2019年数学中考一模试卷(及答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年数学中考一模试卷(及答案)
一、选择题
1.已知二次函数y =ax 2+bx+c(a≠0)的图象如图,则下列结论中正确的是( )
A .abc >0
B .b 2﹣4ac <0
C .9a+3b+c >0
D .c+8a <0
2.如图抛物线y =ax 2+bx +c 的对称轴为直线x =1,且过点(3,0),下列结论:①abc >0;②a ﹣b +c <0;③2a +b >0;④b 2﹣4ac >0;正确的有( )个.
A .1
B .2
C .3
D .4
3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )
A .15°
B .22.5°
C .30°
D .45° 4.已知11(1)11A x x ÷+
=-+,则A =( ) A .21x x x -+ B .21x x - C .211x - D .x 2﹣1
5.如图,在ABC V 中,90ACB ∠=︒,分别以点A 和点C 为圆心,以大于12
AC 的长为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .若34B ∠=︒,则BDC ∠的度数是( )
A.68︒B.112︒C.124︒D.146︒6.-2的相反数是()
A.2B

1
2
C.-
1
2
D.不存在
7.实数,,
a b c在数轴上的对应点的位置如图所示,若a b
=,则下列结论中错误的是()
A.0
a b
+>B.0
a c
+>C.0
b c
+>D. 0
ac<
8.下列各曲线中表示y是x的函数的是()
A.B.C.D.
9.如果关于x的分式方程
11
2
22
ax
x x
-
+=
--
有整数解,且关于x的不等式组
3
22(1)
x a
x x
-

