三种函数增长比较
幂、指、对函数的增长比较(上课)
(4)若 0<lgm<1,即 1<m<10 时,y=(lgm)x 在 R 上是减函 数, 所以(lgm)1.7>(lgm)2.1; 若 lgm=1,即 m=10 时,(lgm)1.7=(lgm)2.1; 若 lgm>1,即 m>10 时,y=(lgm)x 在 R 上是增函数, 所以(lgm)1.7<(lgm)2.1.
0.848 1.138 1.379 1.585
o
1
2
x
3.结合函数的图像找出其交点坐标.
x 从图像看出 0 1 2 3 4 y=log 5 26 7 8 … x的图像 与另外两函数的图像没有交点, x 1 2 4 8 16 32 64 128 256 … y=2 且总在另外两函数图像的下方, 2 2 0 1 4 9 16 x 25 36 y= x 49 64 … y=x 的图像与 y=2 的图像有两个 交点(2,4)和(4,16). 4.根据图像,分别写出使不等式
[方法总结]
Hale Waihona Puke (1)我们常把指数的这种快速剧增形象地称
为“指数爆炸”. (2)在计算器或计算机中,1.10×1012 常表示成 1.10E+12. (3)在区间(0, +∞)上, 尽管函数 y=ax(a>1), y=logax(a>1) 和 y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在 同一“档次”上,随着 x 增长,y=ax(a>1)的增长速度越来越 快, 会超过并远远大于 y=xn(n>0)的增长速度, 而 y=logax(a>1) 则增长会越来越慢,因此,总会存在一个 x0,当 x>x0 时,就 有 logax<xn<ax.
3.6指数函数、幂函数、对数函数增长的比较
D.y=2ex
课前预习
课堂互动
课堂反馈
(2)四个变量y1,y2,y3,y4随变量x变化的数据如下表:
x 1 5 10 15
20
25
30
y1 2y2 2 32 1 024 32 768 1.05×106 3.36×107 1.07×109
y3 2 10 20
30
课前预习
课堂互动
课堂反馈
【预习评价】
1.在区间(0,+∞)上,当a>1,n>0时,是否总有logax<xn<ax 不成立?
提示 不是,但总存在x0,使得当a>1,n>0,x>x0时, logax<xn<ax成立.
课前预习
课堂互动
课堂反馈
2.能否举例说明“指数爆炸”增长的含义? 提示 如1个细胞分裂x次后的数量为y=2x,此为“指数增 长”,其“增长量”是成倍增加的,从图像上看出,存在 x0,当x>x0时,数量增加特别快,足以体现“爆炸”的效 果.
解析 由图像知,此函数的增长速度越来越慢,因此反映 的是幂函数模型或对数型函数模型的增长速度. 答案 幂函数或对数型
课前预习
课堂互动
课堂反馈
知识点三 三种函数的增长对比 对数函数y=logax(a>1)增长最慢,幂函数y=xn(n>0),指数 函数y=ax(a>1)增长的快慢交替出现,当x足够大时,一定 有___a_x_>_x_n>_l_o_g_a_x____.
课前预习
课堂互动
课堂反馈
【预习评价】 1.在函数y=3x,y=log3x,y=3x,y=x3中增长速度最快的是
________. 解析 由指数函数、对数函数、幂函数、一次函数的增长 差异可判断出y=3x的增长速度最快. 答案 y=3x
必修一4.4.3不同函数增长的差异
二、对数函数与一次函数的新增长知差探异 究
以
y
lg
x和
y
1 10
x为例,列新出对知应探值究表,画出图象.
完成的对应值表如下表,画出的函数图象如下图.
x
y lg x
y 1 x 10
0
不存在
0
10
Hale Waihona Puke 11201.301
2
30
1.477
3
40
1.602
4
50
1.699
5
60
1.778
4.4.3不同函数增长的 差异
整体感知
一次函数、指数函数、对数函数的增长,存在很大的差异.那么我们该 如何研究一次函数、指数函数和对数函数增长的差异呢?
由于我们对线性函数已经有了一定的认识,其变化规律非常直观:它在 整个定义域上的变化率恒定,即 y 为定值.所以线性函数可以作为一
x
把尺子,用来“度量”指数函数和对数函数的增长差异.基于以上分析, 我们可以分别比较指数函数与一次函数、对数函数与一次函数.
3
1
2
1.602 0.0125
4
10
2.5
1.699 0.0097
5
3
1.778 0.0079
6
…
…
…
…
…
追问2 对数函数y lgx和一次函数y 1 x, 是否存在一个x0,当x>x0
时,恒有 lg x 1 x ?
10
10
随着x的增大,y= 1 x的增长速度会
10
超过并远远大于y=lgx的增长速
新知探究
追问 一次函数y=kx(k>0),指数函数y=ax(a>1)和对数函数y= logbx(b>1)的增长有何差异?
函数增长速度比较总结
函数增长速度比较总结函数是数学中的一种重要概念,它描述了数值之间的关系和规律。
而函数的增长速度则是衡量函数增长的快慢以及趋势的指标。
在数学和计算机科学领域,我们常常需要比较不同函数的增长速度,以便更好地理解和分析它们的特性。
本文将总结几种常见的函数增长速度,并进行比较和讨论。
一、常数函数常数函数是指函数的输出在任何输入下都保持不变。
它的增长速度非常稳定,不论输入的大小如何,输出都保持不变。
因此,常数函数的增长速度是最慢的,即O(1)。
二、线性函数线性函数是指函数的输出与输入之间存在着一种简单的一比一的关系。
线性函数的增长速度随着输入的增加而线性增长,所以它的增长速度为O(n),其中n表示输入的大小。
三、对数函数对数函数是指函数的输入与输出之间存在着一种指数关系,即x = log(base, y)。
对数函数的增长速度比线性函数慢,但比常数函数快。
通常来说,对数函数的增长速度被称为次线性增长,记作O(log n)。
四、指数函数指数函数是指函数的输出与输入之间存在着一种指数级别的关系,即y = base^x,其中base是底数。
指数函数的增长速度非常快,随着输入值的增加,输出呈指数级别的增长。
因此,指数函数的增长速度被称为指数增长,记作O(base^n)。
五、多项式函数多项式函数是指由多个项构成的函数,每个项包含一个系数和一个指数幂。
多项式函数的增长速度是根据指数幂的大小来确定的。
在多项式函数中,我们通常关注最高次项,因为它决定了函数的增长趋势。
多项式函数的增长速度随着最高次项的指数增加而增加,因此它的增长速度被称为多项式增长,记作O(n^k),其中n表示输入的大小,k表示最高次项的指数。
尽管上述函数增长速度有明显的差异,但在实际应用中,它们往往都被用来分析算法的复杂度或者描述问题的规模。
常数函数和线性函数的增长速度相对较慢,适用于处理规模较小的问题。
对数函数的增长速度次于线性函数,适用于处理规模稍大的问题。
指数函数幂函数对数函数增长的比较教案
指数函数幂函数对数函数增长的比较教案
指数函数、幂函数和对数函数增长的比较教案
教学目标
通过本教案的学习,学生将能够:
理解指数函数、幂函数和对数函数的定义;
理解指数函数、幂函数和对数函数的增长特点;
比较指数函数、幂函数和对数函数在不同增长情况下的差异。
教学步骤
1.引入
引导学生回顾函数的基本概念,并复习函数的图像、定义域和值域的表示方法。
2.指数函数
定义:指数函数是形如y=a^x的函数,其中a是常数且大于0,x是自变量。
指数函数的图像特点:
当a>1时,函数呈现上升的指数增长趋势;
当0<a<1时,函数呈现下降的指数增长趋势。
3.幂函数
定义:幂函数是形如y=x^a的函数,其中a是常数,x是自变量。
幂函数的图像特点:
当a>1时,函数呈现上升的幂函数增长趋势;
当0<a<1时,函数呈现下降的幂函数增长趋势。
4.对数函数
定义:对数函数是形如y=log<sub>a</sub>(x)的函数,其中a是常数且大于0,x是自变量。
对数函数的图像特点:
当a>1时,函数呈现上升的对数增长趋势;
当0<a<1时,函数呈现下降的对数增长趋势。
指数函数、幂函数、对数函数增长的比较
请问,你会选择哪种投资方案?
