中考数学天天练15
2021年河南省淮滨县第一中学中考复习 九年级数学 天天练(十五)(答案不全)
2021年河南省淮滨县第一中学中考复习 九年级数学 天天练(十五)一、选择题1.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( )A .8 与 14B .10 与 14C .18 与 20D .4 与 282.把直线3y x =--向上平移m 个单位后,与直线24y x =+的交点在第二象限,则m 的取值范围是( ) A .17m << B .34m << C .1m D .4m <3.抛物线y =(x ﹣1)2+3关于x 轴对称的抛物线的解析式是( )A .y =﹣(x ﹣1)2+3B .y =(x +1)2+3C .y =(x ﹣1)2﹣3D .y =﹣(x ﹣1)2﹣34.如图,AD 是△ABC 的外角平分线,下列一定结论正确的是( )A .AD+BC=AB+CDB .AB+AC=DB+DC,C .AD+BC <AB+CD D .AB+AC <DB+DC5.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )A .3B .4C .5D .66.如图,在平面直角坐标系中,点C 是y 轴正半轴上的一个动点,点A (1,0)、B (5,0).连接AC ,以 AC 为边作等边三角形ACD ,点D 与点O 在直线AC 两侧,连接BD ,则BD 的最小值是( )A .B .3C .52 D7.如图,点O (0,0),A (0,1)是正方形1OAA B 的两个顶点,以1OA 对角线为边作正方形121OA A B ,再以正方形的对角线2OA 作正方形121OA A B ,…,依此规律,则点8A 的坐标是( )A .(-8,0)B .(0,8)C .(0,)D .(0,16)8.如图,在ABC ∆中,90ACB ∠=︒,4AC =,2BC =.P 是AB 边上一动点,PD AC ⊥于点D ,点E 在P 的右侧,且1PE =,连结CE .P 从点A 出发,沿AB 方向运动,当E 到达点B 时,P 停止运动.在整个运动过程中,图中阴影部分面积12S S +的大小变化情况是( ).A .一直减小B .一直不变C .先减小后增大D .先增大后减小9.如图,在直角坐标系中,点A 的标为(1,0),以线段OA 为边在第四象限内作等边△ABO ,点C 在x 轴正半轴上一动点()1OC >,连接BC ,以线段BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E ,下列结论:(1)△OBC△△ABD ;(2)点E 的位置不随着点C 位置的变化而变化,点E 的坐标是(0);(3)△DAC 的度数随着点C 位置的变化而改变;(4)当点C 的坐标为(m ,0)(m>1)时,四边形ABDC 的面积S 与m 的函数关系式为2S =,正确的有( )个A .1B .2C .3D .410.已知两地相距300千米,甲骑摩托车从A 地出发匀速驶向B 地,当甲行驶1h 后,乙骑自行车以20/km h 的速度从B 地出发匀速驶向A 地.甲到达B 地后马上以原速按原路返回,直至甲追上乙.在此过程中,甲、乙两人之间的距离y (km )与甲行驶时间()x h 之间的函数关系如图所示.下列说法:①甲最终追上乙时,乙骑行了7小时;②点P 的纵坐标为240;③线段QM 所在直线的解析式为40160y x =-;④当131911,,442x =时,甲、乙两人之间相距60千米.其中说法正确的序号是( )A .①③B .①④C .②③D .②④二、填空题11.在Rt ABC △中,90,15,C AB BC ∠=︒==CB 上的一点D 作,DE AB E ⊥为垂足,直线DE 与直线AC 交于点P ,若CD =PE =__________.12.如图,点P 是Rt ABC △斜边AB 上的一点,PE AC ⊥于点E ,PF BC ⊥于点F ,6BC =,8AC =,线段EF的最小值为______.13.如图,E 、F 分别是矩形ABCD 的边BC 、CD 的中点,连接AC 、AF 、EF ,若AF△EF ,,则AB 的长为_____.14.如图,在扇形OCD 中,△COD =90°,OC =3,点A 在OD 上,AD =1,点B 为OC 的中点,点E 是弧CD 上的动点,则AE +2EB 的最小值是__________.15.如图,有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的下底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的C 点处的食物,需要爬行的最短路程是___________________(π的值取3).三、解答题16.(1)先化简,再求值:222111a a a a a +⎛⎫+÷ ⎪+--⎝⎭,其中1a =. (2)已知关于x ,y 的二元一次方程2231x y m x y m -=⎧⎨+=-⎩的解满足x y <,求m 的取值范围. 17.阅读理解: 材料1:对于一个关于x 的二次三项式()20ax bx c a ++≠,除了可以利用配方法求该多项式的取值范围外,爱思考的小川同学还想到了其他的方法;比如先令()20ax bx c y a ++=≠,然后移项可得:()20ax bx c y ++-=,再利用一元二次方程根的判别式来确定y 的取值范围,请仔细阅读下面的例子:例:求225x x ++的取值范围;解:令225x x y ++=()2250x x y ∴++-=()4450y ∴∆=-⨯-≥4y ∴≥2254x x ∴++≥;材料2:在学习完一元二次方程的解法后,爱思考的小川同学又想到仿造一元二次方程的解法来解决一元二次不等式的解集问题,他的具体做法如下:若关于x 的一元二次方程()200ax bx c a ++=>有两个不相等的实数根1x 、()212x x x >,则关于x 的一元二次不等式()200ax bx c a ++≥>的解集为:1x x ≥或2x x ≤;则关于x 的一元二次不等式的()200ax bx c a ++≤>的解集为:21x x x ≤≤.材料3:若关于x 的一元二次方程()200++=≠ax bx c a 有两个不相等的实数根1x 、2x ;则12b x x a +=-;12c x x a ⋅=,我们称之为韦达定理;请根据上述材料,解答下列问题:(1)若关于x 的二次三项式23x ax ++(a 为常数)的最小值为7-,则a =________.(2)求出代数式24221x x x -+-的取值范围. (3)若关于x 的代数式2223bx a x x +-+(其中a 、b 为常数,且0ab ≠)的最小值为2-,最大值为4,请求出满足条件的a 、b 的值.18.如图,直线AB 、CD 相交于点O ,△BOD=45°,按下列要求画图并回答问题:(1)利用三角尺,在直线AB 上方画射线OE ,使OE△AB ;(2)利用圆规,分别在射线OA 、OE 上截取线段OM 、ON ,使OM=ON ,连接MN ;(3)利用量角器,画△AOD 的平分线OF 交MN 于点F ;(4)直接写出△COF= °.19.