江西南昌红谷滩区南昌市第五中学初一下学期月考第15题5分2017~2018学年山西吕梁柳林县初一下学期期末第19题6分2015~2016学年河南郑州中原区郑州外国语学校初二上学期期末第19题8分如图,已知AB//CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.34、【来源】 2018~2019学年四川甘孜初一下学期期末(人教版)第34题10分如图1,平面直角坐标系中,直线AB与x轴负半轴交于点A(a,0),与y轴正半轴交于点B(0,b),且√a+6+|b−4|=0.(1) 求△AOB的面积.(2) 如图2,若P为直线AB上一动点,连接OP,且2S△AOP⩽S△BOP⩽3S△AOP,求P点横坐标x P的取值范围.1 、【答案】 B;2 、【答案】 D;3 、【答案】 C;4 、【答案】 C;5 、【答案】 D;6 、【答案】 C;7 、【答案】 A;8 、【答案】 C;9 、【答案】 A;10 、【答案】 A;;11 、【答案】y=2x−5312 、【答案】a−5⩽0;13 、【答案】7;14 、【答案】7;15 、【答案】50°;16 、【答案】216;17 、【答案】6;18 、【答案】3.3×1010;19 、【答案】{x=2y=−1.;20 、【答案】2<x⩽3.;21 、【答案】−3ab(a−3b)2;22 、【答案】a+2b=2.;23 、【答案】70°.;24 、【答案】 (1) 画图见解析.;(2) 100;(3) 360人.;25 、【答案】 (1) 证明见解析.;(2) −1.;26 、【答案】 (1) 投资者选择方案二所获得的投资收益率更高.;(2) 甲投资了60万元,乙投资了48万元.;27 、【答案】2m(m+2)(m−2);28 、【答案】(−1,8)或(−1,−2);29 、【答案】m⩾−2;30 、【答案】0.3;31 、【答案】 (1) 新建一个地上停车位需要0.1万元,新建一个地下停车位需要0.5万元.;(2) 共有3种建造方案.①建30个地上停车位,20个地下停车位;②建31个地上停车位,19个地下停车位;③建32个地上停车位,18个地下停车位.;32 、【答案】丁丁至少要答对22道题.;33 、【答案】32.5°.;34 、【答案】 (1) 12.;(2) P点横坐标x P的取值范围是−4.5⩽x P⩽−4或−12⩽x P⩽−9.;。
2016-2017学年七年级(上)期中数学试卷及答案解析
![2016-2017学年七年级(上)期中数学试卷及答案解析](https://img.taocdn.com/s3/m/0fd73379a300a6c30d229f21.png)
2016-2017学年七年级(上)期中数学试卷一、选择题1.﹣3的相反数是()A. B.3 C.± D.﹣32.图中不是正方体的展开图的是()A.B.C. D.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个 B.2个 C.3个 D.4个5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是() A.6 B.7 C.11 D.126.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A .15B .16C .21D .17 二、填空题7.计算:(﹣1)2015+(﹣1)2016= . 8.若3a 2bc m 为七次单项式,则m 的值为 .9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n 个三角形,则需要 根火柴棍.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为 米.. 11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 .12.如果3x 2n ﹣1y m 与﹣5x m y 3是同类项,则m= ,n= .13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= .14.如果(x+1)2=a 0x 4+a 1x 3+a 2x 2+a 3x+a 4(a 0,a 1,a 2,a 3,a 4都是有理数)那么a 04+a 13+a 22+a 3+a 4;a 04﹣a 13+a 22﹣a 3+a 4;a 04+a 22+a 4的值分别是 ; ; .三、解答题15.(5分)从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.16.(5分)由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.17.(12分)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].18.(8分)先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.19.(8分)某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9增减(单位:个)(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.20.(8分)若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].21.(9分)我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是;(3)请说明(2)中猜想的结论是正确的.22.(9分)小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.23.(10分)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A 县农用车x辆.(1)甲仓库调往B县农用车辆,乙仓库调往A县农用车辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?24.(12分)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ,b= ,c= ;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.B.3 C.± D.﹣3【考点】相反数.【分析】根据只有符号不同的两数叫做互为相反数解答.【解答】解:﹣3的相反数是3.故选B.【点评】本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.图中不是正方体的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题:正方体的每一个面都有对面,可得答案.【解答】解:由正方体的表面展开图的特点可知,只有A,C,D这三个图形,经过折叠后能围成正方体.故选B.【点评】本题考查了几何体的展开图,只要有“田”字格的展开图都不是正方体的表面展开图.3.下列说法正确的是()A.x不是单项式B.0不是单项式C.﹣x的系数是﹣1 D.是单项式【考点】单项式.【分析】根据单项式及单项式的次数的定义即可解答.【解答】解:A、根据单项式的定义可知,x是单项式,故本选项不符合题意;B、根据单项式的定义可知,0是单项式,故本选项不符合题意;C、根据单项式的系数的定义可知,﹣x的系数是﹣1,故本选项符合题意;D、根据单项式的定义可知,不是单项式,故本选项不符合题意.故选C.【点评】本题考查了单项式及单项式的次数的定义,比较简单.单项式的系数的定义:单项式中的数字因数叫做单项式的系数.4.在﹣(﹣2),﹣|﹣7|,﹣12001×0,﹣(﹣1)3,,﹣24中,非正数有()A.1个B.2个C.3个D.4个【考点】有理数.【分析】根据小于或等于零的数是非正数,可得答案.【解答】解:﹣(﹣2)=2>0,﹣|﹣7|=﹣7<0,﹣12001×0=0,﹣(﹣1)3=1>0,=﹣<0,﹣24=﹣16<0,故选:D.【点评】本题考查了有理数,小于或等于零的数是非正数,化简各数是解题关键.5.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.12【考点】代数式求值.【分析】根据题意得出x+2y=5,将所求式子前两项提取2变形后,把x+2y=5代入计算即可求出值.【解答】解:∵x+2y=5,∴2x+4y=10,则2x+4y+1=10+1=11.故选C【点评】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.6.把小正方体的6个面分别涂上六种不同的颜色,并画上朵数不等的花,各面上的颜色和花的朵数情况如表:现将上述大小相等、颜色花朵分布完全一样的四个立方体拼成一个水平放置的长方体(如图),那么长方体下底面有()朵花.颜色红黄蓝白紫绿花的朵数 1 2 3 4 5 6A.15 B.16 C.21 D.17【考点】专题:正方体相对两个面上的文字.【分析】由图中显示的规律,可分别求出,右边正方体的下边为白色,左边为绿色,后面为紫色,按此规律,可依次得出右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,即可求出下底面的花朵数.【解答】解:由题意可得,右二的立方体的下侧为绿色,右三的为黄色,左一的为紫色,那么长方体的下底面共有花数4+6+2+5=17朵.故选D.【点评】注意正方体的空间图形,从相对面入手,分析及解答问题.二、填空题7.计算:(﹣1)2015+(﹣1)2016= 0 .【考点】有理数的乘方.【分析】根据有理数乘法的符号法则计算,再根据有理数的加法计算即可.【解答】解:原式=﹣1+1=0.故答案为:0.【点评】本题主要考查了有理数的乘法,熟练掌握幂的运算符号的性质是解决此题的关键.8.若3a2bc m为七次单项式,则m的值为 4 .【考点】多项式.【分析】单项式3a2bc m为七次单项式,即是字母的指数和为7,列方程求m的值.【解答】解:依题意,得2+1+m=7,解得m=4.故答案为:4.【点评】单项式的次数是指各字母的指数和,字母指数为1时,省去不写.9.如图,用火柴棍拼成一排由三角形组成的图形,如果图形中含有n个三角形,则需要2n+1 根火柴棍.【考点】规律型:图形的变化类.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:因为第一个三角形需要三根火柴棍,再每增加一个三角形就增加2根火柴棒,所以有n个三角形,则需要2n+1根火柴棍.【点评】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.一个边长为1的正方形,第一次截去正方形的一半,第二次截去剩下的一半,如此截下去,第六次后剩下的面积为米..【考点】有理数的乘方.【分析】根据题意知,易求出前几次裁剪后剩下的纸片的面积,第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,根据规律,总结出一般式,由此可以求出.【解答】解:∵第一次剩下的面积为,第二次剩下的面积为,第三次剩下的面积为,∴第n次剩下的面积为,∴,故答案为:.【点评】本题考查了有理数的乘方,正确理解问题中的数量关系,总结问题中隐含的规律是解题的关键.11.截至2013年3月底,某市人口总数已达到4 230 000人.将4 230 000用科学记数法表示为 4.23×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 230 000=4.23×106,故答案为:4.23×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.如果3x2n﹣1y m与﹣5x m y3是同类项,则m= 3 ,n= 2 .【考点】同类项.【分析】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,根据同类项的定义中相同字母的指数也相同,可列出关于m 、n 的方程组,求出m 、n 的值.【解答】解:由题意,得,解得.故答案分别为:3、2.【点评】此题考查的知识点是同类项, 关键要明确同类项定义中的两个“相同”: (1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.13.已知a 1=; a 2=; a 3=; a 4=…那么a 2016= ﹣1 .【考点】规律型:数字的变化类.【分析】依次求出a 2,a 3,a 4,判断出每3个数为一个循环组依次循环,用2016除以3,根据商和余数的情况解答即可.【解答】解:a 1=,a 2===2,a 3===﹣1,a 4===,…,依此类推,每3个数为一个循环组依次循环, ∵2016÷3=672,∴a 2016为第672循环组的第三个数, ∴a 2016=a 3=﹣1. 故答案为:﹣1.【点评】本题是对数字变化规律的考查,读懂题目信息,求出各数并判断出每3个数为一个循环组依次循环是解题的关键.14.如果(x+1)2=a0x4+a1x3+a2x2+a3x+a4(a0,a1,a2,a3,a4都是有理数)那么a04+a13+a22+a3+a4;a04﹣a13+a22﹣a3+a4;a04+a22+a4的值分别是 4 ;0 ; 2 .【考点】代数式求值.【分析】由原式可得x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,可得a0=a1=0,a2=1,a3=2,a4=1,再分别代入所求代数式即可.【解答】解:∵(x+1)2=a0x4+a1x3+a2x2+a3x+a4,∴x2+2x+1=a0x4+a1x3+a2x2+a3x+a4,∴a0=a1=0,a2=1,a3=2,a4=1,则a04+a13+a22+a3+a4=1+2+1=4,a04﹣a13+a22﹣a3+a4=1﹣2+1=0,a04+a22+a4=1+1=2,故答案为:4; 0; 2.【点评】本题主要考查代数式的求值,根据已知等式得出a0=a1=0,a2=1,a3=2,a4=1是解题的关键.三、解答题15.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图.【考点】作图-三视图.【分析】通过仔细观察和想象,再画它的三视图即可.【解答】解:几何体的三视图如图所示,【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.16.由数轴回答下列问题(1)A,B,C,D,E各表示什么数?(2)用“<”把这些数连接起来.【考点】有理数大小比较;数轴.【分析】(1)数轴上原点左边的数就是负数,右边的数就是正数,离开原点的距离就是这个数的绝对值;(2)数轴上的数右边的数总是大于左边的数,即可求解.【解答】解:(1)A:﹣4;B:1.5;C:0;D:﹣1.5;E:4;(2)用“<”把这些数连接起来为:﹣4<﹣1.5<0<1.5<4.【点评】本题主要考查了数轴上点表示的数的确定方法,以及数轴上的数的关系,右边的数总是大于左边的数.17.(12分)(2016秋•崇仁县校级期中)计算.(1)(﹣7)﹣(+5)+(﹣4)﹣(﹣10);(2)﹣1+5÷(﹣)×(﹣4)(3)÷(﹣+﹣)(4)(﹣3)2﹣(1﹣)÷(﹣)×[4﹣(﹣42)].