函数y=3 与y x 图像的交点为()
x 3
A.1 C.3
答案:B
B.2 D.4
探 究
一般幂、指、对函数模型的衰减性
y
y=xn
y=ax
o 1 x
y=logax
在区间(0, ,+∞)上,尽管函数y=logax(0<a<1), y=ax(0<a<1)与y=xn(n<0)都是减函数,但它们的 衰减速度不同,而且不在同一个“档次”上。随 着x的增大, y=logax(0<a<1)的衰减速度越来越 快,会超过并远远大于y=ax(0<a<1)的衰减速度,
答:单调递增
二 、指数函数、幂函数、对 数函数增长比较
探究(一):特殊指、幂、对 函数模型的差异 对于函数模型 :y=2x, y=x2, y=log2x其中x>0.
思考1:观察三个函数的自变量与函 数值对应表, 这三个函数增长的快慢情 况如何?
自变量x
函数值
y=2x
·· · 1.149 1.516
1
1.96 3.24 4.84 6.76 9 11.56 16 25 49
0
0.485 0.848 1.138 1.379 1.585 1.766
·· ·
·· ·
·· ·
·· ·
比较函数y=2x, y=x2, y=log2x图像增长快慢
y y=2x
y=x2
y=log2x
1 o 1 2 4 x
对数函数 y=log2x增长最慢,幂函数 y=x2和指数函数y=2x快慢则交替进行 在(0,2),幂函数比指数函数增长 快。 在(2,4),先幂函数比指数函数增长快, 然后指数函数比幂函数增长快。
指数函数对数函数幂函数增长的比较老师版本
1.三种函数的增长特点(1)当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.(2)当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.(3)当x>0,n>1时,幂函数y=x n显然也是增函数,并且当x>1时,n越大其函数值的增长就越快.2.三种函数的增长比较在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上,幂函数y=x n(n>0),指数函数y=a x(a>1)增长的快慢交替出现,随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.一般地,若a>1,n>0,那么当x足够大时,一定有a x>x n>log a x.[小问题·大思维]1.2x>log2x,x2>log2x,在(0,+∞)上一定成立吗?提示:结合图像知一定成立.2.2x>x2在(0,+∞)上一定成立吗?提示:不一定,当0<x<2和x>4时成立,而当2<x<4时,2x<x2.[研一题][例1] 四个变量y1,y2,y3,y4随变量x变化的数据如下表:x0510********关于x呈指数型函数变化的变量是________.[自主解答] 以爆炸式增长的变量是呈指数型函数变化的.从表格可以看出,四个变量y1,y2,y3,y4均是从5开始变化,变量y4越来越小,但是减小的速度很慢,则变量y4关于x不呈指数型函数变化;而变量y1,y2,y3都是越来越大,但是增大的速度不同,其中变量y2的增长最快,画出图像可知变量y2关于x呈指数型函数变化.[答案] y2[悟一法]解决该类问题的关键是根据所给出的数据或图像的增长的快慢情况,结合指数函数、幂函数、对数函数增长的差异,从中作出判断.[通一类]1.下面是f(x)随x的增大而得到的函数值列表:试问:(1)随着x的增大,各函数的函数值有什么共同的变化趋势?(2)各函数增长的快慢有什么不同?解:(1)随x的增大,各函数的函数值都在增大;(2)由图表可以看出,各函数增长的快慢不同,其中f(x)=2x增长最快,而且越来越快;增长最慢的是f(x)=log2x,而且增长的幅度越来越小.[研一题][例2] 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?[自主解答] 设第x天所得回报是y元.由题意,方案一:y=40(x∈N+);方案二:y=10x(x∈N+);方案三:y=0.4×2x-1(x∈N).+作出三个函数的图像如图:由图可以看出,从每天回报看,在第一天到第三天,方案一最多,在第四天,方案一,二一样多,方案三最少,在第五天到第八天,方案二最多,第九天开始,方案三比其他两个方案所得回报多得多,经验证到第三十天,所得回报已超过2亿元,∴若是短期投资可选择方案一或方案二,长期的投资则选择方案三.通过计算器计算列出三种方案的累积收入表.天数1234567891011…累积收益方案一4080120160200240280320360400440…二,投资十一天及其以上,应选方案三.[悟一法](1)解决应用问题的关键是将应用问题转化成数学问题解决,结合函数图像有助于直观认识函数值在不同范围的大小关系.(2)一般地:指数函数增长模型适合于描述增长速度快的变化规律;对数函数增长模型适合于描述增长速度平缓的变化规律;而幂函数增长模型介于两者之间,适合于描述增长速度一般的变化规律.[通一类]2.某地西红柿从2月1日起开始上市,通过市场调查,得到西红柿种植成本Q (单位:元/102 kg)与上市时间t (单位:天)的数据如下表:(1)根据表中数据,从下列函数中选取一个函数,描述西红柿种植成本Q 与上市时间t 的变化关系;Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本. 解:(1)由表中数据知,当时间t 变化时,种植成本并不是单调的,故只能选择Q =at 2+bt +c .即⎩⎪⎨⎪⎧150=a ×502+b ×50+c ,108=a ×1102+b ×110+c ,150=a ×2502+b ×250+c .解得Q =1200t 2-32t +4252;(2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100,∴当t =150天时,西红柿的种植成本最低,为100元/102kg.若x 2<logm x 在x ∈(0,12)内恒成立,求实数m 的取值范围.[巧思] 将不等式恒成立问题转化为两个函数图像在(0,12)内的上下位置关系,再构建不等式求解.[妙解] 设y 1=x 2,y 2=log m x ,作出符合题意的两函数的大致图像(如图),可知0<m <1.当x =12时,y 1=14,若两函数在x =12处相交,则y 2=14.由14=log m 12得m =116,又x 2<logm x 在x ∈(0,12)内恒成立,因此,实数m 的取值范围为116≤m <1.1.下面对函数f (x )=log 12x 与g (x )=(12)x 在区间(0,+∞)上的增减情况的说法中正确的是( )A .f (x )的增减速度越来越慢,g (x )的增减速度越来越快B .f (x )的增减速度越来越快,g (x )的增减速度越来越慢C .f (x )的增减速度越来越慢,g (x )的增减速度越来越慢D.f(x)的增减速度越来越快,g(x)的增减速度越来越快答案:C2.下列所给函数,增长最快的是( )A.y=5x B.y=x5C.y=log5x D.y=5x 答案:D3.某地区植被被破坏,土地沙化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷,0.4万公顷和0.76万公顷,则沙漠增加数y关于年数x的函数关系较为近似的是( )A.y=0.2x B.y=110(x2+2x) C.y=2x10D.y=0.2+log16x 答案:C4.已知函数f(x)=3x,g(x)=2x,当x∈R时,f(x)与g(x)的大小关系为________.解析:在同一直角坐标系中画出函数f(x)=3x,g(x)=2x的图像,如图所示,由于函数f(x)=3x的图像在函数g(x)=2x图像的上方,则f(x)>g(x).答案:f(x)>g(x) 5.据报道,青海湖水在最近50年内减少了10%,如果按此规律,设2013年的湖水量为m,从2013年起,过x年后湖水量y与x的函数关系是________.解析:设湖水量每年为上年的q%,则(q%)50=0.9,∴q%=0.9150,∴x年后湖水量y=m·(q%)x=m·0.9x50.答案:y=0.9x50·m6.函数f(x)=lg x,g(x)=0.3x-1的图像如图所示.(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图像交点为分界点,对f(x),g(x)的大小进行比较).解:(1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x;(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x).一、选择题1.当x越来越大时,下列函数中,增长速度最快的应该是( )A .y =10xB .y =lg xC .y =x 10D .y =10x 答案:D 2.某山区为加强环境保护,绿色植被的面积每年都比上一年增长10.4%,那么,经过x 年,绿色植被的面积可增长为原来的y 倍,则函数y =f (x )的大致图像为( )解析:y =f (x )=(1+10.4%)x =1.104x 是指数型函数,定义域为{0,1,2,3,4…},由单调性,结合图像知选D.答案:D3.函数y =2x -x 2的图像大致是( )解析:由图像可知,y =2x 与y =x 2的交点有3个,说明函数y =2x -x 2与x 轴的交点有3个,故排除B 、C 选项,当x <x 0时,有x 2>2x 成立,即y <0,故排除D.