如图,将一个直角三角形纸片AOB ,放置在平面直角坐标系中,点()3,3A ,点()3,0B ,点()0,0O .将AOB ∆沿OA 翻折得到AOD ∆(点D 为点B 的对应点).(△)求OA 的长及点D 的坐标;(△)点P 是线段OD 上的点,点Q 是线段AD 上的点.①已知1OP =,43AQ =,R 是x 轴上的动点,当PR QR +取最小值时,求出点R 的坐标及点D 到直线RQ 的距离; ②连接BP ,BQ ,且45PBQ ∠=,现将OAB ∆沿AB 翻折得到EAB ∆(点E 为点O 的对应点),再将PBQ ∠绕点B 顺时针旋转,旋转过程中,射线BP ,BQ 交直线AE 分别为点M ,N ,最后将BMN ∆沿BN 翻折得到BGN ∆(点G为点M 的对应点),连接EG ,若512EN EG =,求点M 的坐标(直接写出结果即可). 20.如图,在平面直角坐标系中,点A 、B 在x 轴上,点C 在y 轴上,5AB BC ==,8AC =,D 为线段AB 上一动点,以CD 为边在x 轴上方作正方形CDEF ,连接AE .(1)若点B 的坐标为(,0)m ,则m =________;(2)当BD =________时,EA x ⊥轴;(3)当点D 由点B 运动到点A 过程中,点F 经过的路径长为________;(4)当ADE ∆面积最大时,求出BD 的长及ADE ∆面积最大值.21.问题发现:(1)如图①,正方形ABCD 的边长为4,对角线AC 、BD 相交于点O ,E 是AB 上点(点E 不与A 、B 重合),将射线OE 绕点O 逆时针旋转90°,所得射线与BC 交于点F ,则四边形OEBF 的面积为 .问题探究:(2)如图②,线段BQ =10,C 为BQ 上点,在BQ 上方作四边形ABCD ,使△ABC =△ADC =90°,且AD =CD ,连接DQ ,求DQ 的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD 中,△ABC =△ADC =90°,AD =CD ,AC =600米.其中AB 、BD 、BC 为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB +BD +BC 的最大值.22.如图,抛物线y =﹣12x 2+2x +6交x 轴于A ,B 两点(点A 在点B 的右侧),交y 轴于点C ,顶点为D ,对称轴分别交x 轴、线段AC 于点E 、F .(1)求抛物线的对称轴及点A 的坐标;(2)连结AD ,CD ,求△ACD 的面积;(3)设动点P 从点D 出发,沿线段DE 匀速向终点E 运动,取△ACD 一边的两端点和点P ,若以这三点为顶点的三角形是等腰三角形,且P 为顶角顶点,求所有满足条件的点P 的坐标.23.阅读理解:如图1,在纸面上画出了直线l 与O ,直线l 与O 相离,P 为直线l 上一动点,过点P 作O 的切线PM ,切点为M ,连接OM 、OP ,当OPM ∆的面积最小时,称OPM ∆为直线l 与O 的“最美三角形”. 解决问题:(1)如图2,A 的半径为1,(0,2)A ,分别过x 轴上B 、O 、C 三点作A 的切线BM 、OP 、CQ ,切点分别是M 、P 、Q ,下列三角形中,是x 轴与A 的“最美三角形”的是 .(填序号) ①ABM ∆;②AOP ∆;③ACQ ∆(2)如图3,A 的半径为1,(0,2)A ,直线(0)y kx k =≠与A “最美三角形”的面积为12,求k 的值.(3)点B 在x 轴上,以B B ,若直线3y =+与B 的“最美三角形”接写出圆心B 的横坐标B x 的取值范围.【参考答案】1.C 2.A 3.D 4.D 5.D 6.B 7.D 8.C 9.C 10.D11.7或512.24513.214.15.15厘米16.(1)31a +,2;(2)17m <-. 17.(1)a =±(2)1y ≥-或2y ≤-;(3)4a =-,4b =或12a =,4b =-18.略19.(△)OA =D 点坐标为()0,3;(△)①点R 的坐标为5,012⎛⎫ ⎪⎝⎭,点D 到直线RQ 的距离为2013;②()3,9-或219,55⎛⎫ ⎪⎝⎭或246,55⎛⎫ ⎪⎝⎭. 20.(1)-75;(2)15;(3)5;(4)BD 的长为95时,ADE ∆的面积最大,最大值为12825. 21.(1)4;(2);(3)600+1).22.(1)抛物线的对称轴x =2,A (6,0);(2)△ACD 的面积为12;(3)点P 的坐标为(2,2)或(2,6)或(2,3).23.(1)②;(2)k 的值为1或1-;(3)2s x -<<或32x <<--。
中考数学天天练
下一刻大风就把小白球吹跑了;或者你才在上一个洞吞了柏忌,下一个洞你就为抓了老鹰而兴奋不已。
9.26 难度:★★★★如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.(1)求抛物线的解析式.(2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值;(3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由。
(注:抛物线的对称轴为)只有凭借毅力,坚持到底,才有可能成为最后的赢家。
这些磨练与考验使成长中的青少年受益匪浅。
在种下一刻大风就把小白球吹跑了;或者你才在上一个洞吞了柏忌,下一个洞你就为抓了老鹰而兴奋不已。
解:设抛物线的解析式为只有凭借毅力,坚持到底,才有可能成为最后的赢家。
这些磨练与考验使成长中的青少年受益匪浅。
在种下一刻大风就把小白球吹跑了;或者你才在上一个洞吞了柏忌,下一个洞你就为抓了老鹰而兴奋不已。
9.27 难度:★★★★已知抛物线与轴的一个交点为A(-1,0),与y轴的正半轴交于点C.(1)直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;(2)当点C在以AB为直径的⊙P上时,求抛物线的解析式;(3)坐标平面内是否存在点,使得以点M和⑵中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由.解:⑴对称轴是直线:,点B的坐标是(3,0).说明:每写对1个给1分,“直线”两字没写不扣分.⑵如图,连接PC,∵点A、B的坐标分别是A(-1,0)、B(3,0),只有凭借毅力,坚持到底,才有可能成为最后的赢家。
这些磨练与考验使成长中的青少年受益匪浅。
在种下一刻大风就把小白球吹跑了;或者你才在上一个洞吞了柏忌,下一个洞你就为抓了老鹰而兴奋不已。
精选中考数学考前15天冲刺练习试卷含答案