【考点】有理数的混合运算.【分析】(1)先将减法转化为加法,再根据有理数的加法法则计算即可;(2)先算乘除,再算加法即可;(3)先求原式的倒数,再求解即可;(4)先算乘方,再算乘除,最后算加减.有括号,要先做括号内的运算.【解答】(1)解:原式=﹣7﹣5﹣4+10=﹣6;(2)解:原式=﹣1+5×(﹣4)×(﹣4)=﹣1+80=79;(3)解:因为(﹣+﹣)÷=(﹣+﹣)×64=﹣16+8﹣4=﹣12,所以÷(﹣+﹣)=﹣;(4)解:原式=9﹣×(﹣)×(4+16)=9+×20=9+16=25.【点评】本题考查了有理数的混合运算,顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.18.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】首先利用去括号法则去括号,进而合并同类项,再利用非负数的性质得出x,y的值,进而求出即可.【解答】解:原式=﹣6xy+2x2﹣[2x2﹣15xy+6x2﹣xy]=﹣6xy+2x2﹣2x2+15xy﹣6x2+xy=﹣6x2+10xy∵|x+2|+(y﹣3)2=0∴x=﹣2,y=3,∴原式=﹣6x2+10xy=﹣6×(﹣2)2+10×(﹣2)×3=﹣24﹣60=﹣84.【点评】此题主要考查了整式的加减运算以及非负数的性质,正确化简整式是解题关键.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一二三四五六日增减(单位:个)+5 ﹣2 ﹣5 +15 ﹣10 +16 ﹣9(1)写出该厂星期一生产工艺品的数量;(2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)请求出该工艺厂在本周实际生产工艺品的数量.【考点】正数和负数.【分析】(1)由表格可以求得该厂星期一生产工艺品的数量;(2)由表格可以求得本周产量中最多的一天比最少的一天多生产多少个工艺品;(3)由表格可以求得该工艺厂在本周实际生产工艺品的数量.【解答】解:(1)由表格可得,周一生产的工艺品的数量是:300+5=305(个)即该厂星期一生产工艺品的数量305个;(2)本周产量中最多的一天是星期六,最少的一天是星期五,16+300﹣[(﹣10)+300]=26个,即本周产量中最多的一天比最少的一天多生产26个;(3)2100+[5+(﹣2)+(﹣5)+15+(﹣10)+16+(﹣9)]=2100+10=2110(个).即该工艺厂在本周实际生产工艺品的数量是2110个.【点评】本题考查正数和负数,解题的关键是明确正数和负数在题目中的含义.20.若“△”表示一种新运算,规定a△b=a×b﹣(a+b),请计算下列各式的值:(1)﹣3△5;(2)2△[(﹣4)△(﹣5)].【考点】有理数的混合运算.【分析】原式各项利用题中的新定义计算即可得到结果.【解答】解:(1)﹣3△5=﹣3×5﹣[(﹣3)+5]=﹣15﹣2=﹣17;(2)(﹣4)△(﹣5)=﹣4×(﹣5)﹣[(﹣4)+(﹣5)]=20+9=29,则2△[(﹣4)△(﹣5)]=2×29﹣(2+29)=58﹣31=27.【点评】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.21.我们发现了一种“乘法就是减法”的非常有趣的运算:①1×=1﹣:②2×=2﹣;③3×=3﹣;…(1)请直接写出第4个等式是4×=4﹣;(2)试用n(n为自然数,n≥1)来表示第n个等式所反映的规律是n×=n﹣;(3)请说明(2)中猜想的结论是正确的.【考点】规律型:数字的变化类.【分析】观察已知算式可以发现:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;由此可以解决(1)和(2);(3)根据(2)中算式左侧和右侧进行分式运算比较即可.【解答】解:等式左侧乘积的第一个因数是从1开始的连续自然数,第二个因数的分子和这个自然数相同,分母比分子大1;右侧恰是左侧两个因数的差;(1)第4个等式:4×=4﹣,(2)第n个等式:n×=n﹣,(3)证明:n×=,n﹣==,∴n×=n﹣,∴(2)中猜想的结论是正确的.【点评】此题主要考察运算规律的探索应用与证明,观察已知算式找出规律是解题的关键.22.小红做一道数学题“两个多项式A、B,B为4x2﹣5x﹣6,试求A+B的值”.小红误将A+B看成A﹣B,结果答案(计算正确)为﹣7x2+10x+12.(1)试求A+B的正确结果;(2)求出当x=3时A+B的值.【考点】整式的加减.【分析】(1)因为A﹣B=﹣7x2+10x+12,且B=4x2﹣5x﹣6,所以可以求出A,再进一步求出A+B.(2)根据(1)的结论,把x=3代入求值即可.【解答】解:(1)A=﹣7x2+10x+12+4x2﹣5x﹣6=﹣3x2+5x+6,A+B=(﹣3x2+5x+6)+(4x2﹣5x﹣6)=x2;(2)当x=3时,A+B=x2=32=9.【点评】本题解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.23.(10分)(2015秋•无锡期中)某公司在甲、乙两座仓库分别有农用车12辆和6辆,现需要调往A县10辆,调往B县8辆.已知从甲仓库调运一辆农用车到A县和B县的运费分别为40元和80元,从乙仓库调运一辆农用车到A县和B县的运费分别为30元和50元.设从甲仓库调往A县农用车x辆.(1)甲仓库调往B县农用车12﹣x 辆,乙仓库调往A县农用车10﹣x 辆.(用含x的代数式表示)(2)写出公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费.(用含x的代数式表示)(3)在(2)的基础上,求当从甲仓库调往A县农用车4辆时,总运费是多少?【考点】列代数式;代数式求值.【分析】(1)根据题意列出代数式;(2)到甲的总费用=甲调往A的车辆数×甲到A调一辆车的费用+乙调往A的车辆数×乙到A调一辆车的费用,同理可求出到乙的总费用;(3)把x=4代入代数式计算即可.总费用=到甲的总费用+到乙的总费用.【解答】解:(1)设从甲仓库调往A县农用车x辆,则调往B县农用车=12﹣x,乙仓库调往A县的农用车=10﹣x;(2)到A的总费用=40x+30(10﹣x)=10x+300;到B的总费用=80(12﹣x)+50(x﹣4)=760﹣30x;故公司从甲、乙两座仓库调往农用车到A、B两县所需要的总运费为:10x+300+760﹣30x=﹣20x+1060;(3)当x=4时,到A的总费用=10x+300=340,到B的总费用=760﹣30×4=640故总费用=340+640=980.【点评】根据题意列代数,再求代数式的值.24.(12分)(2015秋•常熟市期中)如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、b满足|a+2|+(c﹣7)2=0.(1)a= ﹣2 ,b= 1 ,c= 7 ;(2)若将数轴折叠,使得A点与C点重合,则点B与数 4 表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= 3t+3 ,AC= 5t+9 ,BC= 2t+6 .(用含t的代数式表示)(4)请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【考点】数轴;两点间的距离.【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)由 3BC﹣2AB=3(2t+6)﹣2(3t+3)求解即可.【解答】解:(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得a=﹣2,c=7,∵b是最小的正整数,∴b=1;故答案为:﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4;故答案为:4.(3)AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6;故答案为:3t+3,5t+9,2t+6.(4)不变.3BC﹣2AB=3(2t+6)﹣2(3t+3)=12.【点评】本题主要考查了数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。
人教版七年级数学下册期末测试卷 (2)
![人教版七年级数学下册期末测试卷 (2)](https://img.taocdn.com/s3/m/f24e47d68ad63186bceb19e8b8f67c1cfad6eece.png)
2016-2017学年度第二学期期末调研考试七年级数学试题友情提示:亲爱的同学们,请你保持轻松的心态,认真审题,仔细作答,发挥自己正常的水平,相信你一定行,预祝你取得满意的成绩。
一、选择题(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.)1.点P (5,3)所在的象限是………………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.4的平方根是 ………………………………………………………………………( ) A .2 B .±2C .16D .±163.若a b >,则下列不等式正确的是 ………………………………………………( ) A .33a b < B .ma mb > C .11a b -->-- D .1122a b+>+ 4.下列调查中,调查方式选择合理的是……………………………………………( ) A .为了了解某一品牌家具的甲醛含量,选择全面调查; B .为了了解神州飞船的设备零件的质量情况,选择抽样调查; C .为了了解某公园全年的游客流量,选择抽样调查; D .为了了解一批袋装食品是否含有防腐剂,选择全面调查.5.如右图,数轴上点P 表示的数可能是……………………………………………( ) A B C D.6.如图,能判定AB ∥CD 的条件是…………………………………………………( )A .∠1=∠2B .∠3=∠4C .∠1=∠3D .∠2=∠47.下列说法正确的是…………………………………………………………………( ) A .)8(--的立方根是2- B .立方根等于本身数有1,0,1-3421BCADC .64-的立方根为4-D .一个数的立方根不是正数就是负数 8.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若 ∠1=124°,∠2=88°,则∠3的度数为…( ) A .26° B .36° C .46° D .56°9.已知21x y =⎧⎨=⎩是二元一次方程组71ax by ax by +=⎧⎨-=⎩的解,则a b -的值为 …………( )A .3B .2C .1D .-110.在如图的方格纸上,若用(-1,1)表示A 点,(0,3)表示B 点,那么C 点的位置可表示 为……………………………………( ) A .(1,2) B .(2,3) C .(3,2) D .(2,1)11.若不等式组⎩⎨⎧≤>-a x x 312的整数解共有三个,则a 的取值范围是……………( )A .65<≤aB .65≤<aC .65<<aD .65≤≤a12.运行程序如图所示,规定:从“输入一个值x”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是………………………( )A .x≥11B .11≤x <23C .11<x≤23D .x≤23二、填空题(本大题共8个小题;每小题3分,共24分.请把答案写在答题卡上) 13.不等式23x -≤1的解集是 ; 14.若⎩⎨⎧==b y ax 是方程02=+y x 的一个解,则=-+236b a ; 15.已知线段MN 平行于x 轴,且MN 的长度为5,1DCBA1l3l4l2l231若M 的坐标为(2,-2),那么点N 的坐标是 ; 16.如图,若∠1=∠D=39°,∠C=51°,则∠B= °; 17.已知5x-2的立方根是-3,则x+69的算术平方根是 ;18.在平面直角坐标系中,如果一个点的横、纵坐标均为整数,那么我们称该点为整点,若整点P (2+m ,121-m )在第四象限,则m 的值为 ; 19.已知方程组 由于甲看错了方程①中的a 得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b 得到方程组的解为54x y =⎧⎨=⎩,若按正确的a b 、计算,则原方程组的解为 ;20.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为 ;三、解答题(本大题共7个小题,共72分.解答应写出文字说明,说理过程或演算步骤) 21.计算(本题满分10分) (1)32238)1(327+---- (2)2321---22.计算(本题满分12分)(1)解方程组:⎩⎨⎧-==-7613y x y x (2)解不等式组: 23.(本题满分8分)某校随机抽取部分学生,就“学习习惯”进行调查,将“对自己做错题进行整理、分析、改正”(选项为:很少、有时、常常、总是)的调查数据进行了整理,绘制成部分统计图如下:各选项人数的扇形统计图 各选项人数的条形统计图a 515 42x y x by +=⎧⎨-=-⎩① ②⎪⎩⎪⎨⎧-≤--<-121231)1(395x x x x请根据图中信息,解答下列问题:(1)该调查的样本容量为________,a =________%,b =________%,“常常”对应扇形的圆心角的度数为__________; (2)请你补全条形统计图;(3)若该校有3200名学生,请你估计其中“总是”对错题进行整理、分析、改正的 学生有多少名? 24.(本题满分8分)如图,在平面直角坐标系中,已知长方形ABCD 的两个顶点坐标为A (2,-1),C (6,2),点M 为y 轴上一点,△MAB 的面积为6,且MD <MA ;请解答下列问题:(1)顶点B 的坐标为 ; (2)求点M 的坐标;(3)在△MAB 中任意一点P (0x ,0y )经平移 后对应点为1P (0x -5,0y -1),将△MAB 作同样的平 移得到△111B A M ,则点1M 的坐标为 。
北京市西城区2017-2018学年七年级下期末数学试卷含答案
![北京市西城区2017-2018学年七年级下期末数学试卷含答案](https://img.taocdn.com/s3/m/645670d1a1c7aa00b52acb42.png)