答案:A4.当0<x <1时,f (x )=x 2,g (x )=x 12,h (x )=x -2的大小关系是( ) A .h (x )<g (x )<f (x ) B .h (x )<f (x )<g (x ) C .g (x )<h (x )<f (x )D .f (x )<g (x )<h (x )解析:在同一坐标下作出函数f (x )=x 2,g (x )=x 12,h (x )=x -2的图像,由图像知,D 正确.答案:D二、填空题5.近几年由于北京房价的上涨,引起了二手房市场交易的火爆.房子没有什么变化,但价格却上涨了,小张在2004年以15万元的价格购得一所新房子,假设这10年来价格年膨胀率不变,那么到2014年,这所房子的价格y (万元)与价格年膨胀率x 之间的函数关系式是________. 答案:y =15(1+x )106.在直角坐标系中,横、纵坐标均为整数的点叫格点.若函数y =f (x )的图像恰好经过k 个格点,则称函数y =f (x )为k 阶格点函数,则下列函数中为一阶格点函数的序号是________.①y =x 2;②y =x -1;③y =e x -1;④y =log 2x .解析:这是一道新概念题,重点考查函数值的变化情况.显然①④都有无数个格点;②有两个格点(1,1),(-1,-1);而③y =e x -1除了(0,0)外,其余点的坐标都与e 有关,所以不是整点,故③符合.答案:③7.若a =(35)x ,b =x 3,c =log 35x ,则当x >1时,a ,b ,c 的大小关系是________.解析:∵x >1,∴a =(35)x ∈(0,1),b =x 3∈(1,+∞),c =log 35x ∈(-∞,0).∴c <a <b .答案:c <a <b8.已知a >0,a ≠1,f (x )=x 2-a x ,当x ∈(-1,1)时,均有f (x )<12,则实数a 的取值范围是________.解析:当a >1时,作出函数y 1=x 2,y 2=a x 的图像:要使x ∈(-1,1)时,均有f (x )<12,只要当x =-1时有(-1)2-a -1≤12,解得a ≤2,∴1<a ≤2.当0<a <1时,同理,只需12-a 1≤12,即a ≥12. ∴12≤a <1. 综上所述,a 的取值范围是[12,1)∪(1,2]. 答案:[12,1)∪(1,2]三、解答题9.一个叫迈克的百万富翁碰到一件奇怪的事.一个叫吉米的人对他说:“我想和你订立个合同,在整整一个月中,我每天给你10万元,而你第一天只需要给我1分钱,以后每天给我的钱数是前一天的两倍”.迈克非常高兴,他同意订立这样的合同. 试通过计算说明,谁将在合同中获利?解:在一个月(按31天计算)的时间里,迈克每天得到10万元,增长的方式是直线增长,经过31天后,共得到31×10=310(万元).而吉米,第一天得到1分, 第二天得到2分, 第三天得到4分, 第四天得到8分, 第20天得到219分, ……第31天得到230分,使用计算器计算可得1+2+4+8+16+…+230=2 147 483 647分≈214 7.48(万元). 所以在这份合同中吉米纯获利2 147.48-310=1 837.48(万元).所以吉米将在合同中获利.10.某公司为了实现1 000万元利润的目标,准备制定一个激励销售部门的奖励方案:在销售利润达到10万元时,开始按销售利润进行奖励,奖金y (万元)随销售利润x (万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y =0.25x ,y =log 7x +1,y =1.002x ,其中哪个模型能符合公司的要求?解:借助计算器或计算机作出函数y =5,y =0.25x ,y =log 7x +1,y =1.002x 的图像(如图),观察图像发现,在区间[10,1 000]上,模型y =0.25x ,y =1.002x 的图像都有一部分在直线y =5的上方,只有模型y =log 7x +1的图像始终在y =5的下方,这说明只有按模型y =log 7x +1进行奖励时才符合公司的要求,下面通过计算确认上述判断.首先计算哪个模型的奖金总数不超过5万. 对于模型y =0.25x ,它在区间[10,1 000]上单调递增,当x ∈(20,1 000)时,y >5,因此该模型不符合要求;对于模型y =1.002x ,由函数图像,并利用计算器,可知在区间(805,806)内有一个点x 0满足1.002x 0=5,由于它在区间[10,1 000]上单调递增,因此当x >x 0时,y >5,因此该模型也不符合要求;对于模型y =log 7x +1,它在区间[10,1 000]上单调递增,而且当x =1 000时,y =log 71 000+1≈4.55<5,所以它符合奖金总数不超过5万元的要求.再计算按模型y =log 7x +1奖励时,奖金是否不超过利润的25%,即当x ∈[10,1 000]时,是否有y x=log 7x +1x≤0.25成立.令f (x )=log 7x +1-0.25x ,x ∈[10,1 000]. 利用计算器或计算机作出函数f (x )的图像(如图),由图像可知它是单调递减的,因此f (x )<f (10)≈-0.316 7<0,log 7x +1<0.25x .所以,当x ∈[10,1 000]时,log 7x +1x<0.25.说明按模型y =log 7x +1奖励,奖金不会超过利润的25%. 综上所述,模型y =log 7x +1确实能符合公司要求.。
指、幂、对函数增长的比较(绝对精品)
总结:要点点拨
指数函数、幂函数、对数函数增长的比较
【目标回顾】
1. 2. 3. 通过学习,是否理解并掌握了三种函数增长的差异; 通过学习,是否学会了简单的数据分析; 通过学习,是否掌握了数形结合思想的应用.
作业:巩固提升
指数函数、幂函数、对数函数增长的比较
作业
参见学案,请及时完成.
结语:勇往直前
指数函数、幂函数、对数函数增长的比较
人要学会走路,也得学会摔跤,而 且只有经过摔跤才能学会走路。 ——马克思
x 1 2 3 4 5 6 7 8 …
y=2x
y=x2 y=log2 x
2
1 04 41源自89 1.584 9
16 16
16 16 2
32
25
64
36
128
49
256
64 3
…
… …
2.321 9 2.584 9 2.807 3
二:请用图形计算器或计算机软件作图,并观 察图像,体会它们增长的快慢?
探究②:得结论
指数函数、幂函数、对数函数增长的比较
图像观察结果
越来越慢 x轴平行一样
慢于 快于 远快于
反馈:学以致用
指数函数、幂函数、对数函数增长的比较
解析:5个.
数形结合,转化为图像交点问题.
解析:2个.
数形结合,转化为图像交点问题.
小结:通过解答以上两个小题,请同学们理解并掌握 数形结合思想在函数研究中的应用.
y=2x
函数值的变化量 y=x100
y=log2x
3.321 928 1 3.321 928 1 1.584 962 5 0.736 965 6 0.485 426 8 0.362 570 1 0.152 003 1 0.137 503 5 0.125 530 9
第四章 4.4.3 不同函数增长的差异
4.4.3不同函数增长的差异学习目标 1.了解常用的描述现实世界中不同增长规律的函数模型.2.了解直线上升、指数爆炸、对数增长等增长含义.3.能根据具体问题选择合适函数模型.知识点三种常见函数模型的增长差异函数性质y=ax(a>1)y=log a x(a>1)y=kx(k>0) 在(0,+∞)上的增减性单调递增单调递增单调递增图象的变化随x的增大逐渐变“陡”随x的增大逐渐趋于稳定随x的增大匀速上升增长速度y=a x的增长快于y=kx的增长,y=kx的增长快于y=log a x的增长增长后果会存在一个x0,当x>x0时,有a x>kx>log a x思考在区间(0,+∞)上,当a>1,n>0时,是否总有log a x<x n<a x成立?答案不是,但总存在x0,使得当a>1,n>0,x>x0时,log a x<x n<a x成立.1.当x每增加一个单位时,y增加或减少的量为定值(不为0),则y是x的一次函数.(√) 2.函数y=log2x增长的速度越来越慢.(√)3.不存在一个实数m,使得当x>m时,1.1x>x100.(×)4.由于指数函数模型增长速度最快,所以对于任意x∈R恒有a x>2x(a>1).(×)一、几个函数模型增长差异的比较例1(1)下列函数中,增长速度最快的是()A.y=2 020x B.y=x2 020C.y=log2 020x D.y=2 020x答案 A解析比较一次函数、幂函数、指数函数与对数函数可知,指数函数增长速度最快.(2)四个变量y1,y2,y3,y4随变量x变化的数据如下表:则关于x呈指数型函数变化的变量是________.答案y2解析以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.反思感悟常见的函数模型及增长特点(1)线性函数模型线性函数模型y=kx+b(k>0)的增长特点是“直线上升”,其增长速度不变.(2)指数函数模型指数函数模型y=a x(a>1)的增长特点是随着变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.可称为“对数增长”.跟踪训练1下列函数中,增长速度越来越慢的是()A.y=6x B.y=log6xC.y=x2D.y=6x答案 B解析D中一次函数的增长速度不变,A,C中函数的增长速度越来越快,只有B中对数函数的增长速度越来越慢,符合题意.