2019届中考数学考前15天冲刺练习第1天一、选择题:1.目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为( )A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×10102.下列图形中,既是轴对称图形,又是中心对称图形的是()3.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=134.下列说法正确的是( )A.32ab3的次数是6次 B.πx的系数为1,次数为2C.-3x2y+4x-1 的常数项是-1 D.多项式2x2+xy+3是四次三项式5.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<1.5 B.x<3 C.x>1.5D.x>36.食堂的存煤计划用若干天,若每天用130kg,则缺少60kg;若每天用120kg,则还剩余60kg.设食堂的存煤共有xkg,计划用y天,则下面所列方程组正确的是()7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35° B.55°C.65°D.75°8.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为()A.6πB.18 C.18πD.20二、填空题:9.已知函数y=,则自变量x的取值范围是.10.不等式x﹣2≥1的解集是.11.如图,要使ΔABC∽ΔACD,需补充的条件是.(只要写出一种)12.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2-b2+5的最小值为__________.三、解答题:13.解方程:﹣=16.14.体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?15. “低碳环保,你我同行”.近几年,各大城市的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A.D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)16.如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE 上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB:OA=1:2 时,求弧FM,AM,AF围成的阴影部分面积.17.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A.B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点?参考答案1.D2.A;3.C4.A5.C;6.B.7.B8.B.9.答案为:x≥﹣0.5且x≠2.10.答案为:x≥3;11.答案为:∠ACD=∠B;12.答案为:1;13.答案为:x=﹣14.14.设要邀请x支球队参加比赛,由题意得0.5x(x﹣1)=28,解得:x=8,x2=﹣7(舍去).1答:应邀请8支球队参加比赛.15.16.17.略;2019届中考数学考前15天冲刺练习第2天一、选择题:1.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108 B.3×107C.3×106 D.0.3×1082.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是,则正面画有正三角形的卡片张数为()A.3 B.5 C.10 D.153.在100个数据中,用适当的方法,抽取50个作为样本进行统计,频数分布表中55~58这一组数据的频率是0.12,那么估计这100个数据中,落在55~58之间的约有()A.120个B.60个C.12个D.6个4.下列关于单项式-的说法中,正确的是( )A.系数是-,次数是2 B.系数是,次数是2 C.系数是-3,次数是3 D.系数是-,次数是35.如图,直线y=0.75x+3与x轴、y轴分别交于A.B两点,把△AOB绕点A逆时针旋转90°后得到△ACD,则点D的坐标是()A.(4,3)B.(﹣3,4)C.(﹣7,4)D.(﹣7,3)6.某商店出售某种商品每件可获利m元,利润率为20%,若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,则提价后的利润率为()A.25% B.20% C.16% D.12.5%7.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC 于点F,则DF:FC=()A.1:4 B.1:3 C.1:2 D.1:18.如图,已知点A(-8,0)、B(2,0),点C在直线y=-0.75x+4上,则使△ABC是直角三角形的点C的个数为( )A. 1 B. 2 C. 3 D. 4二、填空题:9.函数y=的自变量的取值范围是10.不等式x﹣2≥1的解集是.11.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C 的照射下,小明的影长BE= m.12.若二次函数y=x2﹣2016x+2017与x轴的两个交点为(m,0)(n,0)则(m2﹣2017m+2016)(n2﹣2017n+2016)的值为.三、解答题:13.解方程:4-4(x-3)=2(9-x)14.白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?15.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)16.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O 的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC= °时,四边形ODEB是正方形.②当∠BAC= °时,AD=3DE.17.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C 点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是⊙P的切线;(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案1.B2.D.3.D.4.C5.C6.C7.C8.C.9.答案为:x≥﹣3且x≠﹣1.10.答案为:x≥311.答案为:2.12.答案为:2;13.x=-1.14.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8 解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.15.解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.30.答:河宽为68.30米.16.17.解:2019届中考数学考前15天冲刺练习第3天一、选择题:1.a是任意有理数,下面式子中:①>0;②;③;④,一定成立的个数是()A.1个B.2个C.3个D.4个2.如图所示的几何体的俯视图是()A. B. C. D.3.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A.3个B.不3个C.4个D.5个或5个以上4.下列运算正确的是()A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 5.