西城区2017-2018学年度第二学期期末试卷七年级数学2018.7试卷满分:100分,考试时间:100分钟一、选择题(本题30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1. 8的立方根等于().A.-2B.2C.-4D.42.已知a<b,下列不等式中,正确的是().A. a+4>b+4B.a-3>b-3C. 12a<12b D. -2a<-2 b3.下列计算中,正确的是()A.m2+m4 =m6B. m2·m4=m8C.(3m) 2=3m2D. 2m4÷m2=2 m24.如图,直线a//b,三角板的直角顶点放在直线b上,两直角边与直线a相交,如果∠1=600,那么∠2等于().A. 300B. 400C. 500D. 6005.如果点P(5, y)在第四象限,那么y的取值范围是().A.y≤0B.y≥0C.y<0D.y>06.为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是().A.方案一B.方案二C.方案三D.方案四7.下列运算中,正确的是().A. (a+b)2=a2+b2B.(a-12)2=a2-a+14C. (a-b) 2=a2+2ab-b2D.(2a+b) 2=2a2+2ab+b28.下列命题中,是假命题的是()A.在同一平面内,过一点有且只有一条直线与已知直线垂直B.同旁内角互补,两直线平行C.两条直线被第三条直线所截,同位角相等D.如果两条直线都与第三条直线平行,那么这两条直线也互相平行9.某品牌电脑的成本为2400元,售价为2 800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,则下列不等式中能正确表示该商店的促销方式的是().A. 2 800x≥2400x5%B.2800x一2400≥2400 x 5%C. 2 800 10x ⨯≥2400 x 5%D. 2 800 10x ⨯一2400≥2400 x 5% 10 10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80% , 15%和 5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20000户居民6月份的用电量(单位:kw ・ h),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据统计数据,下面有四个推断:①抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平②在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于500 ③月用电量小于160 kw ・h 的该市居民家庭按第一档电价交费,月用电量不小于310 kw ・h 的该市居民家庭按第三档电价交费④该市居民家庭月用电量的中间水平(50%的用户)为110 kw ・h其中合理的是( ).A.①②③B.①②④C.①③④D.②③④二、填空题(本题共18分,第11-16题每小题2分,第17,18题每小题3分)11.不等式组12x x -⎧⎨⎩的解集是 . 12.如图,点A,B,C,D,E 在直线l 上,点P 在直线l 外,PC ⊥l 于点C ,在线段PA,PB,PC ,PD,PE 中,最短的一条线段是 ,理由是13.右图中的四边形均为长方形,根据图形,写出一个正确的等式:14.如图,在Rt ∆ABC 中,∠C=900 ,AD 平分∠ CAB 交BC 于点D, BE 上AD 于点E .若∠CAB=500,则∠DBE=15.如图,AB//CD, CE 交AB 于点F, ∠C=550, ∠AEC=150 则∠A=16.七巧板又称智慧板,是中国民间流传的智力玩具,它由七块板组成(如图1),用这七块板可拼出许多图形(1 600种以上).例如:三角形、平行四边形以及不规则的多边形,它还可以拼出各种人物、动物、建筑等.请你用七巧板中标号为①②③的三块板(如图2)经过平移、旋转拼出下列图形(相邻两块板之间无空隙,无重叠;示意图的顶点画在小方格顶点上):(1)拼成长方形,在图3中画出示意图;(2)拼成等腰直角三角形,在图4中画出示意图.17.如图,在平面直角坐标系xOy 中,平行四边形ABCD 的四个顶点 A,B,C, D 是整点(横、纵坐标都是整数),则平行四边形ABCD 的面积是18.若一个整数能表示成a 2+b 2 (a,b 是整数)的形式,则称这个数为“完美数”.例如,因为5=22+12,所以5是一个“完美数”.(1)请你再写一个大于10且小于20的“完美数” _;(2)已知M 是一个“完美数”,且M =x 2+4xy+5y 2-12y+ k(x,y 是两个任意整数,k 是常数),则k 的值为三、解答题(本题共17分,第19题5分,第20,21题每小题6分) 19.计算:035(523)23(3)π+-+-解:20.解不等式:2231132x x++-,并把解集表示在数轴上.21.先化简,再求值:(ab+2)(ab-2)+(a2b2 +4ab) ÷ab,其中a=10, b =1 5四、解答题(本题共27分,第24题6分,其余每小题7分)22.在平面直角坐标系xOy中,∆ABC的三个顶点分别是A(-2,0) ,B(0,3) ,C(3,0).(1)在所给的图中,画出这个平面直角坐标系;(2)点A经过平移后对应点为D(3,-3),将△ABC作同样的平移得到△DEF,画出平移后的△DEF;(3)在(2)的条件下,点M在直线CD上,若CM=2DM,直接写出点M的坐标.解:(3)点M的坐标为23.如图,点O在直线AB上,OC⊥OD, ∠EDO与∠1互余.(1)求证:ED// AB;(2) OF平分∠COD交DE于点F,若∠OFD=700,补全图形,并求∠1的度数.(1)证明:(2)解:24.某地需要将一段长为180米的河道进行整修,整修任务由A,B 两个工程队先、后接力完成.已知A 工程队每天整修12米,B 工程队每天整修8米,共用时20天.问A,B 两个工程队整修河道分别工作了多少天?(1)以下是甲同学的做法:设A 工程队整修河道工作了x 天,B 工程队整修河道工作了y 天. 根据题意,得方程组:解得x y =⎧⎨=⎩请将甲同学的上述做法补充完整;(2)乙同学说:本题还有另外一种解法,他列出了不完整的方程组如下: 128x y x y +=⎧⎪⎨+=⎪⎩①在乙同学的做法中,x 表示 ,8y 表示 ; ②请将乙同学所列方程组补充完整.25.阅读下列材料:2017年,我国全年水资源总量为28675亿m 3..2016年,我国全年水资源总量为32466.4亿 m 3. 2015年,我国全年水资源总量为27 962. 6亿 m 3,全年平均降水量为660. 8 mm.我国水资源的消费结构包含工业用水、农业用水、生态用水、生活用水四类.2017年全国用水总量为6 040亿 m 3,其中工业用水占用水总量的22%,农业用水占用水总量的62%,生态用水占用水总量的2%,生活用水844.5亿 m 3.根据上述材料,解答下列问题:(1)根据材料画适当的统计图,直观地表示2015一2017年我国全年水资源总量情况;(2) 2017年全国生活用水占用水总量的 %,并补全扇形统计图(3) 2012一2017年全国生活用水情况统计如下图所示,根据统计图中提供的信息①请你估计2018年全国生活用水量为亿m3,你的预估理由是;②谈谈节约用水如何从我做起?五、解答题(本题共8分)26.如图,在直角三角形ABC中,∠ACB=90".(1)如图1,点M在线段CB上,在线段BC的延长线上取一点N,使得∠NAC = ∠MAC.过点B作BD⊥AM,交AM延长线于点D,过点N作NE//BD,交AB于点E,交AM于点F.判断∠ENB与∠NAC之间的数量关系,写出你的结论,并加以证明;(2)如图2,点M在线段CB的延长线上,在线段BC的延长线上取一点N,使得∠NAC=∠MAC.过点B作BD⊥AM于点D,过点N作NE// BD,交BA延长线于点E,交MA延长线于点F.①依题意补全图形;②若∠CAB=450,求证:∠NEA=∠NAE.。
2016-2017学年北京东城汇文中学七年级下学期期中数学试题(含答案)
![2016-2017学年北京东城汇文中学七年级下学期期中数学试题(含答案)](https://img.taocdn.com/s3/m/479c07f4ddccda38366baf56.png)
2016—2017学年度第二学期 北京汇文中学期中考试初一年级 数学第一部分(共100分)一、选择题(请将唯一正确答案填入后面的括号中,每小题3分,共30分) 1.已知a b <,则下列不等式中不正确的是( ).A .44a b <B .44a b +<+C .44a b -<-D .44a b -<-【答案】 【解析】2.19的平方根是( ).A .13±B .13C .13-D .181±【答案】 【解析】3.在平面直角坐标中,点(2,3)M -在( ).A .第一象限B .第二象限C .第三象限D .第四象限【答案】 【解析】4.如图,数轴上点P 表示的数可能是( ).P32121ABCD 【答案】B【解析】解:由数轴可知点P 在23:<23<,故选B .5.下列各式正确的是( ).A.0.6=±B3±C3=D2-【答案】A3故B3-,故C2,故D 错;故选A .6.将某图形的横坐标都减去2,纵坐标不变,则该图形( ) A .向右平移2个单位 B .向左平移2个单位C .向上平移2个单位D .向下平移2个单位【答案】B【解析】解:横坐标减2,纵坐标不变,表示向左平移2个单位.故选B .7.如图,将三角板的直角顶点放在直尺的一边上,若165∠=︒,则2∠的度数为( ).A .10︒B .15︒C .25︒D .35︒12【答案】 【解析】8.如图,若13∠=∠,则下列结论一定成立的是( ).A .14∠=∠B .34∠=∠C .24180∠+∠=︒D .12180∠+∠=︒1234CBA D【答案】D【解析】解:∵13∠=∠, ∴AD BC ∥,∴12180∠+∠=︒,故选D .9.点A 在第二象限,距离x 轴3个单位长度,距离y 轴4个单位长度,则点A 的坐标是( ).A .(3,4)-B .(3,4)-C .(4,3)-D .(4,3)-【答案】C【解析】解:由点A 在第二象限可知:A 点横坐标为负,纵坐标为正,可排除B 、D . 由点A 到x 轴距离为3,到y 轴距离为4,可知(4,3)A -,故选C .10.下列命题中,真命题是( ). A .带根号的数一定是无理数B .a ,b ,c 是同一平面内的三条直线,若a b ⊥,b c ⊥,则a ⊥cC .16的平方根是4D .一对邻补角的角平分线互相垂直【答案】D不是无理数,故A 错. 若a b ⊥,b c ⊥,则a c ∥,故B 错.16的平方根是4±,故C 错.故选D .二、填空题(每题3分,共24分)11.不等式3100x -≤的正整数解是__________. 【答案】1,2,3【解析】解:∵3100x -≤, ∴310x ≤,103x ≤. 故正整数解为:1,2,3.12.若2(21)9x +=,则x =__________. 【答案】1或2-【解析】解:∵2(21)9x +=,213x +=±,231x =±-, ∴1x =或2-.13.写出一个无理数,使它在4和5之间__________.【解析】解:(答案不唯一)x <之间即可.14.点(3,3)P a b a +-在x 轴上,则a 的值为__________. 【答案】3【解析】解:∵点(3,3)P a b a +-在x 轴上, ∴30a -=即3a =.15.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是__________.【答案】同位角相等,两直线平行 【解析】同位角相等,两直线平行.16.若不等式组420x ax >⎧⎨->⎩的解集是12x -<<,则a =__________.【答案】 【解析】17.在直线MN 上取一点P ,过点P 作射线PA ,PB ,使PA PB ⊥,当40MPA ∠=︒时,NPB ∠的度数是__________. 【答案】50︒或130︒【解析】解析:如图,当射线PA 、PB 在直线MN 同侧时, ∵40MPA ∠=︒,且PA PB ⊥, ∴1904050NPB ∠=︒-︒=︒.当射线PA 、PB 在直线MN 异侧时, ∵40MPA ∠=︒,且PA PB ⊥, ∴50MPB ∠=︒, ∴2130NPB ∠=︒. 综上NPB ∠为50︒或130︒.B P M NB 1A18.如图,数轴上点A 的初始位置表示的数为2,将点A 做如下移动:第1次点A 向左移动2个单位长度至点1A ,第2次从点1A 向右移动4个单位长度至点2A ,第3次从点2A 向左移动6个单位长度至点3A ,L 按照这种移动方式进行下去,点5A 表示的数是__________,如果点n A 与原点的距离等于10,那么n 的值是__________.A 23A 11【答案】【解析】三、计算(每题5分,共10分)19【答案】121222=+-12=.20.1).2【解析】解:1)2 2=.四、解答题(21题5分,22、23、24、25题每题6分,26题7分,共36分) 21.解不等式组31502132x x x -⎧⎪⎨->⎪⎩≤,并将解集在数轴上表示出来.5421【答案】25x <≤【解析】解:31502132x x x -⎧⎪⎨->⎪⎩≤①②,解①得:315x ≤,5x ≤.解②得:423x x ->,2x >. ∴不等式组的解为:25x <≤. 数轴上表示为:122.如图,直线AB ,CD 相交于点O ,OA 平分EOC ∠. (1)若72EOC ∠=︒,求BOD ∠的度数.(2)若2DOE AOC ∠=∠,判断射线OE ,OD 的位置关系并说明理由.OECBAD【答案】(1)36BOD ∠=︒ (2)OE OD ⊥【解析】解:(1)∵OA 平分EOC ∠且72EOC ∠=︒,∴1362AOC EOC ∠=∠=︒, ∴36BOD AOC ∠=∠=︒.(2)射线OE ,OD 的位置关系是垂直.理由:∵OA 平分EOC ∠, ∴2EOC AOC ∠=∠, 又∵2DOE AOC ∠=∠, ∴EOC DOE ∠=∠, ∵180COD ∠=︒, ∴90EOC EOD ∠=∠=︒, ∴OE OD ⊥.AODBCE23.如图,已知点(1,42)P m m -+的横、纵坐标恰好为某个正数的两个平方根. (1)求点P 的坐标.(2)在图中建立平面直角坐标系,标出原点、坐标轴、单位长度,并写出点A 、B 、C 、D 的坐标.【答案】(1)(2,2)P -(2)(3,1)A -;(1,3)B --;(3,0)C ;(1,2)D【解析】解:∵(1,42)P m m -+的横坐标恰好为某正数的两个平方根, ∴1420m m -++=, ∴1m =-, ∴(2,2)P -.(2)建立如图坐标系:(3,1)A -;(1,3)B --;(3,0)C ;(1,2)D .24.在平面直角坐标系中,有点(1,21)A a +,(,3)B a a --. (1)当点A 在第一象限的角平分线上时,a 的值为__________. (2)若线段AB x ∥轴. ①求点A 、B 的坐标.②若将线段AB 平移至线段EF ,点A 、B 分别平移至11(,31)A x x '+,22(,23)B x x '-,则A '坐标为__________.B '表标为__________. 【答案】(1)0(2)①(1,7)A -,(4,7)B -;②(2,7)A ',(5,7)B '【解析】(1)∵点A 在第一象限角平分线上,且(1,21)A a +, ∴211a +=, ∴0a =.(2)①∵(1,21)A a +,(,3)B a a --, 又∵AB x ∥轴, ∴213a a +=-, ∴4a =-,∴(1,7)A -,(4,7)B -. ②∵(1,7)A -,(4,7)B -,∵将AB 平移至EF ,即11(,31)A x x '+,22(,23)B x x '-, ∴213x x =+ ∴11(3,23)B x x '++, ∵AB x ∥轴, ∴A B x ''∥轴,∴113123x x +=+, ∴12x =.∴(2,7)A ',(5,7)B '.25.阅读下列材料:如果一个数x 的n (n 是大于1的整数)次方等于a ,这个数就x 叫做a 的n 次方根,即n x a =,则x 叫做a 的n 次方根.