二、函数模型的选择问题例2某化工厂开发研制了一种新产品,在前三个月的月生产量依次为100 t,120 t,130 t.为了预测今后各个月的生产量,需要以这三个月的月产量为依据,用一个函数来模拟月产量y与月序数x 之间的关系.对此模拟函数可选用二次函数y =f (x )=ax 2+bx +c (a ,b ,c 均为待定系数,x ∈N *)或函数y =g (x )=pq x +r (p ,q ,r 均为待定系数,x ∈N *),现在已知该厂这种新产品在第四个月的月产量为137 t ,则选用这两个函数中的哪一个作为模拟函数较好? 解 根据题意可列方程组⎩⎪⎨⎪⎧f (1)=a +b +c =100,f (2)=4a +2b +c =120,f (3)=9a +3b +c =130.解得⎩⎪⎨⎪⎧a =-5,b =35,c =70.所以y =f (x )=-5x 2+35x +70.① 同理y =g (x )=-80×0.5x +140.② 再将x =4分别代入①式与②式得 f (4)=-5×42+35×4+70=130(t), g (4)=-80×0.54+140=135(t).与f (4)相比,g (4)在数值上更为接近第四个月的实际月产量,所以②式作为模拟函数比①式更好,故选用函数y =g (x )=pq x +r 作为模拟函数较好. 反思感悟 建立函数模型应遵循的三个原则(1)简化原则:建立函数模型,原型一定要简化,抓主要因素、主要变量,尽量建立较低阶、较简便的模型.(2)可推演原则:建立模型,一定要有意义,既能作理论分析,又能计算、推理,且能得出正确结论.(3)反映性原则:建立模型,应与原型具有“相似性”,所得模型的解应具有说明问题的功能,能回到具体问题中解决问题.跟踪训练2 某地区植被被破坏,土地沙漠化越来越严重,测得最近三年沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加值y 万公顷关于年数x 的函数关系式大致可以是( ) A .y =0.2xB .y =110(x 2+2x )C.y=2x10D.y=0.2+log16x答案 C解析对于A,x=1,2时,符合题意,x=3时,y=0.6,与0.76相差0.16;对于B,x=1时,y=0.3;x=2时,y=0.8;x=3时,y=1.5,相差较大,不符合题意;对于C,x=1,2时,符合题意,x=3时,y=0.8,与0.76相差0.04,与A比较,更符合题意;对于D,x=1时,y=0.2;x=2时,y=0.45;x=3时,y≈0.6<0.7,相差较大,不符合题意.三、指数函数、对数函数与幂函数模型的比较例3函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数;(2)结合函数图象,判断f(6),g(6),f(2 020),g(2 020)的大小.解(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<6<x2,2 020>x2,从图象上可以看出,当x1<x<x2时,f(x)<g(x),所以f(6)<g(6).当x>x2时,f(x)>g(x),所以f(2 020)>g(2 020).又因为g(2 020)>g(6),所以f(2 020)>g(2 020)>g(6)>f(6).反思感悟指数函数、对数函数和二次函数增长差异的判断方法(1)根据函数的变化量的情况对函数增长模型进行判断.(2)根据图象判断增长型的指数函数、对数函数和二次函数时,通常是观察函数图象上升的快慢,即随着自变量的增大,图象最“陡”的函数是指数函数;图象趋于平缓的函数是对数函数.跟踪训练3甲、乙、丙、丁四个物体同时从某一点出发向同一方向运动,其路程f i(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x2,f3(x)=x,f4(x)=log2(x+1).有以下结论:①当x>1时,甲走在最前面;②当x>1时,乙走在最前面;③当0<x<1时,丁走在最前面,当x>1时,丁走在最后面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为________.答案③④⑤解析四个函数的大致图象如图所示,根据图象易知,③④⑤正确.1.下列函数中,在(0,+∞)上增长速度最快的是()A.y=x2B.y=log2xC.y=2x D.y=2x答案 D2.在一次数学试验中,采集到如下一组数据:x -2.0-1.00 1.00 2.00 3.00y 0.240.511 2.02 3.988.02则x,y的函数关系与下列哪类函数最接近?(其中a,b为待定系数)()A .y =a +bxB .y =a +b xC .y =ax 2+bD .y =a +bx答案 B解析 在坐标系中描出各点,知模拟函数为y =a +b x .3.甲从A 地到B 地,途中前一半路程的行驶速度是v 1,后一半路程的行驶速度是v 2(v 1<v 2),则下图中能正确反映甲从A 地到B 地走过的路程s 与时间t 的关系的是( )答案 B4.现测得(x ,y )的两组对应值分别为(1,2),(2,5),现有两个待选模型:甲:y =x 2+1,乙:y =3x -1,若又测得(x ,y )的一组对应值为(3,10.2),则应选用________作为函数模型. 答案 甲解析 把x =1,2,3分别代入甲、乙两个函数模型,经比较发现模型甲较好.5.随着我国经济的不断发展,2014年年底某偏远地区农民人均年收入为3 000元,预计该地区今后农民的人均年收入将以每年6%的年平均增长率增长,那么2021年年底该地区的农民人均年收入约为________元.(精确到个位) (附:1.066≈1.42,1.067≈1.50,1.068≈1.59) 答案 4 500解析 根据题意,逐年归纳,总结规律建立关于年份的指数型函数模型,设经过x 年,该地区的农民人均年收入为y 元,依题意有y =3 000×1.06x ,因为2014年年底到2021年年底经过了7年,故把x =7代入,即可求得y =3 000×1.067≈4 500.1.知识清单:三种函数模型:线性函数增长模型、指数型函数增长模型、对数型函数增长模型. 2.方法归纳:转化法.3.常见误区:不理解三种函数增长的差异.1.(多选)当a>1时,下列结论正确的有()A.指数函数y=a x,当a越大时,其函数值增长越快B.指数函数y=a x,当a越小时,其函数值增长越快C.对数函数y=log a x,当a越大时,其函数值增长越快D.对数函数y=log a x,当a越小时,其函数值增长越快答案AD解析结合指数函数及对数函数的图象可知AD正确.2.三个变量y1,y2,y3随着变量x的变化情况如下表:x 1357911y1525456585105y2529245 2 18919 685177 149y35 6.10 6.61 6.957.27.4则关于x分别呈对数型函数、指数型函数、直线型函数变化的变量依次为()A.y1,y2,y3B.y2,y1,y3C.y3,y2,y1D.y1,y3,y2答案 C解析通过指数型函数、对数型函数、直线型函数的增长规律比较可知,对数型函数的增长速度越来越慢,变量y3随x的变化符合此规律;指数型函数的增长是爆炸式增长,y2随x的变化符合此规律;直线型函数的增长速度稳定不变,y1随x的变化符合此规律.3.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()答案 C解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B. 4.如图所示,向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h 与注水时间t 之间的函数关系大致是( )答案 B解析 开始的一段时间,水槽底部没有水,烧杯满了之后水槽中水面上升速度先快后慢,与B 图象相吻合.5.渔民出海打鱼,为了保证获得的鱼新鲜,鱼被打上岸后,要在最短的时间内将其分拣、冷藏,若不及时处理,打上来的鱼很快地失去新鲜度(以鱼肉内的三甲胺量的多少来确定鱼的新鲜度.三甲胺是一种挥发性碱性氨,是氨的衍生物,它是由细菌分解产生的.三甲胺量积聚就表明鱼的新鲜度下降,鱼体开始变质进而腐败).已知某种鱼失去的新鲜度h 与其出海后时间t (分)满足的函数关系式为h (t )=m ·a t .若出海后10分钟,这种鱼失去的新鲜度为10%,出海后20分钟,这种鱼失去的新鲜度为20%,那么若不及时处理,打上来的这种鱼在多长时间后开始失去全部新鲜度(已知lg 2≈0.3,结果取整数)( ) A .33分钟 B .40分钟 C .43分钟 D .50分钟答案 C解析 由题意得⎩⎪⎨⎪⎧h (10)=ma 10=0.1,h (20)=ma 20=0.2,解得a =1102,m =0.05,故h (t )=0.05×1102t⎛⎫⎪⎝⎭,令h (t )=0.05×1102t⎛⎫ ⎪⎝⎭=1,得1102t⎛⎫⎪⎝⎭=20,故t=110lg 20lg 2=1+lg 2110lg 2≈10(1+0.3)0.3≈43(分钟).6.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________. 答案y=x 2解析 当x 增加时,x 比ln x 增长要快, ∴x 2要比x ln x 增长的要快.7.已知函数f (x )=3x ,g (x )=x ,当x ∈R 时,f (x )与g (x )的大小关系为________. 