已知一次函数y=kx﹣3与反比例函数y=﹣kx-1,那么它们在同一坐标系中的图象可能是()6.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2 C. += D.﹣=7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35°B.55°C.65°D.75°8.已知正多边形的边心距与边长的比为一半,则此正多边形为( )A.正三角形B.正方形C.正六边形D.正十二边形二、填空题:9.函数的自变量x的取值范围是.10.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.11.如果x:y:z=1:3:5,那么=__________12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点A.B的横坐标分别为﹣1,3,与y轴负半轴交点C.在下面五个结论中:①bc>0;②a+b+c<0;③c=﹣3a;④当﹣1<x<3时,y>0;⑤如果△ABC为直角三角形,那么仅a=一种情况.其中正确的结论是.(只填序号)三、解答题:13.用加减法解下列方程组:14.甲、乙两站相距275千米,一辆慢车以每小时50千米的速度从甲站出发开往乙站.1小时后,一辆快车以每小时75千米的速度从乙站开往甲站.那么快车开出后几小时与慢车相遇?15.如图,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A.B两处的距离为2米,两棵树之间的距离CE=3米,A.B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)16.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.17.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.参考答案1.B2.D3.D4.C.5.D6.B7.B.8.D9.答案为:且.10.答案为:13≤a<1511.答案为:-5/312.答案为①②③⑤13.答案为:14.答案:1.8.详解:设快车开出后x小时与慢车相遇,由题意得:50(1+x)+75x=275,解得x=1.8,因此,快车开出后1.8小时与慢车相遇.15.16.(2)∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等),又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,,即,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF==.17.2019届中考数学考前15天冲刺练习第4天一、选择题:1.2016年4月14日日本熊本县发生6.2级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为()A.2.36×108B.2.36×109C.2.36×1010D.2.36×10112.下列图形是中心对称图形的是3.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是()A.14B.310C.12D.344.如果多项式x2-7ab+b2+kab-1不含ab项,则k的值为( )A.0 B.7 C.1 D.不能确定5.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().A.2 B.1.5 C.2.5 D.-66.利华机械厂四月份生产零件50万个,若五.六月份平均每月的增长率是20%,•则第二季度共生产零件( )A.100万个B.160万个C.180万个D.182万个7.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A.20°B.25°C.30°D.35°8.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A .10cmB .15cmC .103cmD .202cm二、填空题:9.若式子1 x 有意义,则实数x 的取值范围是 . 10.若关于x 的不等式组无解,则a 的取值范围是11.若,则= .12.一名男生投实心球,已知球行进的高度y (m )与水平距离x (m )之间的关系为y=﹣254(x ﹣2)2+2581,那么该男生此次投实心球的成绩是 .三、解答题: 13.解方程组:14.一家4口,父亲、母亲、儿子、女儿.他们的年龄和是71岁,父亲比母亲大3岁,女儿比儿子大2岁.4年前,全家的年龄之和为56岁.现在每个人的年龄分别是多少岁?15.如图,有一段斜坡BC 长为30米,坡角∠CBD=30°,为方便车辆通行,现准备把坡角降为∠CAD=15°.(1)求坡高CD ;(2)求tan75°的值(结果保留根号)16.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O 又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.17.如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A.D,且AB=BD.(1)求点A的坐标:(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值______(直接写结果).参考答案1.C.2.C.3.C.4.B.5.B.6.D.7.D8.D.9.答案为:x≥1.10.答案为:a≥1;11.答案为:0.2.12.答案为:6分;13.答案为:x=-1,y=-2.14.答案:3,5,30,33.详解:现在全家年龄之和比四年前应该多16岁,但71-56=15(岁),说明四年前弟弟没出生,所以假设弟弟今年3岁,姐姐就是3+2=5岁.设母亲的年龄为x岁,则父亲年龄为(x+3)岁.由题意得:x+(x+3)+5+3=71,2x+11=71,2x=60,x=30,所以父亲今年年龄是30+3=33(岁),四年前弟弟还没出生,三人的年龄和为33+30+512=56(岁),验证结果正确.因此,父亲现在的年龄是33岁,母亲现在的年龄是30岁,姐姐现在的年龄是5岁,弟弟现在的年龄是3岁.15.解:(1)∵∠CDB=90°,∠CBD=30°,BC=30米,∴CD=15米,即坡高CD为15米;(2))∵∠CDB=90°,∠CBD=30°,∠CAD=15°,∴∠BCD=60°,∠BCA=15°,∴∠ACD=75°,AB=BC,∵BC=30米,∴AB=30米,BD=BC•sin60°=30×=15米,CD=15米,∴tan∠ACD=,即tan75°=2+.16.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.17.