如:4216=,4(2)16-=,则2,2-是16的4次方根,或者说16的4次方根是2和2-;再加5(2)32-=-,则2-叫做32-的5次方根,或者说32-的5次方根是2-. 回答问题:(1)64的6次方根是__________,243-的5次方根是__________,0的10次方根是__________. (2)我们学习过一个数的平方根有以下的形质:一个正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根.类比一个数的平方根的性质,归纳一个数的n (n 是大于1的整数)次方根的性质.【答案】(1)2±;3;0(2)一个数n 次方根的性质(n 为大于1的整数).①正数的n 次方根1n n ⎧⎨⎩当为偶数时,有两个,且它们互为相反数.当为奇数时,有个,且为正数.②0的n 次方根为0.③负数的n 次方根n n ⎧⎨⎩当为偶数时,不存在.当为奇数时,有一个,且为负数.【解析】26.已知:直线AB CD ∥,点M 、N 分别在直线AB ,CD 上,点E 为平面内一点. (1)如图,AME ∠,E ∠,ENC ∠的数量关系是__________.MNDABCE(2)利用(1)的结论解决问题:如图,已知30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ 得度数.Q DM NP AB CE F(3)如图,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN ∥交AB 于点H ,直接写出GEK ∠,BMN ∠,GEH ∠之间的数量关系.(用含m 的式子表示)ABCEDGHKM N【答案】(1)E AME ENC ∠=∠+∠ (2)15FEQ ∠=︒(3)180BMN KEG m GEH ∠+∠-∠=︒ 【解析】(1)过E 作EH AB ∥. ∵AB CD ∥, ∴EH AB CD ∥∥,∴AME MEH ∠=∠,HEN ENC ∠=∠, ∴MEN MEH HEN ∠=∠+∠AME ENC =∠+∠,即:MEN AME ENC ∠=∠+∠.HECB ADNM(2)∵EF 平分MEN ∠,P 平分ENC ∠,∴12FEN MEN ∠=∠,12ENP ENC ∠=∠,∵30AME ∠=︒,由(1)结论可知, ∴MEN AME ENC ∠=∠+∠30ENC =︒+∠, ∴12FEN MEN ∠=∠1(30)2ENC =︒+∠ 1152ENC =︒+∠15ENP =︒+∠.∵EQ PN ∥, ∴QEN ENP ∠=∠, 又∵FEN FEQ QEN ∠=∠+∠ FEQ ENP =∠+∠,∴15ENP FEQ EMP ︒+∠=∠+∠, ∴15FEQ ∠=︒.F E CB AP NM DQ(3)GEK ∠,BMN ∠,GEH ∠之间的数量关系是: ∵GEK m GEM ∠=∠,AMN m EMN ∠=∠,∴1GEM GEK m ∠=∠,1EMN AMN m∠=∠, ∵EH MN ∥, ∴1HEM EMN AMN m∠=∠=∠, ∵GEH GEM HEM ∠=∠-∠11GEK AMN m m=∠-∠, ∴m GEH GEK AMN ∠=∠-∠, ∵180BMN AMN ∠=︒-∠, ∴180AMN BMN ∠=︒-∠,∴180m GEH GEK BMN ∠=∠-︒+∠, ∴180GEK BMN m GEH ∠+∠-∠=︒.NM KHGDECBA第二部分(共30分)五、填空(每空2分,共16分)27.若两个角的两边分别平行,而一个角比另一个角的3倍少30︒,则两个角的度数分别是__________.【答案】15︒;15︒或52.5︒;127.5︒ 【解析】解:∵两个角的两边分别平行, ∴这两个角相等式互补.由题可设,其中一个角为x ,则另一个角为330x -, ①当两角相等时,330x x =-︒得15x =︒.即15︒,15︒.②当两角互补时,330180x x +-︒=︒得52.5x =︒.即52.5︒,127.5︒. 综上,这两角分别是15︒;15︒或52.5︒;127.5︒.28.下列叙述正确的有__________.(1)若a b <,则22ac bc <;(22±;(3)任何数都有立方根;(4)两个无理数的和有可能是有理数;(5)过一点有且只有一条直线与已知直线平行;(6)从直线外一点到这条直线的垂线段叫做这点到这条直线的距离. 【答案】(3);(4)【解析】解:若a b <,则22ac bc <,当0c =时不成立,故(1)错.2=,2的平方根是2)错.过直线外一点,有且只有一条直线与已知直线平行,故(5)错.从直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离,故(6)错. 所以只有(3),(4)正确.29.关于x 的不等式组0321x a x -⎧⎨->-⎩≥的整数解共有5个,则a 的取值范围是__________【答案】 【解析】30.已知点(32,4)N a a --到x 轴的距离等于到y 轴的距离的2倍,则a 的值为__________. 【答案】87或0 【解析】解:由题可知:点(32,4)N a a --的纵坐标是横坐标的两倍. ∴|4|2|32|a a -=-,①当42(32)a a -=-时,得:87a =. ②当42(23)a a -=-时,得0a =.综上,87a =或0.31.在平面直角坐标系中,任意两点(,)A a b ,(,)B m n ,规定运算:A ☆((1B m =-.若(4,1)A -,且A ☆(6,2)B =-,则点B 的坐标是__________. 【答案】(2,8)-【解析】解:∵(4,1)A -,(,)B m n .由题可得:A ☆((1B m =-, 又∵A ☆(6,2)B =-,∴(16m -2-,∴2(1)6m -=2=, 得2m =-,8n =, ∴(2,8)B -.32.如图,矩形ABCD 中,6AB =,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形1111A B C D ,第二次平移将矩形1111A B C D 沿11A B 的方向向右平移5个单位,得到矩形2222A B C D L ,第n 次平移将矩形1111n n n n A B C D ----沿11n n A B --的方向平移5个单位,得到矩形(2)n n n n A B C D n >.DABC C 1C n1D 2D 1C nD n A 2B 1A 1A nB nB n1∙∙∙∙∙∙(1)1AB =__________.2AB =__________. (2)若n AB 的长为56,则n =__________. 【答案】(1)11;16 (2)10【解析】解:∵1165AB AB BB =+=+,22652AB AB BB =+=+⨯, 33653AB AB BB =+=+⨯, L65n n AB AB BB n =+=+, (1)当1n =时,111AB =, 当2n =时,216AB =.(2)当n 时,即6556n AB n =+=,得10n =.六、解答题(33题6分,34题8分,共14分) 33.阅读下列材料:解答“已知2x y -=,且1x >,0y <,确定x y +的取值范围”有如下解, 解:∵2x y -=, ∴2x y =+. 又∵1x >, ∴21y +>.∴1y >-. 又∵0y <, ∴10y -<<,L ① 同理得:12x <<.L ② 由①+②得1102y x -+<+<+. ∴x y +的取值范围是02x y <+<. 请按照上述方法,完成下列问题:(1)已知3x y -=,且2x >,1y <,求x y +的取值范围.(2)已知1x <-,1y >,若x y a -=,且2a <-,求x y +得取值范围(结果用含a 的式子表示). 【答案】 【解析】34.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a 、b2(3)0b -=. (1)a =__________.b =__________.(2)如图,已知点(2,2)M --,P 坐标轴上一点,且BMP △的面积与ABM △的面积相等,求出点P 的坐标.(3)如图,作长方形ABCD ,点C 的纵坐标为y ,且点C 在第四象限,点F 在AD 上,且BEF △的面积为5,OCF △的面积为8,则y =__________.【答案】(1)1-;3(2)1(7,0)P ;2(1,0)P -;320,5P ⎛⎫ ⎪⎝⎭;4140,5P ⎛⎫⎪⎝⎭ (3)265-【解析】解:(12(3)0b -=, 根据非负性得,10a +=,30b -=,∴1a =-,3b =.(2)∵(1,0)A -,(3,0)B ,(2,2)M --, ∴4AB =,2M y =, ∴142ABM M S AB y =⨯=△, ∴4BMP S ∠=, 当点P 在x 轴上时,142BMP M S BP y =⨯=△,即:4BP =,∴1(1,0)P -,2(7,0)P . 当点P 在y 轴上时(如图).①当点P 在线段MB 上方时,设(0,)P t ,作如图矩形CMED ,BMP CMP BDP MEB CMED S S S S S =---△△△△矩111(2)5(2)2352222t t t =+⨯-⨯+⨯-⨯⨯-⨯⨯532t =+ 4=.得25t =. ∴320,5P ⎛⎫ ⎪⎝⎭.②当点P 在线段MB 下方时,同理可得,4140,5P ⎛⎫- ⎪⎝⎭,综上所述,P 点坐标为(1,0)-,(7,0),20,5⎛⎫ ⎪⎝⎭,140,5⎛⎫- ⎪⎝⎭.(3)∵(1,0)A -,(3,0)B ,由题可知:(3,)C y ,(1,)D y -,(0,)E y , ∵F 在AD 上, ∴设(1,)F m -, ∵8FOC S =△,即:8AOF DFC AOCD S S S --=△△梯,5()111()()48222y m m y ⨯--⨯⨯---⨯=, 化得:3822ym --=①,又∵5EFB S =△,即:5FDE BCE FDCB S S S --=△△梯[]()()411()13()5222m y y m y y -+-⨯--⨯-⨯⨯-=,化得:3252m y -=②,①+②得,2132yy --=,∴265y =-.。
湘教版 2017年七年级下册初一数学期末考试试题及答案
![湘教版 2017年七年级下册初一数学期末考试试题及答案](https://img.taocdn.com/s3/m/8f6adb17dc36a32d7375a417866fb84ae55cc35a.png)
湘教版 2017年七年级下册初一数学期末考试试题及答案2016-2017学年七年级下学期期末数学模拟试卷一、填空题(本大题共8个小题,每小题3分,共24分)1.如果|x-y+2|+(x+y-6)=0,那么XXX。
2.若2x+5y=8,2y+8x=2,则x=1/3.3.为了考察甲、乙两种小麦的长势,分别从中抽出20株测得其高度,并求得它们的方差分别为S甲=3.6,S乙=15.8,则种小麦的长势比较不整齐。
4.如图,直线AB,CD相交于点E,DF∥AB。
若∠AEC=100°,则∠D=80°。
5.如图,AB∥CD,AC平分∠DAB,∠2=25°,则∠D=130°。
6.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于40°。
7.如图AD是△ABC的中线,∠ADC=60°,BC=4,把△ADC沿直线AD折叠后,点C落在C′的位置上,那么BC′为2.8.一组数据为:x,-2x,4x,-8x,…观察其规律,推断第n个数据应为(-2)^{n-1}x。
二、选择题(本大题共8个小题,每小题3分,共24分)9.下面有4个汽车标志图案,其中是轴对称图形的有(B)。
10.方程组2x+5y=8,2y+8x=2的解是(A)x=1/3.11.下列计算中,错误的有(D)④(-x+y)(x+y)=-(x-y)(x+y)=-x-y。
12.下列多项式相乘,不能用平方差公式计算的是(D)(2y-x)(-x-2y)。
13.下列图形中,由AB∥CD,能得到∠1=∠2的是(A)。
14.若a-b=1,ab=2,则(D)(a+b)的值为3.15.XXX和XXX两人玩“打弹珠”游戏,XXX对XXX说:“把你珠子的一半给我,我就有10颗珠子”.XXX却说:“只要把你的给我,我就有10颗”.如果设XXX的弹珠数为x颗,XXX的弹珠数为y颗,则列出的方程组是(B)y+5=x,y=10-x。
2016-2017年七年级上学期期末考试数学试题及答案
![2016-2017年七年级上学期期末考试数学试题及答案](https://img.taocdn.com/s3/m/69a64612640e52ea551810a6f524ccbff121caa2.png)
2015-2016学年第一学期七年级期末测试数学试题(本试题共4页,满分为120分,考试时间为90分钟)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.﹣6的绝对值是()1A.6B.﹣6C.±6D.62.新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯亚欧两大洲中部地带,总长约为10900公里,10900用科学记数法表示为()A.0.109×105B.1.09×104C.1.09×103D.109×1023.计算23-的结果是()A.9B.9-C.6D.6-4.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是()A.数B.学C.活D.的5.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是()A.在公园调查了1000名老年人的健康状况B.在医院调查了1000名老年人的健康状况C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况6.下面合并同类项正确的是( )A .32523x x x =+B .1222=-b a b aC .0=--ab ab D.022=+-xy xy7.如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )A .35°B .45°C .55°D .65°8. 下列说法中错误的是( )A .y x 232-的系数是32- B .0是单项式 C .xy 32的次数是1 D .x -是一次单项式 9. 方程x =+-32▲,▲处被墨水盖住了,已知方程的解x=2,那么▲处的数字是( ) A .2 B .3 C .4 D .610. 如果A 、B 、C 三点在同一直线上,且线段AB=6cm ,BC=4cm ,若M,N 分别为AB ,BC 的中点,那么M,N 两点之间的距离为( )A .5cmB .1cmC .5或1cmD .无法确定11.A 种饮料比B 种饮料单价少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设B 种饮料单价为x 元/瓶,那么下面所列方程正确的是( )A .2(x ﹣1)+3x=13B .2(x+1)+3x=13C .2x+3(x+1)=13D .2x+3(x ﹣1)=1312.从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形.则m 、n 的值分别为( )7题图A .4,3B .3,3C .3,4D .4,413.钟表在8:25时,时针与分针的夹角是( )度.A .101.5B .102.5C .120D .12514.某商品的标价为132元,若以9折出售仍可获利10%,则此商品的进价为( )A .88元B .98元C .108元D .118元15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n (n 是正整数)的结果为( )1+8=? 1+8+16=? 1+8+16+24=?A.(2n+1)2B.(2n-1)2C.(n+2)2D.n 2二、填空题(本大题共6个小题,每小题3分,共18分.只要求填写最后结果,把答案填在题中的横线上.)16.比较大小:30.15° 30°15′(用>、=、<填空)17.若代数式123--x a 和243+x a 是同类项,则x=_______. 18.若()521||=--m x m 是一元一次方程,则m= .19.如图,将一副三角尺的直角顶点重合,摆放在桌面上,若∠BOC=35°, 则∠AOD= °.20.已知3x+1和2x+4互为相反数,则x= .21.小明与小刚规定了一种新运算△:,则a△b = b a 23-.小明计算出2△5= -4,请你帮小刚计算2△(-5)=________________.19题图三、解答题:(本大题共7小题,共57分.解答要写出必要的文字说明、证明过程或演算步骤。