>


⎪+<-

的解集为x>4,那么符合条件的所有整数a的值之和是()
A.7B.8C.4D.5
10.如图,O为坐标原点,菱形OABC的顶点A的坐标为(34)
-,,顶点C在x轴的负半轴上,函数(0)
k
y x
x
=<的图象经过顶点B,则k的值为()
A.12
-B.27
-C.32
-D.36
-
11.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨
季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()
A.6060
30
(125%)
x x
-=
+
B.
6060
30
(125%)x x
-=
+
C.60(125%)60
30
x x
⨯+
-=D.
6060(125%)
30
x x
⨯+
-=
12.如图,斜面AC的坡度(CD与AD的比)为1:2,AC=35米,坡顶有旗杆BC,旗杆顶端B点与A点有一条彩带相连.若AB=10米,则旗杆BC的高度为()
A.5米B.6米C.8米D.(3+5)米二、填空题
13.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则
c=_____.
14.已知扇形的圆心角为120°,半径等于6,则用该扇形围成的圆锥的底面半径为
_________.
15.如图,∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形.若OA1=1,则△A n B n A n+1的边长为______.
16.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.
17.已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.18.如图,在Rt△AOB中,OA=OB=32O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为.
19.计算:82-=_______________.
20.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.
三、解答题
21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m 3污水所用的时间比现在多用10小时. (1)原来每小时处理污水量是多少m 2?
(2)若用新设备处理污水960m 3,需要多长时间?
22.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:
A .从一个社区随机选取1 000户家庭调查;
B .从一个城镇的不同住宅楼中随机选取1 000户家庭调查;
C .从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.
(1)在上述调查方式中,你认为比较合理的一个是 .(填“A”、“B”或“C”) (2)将一种比较合理的调查方式调查得到的结果分为四类:(A )已有两个孩子;
(B )决定生二胎;(C )考虑之中;(D )决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.
请根据以上不完整的统计图提供的信息,解答下列问题:
①补全条形统计图.
②估计该市100万户家庭中决定不生二胎的家庭数.
23.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14
a =. 24.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:
(1)这次调查的学生共有多少名;
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数; (3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表
法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).
25.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:
(1)求y 与x 之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【解析】
【分析】
【详解】
试题分析:根据图象可知抛物线开口向下,抛物线与y 轴交于正半轴,对称轴是x=1>0,所以a <0,c >0,b >0,所以abc <0,所以A 错误;因为抛物线与x 轴有两个交点,所以24b ac ->0,所以B 错误;又抛物线与x 轴的一个交点为(-1,0),对称轴是x=1,所以另一个交点为(3,0),所以930a b c ++=,所以C 错误;因为当x=-2时,
42y a b c =-+<0,又12b x a
=-
=,所以b=-2a ,所以42y a b c =-+8a c =+<0,所以D 正确,故选D. 考点:二次函数的图象及性质.
2.B
解析:B
【解析】
【分析】
由图像可知a >0,对称轴x=-
2b a
=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.
【详解】 解:∵抛物线开口向上,
∴a >0,
∵抛物线的对称轴为直线x =﹣
2b a
=1, ∴b =﹣2a <0,
∵抛物线与y 轴的交点在x 轴下方,
∴c <0,
∴abc >0,所以①正确;
∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,
∴抛物线与x 轴的另一个交点为(﹣1,0),
∵x =﹣1时,y =0,
∴a ﹣b +c =0,所以②错误;
∵b =﹣2a ,
∴2a +b =0,所以③错误;
∵抛物线与x 轴有2个交点,
∴△=b 2﹣4ac >0,所以④正确.
故选B .
【点睛】
此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 3.A
解析:A
【解析】
试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .
考点:平行线的性质.4.B
解析:B
【解析】
【分析】
由题意可知A=
11
1)
11
x x
+
+-
(,再将括号中两项通分并利用同分母分式的减法法则计算,
再用分式的乘法法则计算即可得到结果.【详解】
解:A=
11
1
11
x x
+
+-
=
1
11
x
x x
+-
g=
21
x
x-
故选B.
【点睛】
此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
5.B
解析:B
【解析】
【分析】
根据题意可知DE是AC的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A和∠B互余可求出∠A,由三角形外角性质即可求出∠CDA的度数.
【详解】
解:∵DE是AC的垂直平分线,
∴DA=DC,
∴∠DCE=∠A,
∵∠ACB=90°,∠B=34°,
∴∠A=56°,
∴∠CDA=∠DCE+∠A=112°,
故选B.
【点睛】
本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
6.A
解析:A
【解析】
试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.
故选:A.
点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.
7.A
解析:A
【解析】
【分析】
根据a b
=,确定原点的位置,根据实数与数轴即可解答.
【详解】
解:a b
=
Q,
∴原点在a,b的中间,
如图,
由图可得:a c
<,0
a c
+>,0
b c
+<,0
ac<,0
a b
+=,
故选项A错误,
故选A.
【点睛】
本题考查了实数与数轴,解决本题的关键是确定原点的位置.
8.D
解析:D
【解析】
根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.
9.C
解析:C
【解析】
【分析】
解关于x的不等式组
3
22(1)
x a
x x
-

>


⎪+<-

,结合解集为x>4,确定a的范围,再由分式方程
11
2
22
ax
x x
-
+=
--
有整数解,且a为整数,即可确定符合条件的所有整数a的值,最后求出所有符合条件的值之和即可.
【详解】
由分式方程
11
2
22
ax
x x
-
+=
--
可得1﹣ax+2(x﹣2)=﹣1
解得x =22a
-, ∵关于x 的分式方程
11222ax x x -+=--有整数解,且a 为整数 ∴a =0、3、4
关于x 的不等式组0322(1)
x a x x -⎧>⎪⎨⎪+<-⎩整理得4x a x >⎧⎨>⎩ ∵不等式组0322(1)
x a x x -⎧>⎪⎨⎪+<-⎩的解集为x >4
∴a≤4
于是符合条件的所有整数a 的值之和为:0+3+4=7
故选C .
【点睛】
本题考查的是解分式方程与解不等式组,求各种特殊解的前提都是先求出整个解集,然后在解集中求特殊解,了解求特殊解的方法是解决本题的关键.
10.C
解析:C
【解析】
【分析】
【详解】
∵A (﹣3,4),