(1)如图,连接AC、BC,设直线AB交y轴于点E,∵AB∥x轴,CD∥x轴,C、B为抛物线C1、C2的顶点,∴AC=BC,BC=BD,∵AB=BD,∴AC=BC=AB,∴△ABC是等边三角形,∴∠ACE=30°,设AE=m,则CE=AE=m,∵y1=x2+1,∴点C的坐标为(0,1),∴点A的坐标为(﹣m,1+m),∵点A在抛物线C1上,∴(﹣m)2+1=1+m,整理得m2﹣m=0,解得m1=,m2=0(舍去),∴点A的坐标为(﹣,4);(2)如图2,连接AC、BC,过点C作CE⊥AB于点E,设抛物线y1=2x2+b1x+c1=2(x﹣h1)2+k1,∴点C的坐标为(h1,k1),设AE=m,∴CE=m,∴点A的坐标为(h1﹣m,k1+m),∵点A在抛物线y1=2(x﹣h1)2+k1上,∴2(h1﹣m﹣h1)2+k1=k1+m,整理得,2m2=m,解得m1=,m2=0(舍去),由(1)同理可得,CD=BD=BC=AB,∵AB=2AE=,∴CD=,即CD的长为,根据题意得,CE=BC=×=,∴点B的坐标为(h1+,k1+),又∵点B是抛物线C2的顶点,∴y2=a2(x﹣h1﹣)2+k1+,∵抛物线C2过点C(h1,k1),∴a2(h1﹣h1﹣)2+k1+=k1,整理得a2=﹣,解得a2=﹣2,即a2的值为﹣2;(3)根据(2)的结论,a2=﹣a1,CD=﹣﹣(﹣)=+=,根据(1)(2)的求解,CD=2×,∴b1+b2=2.2019届中考数学考前15天冲刺练习第5天一、选择题:1.下列各组中运算结果相等的是( )A.23与32 B.(﹣2)4与﹣24 C.(﹣2)3与﹣23 D.与2.观察下列图形,是中心对称图形的是()A.B.C.D.3.为了解某小区中学生在暑期期间的学习情况,王老师随机调查了7位学生一天的学习时间,结果如下(单位:小时):3.5,3.5,5,6,4,7,6.5.这组数据的中位数是()A.6 B.6.5 C.4 D.54.要使多项式(x2+px+2)(x-q)不含x的二次项,则p与q的关系是( )A.相等B.互为相反数C.互为倒数D.乘积为-15.如图,是在同一坐标系内作出的一次函数l、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,1则方程组的解是()A. B. C.D.6.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A.800(1+a%)2=578 B.800(1-a%)2=578 C.800(1-2a%)=578 D.800(1-a2%)=5787.如图,矩形ABCD的顶点A.C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°8.如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是( )A.6 B.8 C.9.6 D.10二、填空题:9.函数的自变量的取值范围是.10.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是.11.在比例尺1∶10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为 km。
重庆中考初中数学专题训练(有答案)--15题训练
15题训练一、注意下面定律(要记住,考试时候节约许多计算时间):1、如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m/n.2、互相独立的实验事件的概率求法:设A成功的概率是m,B成功的概率是n,两事件同时发生的概率是m×n.3、生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1二、选题1、从1,2,3,…,14,15这15个整数中任取一个数记作a,那么关于x的方程ax=15x-24的解为整数的概率为7/15考点:概率公式;一元一次方程的解.专题:计算题.分析:可将原方程变形为(a-15)x=-24,要使关于x的方程ax=15x-24的解为整数,a-15必须能被24整除,找到符合条件的数,再利用概率公式解答即可.解答:解:原方程可变形为(a-15)x=-24,∵关于x的方程ax=15x-24的解为整数,∴a-15能被24整除,∴a=3或7或9或11或12或13或14共7种可能.故答案为:7/15.2、3、在一个不透明的盒子里装有5个分别写有数字-2,-1,0,1,2的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,将该小球上的数字作为字母b的值,将该数的平方作为字母c的值,则使抛物线y=-x2+bx+c经过第一象限的概率是()4、(2011•江津区)在一个袋子里装有10个球,其中6个红球,3个黄球,1个绿球,这些球除颜色外,形状、大小、质地等完全相同,充分搅匀后,在看不到球的条件下,随机从这个袋子中摸出一球,不是红球的概率是2/5考点:概率公式.分析:根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.解答:解:红球的概率:(3+1)÷10=2/5.5、6、在一个不透明的盒子里装有6个分别写有数字-1,0,1,2,3,5的小球,它们除数字不同外其余全部相同.现从盒子里随机取出一个小球,记下数字a后不放回,再取出一个记下数字b,那么点(a,b)在抛物线y=x2+1上的概率是()7、任意掷一枚骰子,5点朝上的概率是()偶数点朝上的概率是()大于2的点朝上的概率是()小于7的点朝上的概率是().8、抛掷三枚硬币,掷得“两正一反”的概率等于()这个概率值表示的意思是掷很多次,平均每8次有三次出现两正一反;不是“三个反面”的概率等于(),这个概率值表示的意思是()9、从8名男医生和7名女医生中选一人作为医疗小组的组长,是男医生的概率是(),是女医生的概率是()分析:男医生人数除以医生总人数即为所求的是男医生的概率;同理可得是女医生的概率.解答:解:从8名男医生和7名女医生中选一人作为医疗小组的组长,是男医生的概率是8/(8+7)=8/15,同理女医生的概率为7/15.点评:明确概率的意义是解答的关键,用到的知识点为:概率=所求情况数与总情况数之比.10、现在某实验室有A,B二项互相独立的实验,已知A成功的概率是1/2,B成功的概率是2/3,二项实验同时成功的概率是()11、下列说法:(1)事件发生的概率可以是任意正数;(2)不确定事件的概率大于0而小于1;(3)不确定事件发生的概率是不确定的;(4)事件发生的概率可以等于事件不发生的概率,其中正确的()A.1个B.2个C.3个D.4个解:(1)错,事件发生的概率不能大于1.(2)对,不可能事件的概率为0,必然事件的概率为1,不确定事件的概率大于0而小于1.(3)错,不确定事件的概率有一定的规律可以遵循.(4)对,例如随机抛硬币事件,出现正面和出现反面的概率都为0.5.正确的有2个,故选B.生活中的随机事件分为确定事件和不确定事件,确定事件又分为必然事件和不可能事件,其中必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A 为不确定事件,那么0<P(A)<112、(2007•十堰)掷一个质地均匀的骰子,出现的点数大于4的概率是1/3,出现的点数为偶数的概率是()让出现的点数大于4的情况数除以总情况数6;让出现的点数为偶数的情况数除以总情况数6即为所求的概率.