答案 f (x )>g (x )解析 在同一直角坐标系中画出函数f (x )=3x ,g (x )=x 的图象,如图所示,由于函数f (x )=3x 的图象在函数g (x )=x 图象的上方,则f (x )>g (x ).8.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A 对应________;B 对应________;C 对应________;D 对应________.答案 (4) (1) (3) (2)解析 A 容器下粗上细,水高度的变化先慢后快,故与(4)对应;B 容器为球形,水高度变化为快—慢—快,应与(1)对应;C ,D 容器都是柱形的,水高度的变化速度都应是直线型,但C 容器细,D 容器粗,故水高度的变化为:C 容器快,与(3)对应,D 容器慢,与(2)对应. 9.同一坐标系中,画出函数y =x +5(x ≥0)和y =2x (x ≥0)的图象,并比较当x ≥0时,x +5与2x 的大小.解 函数图象如图所示,根据函数y =x +5与y =2x 的图象增长差异得: 当0≤x <3时,x +5>2x , 当x =3时,x +5=2x , 当x >3时,x +5<2x .10.某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,如果只能购买一种债券,你认为应购买哪种?解 A 种债券的收益是每100元一年到期收益3元;B 种债券的半年利率为51.4-5050,所以100元一年到期的本息和为100⎝⎛⎭⎪⎫1+51.4-50502≈105.68(元),收益为5.68元;C 种债券的利率为100-9797,100元一年到期的本息和为100⎝ ⎛⎭⎪⎫1+100-9797≈103.09(元),收益为3.09元.通过以上分析,应购买B 种债券.11.函数y =2x -x 2的图象大致是( )答案 A解析 分别画出y =2x ,y =x 2的图象, 由图象可知(图略),有3个交点,∴函数y =2x -x 2的图象与x 轴有3个交点,故排除B ,C ; 当x <-1时,y <0,故排除D.12.近几年由于北京房价的上涨,引起二手房市场交易火爆,房子几乎没有变化,但价格却上涨了,小张在2013年以180万的价格购得一套新房子,假设这10年来价格年膨胀率不变,那么到2023年,这套房子的价格y (万元)与价格年膨胀率x 之间的函数关系式是______________.答案 y =180(1+x )10解析 1年后的价格为180+180·x =180(1+x )(万元),2年后的价格为180(1+x )+180(1+x )·x =180(1+x )·(1+x )=180(1+x )2(万元),由此可推得10年后的价格为180(1+x )10万元.13.若已知16<x <20,利用图象可判断出12x 和log 2x 的大小关系为________.答案 12x >log 2x解析 作出f (x )=12x 和g (x )=log 2x 的图象,如图所示:由图象可知,在(0,4)内,12x >log 2x ;x =4或x =16时,12x =log 2x ;在(4,16)内,12x <log 2x ;在(16,20)内,12x >log 2x .14.将甲桶中的a 升水缓慢注入空桶乙中,t 秒后甲桶剩余的水量符合指数衰减曲线y =a e nt ,假设5秒后甲桶和乙桶的水量相等,则n =________;若再过m 秒甲桶中的水量只有a 4升,则m =________.答案 -15ln 2 5 解析 ∵5秒后两桶的水量相等,则a e 5n =a 2⇒e 5n =12⇒n =15ln 12=-15ln 2, 若k 秒后甲桶水量为a 4, 则a e nk =a 4,e nk =14⇒nk =ln 14⇒-15ln 2·k =-2ln 2, ∴k =10,∴m =10-5=5.15.函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.(1)指出曲线C1,C2分别对应哪一个函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).解(1)由题图知,C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.(2)当x∈(0,x1)时,g(x)>f(x);当x∈(x1,x2)时,g(x)<f(x);当x∈(x2,+∞)时,g(x)>f(x).16.已知函数y=f(x)是函数y=log2x的反函数.(1)求y=f(x)的解析式;(2)若x∈(0,+∞),试分别写出使不等式成立的自变量x的取值范围:①log2x<2x<x2;②log2x<x2<2x.解(1)∵函数y=f(x)是函数y=log2x的反函数,∴f(x)=2x.(2)作出函数y=2x,y=x2,y=log2x在同一直角坐标系中的图象,可得:22=4,24=42=16,下面借助图象解决问题.①∵log2x<2x<x2,∴2<x<4,即x的取值范围为(2,4);②∵log2x<x2<2x,∴0<x<2或x>4,即x的取值范围为(0,2)∪(4,+∞).。
不同函数的增长速度
在更大范围内观察 y 2x , y x2 的增长情况。
列表:
x 01 2 3 4 5 6 7 8…
y 2 x 1 2 4 8 16 32 64 128 256 …
y x 2 0 1 4 9 16 25 36 49 64 …
点击观察图象
观察数据表
y 1.13E+15
y 2x
1.10E+12
由图象可以看到,函数(1)以爆炸式的速度 增长;函数(2)增长缓慢,并渐渐趋于稳定; 函数(3)以稳定的速率增加。
讨论函数: (以a 1 , n 2为例.)
2 y a x (0 a 1), y log a x(0 a 1), y xn (n 0)
在区间(0,+∞)上的衰减情况。
a x 因此总存在一个
loga x < n
x0,当X>
< x.
x0时,就会有
练习:在同一个直角坐标系内作出下列函数的图象,
并比较它们的增长情况:
⑴y 0.1ex 100, x [1,10]; ⑵y 20 lnx 100, x [1,10]; ⑶y 20x, x [1,10].
观看三个函数的图象
y x2
o
50
100
X
一般地,对于指数函数 y ax(a >1)
和幂函数 y xn (n >0),可以发现,在
区间(0,+ )上,无论n比a大多少,
尽管在x的一定范围内, 会a小x 于 , 但由xn于 的增长a快x 于 的增长xn,因此
总存在一个 ,当X>x0 时,就会x0有
> 。a x、对数函数的增长差异性
2、数学思想与方法: ①注意信息技术的使用 ②培养类比联想能力
幂函数对数函数指数函数增长速度比较
幂函数对数函数指数函数增长速度比较幂函数、对数函数和指数函数是高中数学中经常涉及的三种基本函数类型。
这三种函数具有不同的定义和性质,它们的增长速度也各不相同。
下面,我将从三个方面分别阐述幂函数、对数函数和指数函数的增长速度及其比较。
一、幂函数的增长速度幂函数的一般形式为y=x^a,其中a为正实数,x为自变量,y为因变量。
当a>1时,幂函数的增长速度比线性函数快,而当0<a<1时,则比线性函数慢。
幂函数随着x的增大而增大,增长速度越来越快,但增长速度的大小与指数a的大小有关。
例如,y=x^2和y=x^3的增长速度比y=x和y=x^1.5快,因为x^2和x^3比x和x^1.5的增长速度更快。
另一方面,y=x^0.5和y=x^0.3的增长速度比y=x慢,因为x^0.5和x^0.3比x的增长速度更慢。
二、对数函数的增长速度对数函数的一般形式为y=loga(x),其中a为正实数且a ≠ 1,x为正实数。
对数函数随着x的增大而增加,但增长速度非常缓慢。
例如,y=log2(x)和y=log3(x)的增长速度比y=log5(x)和y=log10(x)慢,因为以2或3为底的对数的增长速度比以5或10为底的对数慢。
三、指数函数的增长速度指数函数的一般形式为y=a^x,其中a为正实数且a ≠ 1,x为自变量。
指数函数随着x的增大而快速增加。
例如,y=2^x和y=3^x的增长速度比y=1.5^x和y=1.1^x快,因为2和3比1.5和1.1更大。
比较三种函数的增长速度根据上述三种函数的增长速度特性,我们可以得出以下结论:1. 当x越来越大时,指数函数的增长速度最快,其次是幂函数,最慢的是对数函数。
2. 如果幂函数和指数函数的底相同,那么指数函数的增长速度比幂函数快。
例如,y=2^x的增长速度比y=x^2的增长速度快。
3. 如果对数函数和指数函数的底相同,那么对数函数的增长速度比指数函数慢。
例如,y=log2(x)的增长速度比y=2^x的增长速度慢。
第四章-§4-指数函数、幂函数、对数函数增长的比较高中数学必修第一册北师大版
C.∀ > 0, > log
D.不一定存在0 ,当 > 0 时,总有 > > log
【解析】对于A,幂函数与一次函数的增长速度分别受幂指数及一次项系数的影响,
幂指数与一次项系数不确定,增长速度不能比较.对于B,C,当0 < < 1时,显然不
1.5
4.04
7.5
12
18.01
现准备用下列四个函数中的一个近似表示这些数据的规律,其中最接近的一个是
( D
)
A. = 2 − 2
B. =
1
2
C. = log 2
D. =
1
2
2 − 1
【解析】由于一次函数 = 2 − 2是均匀增加的,因此A不对;指数函数 =
1
是
2
单调递减的,也不符合要求,因此B不对;对数函数 = log 2 的增长速度先快后慢,
当 > 2 时, > ,
∴ 2 021 > 2 021 .