北京市西城区2023-2024学年七年级下学期期末数学试题
![北京市西城区2023-2024学年七年级下学期期末数学试题](https://img.taocdn.com/s3/m/9aceb238b94ae45c3b3567ec102de2bd9705de61.png)
北京市西城区2023-2024学年七年级下学期期末数学试题一、单选题1.下列各组图形或图案中,能将其中一个图形或图案通过平移得到另一个图形或图案的是( ) A .B .C .D .2.在平面直角坐标系中,下列各点位于第二象限的是( )A .()12-,B .()12-,C .()12,D .()12--,3.下列调查中,适合采用全面调查的是( ) A .对乘坐飞机的旅客进行安检 B .调查某批次汽车的抗撞击能力 C .调查某市居民垃圾分类的情况D .调查市场上冷冻食品的质量情况4.若a b <,则下列不等式不一定成立的是( ) A .11a b -<-B .22a b ->-C .2a b b +<D .22a b <5.下列图形中,由AB CD P ,能得到12∠=∠的是( )A .B .C .D .6.由123x y-=可以得到用x 表示y 的式子是( )A .322x y -=B .3122y x =- C .332y x =-D .332y x =- 7.下列命题:①经过直线外一点,有且只有一条直线与这条直线平行 ②在同一平面内,过一点有且只有一条直线与已知直线垂直③两条直线被第三条直线所截,内错角相等 ④所有实数都可以用数轴上的点表示 其中真命题的个数是( ) A .1B .2C .3D .48.如图是某个一元一次不等式的解集在数轴上的表示,若该不等式恰有两个非负整数解,则a 的取值范围是( )A .23a ≤<B .12a <≤C .12a ≤<D .01a ≤≤二、填空题9 3.14159,227中,是无理数的是.10.94的算术平方根是.11.已知二元一次方程27x y +=,请写出该方程的一组正整数解. 12.把命题“对顶角相等”改写成“如果…那么…”的形式:.13.一个样本容量为63的样本,最大值是172,最小值是149,取组距为3,则这个样本可以分成组.14.平面直角坐标系中,点()3,1M ,(),3N a a +,若直线MN 与y 轴平行,则点N 的坐标是.15.如图,点A ,B ,C 在同一条直线上,AD AE ⊥,且AD BF ∥,CBF α∠=,则CAE ∠=(用含α的代数式表示).16.关于x ,y 的二元一次方程1kx y -=,且当2x =时,5y =. (1)k 的值是;(2)当2x <时,对于每一个x 的值,关于x 的不等式1x n kx +>-总成立,则n 的取值范围是.三、解答题17.(1(2)求等式中x 的值:()2116x -=.18.(1)解方程组23344x y x y -=⎧⎨-=-⎩;(2)解不等式组3283144x x x x -≥⎧⎪⎨--<⎪⎩,并写出它的整数解.19.(1)如图1,点P 是ABC ∠的边BC 上一点.按照要求回答下列问题: ①过点P 分别画出射线BC 的垂线PE 和射线BA 的垂线PF ,F 是垂足; ②线段PF PB (填“<”“>”“=”)的理由是.(2)如图2,点E ,F 分别在AB ,BC 上,点D ,G 在AC 上,EG ,FD 的延长线交于点H .若CDF A ∠=∠,180BDF BEG ∠+∠=︒. 求证:BDF H ∠=∠.请将下面的证明过程补充完整: 证明:∵CDF A ∠=∠,∴AB HF ∥()(填推理的依据). ∴BDF ABD ∠=∠()(填推理的依据). ∵180BDF BEG ∠+∠=︒, ∴180ABD BEG ∠+∠=︒, ∴∥EH .∴BDF H ∠=∠()(填推理的依据).20.在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别是()()1,4,4,1A B ---,()10C ,.(1)画出三角形ABC ,并求它的面积;(2)将三角形ABC 平移到三角形111A B C ,其中点A ,B ,C 的对应点分别是1A ,1B ,1C ,已知点1A 的坐标是()32,, ①点1B 的坐标是_________,点1C 的坐标是;②写出一种将三角形ABC 平移到三角形111A B C 的方法:.21.某商店决定购进甲、乙两种文创产品.若购进甲种文创产品7件,乙种文创产品3件,则费用是285元;若购进甲种文创产品2件,乙种文创产品6件,则费用是210元. (1)求购进的甲、乙两种文创产品每件的费用各是多少元?(2)若该商店决定购进这两种文创产品共200件,考虑市场需求和资金周转,用于购买这200件文创产品的总费用不少于5350元,且不超过5368元,求该商店共有几种购进这两种文创产品的方案.22.在今年第29个世界读书日来临之际,某校数学活动小组为了解七年级学生每天阅读时长的情况设计了一份调查问卷,同时随机邀请七年级的一些学生完成问卷调查,获得了这些学生平均每天阅读时长的数据,并对这些数据进行了整理,绘制成频数分布表、频数分布直方图.下面给出了部分信息.a .平均每天阅读时长频数分布表、频数分布直方图分别如图所示.b .其中6090x ≤<这一组的平均每天阅读时长是:60,60,70,70,73,75,75,75,80,83,84,84,84,85,89. 根据以上信息,回答下列问题:(1)表中m =,n =,参与问卷调查的学生共有人; (2)补全频数分布直方图;(3)为了鼓励学生养成阅读习惯,语文老师建议对七年级平均每天阅读时长在75分钟及以上的学生授予“阅读达人”称号.已知七年级共有990名学生,请估计该年级共有多少名学生获得“阅读达人”称号.23.如图,直线AB CD P ,直线EF 与直线AB ,CD 分别交于点E ,F ,AEF ∠的平分线交CD 于点P .(1)求证:FEP FPE ∠=∠;(2)点G 是射线PF 上一个动点(点G 不与点P ,F 重合),FEG ∠的平分线交直线CD 于点H ,过点H 作HN PE ∥交直线AB 于点N ,①当点G 在线段PF 上时,依题意补全图形,用等式表示EHN ∠和EGF ∠之间的数量关系,并证明;②当点G 在线段PF 的延长线上时,直接写出用等式表示的EHN ∠和EGF ∠之间的数量关系. 24.在平面直角坐标系xOy 中,已知点(),M a b (点M 不与原点O 重合),将点()(),0Q x ka y kb k ++>称为点(),P x y 关于点M 的“k 倍平移点”. (1)已知点P 的坐标是()4,3,①若点()2,2M -,则点P 关于点M 的“2倍平移点”Q 的坐标是;②点()3,2N --,()1,2T -,点M 在线段NT 上,过点(),0R r 作直线l x ⊥轴,若直线l 上存在点P 关于点M 的“2倍平移点”,求r 的取值范围.(2)点()1,1A --,()1,1B -,()5,7E ,()8,4F ,以AB 为边在直线AB 的上方作正方形ABCD ,点(),M a b 在正方形ABCD 的边上,且0a >,0b >,对于正方形ABCD 的边上任意一点P ,若线段EF 上都不存在点P 关于点M 的“k 倍平移点”,直接写出k 的取值范围. 25.将非负实数x “四舍五入”到个位的值记为[]x ,当n 为非负整数时,①若1122n x n -≤<+,则[]x n =:②若[]x n =,则1122n x n -≤<+.如[][]00.490==,[][]0.64 1.491==,[]22=. (1)[]π=;(2)若312t t +=,则满足条件的实数t 的值是.26.在平面直角坐标系xOy 中,给定n 个不同的点()()()111222,,,,,,n n n P x y P x y P x y L ,若1x ,2x ,…,n x ,1y ,2y …,n y 中共有t 个不同的数,则称t 为这n 个不同的点的特征值.图形F 上任意n 个不同的点()()()111222,,,,,,n n n P x y P x y P x y L 中,特征值最小的一组点的特征值称为图形F 的n 阶特征值.(1)点()11,1A -,()231A -,,()323A ,的特征值是; (2)已知正方形ABCD 的四个顶点分别为()0A a ,,()20B a +,,()22C a +,,()2D a ,, ①直接写出正方形ABCD 的4阶特征值的最小值:②若正方形ABCD 的5阶特征值的最小值是3,直接写出a 的取值范围.。
2016-2017年度北京市第四中学初一下学期期中考试数学试卷(含答案)
![2016-2017年度北京市第四中学初一下学期期中考试数学试卷(含答案)](https://img.taocdn.com/s3/m/d0e125c4524de518964b7d64.png)
54D3E21CB A数学试卷(考试时间100分钟,试卷满分120分)班级学号_________ 姓名分数__________一.选择题:(每题3分,共30分)1.2的平方根是()A .4B .2C .2D .22.以下列各组线段为边,能组成三角形的是()A .1cm ,2cm ,4cmB .8cm ,6cm ,4cmC .12cm ,5cm ,6cmD .2cm ,3cm ,6cm3.平面直角坐标系中, 点(1,-2)在()A. 第一象限 B. 第二象限C. 第三象限D. 第四象限4.若23132a b a b ,则a b ,的大小关系为()A .ab B .a b C .a bD .不能确定5.如图,CA ⊥BE 于A ,AD ⊥BF 于D ,下列说法正确的是()A .α的余角只有∠B B .α的邻补角是∠DAC C .∠ACF 是α的余角D .α与∠ACF 互补6.如图,直线AB 与直线CD 相交于点O ,E 是AOD 内一点,已知OE ⊥AB ,45BOD ,则COE 的度数是()A 、125B 、135C 、145D 、1557.如图,下列能判定AB ∥CD 的条件有()个.(1) 180BCD B ;(2)21;(3) 43;(4) 5B.A.1B.2C.3D.48.“鸡兔同笼”是我国民间流传的诗歌形式的数学题:“鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x 只,兔为y 只,则所列方程组正确的是()A .362100x y xyB .3642100x y xy C .3624100x y x yD .3622100x y x y 第5题 ACBEDO第6题第7题9.下列四个命题,真命题的个数为()(1) 坐标平面内的点与有序实数对一一对应,(2)若a >0,b 不大于0,则P (-a ,b)在第三象限内(3)在x 轴上的点,其纵坐标都为(4)当m ≠0时,点P (m 2,-m )在第四象限内A. 1B. 2C .3D. 410.如果不等式组1<x ≤2x >-m 有解,那么m 的取值范围是()A .m >1B .m ≤2C .1<m ≤2D .m >-2二.填空题(每空2分,共28分)11.如图,直线a b ,被直线c 所截,若a b ∥,160°,则2°.12. 比较大小:8327.13. 等腰三角形一边等于4,另一边等于2,则周长是.14. 关于x 的不等式23x a的解集如图所示,则a 的值是.15.在长为a m ,宽为b m 的一块草坪上修了一条1m 宽的笔直小路,则余下草坪的面积可表示为m 2;现为了增加美感,把这条小路改为宽恒为1m 的弯曲小路(如图),则此时余下草坪的面积为m 2.16. 如果点)2,(x x 到x 轴的距离为4,则这点的坐标是.17. 已知a 是10的整数部分,b 是它的小数部分,则23)3b()a (=.18.已知点M (3a 8, a 1).(1) 若点M 在第二、四象限角平分线上, 则点M 的坐标为______________; (2) 若点M 在第二象限, 并且a 为整数, 则点M 的坐标为_________________;(3) 若N 点坐标为(3, 6), 并且直线MN ∥x 轴, 则点M 的坐标为___________ .19.如图,已知,AB//CD ,B 是AOC 的角平分线OE 的反向延长线与直线AB 的交点,若75,AC 7.5,ABE 则C°.12c a b第11题第14题第19题DEAOCB20.如图,在平面直角坐标系中,有若干个横坐标和纵坐标都是整数的点,其顺序排列规律如下:(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探究可得,第100个点的坐标为__________;第2017个点的坐标为__________.三、解答题(共10题,共计42分)21. (4分)计算2372276422.(3分)求不等式的非正整数....解:372211x x 23.(4分)解不等式组,并把它的解集表示在数轴上:3(1)7251.3x x xx ≤,①②24.(4分)完成下面的证明:已知,如图,AB ∥CD ∥GH ,EG 平分∠BEF ,FG 平分∠EFD ,求证:∠EGF=90°证明:∵HG ∥AB ,HG ∥CD (已知) ;∴∠1=∠3 ∴∠2=∠4( ).∵AB ∥CD(已知);∴∠BEF+___________=180°().又∵EG 平分∠BEF ,FG 平分∠EFD(已知) ∴∠1=21∠_____________∠2=21∠_____________( ).∴∠1+∠2=21(___________+______________).∴∠1+∠2=90°;∴∠3+∠4=90°,即∠EGF=90°.25.(3分)已知实数x 、y 满足231220x y x y ,求y x58的平方根.26.(4分)已知: 如图, ∠C = ∠1, ∠2和∠D 互余, BE ⊥FD 于G.求证:CD AB //.AF BCE DG21DG A E BHCF123 427.(4分)已知在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,4),B(1,1),C(3,2).