解答:解:掷一个质地均匀的骰子,有6种情况,即1、2、3、4、5、6,出现的点数大于4的有2种,故其概率是1/3;出现的点数为偶数的有3种,故其概率是1/2.点评:本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m/n.13、一年365天,任意翻一本日历,正好翻到你生日的概率是(),是2月的概率是()14、从一副扑克牌中任意抽取一张.(1)它是王牌的概率是()(2)它是Q的概率是();(3)它是草花的概率是()15、从一篮鸡蛋中取五个,如果其重量小于30克的概率是0.3,重量在大于30,小于40克的概率是0.5,那么其重量不大于40克的概率是()由题意可得,重量不大于40克的概率等于重量小于30克的概率加上重量在[30,40]克的概率,运算求得结果.解答:解:重量不大于40克的概率等于重量小于30克的概率加上重量在[30,40]克的概率,即0.3+0.5=0.8.故答案为0.8.点评:本题主要考查互斥事件的概率加法公式,属于基础题.16、甲乙两人下棋比赛,两人下成和棋的概率是1/2,乙获胜的概率是1/3,则乙不输的概率是()17、甲、乙两人下棋,甲获胜的概率为30%,和棋的概率为50%,那么乙不输的概率为()考点:概率公式.分析:等量关系为:甲获胜的概率,和棋的概率和乙获胜的概率的和是1,把相关数值代入即可求解.解答:解,根据题意,乙获胜的概率是1-30%-50%=20%,所以乙不输的概率为50%+20%=70%.点评:解答本题的关键是要判断出“甲获胜的概率,和棋的概率和乙获胜的概率的和是1”.18、三名同学站成一排,其中小明站在中间的概率是(),站在两端的概率是()考点:概率公式.分析:三个同学站成一排总共有3×2种情况,分别计算所求情况组合的个数,利用概率公式进行计算即可.解答:解:小明站在中间有2种情况,站在两端有4种情况.故小明站在中间的概率是2/6=13,站在两端的概率是4/6=2/3.点评:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A 的概率P(A)=m/n.19、有100件产品,其中有5件次品,现抽出1件产品,它是正品的概率是(),它是次品的概率是().考点:概率公式.分析:让正品数和次品数,分别除以总产品数即为所求的概率.解答:解:有100件产品,其中有5件次品,即95件正品;现抽出1件产品,它是正品的概率是95/100=19/20,它是次品的概率是5/100=1/20.点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=m/n.20、(2011•宿迁)在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率;(3)求点M的横坐标与纵坐标之和是偶数的概率.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15题目16、某城市有一段马路需要整修,这段马路的长不超过3500米.今有甲、乙、丙三个施工队,分别施工人行道、非机动车道和机动车道.他们于某天零时同时开工,每天24小时连续施工.若干天后的零时,甲完成任务;几天后的18时,乙完成任务,自乙队完成的当天零时起,再过几天后的8时,丙完成任务,已知三个施工队每天完成的施工任务分别为300米、240米、180米,问这段路面有多长?24、已知四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°,请说明:BC+DC=AC.分析:由AB=AD,∠BAD=60°可得△ABD是等边三角形;把△ADC绕点D逆时针旋转60°,点A与点B重合,点连接EC ,C 转到点E ,则△DCE 是等边三角形,∠BAD=60°,又因为∠BCD=120°,所以∠BAD+∠BCD=180°,故B 、C 、E 共线,得出最后结论.解答:解:∵AB=AD ,∠BAD=60°,∴△ABD 是等边三角形,把△ADC 绕点D 逆时针旋转60°,点A 与点B 重合,点连接EC ,C 转到点E ,则△DCE 是等边三角形,∴∠BAD=60°, 又∵∠BCD=120°,∴∠BAD+∠BCD=180°, 故B 、C 、E 共线,∴AC=BE=BC+CE=BC+DC .点评:本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,共线的证明是正确解答本题的关键. 15.(本小题满分6分) 如图,O⑴ 写出O 上所有格点....的坐标: ___________________________________________________。
中考数学考前15天冲刺练习试卷含答案
2019届中考数学考前15天冲刺练习第1天一、选择题:1.目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为( )A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×10102.下列图形中,既是轴对称图形,又是中心对称图形的是()3.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=134.下列说法正确的是( )A.32ab3的次数是6次 B.πx的系数为1,次数为2C.-3x2y+4x-1 的常数项是-1 D.多项式2x2+xy+3是四次三项式5.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<1.5 B.x<3 C.x>1.5D.x>36.食堂的存煤计划用若干天,若每天用130kg,则缺少60kg;若每天用120kg,则还剩余60kg.设食堂的存煤共有xkg,计划用y天,则下面所列方程组正确的是()7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35° B.55°C.65°D.75°8.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为()A.6πB.18 C.18πD.20二、填空题:9.已知函数y=,则自变量x的取值范围是.10.不等式x﹣2≥1的解集是.11.如图,要使ΔABC∽ΔACD,需补充的条件是.(只要写出一种)12.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2-b2+5的最小值为__________.三、解答题:13.解方程:﹣=16.14.体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?15. “低碳环保,你我同行”.近几年,各大城市的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A.D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)16.