∵四边形OABC 是菱形,
∴AO=CB=OC=AB=5,则点B 的横坐标为﹣3﹣5=﹣8,
故B 的坐标为:(﹣8,4),
将点B 的坐标代入k y x
=
得,4=8k -,解得:k=﹣32.故选C . 考点:菱形的性质;反比例函数图象上点的坐标特征. 11.C
解析:C
【解析】
分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.
详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为
125%
x +万平方米,
依题意得:606030125%
x x -=+,即()60125%6030x x ⨯+-=. 故选C .
点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.
12.A
解析:A
【解析】
试题分析:根据CD :AD=1:2,CD=3米,AD=6米,根据AB=10米,∠
D=90°可得:米,则BC=BD -CD=8-3=5米.
考点:直角三角形的勾股定理
二、填空题
13.7【解析】【分析】根据非负数的性质列式求出ab 的值再根据三角形的任意两边之和大于第三边两边之差小于第三边求出c 的取值范围再根据c 是奇数求出c 的值【详解】∵ab 满足|a ﹣7|+(b ﹣1)2=0∴a ﹣7
解析:7
【解析】
【分析】
根据非负数的性质列式求出a 、b 的值,再根据三角形的任意两边之和大于第三边,两边之差小于第三边求出c 的取值范围,再根据c 是奇数求出c 的值.
【详解】
∵a ,b 满足|a ﹣7|+(b ﹣1)2=0,
∴a ﹣7=0,b ﹣1=0,
解得a=7,b=1,
∵7﹣1=6,7+1=8,
∴68c <<,
又∵c 为奇数,
∴c=7,
故答案为7.
【点睛】
本题考查非负数的性质:偶次方,解题的关键是明确题意,明确三角形三边的关系. 14.2【解析】分析:利用圆锥的底面周长等于侧面展开图的扇形弧长列出方程进行计算即可详解:扇形的圆心角是120°半径为6则扇形的弧长是:=4π所以圆锥的底面周长等于侧面展开图的扇形弧长是4π设圆锥的底面半 解析:2
【解析】
分析:利用圆锥的底面周长等于侧面展开图的扇形弧长,列出方程进行计算即可.详解:扇形的圆心角是120°,半径为6,
则扇形的弧长是:1206
180
π⋅
=4π,
所以圆锥的底面周长等于侧面展开图的扇形弧长是4π,
设圆锥的底面半径是r,
则2πr=4π,
解得:r=2.
所以圆锥的底面半径是2.
故答案为2.
点睛:本题考查了弧长计算公式及圆锥的相关知识.理解圆锥的底面周长等于侧面展开图的扇形弧长是解题的关键.
15.2n-
1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1
【解析】
【分析】
根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.
【详解】
∵△A1B1A2是等边三角形,
∴A1B1=A2B1,∠3=∠4=∠12=60°,
∴∠2=120°,
∵∠MON=30°,
∴∠1=180°-120°-30°=30°,
又∵∠3=60°,
∴∠5=180°-60°-30°=90°,
∵∠MON=∠1=30°,
∴OA1=A1B1=1,
∴A2B1=1,
∵△A2B2A3、△A3B3A4是等边三角形,
∴∠11=∠10=60°,∠13=60°,
∵∠4=∠12=60°,
∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,
∴∠1=∠6=∠7=30°,∠5=∠8=90°,
∴A2B2=2B1A2,B3A3=2B2A3,
∴A3B3=4B1A2=4,
A4B4=8B1A2=8,
A5B5=16B1A2=16,
以此类推:△A n B n A n+1的边长为 2n-1.
故答案是:2n-1.
【点睛】
此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.
16.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点
∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:
解析:5
【解析】
【分析】
【详解】
试题解析:∵∠AFB=90°,D为AB的中点,
∴DF=1
2
AB=2.5,
∵DE为△ABC的中位线,
∴DE=1
2
BC=4,
∴EF=DE-DF=1.5,
故答案为1.5.
【点睛】
直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.
17.2【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程通过解关于m的方程求得m的值即可【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0∴m2﹣2m=
解析:2
【解析】
【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.
【详解】∵关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,
∴m2﹣2m=0且m≠0,
解得,m=2,
故答案是:2.
【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.
18.【解析】试题分析:连接OPOQ∵PQ是⊙O的切线∴OQ⊥PQ根据勾股定理知PQ2=OP2﹣OQ2∴当PO⊥AB时线段PQ最短此时∵在Rt△AOB中
OA=OB=∴AB=OA=6∴OP=AB=3∴
解析:22
【解析】
试题分析:连接OP、OQ,
∵PQ是⊙O的切线,∴OQ⊥PQ.
根据勾股定理知PQ2=OP2﹣OQ2,
∴当PO⊥AB时,线段PQ最短.此时,
∵在Rt△AOB中,OA=OB=,∴AB=OA=6.
∴OP=AB=3.
∴.
19.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键2
【解析】
【分析】
82.
【详解】
82=222.
2.
【点睛】
本题考查了二次根式的运算,正确对二次根式进行化简是关键.
20.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主
解析:4 【解析】
【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得. 【详解】∵数据6,x ,3,3,5,1的众数是3和5, ∴x=5,
则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为35
2
+=4, 故答案为:4.
【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.
三、解答题
21.(1)原来每小时处理污水量是40m 2;(2)需要16小时. 【解析】
试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可.
()2根据()960 1.54016÷⨯=即可求出.
试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,
根据题意得:
12001200
10,1.5x x
-= 去分母得:1800120015x ,-= 解得:40x =,
经检验40x = 是分式方程的解,且符合题意, 则原来每小时处理污水量是40m 2;
(2)根据题意得:()960 1.54016÷⨯=(小时), 则需要16小时.
22.(1)C ;(2)①作图见解析;②35万户. 【解析】 【分析】
(1)C 项涉及的范围更广;
(2)①求出B ,D 的户数补全统计图即可; ①100万乘以不生二胎的百分比即可. 【详解】
解:(1)A 、B 两种调查方式具有片面性,故C 比较合理; 故答案为:C ;
(2)①B :100030%300⨯=户 1000-100-300-250=350户
补全统计图如图所示:
(3)因为350
100351000