(1)将△ABC先向左平移3个单位长度,再向下平移4个单位长度得到△A1B1C1,请写出A1,B1,C1三个点的坐标,并在图上画出△A1B1C1;(2)求△A1B1C1的面积.28.(5分)如图,在△ABC中,∠B=∠C,∠BAD=40°,且∠ADE=∠AED,求∠CDE的度数.,两29.(5分)某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B 种型号的设备,其中每台的价格,月处理污水量如下表:A型B型价格(万元/台)a b处理污水量(吨/月)240 200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.,的值.(1)求a b(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.30.(6分)对于长方形OABC ,OC AB //, BC AO //, O 为平面直角坐标系的原点,OA =5,OC =3,点B 在第三象限.(1)求点B 的坐标;(2)如图1,若过点B 的直线BP 与长方形OABC 的边交于点P ,且将长方形OABC 的面积分为1:4两部分,求点P 的坐标;(3)如图2,M 为x 轴负半轴上一点,且∠CBM =∠CMB ,N 是x 轴正半轴上一动点,∠MCN的平分线CD 交BM 的延长线于点D ,在点N 运动的过程中,D CNM的值是否变化?若不变,求出其值;若变化,请说明理由.xyOACBx yOA CBMN D图1图2附加题(共20分,第1、2题各5分,第3题4分、第4题6分)1.已知n 、k 均为正整数,且满足815<n n +k<713,则n 的最小值为_________.2. 如图,平面直角坐标系内,ACBC ,M 为AC 上一点,BM 平分ABC 的周长,若6AB,3.6BMCS,则点A 的坐标为.3. 如图,直线a ∥b ,3-2=2-1=d 0.其中390,1=50.求4度数最大可能的整数值.4. 如图,A 和B 两个小机器人,自甲处同时出发相背而行,绕直径为整数米的圆周上运动,15分钟内相遇7次,如果A 的速度每分钟增加6米,则A 和B 在15分钟内相遇9次,问圆周直径至多是多少米?至少是多少米?(取314.)yxO B ACM321ab4数学试卷答案一.选择题(每小题3分,共30分) 1 2 3 4 5 6 7 8 9 10 DBDDABCCBD二.填空题(每空2分,共28分)11.60 12.>13.10 14.115.a(b-1) a(b-1) 16. (2,4) 或(-2,-4) 17.-1718.(1) )45,45( (2) (-2,1) (3) (-23,-6) 19.4020. (14,8) (63,3)三.解答题(共42分)21. (4分)23722764|7|2382122.(3分))7(212)1(36x x 14212336x x 115x511x非正整数解 -2,-1,0 23. (4分) 解:由得,2x,由得,21x不等式组的解集为212-x-12-224. (4分) 两直线平行,内错角相等∠EFD两直线平行,同旁内角互补∠BEF∠EFD 角平分线的定义∠BEF∠EFD25. (3分)解:由题意得,220132yx y x ,解得58yx 1658yx所以y x58的平方根为4.26. (4分) 证明:G FD BE于点90BGE 901D 又互余和D 221(同角的余角相等) 又1C 2CCD AB // (内错角相等,两直线平行)27. (4分) (1))0,2(1A )3,2(1B )2,0(1C (2) 328. (5分)20CDE 29.(5分) 解:(1)由题意得,6322b ab a ,解得1012b a .(2)设买x 台A 型,则买 (10-x)台B 型,有105)10(1012x x 解得25x答:可买10台B 型;或 1台A 型,9台B 型;或2台A 型,8台B 型.(3)设买x 台A 型,则由题意可得2040)10(200240x x解得1x 当x=1时,花费102910112 (万元)当x=2时,花费104810212 (万元)答:买1台A 型,9台B 型设备时最省钱.30.(6分) (1) (-5,-3)(2) 当点P 在x 轴上时,设P(x,0),则有x<0且3|5|21353|5|214x x 解得3x )0,3(P 当点P 在y 轴上时,设P(0,y),则有y<0且5|3|21355|3|214y y 解得59y )59,0(P P(-3,0)或)59,0(P (3) 不变. 设x CMBCBM ,y DCN MCD ,则y x CNMy xD 22,21CNM D附加题(共20分)1.(5分)152.(5分) (0,2.4)3.(4分)解:∵∠4-∠3=∠3-∠2,∴∠4=2∠3-∠2,又∵∠3-∠2=∠2-∠1,∠1=50°,∴2∠2=∠3+50°,∴2∠4=4∠3-2∠2=4∠3-∠3-50°=3∠3-50°,∴∠3=24503,而∠3<90°,∴24503<90°,∴∠4<110°,∴∠4的最大可能的整数值是109°.4. (6分)解:设圆的直径为d ,A 和B 的速度和是每分钟v 米,则d v d8157①d v d 10)6(159②②-①得d d36159030d 28.6624d 9.5541429d 9答:圆周直径至多是28米,至少是10米.解法二:由于圆的直径为D ,则圆周长为πD .设A 和B 的速度和是每分钟v 米,一次相遇所用的时间为Dv 分;他们15分钟内相遇7次,用数学语言可以描述为151587v DD v ①如果A 的速度每分钟增加6米,A 加速后的两个机器人的速度和是每分钟v+6米,则A 和B 在15分钟内相遇9次,用数学语言可以描述为1515(6)109v DD v ②本题不是列方程,而是列不等式来描述题设的数量关系,这对一般学生可能比较生疏,体现了基本技能的灵活性.由①,得871515v D ,由②,得10691515v D ,上面两式相加,则有369030,1515DD,28.6624>D>9.55414,29>D>9.已知“圆的直径为整数米”,所以,圆周直径至多是28米,至少是10米.。
2017-2018年北京市房山区七年级下学期期末数学试卷和参考答案
![2017-2018年北京市房山区七年级下学期期末数学试卷和参考答案](https://img.taocdn.com/s3/m/2111fe1b640e52ea551810a6f524ccbff121ca07.png)
密••…封••…圈••…内•・…不•・…能••…答••…题 密••…封••…圈••…内•・…不•・…能••…答••…题2017-2018学年北京市房山区七年级下学期期末数学试卷、选择题(本题共 30分,每小题3分)在下列各题的四个选项中,a (x+y) = ax+ay x - 4x+4 = x (x - 4) +4A.相等的角是对顶角B.平行于同一条直线的两条直线互相平行C.同旁内角互补D.垂直于同一条直线的两条直线互相垂直只有一个是正确的.请将正确选项前的字母在答题卡相应的位置用2B 铅笔涂黑(3分)若mvn,则下列不等式中, 正确的是(2. 3. A. 3mv 3nC. D. - 3mv — 3n(3分)下列运算正确的是( A . a+a 3= a 4C. a 10+a 2=a 5(3分)下列各式由左边到右边的变形中,B. D. (a+b) 2= a 2+b 2(a 2) 3= a 6是分解因式的为(4. 5. 6. C.C.210x — 5x= 5x (2x —x2—16+3x= ( x- 4) (x+4) +3x(3分)是方程mx+y -1 = 0的一组解,y=2(3分)在下列命题中, 为真命题的是(则m 的值为((3分)不等式2x- 3>1的解集在数轴上表示正确的是A B .7. (3分)下列调查中, 适合用普查方法的是(A. 了解某次航班乘客随身携带物品情况B. 了解中央电视台《春节联欢晚会》的收视率C. 了解一批手机电池的使用寿命D. 了解某地区饮用水矿物质含量情况8. (3分)如图, 将三角板的直角顶点放在直尺的一边上,若Z 1 = 50° ,则/2的度数9. (3分)北京市2018年5月1日至5月14日这14天的最低气温情况统计如下:则还需要抽取面积为 a 2的正方形纸片(二、填空题(本题共 20分,每题2分)11. (2分)某校为了解该校 500名毕业生的数学考试成绩,从中抽查了 50名考生的数学成绩, 在这次调查中, 样本容量是 .12. (2 分)计算:(9a 2b-6ab 2) + ( 3ab ) =. 13. (2 分)(-3 - 2x ) ( 2x - 3) = . 14. (2 分)分解因式:a2b - 9b=. 15. (2分)因式分解:x- 2x+x=16. (2分)若一个角的补角比这个角大 20° ,则这个角的大小为 度. 17. (2分)如图, 请你添加一个条件, 使AB//CD, 这个条件是 , 你的依据C. 50°D. 60最低气温13 14 15 16 17 18 19(%)天数则北京市 2018年5月1日至5月 14日这14天最低气温的众数和中位数分别是(A. 15, 15B. 19, 16C. 15 ,15.5D. 15, 1610. (3 分) 有若干张面积分别为a 2、b 2、ab 的正方形和长方形纸片,小明从中抽取了 1张面积为 b 2的正方形纸片, 6张面积为ab 的长方形纸片,若他想拼成一个大正方形,A. 6张B. 9张C. 10 张D. 12 张* ★★第?个圉彤它们是按一定规律排列的, 依照此规律, 第5个图形共有 个十, 第n 个图形 共有 个★.三、解答题(本题共 50分)f 2x^=821. (3分)用代入法解方程组 口[3“+2y=3Y +1 2%+222. (4分)解不等式三十>安二-1,并写出它的非负整数解.23. (4分)计算:18. (2分)如图是根据某校为地震灾区捐款的情况而制作的统计图, 已知该校在校学生有600人,请根据统计图计算该校共捐款 元.人数统计则/ 2 =.* ★* ★ ★曹• •*篝3个图形密■1个图形(1)(兀一2018) 0- 2+ ( - 3) 2AB 折叠,已知/ 1 = 7524.(4分)说明n3-n是三个连续正整数的积(其中n是大于1的整数)25.(6分)阅读材料并解决问题2016年北京市春季学期初中开放性科学实践活动共上线1009个活动项目,资源单位为学生提供了三种预约方式:自主选课、团体约课、送课到校,其中少年创学院作为首批北京市开放性科学实践平台入选单位,在2015年下半年就已经分别为北京市多所学校提供送课到校服务,并以高质量的创客课堂赢得大家的认可.全市初一学生可以通过网络平台进行开放性科学实践平台选课,活动项目包括六个领域,A:自然与环境,B:健康与安全,C:结构与机械,D:电子与控制,E:数据与信息,F:能源与材料某区为了解学生自主选课情况,随机抽取了初一部分学生进行调查,并将调查结果绘制成了如下两幅不完整的统计图,请根据统计图回答下列问题:学生自主选课扇形虢计图生生三土安里舁*在圉60504C302010(1)扇形统计图中m值为;(2)这次被调查的学生共有人;(3)请将统计图2补充完整;(4)该区初一共有学生3000人,根据以上信息估计该区初一学生中选择电子与控制的人数约有_____________ 人.26.(12分)看图填空,在括号内填写理由.(1)如图已知/ B+/BCD = 180° ,/B=/D.证明:.一/ B+/BCD = 180° (已知),求证:AD//BE.・.AB// () DCE = / B ()又B = Z D (已知)・•.Z DCE= (等量代换)AD // BE ()(2)如图2, 已知CD,DA, DAXAB, /1 = /2.试说明DF //AE.证明: (已知)・・./CDA=90° , Z DAB =90° () . •/ 1 + /3=90° ,/2+/4=90 又.一/ 1 = / 2 (已知)DF // AE ()27.(4分)小亮在匀速行驶的汽车里,注意到公路里程碑上的数如下表所示:时刻12: 00 13: 00 16: 00 里程碑上的数是一个两位数十位数和个位数字与比12: 00时看到的两好颠倒了那么小亮在12: 00时看到的两位数是 ,并写出解答过程.28.(4分)阅读理解,解决问题(1)如图1,利用直尺和三角板画已知直线的平行线.①作直线AB,并用三角板的一边贴住直线AB;②用直尺紧靠三角尺的另一边;③沿直尺下移三角板到某一位置;④ 沿三角板作出直线CD.这样就得到CD // AB .这种画平行线的依据是(2)小静同学如图2摆放一副三角板,也得到AB//CD.依据是M(3)请你利用图3所示的两个三角形模板摆放后画平行线. 在图4中画出你摆放的两个三角形模板的位置.并写出这种画平行线的依据是29. (4分)阅读下列材料:小明遇到一个问题:已知,如图1,三角形ABC.求证:/ ABC + Z BCA+Z BAC= 180°小明是这样思考的:在已经学习的知识中,平角的度数是180。
2016-2017学年北师大版七年级数学下册期末试题及答案
![2016-2017学年北师大版七年级数学下册期末试题及答案](https://img.taocdn.com/s3/m/98220134eef9aef8941ea76e58fafab069dc4419.png)
2016-2017学年北师大版七年级数学下册期末试题及答案2016-2017学年度第二学期期末测试题七年级数学本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷共2页,满分为36分;第Ⅱ卷共6页,满分为84分。
本试题共8页,满分为120分。
考试时间为120分钟。
答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置。
考试结束后,将本试卷和答题卡一并交回。
本考试不允许使用计算器。
第Ⅰ卷(选择题共36分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
答案写在试卷上无效。
一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列各式计算正确的是()A.x+x=2xB.xy^4/48=x^3yC.x^2=x^5D.(-x)^5=(-x)^82.下列各式中,不能用平方差公式计算的是( )A.(4x-3y)(-3y-4x)B.(2x-y)(2x+y)C.(a+b-c)(-c-b+a)D.(-x+y)(x-y)3.PM2.5是大气压中直径小于或等于0.xxxxxxxm的颗粒物,将0.xxxxxxx用科学记数法表示为()A.0.25×10^-5B.0.25×10^-6C.2.5×10^-5D.2.5×10^-64.如图,∠1与∠2互补,∠3=135°,则∠4的度数是()A、45°B、55°C、65°D、75°5.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间t(时)变化的图象(全程)如图所示。
有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时甲跑了10千米,乙跑了8千米;③乙的行程y与时间t的关系式为y=10t;④第1.5小时,甲跑了12千米。
七年级下学期期末数学试卷(含答案)
![七年级下学期期末数学试卷(含答案)](https://img.taocdn.com/s3/m/caf02b8ad0d233d4b14e6962.png)