如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE 上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB:OA=1:2 时,求弧FM,AM,AF围成的阴影部分面积.17.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A.B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点?参考答案1.D2.A;3.C4.A5.C;6.B.7.B8.B.9.答案为:x≥﹣0.5且x≠2.10.答案为:x≥3;11.答案为:∠ACD=∠B;12.答案为:1;13.答案为:x=﹣14.14.设要邀请x支球队参加比赛,由题意得0.5x(x﹣1)=28,解得:x=8,x2=﹣7(舍去).1答:应邀请8支球队参加比赛.15.16.17.略;2019届中考数学考前15天冲刺练习第2天一、选择题:1.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108 B.3×107C.3×106 D.0.3×1082.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是,则正面画有正三角形的卡片张数为()A.3 B.5 C.10 D.153.在100个数据中,用适当的方法,抽取50个作为样本进行统计,频数分布表中55~58这一组数据的频率是0.12,那么估计这100个数据中,落在55~58之间的约有()A.120个B.60个C.12个D.6个4.下列关于单项式-的说法中,正确的是( )A.系数是-,次数是2 B.系数是,次数是2 C.系数是-3,次数是3 D.系数是-,次数是35.如图,直线y=0.75x+3与x轴、y轴分别交于A.B两点,把△AOB绕点A逆时针旋转90°后得到△ACD,则点D的坐标是()A.(4,3)B.(﹣3,4)C.(﹣7,4)D.(﹣7,3)6.某商店出售某种商品每件可获利m元,利润率为20%,若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,则提价后的利润率为()A.25% B.20% C.16% D.12.5%7.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC 于点F,则DF:FC=()A.1:4 B.1:3 C.1:2 D.1:18.如图,已知点A(-8,0)、B(2,0),点C在直线y=-0.75x+4上,则使△ABC是直角三角形的点C的个数为( )A. 1 B. 2 C. 3 D. 4二、填空题:9.函数y=的自变量的取值范围是10.不等式x﹣2≥1的解集是.11.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C 的照射下,小明的影长BE= m.12.若二次函数y=x2﹣2016x+2017与x轴的两个交点为(m,0)(n,0)则(m2﹣2017m+2016)(n2﹣2017n+2016)的值为.三、解答题:13.解方程:4-4(x-3)=2(9-x)14.白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?15.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)16.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O 的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC= °时,四边形ODEB是正方形.②当∠BAC= °时,AD=3DE.17.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C 点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是⊙P的切线;(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案1.B2.D.3.D.4.C5.C6.C7.C8.C.9.答案为:x≥﹣3且x≠﹣1.10.答案为:x≥311.答案为:2.12.答案为:2;13.x=-1.14.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8 解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.15.解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.30.答:河宽为68.30米.16.17.解:2019届中考数学考前15天冲刺练习第3天一、选择题:1.a是任意有理数,下面式子中:①>0;②;③;④,一定成立的个数是()A.1个B.2个C.3个D.4个2.如图所示的几何体的俯视图是()A. B. C. D.3.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A.3个B.不3个C.4个D.5个或5个以上4.下列运算正确的是()A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 5.已知一次函数y=kx﹣3与反比例函数y=﹣kx-1,那么它们在同一坐标系中的图象可能是()6.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2 C. += D.﹣=7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35°B.55°C.65°D.75°8.已知正多边形的边心距与边长的比为一半,则此正多边形为( )A.正三角形B.正方形C.正六边形D.正十二边形二、填空题:9.函数的自变量x的取值范围是.10.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.11.如果x:y:z=1:3:5,那么=__________12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点A.B的横坐标分别为﹣1,3,与y轴负半轴交点C.在下面五个结论中:①bc>0;②a+b+c<0;③c=﹣3a;④当﹣1<x<3时,y>0;⑤如果△ABC为直角三角形,那么仅a=一种情况.其中正确的结论是.(只填序号)三、解答题:13.用加减法解下列方程组:14.甲、乙两站相距275千米,一辆慢车以每小时50千米的速度从甲站出发开往乙站.1小时后,一辆快车以每小时75千米的速度从乙站开往甲站.那么快车开出后几小时与慢车相遇?15.如图,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A.B两处的距离为2米,两棵树之间的距离CE=3米,A.B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)16.