又 2 021 > 6 ,
∴ 2 021 > 2 021 > 6 > 6 .
题型2 函数增长模型的应用
例7 某公司为了实现1 000万元的利润目标,准备制订一个激励销售人员的奖励方案:
在销售利润达到10万元时,按销售利润进行奖励,且奖金(单位:万元)随销售利
【答案】函数 = , = 和 = 在 , +∞ 上都是增函数,随着的增大,
= 的增长速度越来越快,会超过并远远大于 = 和 = 的增长速度,而
= 的增长速度越来越慢, = 的增长速度介于两者之间.
指数函数,幂函数,对数函数的增长的比较及函数模型 课件
= + > 0 可供选择.
(1)试判断哪个函数模型更合适(不需计算,简述理由即可),并求出该模型
的函数解析式;
(2)问大约在哪一年,三峡大坝旅客年游览人数约是2018年的2倍.(参考数据:
2、建立函数模型解决实际问题的步骤
(1)确切理解题意:明确问题的实际背景,进行科学的抽象、概括,将实际问
题转化为数学问题。
(2)建立相应的数学模型(选择合适的数学模型)
(3)求解函数模型,得出数学结论
(4)将用数学知识和方法得出的结论,还原为实际问题的意义,并进行验证,
看是否符合实际。
典 例 剖 析
1
= 80 + 4 21 , = 2 + 120,设甲大棚的资金投入为(单位:万元),
4
每年两个大棚的总收入为 (单位:万元),求 的最大值。
题型六 分段函数模型
例6、通过研究学生的学习行为,专家发现,学生的注意力着老师讲课时间的变化
而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的
指数函数、幂函数、对数函
数增长的比较与函数模型
目
标
1
输 入 标 题 名 称
2
输 入 标 题 名 称
3
输 入 标 题 名 称
4
输 入 标 题 名 称
情 景 导 入
每年的3月21日时植树节,全国各地在这一天都会开展各种形式的植树
活动,某市现有树木面积为10万平方米,计划今后5年内扩大树木面积,现
有两种方案如下:
状态,随后学生的注意力开始分散,设 表示学生注意力随时间(分钟)的变化
第3章 §6 指数函数、幂函数、对数函数增长的比较
§6指数函数、幂函数、对数函数增长的比较学习目标:1.结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型的意义,理解它们增长的差异性.(重点)2.会利用指数函数、幂函数和对数函数的图像对比研究函数的增长快慢.(难点)[自主预习·探新知]指数函数、幂函数、对数函数增长的比较阅读教材P98~P103有关内容,完成下列问题.1.三种函数的增长趋势当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.当x>0,n>1时,幂函数y=x n也是增函数,并且当x>1时,n越大,其函数值的增长就越快.思考1:在指数函数、对数函数、幂函数三类函数中,函数值增长最快的是哪个函数?[提示]指数函数2.三种函数的增长对比对数函数y=log a x(a>1)增长最慢,幂函数y=x n(n>0),指数函数y=a x(a>1)增长的快慢交替出现,当x足够大时,一定有a x>x n>log a x.思考2:在区间(0,+∞)上,当a>1,n>0时,是否总有log a x<x n<a n成立?[提示]不是,但总存在x0,使得当a>1,n>0,x>x0时,log a x<x n<a x成立.[基础自测]1.思考辨析(1)y =x 10比y =1.1x 的增长速度更快些.( )(2)对于任意的x >0,都有2x >log 2x .( )(3)对于任意的x ,都有2x >x 2.( )[答案] (1)× (2)√ (3)×2.若x ∈(1,2),则下列结论正确的是( )A .2x >x 12>lg xB .2x >lg x >x 12C .x 12>2x >lg xD .x 12>lg x >2xA3.如图3-6-1所示曲线反映的是________函数模型的增长趋势.图3-6-1对数4.当x >4时,a =4x ,b =log 4x ,c =x 4的大小关系是________.【导学号:60712318】a >c >b[合 作 探 究·攻 重 难]于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.图3-6-2(1)请指出示意图中曲线C 1,C 2分别对应哪一个函数;(2)结合函数图像,比较f (8),g (8),f (2 016),g (2 016)的大小.[思路探究]先观察图像,比较相关区域函数值的大小,最后得出结论.[解](1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)∵g(1)=1,f(1)=2,g(2)=8,f(2)=4,g(9)=729,f(9)=512,g(10)=1 000,f(10)=1 024,∴f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10).∴1<x1<2,9<x2<10.∴x1<8<x2<2 016.从图像上知,当x1<x<x2时,f(x)<g(x);当x>x2时,f(x)>g(x),且g(x)在(0,+∞)上是增函数.∴f(2 016)>g(2 016)>g(8)>f(8).[规律方法]三种函数模型的表达形式及其增长特点:(1)指数函数模型:能用指数型函数f(x)=ab x+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增长的速度越来越快,常称之为“指数爆炸”.(2)对数函数模型:能用对数型函数f(x)=m log a x+n(m,n,a为常数,m≠0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(3)幂函数模型:能用幂型函数f(x)=axα+b(a,b,α为常数,a≠0,α≠1)表达的函数模型,其增长情况由a和α的取值确定,常见的有二次函数模型和反比例函数模型.[跟踪训练]1.函数f(x)=lg x,g(x)=0.3x-1的图像如图3-6-3所示.图3-6-3(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数;(2)比较两函数的增长差异(以两图像交点为分界点,对f(x),g(x)的大小进行比较).【导学号:60712319】[解](1)C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.(2)当x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x);当x=x1或x=x2时,f(x)=g(x).方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?[思路探究]首先建立不同回报对应的函数模型,结合其图像解决问题.[解]设第x天所得回报是y元.由题意,方案一:y=40(x∈N+);方案二:y=10x(x∈N+);方案三:y=0.4×2x-1(x∈N+).作出三个函数的图像如图:由图可以看出,从每天回报看,在第1天到第3天,方案一最多,在第4天,方案一、二一样多,方案三最少,在第5天到第8天,方案二最多,第9天开始,方案三比其他两个方案所得回报多得多,经验证到第30天,所得回报已超过2亿元,∴若是短期投资可选择方案一或方案二,长期的投资则选择方案三.通过计算器计算列出三种方案的累积收入表.∴投资1天到6天,应选方案一,投资7天方案一、二均可,投资8天到10天应选方案二,投资11天及其以上,应选方案三.[规律方法]解决应用问题的关键是将应用问题转化成数学问题来解决,结合函数图像有助于直观认识函数间在不同范围的大小关系.[跟踪训练]2.有一种树木栽植五年后可成材.在栽植后五年内,年增加20%,如果不砍伐,从第六年到第十年,年增长10%,现有两种砍伐方案:甲方案:栽植五年后不砍伐,等到十年后砍伐.乙方案:栽植五年后砍伐重栽,再过五年再砍伐一次.请计算后回答:十年内哪一个方案可以得到较多的木材?(不考虑最初的树苗成本,只按成材的树木计算)【导学号:60712320】[解]设树林最初栽植量为a,甲方案在10年后树木产量为y1=a(1+20%)5(1+10%)5=a(1.2×1.1)5≈4a.乙方案在10年后树木产量为y2=2a(1+20%)5=2a·1.25≈4.98a.y1-y2=4a-4.98a<0,因此,乙方案能获得更多的木材.[1.如图3-6-4给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是什么?图3-6-4提示:由题中图像可知,该函数模型为指数模型.2.四个变量y1,y2,y3,y4随变量x变化的数据如下表:关于x 呈指数函数变化的变量是什么?提示:由表中的数据变化知,是指数函数变化的变量是y 2.20世纪90年代,气候变化专业委员会向各国政府提供的一项报告指出:全球气候逐年变暖的一个重要因素是人类在能源利用与森林砍伐中CO 2体积分数增加,据测,1990年,1991年,1992年大气中CO 2体积分数分别比1989年增加了1个可比单位,3个可比单位,6个可比单位,若用一个函数模拟20世纪90年代中每年CO 2体积分数增加的可比单位数y 与年份增加数x (即当年数与1989年的差)的关系,模拟函数可选用二次函数f (x )=px 2+qx +r (其中p ,q ,r 为常数),或g (x )=ab x +c (a ,b ,c 为常数且b >0,b ≠1).(1)根据题目中的数据,求f (x ),g(x )的解析式;(2)如果1994年大气中CO 2体积分数比1989年增加了16个可比单位,请问以上哪个函数作为模拟函数较好?