=(万户), 所以该市100万户家庭中决定不生二胎的家庭数约为35万户. 【点睛】
本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题. 23.44a -,3-. 【解析】
试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=1
4
代入化简后的式子,即可解答本题.
试题解析:原式=2244a a a -+-=44a -;
当a=
14
时,原式=1
444⨯-=14-=3-.
考点:整式的混合运算—化简求值.
24.(1)280名;(2)补图见解析;108°;(3)0.1. 【解析】 【分析】
(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;
(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;
(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率. 【详解】
解:(1)56÷20%=280(名), 答:这次调查的学生共有280名;
(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名), 补全条形统计图,如图所示,
根据题意得:84÷280=30%,360°×30%=108°, 答:“进取”所对应的圆心角是108°;
(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:
A B C D E A
(A ,B )
(A ,C ) (A ,D ) (A ,E ) B (B ,A )
(B ,C )
(B ,D ) (B ,E ) C (C ,A ) (C ,B )
(C ,D )
(C ,E ) D (D ,A ) (D ,B ) (D ,C )
(D ,E )
E
(E ,A )
(E ,B )
(E ,C )
(E ,D )
共20种情况,恰好选到“C”和“E”有2种, ∴恰好选到“进取”和“感恩”两个主题的概率是0.1.
25.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元. 【解析】 【分析】
(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;
(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可. 【详解】
解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当
4x =,140y =;
∴2120
4140k b k b +=⎧⎨+=⎩
,解得:10100k b =⎧⎨=⎩,
∴y 与x 之间的函数关系式为10100y x =+;
(2)由题意得:(6040)(10100)2090x x --+=, 整理得:21090x x -+=,解得:11x =.29x =, ∵让顾客得到更大的实惠,∴9x =.
答:商贸公司要想获利2090元,这种干果每千克应降价9元. 【点睛】
本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.。

相关文档
最新文档