七年级下学期期末数学试卷(时间:120分钟 满分:120分)亲爱的同学,这份试卷将再次记录你的自信、沉着、智慧和收获. 请认真审题,看清要求,仔细答题,要相信我能行。
一、认真填一填:(每题3分,共30分)1、剧院里5排2号可以用(5,2)表示,则(7,4)表示 。
2、不等式-4x ≥-12的正整数解为 .3、要使4 x 有意义,则x 的取值范围是_______________。
4、为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是_______________________.5、如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。
6、等腰三角形一边等于5,另一边等于8,则周长是_________ .7、如图所示,请你添加一个条件....使得AD ∥BC , 。
8、若一个数的立方根就是它本身,则这个数是 。
9、点P (-2,1)向上平移2个单位后的点的坐标为 。
10、某校去年有学生1000名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%。
问该校去年有寄宿学生与走读学生各多少名?设去年有寄宿学生x 名,走读学生y 名,则可列出方程组为 。
二、细心选一选:(每题3分,共30分) 11、下列说法正确的是( )A 、同位角相等;B 、在同一平面内,如果a ⊥b ,b ⊥c ,则a ⊥c 。
C 、相等的角是对顶角;D 、在同一平面内,如果a ∥b,b ∥c ,则a ∥c 。
12、观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)的平移得到的是( )12.长为9,6,5,3的四根木条,选其中三根组成三角形,共有( )种选法.A .4B .3C .2D .113、有下列说法:(1) A B C DE C DBA C BA(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数; (3)无理数包括正无理数、零、负无理数;(4)无理数都可以用数轴上的点来表示。
北京市石景山区2017-2018学年七年级下学期期末考试数学试题
![北京市石景山区2017-2018学年七年级下学期期末考试数学试题](https://img.taocdn.com/s3/m/c9110beeaa00b52acec7ca0d.png)
石景山区2017—2018学年第二学期初一期末试卷数 学学校 姓名 准考证号一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有..一个. 1.下列计算正确的是A .235a a a +=B .236a a a =⋅C .326()a a =D .842a a a ÷=2.蜜蜂建造的蜂巢既坚固又省材料,其厚度约为0.000073米.将0.000073用科学记 数法表示为A .40.7310-⨯B .47.310-⨯C .57.310-⨯D .57.310⨯3.下列式子从左到右变形是因式分解的是A .21234xy xy y =⋅B .2(1)(3)23x x x x +-=--C .241(4)1x x x x -+=-+D .3(1)(1)x x x x x =-+-4.若分式32x x +-的值为0,则x 的值为A .3x =-B .2x =C .3x ≠-D .2x ≠5.如图,若AB ,CD 相交于点O ,过点O 作OE AB ⊥, 则下列结论不正确...的是 A .1∠与2∠互为余角 B .3∠与2∠互为余角 C .2∠与AOE ∠互为补角 D .AOC ∠与BOD ∠是对顶角6.下列计算正确的是A .23645(2)()104x y y x y -⋅-=B .1()1a b a b÷+=+C .2211a a a a-=+- D .21025a b a b a÷=7.如图,BD 平分ABC ∠,点E 为BA 上一点, E G B C ∥交BD 于点F .若135∠=°,则 ABF ∠的度数为A .25° C .70°B .35° D .17.5°8.已知3ma =,3nb =,则323m n+的结果是A .32a b +B .32a bC .32a b +D .32a b -二、填空题(本题共16分,每小题2分)9.如图,若满足条件 ,则有AB CD ∥, 理由是 . (要求:不再添加辅助线,只需填一个答案即可) 10.分解因式:2412x x --= .11.两根木棒的长度分别为7cm 和10cm ,要选择第三根木棒,把它们钉成一个三角形 框架,则第三根木棒的长度可以是... cm (写出一个答案即可). 12.如果一个角的补角是这个角的余角的4倍,那么这个角的度数为 °. 13.若1,2x y ==-⎧⎨⎩是关于x ,y 的方程组1,523mx ny x ny -=+=-⎧⎨⎩的解,则m = ,n = .14.若关于x 的二次三项式2(1)9x m x +++能用完全平方公式进行因式分解, 则m 的值为 .15.已知250x x +-=,则代数式2(1)(23)(1)x x x +---的值是 .4321A E16.《九章算术》是中国传统数学最重要的著作,奠定 了中国传统数学的基本框架.其中第七卷《盈不足》 记载了一道有趣的数学问题:“今有大器五、小器一容三斛;大器一、小器五容 二斛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016-2017学年北京市七年级(下)期末数学试卷一、选择题(每小题3分,共计30分)1.(3分)(2015春•通州区期末)已知点A(1,2),AC⊥x轴于点C,则点C的坐标为()A.(1,0)B.(2,0)C.(0,2)D.(0,1)2.(3分)(2015春•通州区期末)如图,数轴上表示的数的范围是()A.﹣2<x<4 B.﹣2<x≤4 C.﹣2≤x<4 D.﹣2≤x≤43.(3分)(2015春•通州区期末)4的平方根是()A.±2 B.2 C.﹣2 D.±4.(3分)(2015春•通州区期末)在实数,,0.121221221…,3.1415926,,﹣中,无理数有()A.2个B.3个C.4个D.5个5.(3分)(2015春•通州区期末)已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)6.(3分)(2008•荆州)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B. 2 C. 3 D. 47.(3分)(2015春•通州区期末)点P(x,x+3)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)(2015春•通州区期末)关于x,y的二元一次方程2x+3y=18的正整数解的个数为()A.1 B. 2 C. 3 D. 49.(3分)(2015春•通州区期末)如果不等式(a﹣3)x>a﹣3的解集是x>1,那么a的取值范围是()A.a<3 B.a>3 C.a<0 D.a>010.(3分)(2015春•通州区期末)利用数轴确定不等式组的解集,正确的是()A.B.C.D.二、填空题(每小题3分,共30分)11.(3分)(2015春•通州区期末)把点P(1,1)向右平移3个单位长度,再向下平移2个单位长度后的坐标为.12.(3分)(2015•南京一模)若式子有意义,则x的取值范围是.13.(3分)(2015春•通州区期末)若方程mx+ny=6的两个解为,,则m n=.14.(3分)(2010•贺州)如图,直线a,b被直线c所截,若a∥b,∠1=60°,则∠2=度.15.(3分)(2015春•通州区期末)用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么(﹣5)※2=.16.(3分)(2015春•通州区期末)不等式组的解集是.17.(3分)(2015春•通州区期末)一个正数的平方根是2﹣m和3m+6,则m的值是.18.(3分)(2015春•通州区期末)|x+1|++(2y﹣4)2=0,则x+y+z=.19.(3分)(2015春•通州区期末)如图,∠1=82°,∠2=98°,∠4=80°,∠3=.20.(3分)(2015春•通州区期末)如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=.三、解答题(共11题,共计60分)21.(4分)(2015春•通州区期末)计算:+﹣.22.(5分)(2015春•通州区期末)解方程组.23.(5分)(2015春•通州区期末)求不等式的非正整数解:.24.(5分)(2007•威海)解不等式组,并把它的解集表示在数轴上:.25.(5分)(2015春•通州区期末)已知实数x、y满足,求的平方根.26.(6分)(2015春•通州区期末)已知在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,4),B(1,1),C(3,2).(1)将△ABC先向左平移3个单位长度,再向下平移4个单位长度得到△A1B1C1,请写出A1,B1,C1三个点的坐标,并在图上画出△A1B1C1;(2)求△A1B1C1的面积.27.(6分)(2012•大丰市二模)推理填空:如图:①若∠1=∠2,则∥(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则∥(同旁内角互补,两直线平行);②当∥时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当∥时,∠3=∠C (两直线平行,同位角相等).28.(5分)(2015春•通州区期末)列方程组解应用题某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.该车间应安排几天加工童装,几天加工成人装,才能如期完成任务?29.(5分)(2015春•通州区期末)是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.30.(6分)(2009•德城区)自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生?(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.31.(8分)(2012•从化市一模)为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台)a b处理污水量(吨/月)240 200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.2016-2017学年北京市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)(2015春•通州区期末)已知点A(1,2),AC⊥x轴于点C,则点C的坐标为()A.(1,0)B.(2,0)C.(0,2)D.(0,1)考点:坐标与图形性质.专题:数形结合.分析:由于AC⊥x轴,则点C与点A的横坐标相同,然后利用x轴上点的坐标特征即可得到C点坐标.解答:解:∵AC⊥x轴于点C,而A(1,2),∴C(1,0).故选A.点评:本题考查了坐标与图形性质:利用点的坐标求相应线段的长和判断线段与坐标轴的位置关系.2.(3分)(2015春•通州区期末)如图,数轴上表示的数的范围是()A.﹣2<x<4 B.﹣2<x≤4 C.﹣2≤x<4 D.﹣2≤x≤4考点:在数轴上表示不等式的解集.分析:数轴的某一段上面,表示解集的线的条数,与不等式的个数一样,那么这段就是不等式组的解集.实心圆点包括该点,空心圆圈不包括该点,大于向右小于向左.两个不等式的公共部分就是不等式组的解集.解答:解:由图示可看出,从﹣2出发向右画出的线且﹣2处是空心圆,表示x>﹣2;从4出发向左画出的线且4处是实心圆,表示x≤4,不等式组的解集是指它们的公共部分,所以这个不等式组的解集是﹣2<x≤4点评:不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(3分)(2015春•通州区期末)4的平方根是()A.±2 B.2 C.﹣2 D.±考点:平方根.分析:依据平方根的定义即可得出答案.解答:解:∵(±2)2=4,∴4的平方根是±2.故选:A.点评:本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.4.(3分)(2015春•通州区期末)在实数,,0.121221221…,3.1415926,,﹣中,无理数有()A.2个B.3个C.4个D.5个考点:无理数.分析:根据无理数的定义选出即可.解答:解:无理数有,,共2个.故选A.点评:本题考查了对无理数的应用,注意:无理数是指无限不循环小数.5.(3分)(2015春•通州区期末)已知点P位于第二象限,且距离x轴4个单位长度,距离y轴3个单位长度,则点P的坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)考点:点的坐标.分析:根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.解答:解:∵点P位于第二象限,距离x轴4个单位长度,∴点P的纵坐标为4,∵距离y轴3个单位长度,∴点P的横坐标为﹣3,∴点P的坐标是(﹣3,4).故选A.点评:本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.6.(3分)(2008•荆州)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B. 2 C. 3 D. 4考点:平行线的性质;余角和补角.分析:根据两直线平行同位角相等,内错角相等,同旁内角互补,及直角三角板的特殊性解答.解答:解:∵纸条的两边平行,∴(1)∠1=∠2(同位角);(2)∠3=∠4(内错角);(4)∠4+∠5=180°(同旁内角)均正确;又∵直角三角板与纸条下线相交的角为90°,∴(3)∠2+∠4=90°,正确.故选:D.点评:本题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.7.(3分)(2015春•通州区期末)点P(x,x+3)一定不在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:判断出点P的纵坐标比横坐标大,再根据各象限内点的坐标特征解答.解答:解:∵x+3>x,∴点P的纵坐标一定比横坐标大,∵第四象限内点的横坐标是正数,纵坐标是负数,∴点P一定不在第四象限.故选D.点评:本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.(3分)(2015春•通州区期末)关于x,y的二元一次方程2x+3y=18的正整数解的个数为()A.1 B. 2 C. 3 D. 4考点:解二元一次方程.专题:计算题.分析:将y看做已知数求出x,即可确定出方程的正整数解.解答:解:2x+3y=18,解得:x=,当y=2时,x=6;当y=4时,x=3,则方程的正整数解有2对.故选B.点评:此题考查了解二元一次方程,解题的关键是将y看做已知数表示x.9.(3分)(2015春•通州区期末)如果不等式(a﹣3)x>a﹣3的解集是x>1,那么a的取值范围是()A.a<3 B.a>3 C.a<0 D.a>0考点:不等式的解集.