并说明理由.【导学号:60712321】[思路探究] (1)列出方程组求系数,从而求解析式;(2)由x =5得出函数值,通过比较选择模拟函数.[解] (1)由题目中的数据得⎩⎪⎨⎪⎧ p +q +r =1,4p +2q +r =3,9p +3q +r =6,解得⎩⎪⎨⎪⎧p =12,q =12,r =0,由⎩⎪⎨⎪⎧ ab +c =1,ab 2+c =3,ab 3+c =6,解得⎩⎪⎨⎪⎧ a =83,b =32,c =-3,所以f (x )=12x 2+12x, g (x )=83·⎝ ⎛⎭⎪⎫32x-3. (2)因为f (5)=15,g (5)=17.25,f (5)更接近16,所以选用f (x )=12x 2+12x 作为模拟函数好.[规律方法] 解决函数应用题时的常用方法:(1)先依据给出的数据作出散点图,大体估计函数模型,设出函数模型,列出方程组求系数,即可确定出函数模型.(2)将求出的函数通过数据比较确定出最适合的函数模型.[跟踪训练]3.某地西红柿从2月1日起开始上市.通过市场调查,得到西红柿种植成本Q (单位:元/102kg)与上市时间t (单位:天)的数据如下表:(1)Q 与上市时间t 的变化关系.Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a ·log b t .(2)利用你选取的函数,求西红柿种植成本最低时的上市天数及最低种植成本.[解] (1)由表中数据知,当时间t 变化时,种植成本并不是单调的, 故只能选择Q =at 2+bt +c ,即⎩⎪⎨⎪⎧ 150=a ×502+b ×50+c ,108=a ×1102+b ×110+c ,150=a ×2502+b ×250+c .解得Q =1200t 2-32t +4252.(2)Q =1200(t -150)2+4252-2252=1200(t -150)2+100, 所以当t =150天时,西红柿的种植成本最低,为100元/102 kg.[当 堂 达 标·固 双 基]1.下列函数中,自变量x 充分大时,增长速度最快的是( )【导学号:60712322】A .y =6xB .y =log 6xC .y =x 6D .y =6x A2.以下四种说法中,正确的是( )A .幂函数增长的速度比一次函数增长的速度快B .对任意的x >0,x a >log a xC .对任意的x >0,a x >log a xD .一定存在x 0,使x >x 0,总有a x >x n >log a xD [对于A ,幂函数的增长速度受幂指数影响,幂指数与一次项系数不确定,增长速度不能比较,而B 、C 都受a 的影响.]3.三个变量y 1,y 2,y 3随自变量x 的变化情况如下表:其中关于x ,呈指数型函数变化的变量是________,呈幂函数型函数变化的变量是________.【导学号:60712323】y 3 y 2 y 1 [由表中数据可知,y 1随x 的增加成倍增加,属于幂函数型函数变化,y 2随x 的增加成“几何级数”增加,属于指数型函数变化,y 3随x 的增加增加越来越慢,属于对数函数变化.]4.某商场2016年一月份到十二月份销售额呈现先下降后上升的趋势,现有三种函数模型:①f (x )=p ·q x (q >0,q ≠1);②f (x )=log p x +q (p >0,p ≠1);③f (x )=x 2+px +q .能较准确反映商场月销售额f (x )与月份x 关系的函数模型为________(填写相应函数的序号),若所选函数满足f (1)=10,f (3)=2,则f (x )=________.③,x 2-8x +17 [①②均单调,③先减后增,故能较准确反映商场月销售额f (x )与月份x 关系的函数模型为③由f (1)=10,f (3)=2,得⎩⎪⎨⎪⎧1+p +q =109+3p +q =2, 解得p =-8,q =17,所以,f (x )=x 2-8x +17.]5.用模型f (x )=ax +b 来描述某企业每季度的利润f (x )(亿元)和生产成本投入x (亿元)的关系.统计表明,当每季度投入1(亿元)时利润y 1=1(亿元),当每季度投入2(亿元)时利润y 2=2(亿元),当每季度投入3(亿元)时利润y 3=2(亿元).又11 定义:当f (x )使[f (1)-y 1]2+[f (2)-y 2]2+[f (3)-y 3]2的数值最小时为最佳模型.(1)当b =23时,求相应的a 使f (x )=ax +b 成为最佳模型;(2)根据题(1)得到的最佳模型,请预测每季度投入4(亿元)时利润y 4(亿元)的值.【导学号:60712324】[解] (1)b =23时 ,[f (1)-y 1]2+[f (2)-y 2]2+[f (3)-y 3]2=14⎝ ⎛⎭⎪⎫a -122+16, ∴a =12时,f (x )=12x +23为最佳模型.(2)f (x )=x 2+23,则y 4=f (4)=83.。
4.4.3 不同函数增长的差异-教师版
1.函数模型一般地,设自变量为x ,函数为y ,并用x 表示各相关量,然后根据问题的已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为数学问题,实现问题的数学化,即所谓的数学建模。
2.三种常见函数模型的增长差异3.三种函数模型的增长规律(1)对于幂函数nn x y n x x y =>>=时,当0,0,才是增函数,当n 越大时,增长速度越快。
(2)指数函数与对数函数的递增前提是a>1,又它们的图象关于x y =对称,从而可知,当a越大,xa y =增长越快;当a 越小,x y a log =增长越快,一般来说,)1,0(log >>>a x x a a x 。
(3)指数函数与幂函数,当时,10,0>>>a n x ,可能开始有xn a x >,但因指数函数是爆炸型函数,当x 大于某一确定值0x 后,就一定有nxx a >。
知识梳理例题解析题型一函数模型的增长差异三种函数模型的增长规律:(1)对于幂函数y=x n,当x>0,n>0时,y=x n才是增函数,当n越大时,增长速度越快.(2)指数函数与对数函数的递增前提是a>1,又它们的图象关于y=x对称,从而可知,当a越大,y=a x增长越快;当a越小,y=log a x增长越快,一般来说,a x>log a x(x>0,a>1).(3)指数函数与幂函数,当x>0,n>0,a>1时,可能开始时有x n>a x,但因指数函数是爆炸型函数,当x大于某一个确定值x0后,就一定有a x>x n.例1 函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)指出图中曲线C1,C2分别对应的函数;(2)结合函数图象,判断f(6),g(6),f(2 019),g(2 019)的大小.【答案】(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)f(2 019)>g(2 019)>g(6)>f(6).【解析】(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<6<x2,2 019>x2,从图象上可以看出,当x1<x<x2时,f(x)<g(x),所以f(6)<g(6).当x>x2时,f(x)>g(x),所以f(2 019)>g(2 019).因为g(2 019)>g(6),所以f(2 019)>g(2 019)>g(6)>f(6).变式本例条件不变,(2)题改为:试结合图象,判断f(8),g(8),f(2 019),g(2 019)的大小.【答案】f (2 019)>g (2 019)>g (8)>f (8).【解析】因为f (1)>g (1),f (2)<g (2),f (9)<g (9),f (10)>g (10),所以1<x 1<2,9<x 2<10,所以x 1<8<x 2,2 019>x 2,从图象上可以看出,当x 1<x<x 2时,f (x )<g (x ),所以f (8)<g (8),当x>x 2时,f (x )>g (x ),所以f (2 019)>g (2 019).因为g (2 019)>g (8),所以f (2 019)>g (2 019)>g (8)>f (8). 解题技巧:(由图象判断指数函数、对数函数和幂函数的方法)根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数. [跟踪训练]1.下列函数中,随x 的增大,增长速度最快的是( ) A.x y 50= B.50xy = C.xy 50= D.)(log 50*∈=N x x y【答案】C 【解析】四个函数中,增长速度由慢到快依次是)(log 50*∈=N x x y ,x y 50=,50x y =,x y 50=。
指数函数、幂函数、对数函数增长的比较
一 指数函数、幂函数、对数函数图像回顾 二 指数函数、幂函数、对数函数增长比较
一 指数函数y=ax (a>1)图像及a对图像影响
ay
y=ax
b
y=bx
O1
x
a>1时,y=ax是增函数,
底数a越大,其函数值增长 就越快.
二 对数函数y=logax (a>1)图像及a对图像 影响
y y=logax y=logbx
4 24
函数y=2x, y=x2, y=log2x图像 增长快慢比较
对数函数 y=log2x增长最慢,幂函数 y=x2和指数函数y=2x快慢则交替进行
在(0,2),幂函数比指数函数增长快 在(4,+∞),指数函数比幂函数增长快
规律总结
(1)对数函数增长最慢 (2)当自变量x大于某一个特定值时, 指数函数比幂函数增长快
1
O
aБайду номын сангаас
bx
a>1时,y=logax是增函数,
底数a越小,其函数值增长就 越快.
三 幂函数y=xn (n>1)图像及n对图像影响
y
y=x2
y=x3
O
x
n>1时,y=xn是增函数,
且x>1时,n越大其函数值增 长就越快.
比较函数y=2x, y=x2, y=log2x图像增长快慢
y=2x
y=x2
16
y=log2x
由于指数函数增长非常快,人们 常称这种现象为“指数爆炸”
本节内容
一 指数函数、幂函数、对数函数图像回顾 二 指数函数、幂函数、对数函数增长比较
《文本》指数函数、幂函数、对数函数增长的比较1《借助计算器观察函数递增的快慢》(上..doc
《指数函数、嘉函数、对数函数增长的比较》1、指数函数的图像与性质指数函数a。
的图像和性质a > 10 < 6Z < 1图像性质定义域____________________ ,值域___________________图像都经过点____________________当x〉0时, ______________W|XV()时,___________当x〉0时,_______________当x<0时, _______________在________________________上是增函数在________________________上是减函数2、慕函数的图像与性质⑴一般地,帛函数了 =芝有下列性质:当a〉0时,①图像都通过点、;②在第一象限内,函数值;③在第_象限内,a>\时,图像;④ 在第_象限内,过(1,1)点后,图像o当。
<0时,①图像都通过点;②在第一象限内,函数值,图像是:③在第一象限内,图像,向右;④在第一象限内,过(1,1)点后,|。
|越大,图像3、对数函数的图像与性质y = log/ (" > 0,"。
1)的图像和性质。
图像a>\()<。
< 1上是减函数补充性质三【课堂探究】 指数函数当。
〉1时,指数函数y ="是函数,并且当。
越时,其函数值的增长就,当。
>1时,对数函数y = log,x 是函数,并且当〃越 时,其函数值的增长就越(1) 定义域. (2) 值域3(3) 当工=1时,》〉0,即过定可2当0vxv 1 时,当时,1 23 X(5)在⑸在 'log ;',其中 a>上是增函数 设 Vi =lo&', y 2 =\ , b> \ (或0 v 。
< 1,0<b<\ )o当x>l 时,“底大图低”,即若a>b,则; 当Ovx< 1时,“底大图高",即若a>b f 则蓦函数当x> 0,n > 1时,序函数y = x n是增函数,并且当x>l时,n越,其函数值的增长就越> = /对于上述三种增加的函数,它们的函数值的增长快慢有何差别呢?现在比较函数),=2>y = x2, y = log2 x图像增长快慢比较(如下图)结果:对数函数),= lOg2X增长最慢,幕函数和指数函数),=2'快慢叶y=、2则交替进行:在(0,2)上,2'x2i "在(2,4) ±, 2’X2.. 3 \在(4,+8)上,2* __%2\I规律总结:\J(1)在区间(0,+8)上,尽管y = a\a>V), y = \og J x(a>\), y-x"(n〉函数,但它们的增长速度不同.(2)对数函数增长最;(3)当自变量尤大于某一个特定值时,指数函数比幕函数增长快.即总会存在一个毛,当x>x()时,就有lo S/x Z由于指数函数增长非常快,人们常称这种现象为“指数爆炸”.例1:假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番.请问,你会选择哪种投资方案?四、【课堂练习】1、比较下列各题中两个值的大小:(1)3°・8,3°气(2) 0.86,1.25°2;(3)2七1.炉;(4) log32.5,log52.52、比较函数y = 4\> = 与y = log,x的增长情况。
指、幂、对数增长的快慢
探究(一):特殊幂、指、对函数模型的差异
对于函数模型 :y=2x, y=x2, y=log2x 其中x>0.
实验实2验:1请:同请学同画学出填三写个如函下数表的格图数像据
x 0.2 0.6 1 1.4 1.8 2 3 4
67
8 10 15
y 2x 1.1491.52 2 2.64 3.48 4 8 16 64 128 256 1024 32768
思考3:一般地,指数函数y=ax (a>1)和幂函 数y=xn(n>0)在区间(0,+∞)上,其增长的快 慢情况是如何变化的?
思考4:对任意给定的a>1和n>0,在区间 (0,+∞)上,logax是否恒大于xn? logax是否 恒小于xn?
思考5:y=logax与y=xn一定不相交吗?
思考6:当x充分大时,logax(a>1)xn与(n>0)谁 的增长速度相对较快?
总结引导
一。本节课学习了指数、幂、对数函数在 第一象限变化的快慢。
二。本节课运用了哪些方法与思想?
知识迁移
2、三个变量 y1、 y2、 y3、随变量 x 变化的数据如下表
x
1
3
5
7
9
11
y1
5
135
625
1715
3645
6655
y2
5
29
245
2189
19685
177149
y3
5
6.1
6.61
6.95
7.2
7.4
y y 其中,x 呈对数型函数变化的变量是__3_;呈指数型函数变化的变量是___2;
§3.6 指数函数、幂函数、 对数函数增长的比较
指数函数、幂函数、对数函数增长的比较
2
1
0
0
200
400
600
800
1000
1200
对于模型由y=1.002x函数图像并利用计算 器满,足可1以.0知02道x0=在5,由区于间它(80在5,区80间6)[内10有,1一00个0]上点递x0 增,因此当x>x0时,y>5,因此该模型也不符合 要求;
5
4 3y=㏒7x2100
500
1000
当x比较大时,y=2x比y=x2增长得更快。
5、在区间(0,+∞)上,当a>1,n>0时,当x足 够大时,随着x的增大,y=ax的增长速度越来 越快,会超过并远远大于y=xn的增长速度,而 y=logax的增长速度则越来越慢.
因此,总会存在一个x0, 使得当x>x0时,一定有ax>xn>logax.
练习
2、作图像,试比较函数y=4x,y=x4, y=log4x 的增长情况. y=x4 y y=4x
y=log4x
x
小结 比较了指数函数、幂函数、对数函数的增长
在区间(0,+∞)上,当a>1,n>0时,当x足够大 时,随着x的增大,y=ax的增长速度越来越快, 会超过并远远大于y=xn的增长速度,而 y=logax的增长速度则越来越慢.
O (1,0)
x
幂函数
3.当x>0,n>0时,幂函数y=xn是增函数, 并且对于x>1,当n越大时,其函数值的 增长就越快。
y=x2 y y=x4
6 5 4 3 2 1
-3 -2 -1 O 1 2 3 x
y 3x
y 2x
y
O (1,0)
y=log2x y=log3x y=log5x
x
y=x2 y y=x4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§6 三种函数增长比较
一、教学目标:
1. 知识与技能 结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.
2. 过程与方法 能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.
3. 情感、态度、价值观 体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.
二、 教学重点、难点:
1. 教学重点 将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.
2.教学难点 选择合适的数学模型分析解决实际问题.
三、 学法与教学用具:
1. 学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.
2.教学用具:多媒体.
四、教学设想:
(一)引入实例,创设情景.
教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.
(二)互动交流,探求新知.
1. 观察数据,体会模型.
教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.
2. 作出图象,描述特点.
教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.
(三)实例运用,巩固提高.
1. 教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益. 学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.
2. 教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异.
3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。
4.教师引导学生利用解析式,结合图象,对例2的三个模型的增长情况进行分析比较,写出完整的解答过程. 进一步认识三个函数模型的增长差异,并掌握解答的规范要求.
5.教师引导学生通过以上具体函数进行比较分析,探究幂函数n
y x =(n >0)、指数函数n y a =(a >1)、对数函数log a y x =(a >1)在区间(0,+∞)上的增长差异,并
从函数的性质上进行研究、论证,同学之间进行交流总结,形成结论性报告.教师对学生的结论进行评析,借助信息技术手段进行验证演示.
6.课堂练习
教材P116练习1、2,并由学生演示,进行讲评。
(四)归纳总结,提升认识.
教师通过计算机作图进行总结,使学生认识直线上升、指数爆炸、对数增长等不同函数模型的含义及其差异,认识数学与现实生活、与其他学科的密切联系,从而体会数学的实用价值和内在变化规律.
(五)布置作业
收集一些社会生活中普遍使用的递增的一次函数、指数函数、对数函数的实例,对它们的增长速度进行比较,了解函数模型的广泛应用,并思考。
有时同一个实际问题可以建立多个函数模型,在具体应用函数模型时,应该怎样选用合理的函数模型.。