分析:根据不等式的解集中不等号的方向不变进而得出a的取值范围.解答:解:∵不等式(a﹣3)x>a﹣3的解集是x>1,∴a﹣3>0,解得a>3.故选:B.点评:此题主要考查了不等式的解集,利用不等式的解集得出a的符号是解题关键.10.(3分)(2015春•通州区期末)利用数轴确定不等式组的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:先解不等式组,求出不等式组的解集,即可解答.解答:解:解得:,∴不等式组的解集为:﹣1≤x<2.故选:B.点评:本题考查了在数轴上表示不等式的解集,解决本题的关键是解不等式组.二、填空题(每小题3分,共30分)11.(3分)(2015春•通州区期末)把点P(1,1)向右平移3个单位长度,再向下平移2个单位长度后的坐标为(4,﹣1).考点:坐标与图形变化-平移.分析:根据向右平移横坐标加,向下平移纵坐标减解答.解答:解:点P(1,1)向右平移3个单位长度,横坐标变为1+3=4,向下平移2个单位长度,纵坐标变为1﹣2=﹣1,所以,平移后的坐标为(4,﹣1).故答案为:(4,﹣1).点评:本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.12.(3分)(2015•南京一模)若式子有意义,则x的取值范围是x≥﹣2.考点:二次根式有意义的条件.分析:根据二次根式的性质和,被开方数大于或等于0,可以求出x的范围.解答:解:根据题意得:x+2≥0,解得:x≥﹣2.故答案是:x≥﹣2.点评:本题考查的知识点为:二次根式的被开方数是非负数.13.(3分)(2015春•通州区期末)若方程mx+ny=6的两个解为,,则m n=16.考点:解二元一次方程.专题:计算题.分析:将两对解代入方程得到关于m与n的方程组,求出方程组的解得到m与n的值,即可求出所求式子的值.解答:解:将与代入方程mx+ny=6得:,①+②得:3m=12,即m=4,将m=4代入①得:m=2,则m n=24=16.故答案为:16.点评:此题考查了解二元一次方程,以及解二元一次方程组,熟练掌握解法是解本题的关键.14.(3分)(2010•贺州)如图,直线a,b被直线c所截,若a∥b,∠1=60°,则∠2=60度.考点:平行线的性质;对顶角、邻补角.专题:计算题.分析:要求∠2的度数,只需根据平行线的性质求得其对顶角的度数.解答:解:根据两条直线平行,同位角相等,得∠1的同位角是60°.再根据对顶角相等,得∠2=60°.故答案为:60.点评:运用了平行线的性质以及对顶角相等的性质.15.(3分)(2015春•通州区期末)用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么(﹣5)※2=52.考点:实数的运算.专题:新定义.分析:根据“※”所代表的运算法则,将数据代入进行运算即可.解答:解:由题意得:(﹣5)※2=2×(﹣5)2+2=52.故答案为:52.点评:此题考查了实数的运算,解答本题关键是明确新定义的运算符号所代表的运算法则,属于基础题.16.(3分)(2015春•通州区期末)不等式组的解集是﹣1<x≤2.考点:解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x≤2,由②得,x>﹣1,故不等式组的解集为:﹣1<x≤2.故答案为:﹣1<x≤2.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(3分)(2015春•通州区期末)一个正数的平方根是2﹣m和3m+6,则m的值是﹣4.考点:平方根.分析:根据正数的两个平方根互为相反数列出关于m的方程即可求得m的值.解答:解:∵2﹣m和3m+6是一个正数的两个平方根,∴2﹣m+3m+6=0.解得:m=﹣4.故答案为:﹣4.点评:本题主要考查的平方根的性质,明确正数有两个平方根,它们互为相反数是解题的关键.18.(3分)(2015春•通州区期末)|x+1|++(2y﹣4)2=0,则x+y+z=3.考点:非负数的性质:算术平方根;非负数的性质:绝对值;非负数的性质:偶次方.分析:根据非负数的性质列式求出x、y、z的值,然后代入代数式进行计算即可得解.解答:解:由题意得,x+1=0,z﹣2=0,2y﹣4=0,解得x=﹣1,y=2,z=2,所以,x+y+z=﹣1+2+2=3.故答案为:3.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.19.(3分)(2015春•通州区期末)如图,∠1=82°,∠2=98°,∠4=80°,∠3=100°.考点:平行线的判定与性质.分析:求出∠1+∠5=180°,根据平行线的判定推出AC∥BD,根据平行线的性质得出∠4+∠6=180°,求出∠6即可.解答:解:∵∠1=82°,∠2=∠5=98°,∴∠1+∠5=180°,∴AC∥BD,∴∠4+∠6=180°,∵∠4=80°,∴∠6=100°,∴∠3=∠6=100°,故答案为:100°.点评:本题考查了平行线的性质和判定的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.20.(3分)(2015春•通州区期末)如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则∠ACB=105°.考点:方向角.分析:过点C作CD∥AE,从而可证明CD∥BF,然后由平行线的性质可知∠DCA=∠CAE,∠DCB=∠CBF,从而可求得∠ACB的度数.解答:解:过点C作CD∥AE.∵CD∥AE,BF∥AE,∴CD∥BF.∵CD∥AE,∴∠DCA=∠CAE=60°,同理:∠DCB=∠CBF=45°.∴∠ACB=∠ACD+∠BCD=105°.点评:本题主要考查的是方向角的定义和平行线的性质的应用,掌握此类问题辅助线的作法是解题的关键.三、解答题(共11题,共计60分)21.(4分)(2015春•通州区期末)计算:+﹣.考点:实数的运算.专题:计算题.分析:原式利用平方根及立方根定义化简,计算即可得到结果.解答:解:原式=8﹣﹣7=﹣.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(5分)(2015春•通州区期末)解方程组.考点:解二元一次方程组.分析:先用加减消元法求出y的值,再用代入消元法求出x的值即可.解答:解:①×②×2得,﹣11y=﹣22,解得y=2,把y=2代入②得,2x+6=14,解得x=4,故此方程组的解为.点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.23.(5分)(2015春•通州区期末)求不等式的非正整数解:.考点:一元一次不等式的整数解.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非正整数即可.解答:解:,去分母,得6+3(x+1)≥12﹣2(x+7),去括号,得6+3x+3≥12﹣2x﹣14,移项、合并同类项,得5x≥﹣11,系数化为1,得.故不等式的非正整数解为﹣2,﹣1,0.点评:本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.24.(5分)(2007•威海)解不等式组,并把它的解集表示在数轴上:.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:计算题.分析:首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.解答:解:解不等式①,得x≥﹣2;解不等式②,得x<﹣.在同一条数轴上表示不等式①②的解集,如图:所以,原不等式组的解集是﹣2≤x.点评:本题考查不等式组的解法和在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.25.(5分)(2015春•通州区期末)已知实数x、y满足,求的平方根.考点:解二元一次方程组;非负数的性质:绝对值;平方根;非负数的性质:算术平方根.专题:计算题.分析:利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可得出所求式子的平方根.解答:解:由题意得,解得:,∴x+y=16,则x+y的平方根为±4.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.26.(6分)(2015春•通州区期末)已知在平面直角坐标系中,△ABC的三个顶点坐标分别为:A(1,4),B(1,1),C(3,2).(1)将△ABC先向左平移3个单位长度,再向下平移4个单位长度得到△A1B1C1,请写出A1,B1,C1三个点的坐标,并在图上画出△A1B1C1;(2)求△A1B1C1的面积.考点:作图-平移变换.分析:(1)根据平移规律得出平移后对应顶点坐标进而得出答案;(2)利用三角形面积公式求出即可.解答:解:(1)如图所示:A1(﹣2,0),B1(﹣2,﹣3),C1(0,﹣2);(2)△A1B1C1的面积为:×3×2=3.点评:此题主要考查了平移规律以及三角形面积公式,得出平移后对应顶点坐标是解题关键.27.(6分)(2012•大丰市二模)推理填空:如图:①若∠1=∠2,则AD∥CB(内错角相等,两直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两直线平行);②当AB∥CD时,∠C+∠ABC=180°(两直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两直线平行,同位角相等).考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质和平行线的判定直接完成填空.两条直线平行,则同位角相等,内错角相等,同旁内角互补;反之亦成立.解答:解:①若∠1=∠2,则AD∥CB(内错角相等,两条直线平行);若∠DAB+∠ABC=180°,则AD∥BC(同旁内角互补,两条直线平行);②当AB∥CD时,∠C+∠ABC=180°(两条直线平行,同旁内角互补);③当AD∥BC时,∠3=∠C (两条直线平行,同位角相等).点评:在做此类题的时候,一定要细心观察,看两个角到底是哪两条直线被第三条直线所截而形成的角.28.(5分)(2015春•通州区期末)列方程组解应用题某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.该车间应安排几天加工童装,几天加工成人装,才能如期完成任务?考点:二元一次方程组的应用.专题:应用题.分析:设该车间应安排x天加工童装,y天加工成人装,根据共用10天、童装和成人装共360件,可得方程组,解出即可.解答:解:设该车间应安排x天加工童装,y天加工成人装,才能如期完成任务,则,解得:.答:该车间应安排4天加工童装,6天加工成人装,才能如期完成任务.点评:本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,找到等量关系.29.(5分)(2015春•通州区期末)是否存在整数k,使方程组的解中,x大于1,y不大于1,若存在,求出k的值,若不存在,说明理由.考点:一元一次不等式组的整数解.专题:计算题.分析:解此题时可以解出二元一次方程组中x,y关于k的式子,然后解出k的范围,即可知道k 的取值.解答:解:解方程组得∵x大于1,y不大于1从而得不等式组解之得2<k≤5又∵k为整数∴k只能取3,4,5答:当k为3,4,5时,方程组的解中,x大于1,y不大于1.点评:此题考查的是二元一次方程组和不等式的性质,要注意的是x>1,y≤1,则解出x,y关于k 的式子,最终求出k的范围,即可知道整数k的值.30.(6分)(2009•德城区)自从北京获得2008年夏季奥运会申办权以来,奥运知识在我国不断传播,小刚就本班学生的对奥运知识的了解程度进行了一次调查统计.A:熟悉,B:了解较多,C:一般了解.图1和图2是他采集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息解答以下问题:(1)求该班共有多少名学生?(2)在条形图中,将表示“一般了解”的部分补充完整;(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;(4)如果全年级共1000名同学,请你估算全年级对奥运知识“了解较多”的学生人数.考点:扇形统计图;用样本估计总体;条形统计图.专题:图表型.分析:(1)利用A所占的百分比和相应的频数即可求出;(2)利用C所占的百分比和总人数求出C的频数即可;(3)求出“了解较多”部分所占的比例,即可求出“了解较多”部分所对应的圆心角的度数;(4)利用样本估计总体,即可求出全年级对奥运知识“了解较多”的学生大约有1000×(1﹣50%﹣20%)=300人.解答:解:(1)∵20÷50%=40(人),答:该班共有40名学生;(2)C:一般了解的人数为:40×20%=8(人),补充图如图所示:(3)360°×(1﹣50%﹣20%)=108°,所以在扇形统计图中,“了解较多”部分所对应的圆心角的度数为108°;(4)1000×(1﹣50%﹣20%)=300,所以全年级对奥运知识“了解较多”的学生大约有300人.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图则能直接反映部分占总体的百分比大小.31.(8分)(2012•从化市一模)为了更好治理流溪河水质,保护环境,市治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如表:A型B型价格(万元/台)a b处理污水量(吨/月)240 200经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理流溪河两岸的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.考点:一元一次不等式的应用;二元一次方程组的应用.专题:应用题.分析:(1)根据“购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元”即可列出方程组,继而进行求解;(2)可设购买污水处理设备A型设备x台,B型设备(10﹣x)台,则有12x+10(10﹣x)≤105,解之确定x的值,即可确定方案;(3)因为每月要求处理流溪河两岸的污水量不低于2040吨,所以有240x+200(10﹣x)≥2040,解之即可由x的值确定方案,然后进行比较,作出选择.解答:解:(1)根据题意得:,∴;(2)设购买污水处理设备A型设备x台,B型设备(10﹣x)台,则:12x+10(10﹣x)≤105,∴x≤2.5,∵x取非负整数,∴x=0,1,2,∴有三种购买方案:①A型设备0台,B型设备10台;②A型设备1台,B型设备9台;③A型设备2台,B型设备8台.(3)由题意:240x+200(10﹣x)≥2040,∴x≥1,又∵x≤2.5,x取非负整数,∴x为1,2.当x=1时,购买资金为:12×1+10×9=102(万元),当x=2时,购买资金为:12×2+10×8=104(万元),∴为了节约资金,应选购A型设备1台,B型设备9台.点评:本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的。