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.17.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.参考答案1.B2.D3.D4.C.5.D6.B7.B.8.D9.答案为:且.10.答案为:13≤a<1511.答案为:-5/312.答案为①②③⑤13.答案为:14.答案:1.8.详解:设快车开出后x小时与慢车相遇,由题意得:50(1+x)+75x=275,解得x=1.8,因此,快车开出后1.8小时与慢车相遇.15.16.(2)∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等),又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,,即,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF==.17.2019届中考数学考前15天冲刺练习第4天一、选择题:1.2016年4月14日日本熊本县发生6.2级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为()A.2.36×108B.2.36×109C.2.36×1010D.2.36×10112.下列图形是中心对称图形的是3.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是()A.14B.310C.12D.344.如果多项式x2-7ab+b2+kab-1不含ab项,则k的值为( )A.0 B.7 C.1 D.不能确定5.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().A.2 B.1.5 C.2.5 D.-66.利华机械厂四月份生产零件50万个,若五.六月份平均每月的增长率是20%,•则第二季度共生产零件( )A.100万个B.160万个C.180万个D.182万个7.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A.20°B.25°C.30°D.35°8.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A .10cmB .15cmC .103cmD .202cm二、填空题:9.若式子1 x 有意义,则实数x 的取值范围是 . 10.若关于x 的不等式组无解,则a 的取值范围是11.若,则= .12.一名男生投实心球,已知球行进的高度y (m )与水平距离x (m )之间的关系为y=﹣254(x ﹣2)2+2581,那么该男生此次投实心球的成绩是 .三、解答题: 13.解方程组:14.一家4口,父亲、母亲、儿子、女儿.他们的年龄和是71岁,父亲比母亲大3岁,女儿比儿子大2岁.4年前,全家的年龄之和为56岁.现在每个人的年龄分别是多少岁?15.如图,有一段斜坡BC 长为30米,坡角∠CBD=30°,为方便车辆通行,现准备把坡角降为∠CAD=15°.(1)求坡高CD ;(2)求tan75°的值(结果保留根号)16.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O 又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.17.如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A.D,且AB=BD.(1)求点A的坐标:(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值______(直接写结果).参考答案1.C.2.C.3.C.4.B.5.B.6.D.7.D8.D.9.答案为:x≥1.10.答案为:a≥1;11.答案为:0.2.12.答案为:6分;13.答案为:x=-1,y=-2.14.答案:3,5,30,33.详解:现在全家年龄之和比四年前应该多16岁,但71-56=15(岁),说明四年前弟弟没出生,所以假设弟弟今年3岁,姐姐就是3+2=5岁.设母亲的年龄为x岁,则父亲年龄为(x+3)岁.由题意得:x+(x+3)+5+3=71,2x+11=71,2x=60,x=30,所以父亲今年年龄是30+3=33(岁),四年前弟弟还没出生,三人的年龄和为33+30+512=56(岁),验证结果正确.因此,父亲现在的年龄是33岁,母亲现在的年龄是30岁,姐姐现在的年龄是5岁,弟弟现在的年龄是3岁.15.解:(1)∵∠CDB=90°,∠CBD=30°,BC=30米,∴CD=15米,即坡高CD为15米;(2))∵∠CDB=90°,∠CBD=30°,∠CAD=15°,∴∠BCD=60°,∠BCA=15°,∴∠ACD=75°,AB=BC,∵BC=30米,∴AB=30米,BD=BC•sin60°=30×=15米,CD=15米,∴tan∠ACD=,即tan75°=2+.16.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.17.(1)如图,连接AC、BC,设直线AB交y轴于点E,∵AB∥x轴,CD∥x轴,C、B为抛物线C1、C2的顶点,∴AC=BC,BC=BD,∵AB=BD,∴AC=BC=AB,∴△ABC是等边三角形,∴∠ACE=30°,设AE=m,则CE=AE=m,∵y1=x2+1,∴点C的坐标为(0,1),∴点A的坐标为(﹣m,1+m),∵点A在抛物线C1上,∴(﹣m)2+1=1+m,整理得m2﹣m=0,解得m1=,m2=0(舍去),∴点A的坐标为(﹣,4);(2)如图2,连接AC、BC,过点C作CE⊥AB于点E,设抛物线y1=2x2+b1x+c1=2(x﹣h1)2+k1,∴点C的坐标为(h1,k1),设AE=m,∴CE=m,∴点A的坐标为(h1﹣m,k1+m),∵点A在抛物线y1=2(x﹣h1)2+k1上,∴2(h1﹣m﹣h1)2+k1=k1+m,整理得,2m2=m,解得m1=,m2=0(舍去),由(1)同理可得,CD=BD=BC=AB,∵AB=2AE=,∴CD=,即CD的长为,根据题意得,CE=BC=×=,∴点B的坐标为(h1+,k1+),又∵点B是抛物线C2的顶点,∴y2=a2(x﹣h1﹣)2+k1+,∵抛物线C2过点C(h1,k1),∴a2(h1﹣h1﹣)2+k1+=k1,整理得a2=﹣,解得a2=﹣2,即a2的值为﹣2;(3)根据(2)的结论,a2=﹣a1,CD=﹣﹣(﹣)=+=,根据(1)(2)的求解,CD=2×,∴b1+b2=2.2019届中考数学考前15天冲刺练习第5天一、选择题:1.下列各组中运算结果相等的是( )A.23与32 B.(﹣2)4与﹣24 C.(﹣2)3与﹣23 D.与2.观察下列图形,是中心对称图形的是()A.B.C.D.3.为了解某小区中学生在暑期期间的学习情况,王老师随机调查了7位学生一天的学习时间,结果如下(单位:小时):3.5,3.5,5,6,4,7,6.5.这组数据的中位数是()A.6 B.6.5 C.4 D.54.要使多项式(x2+px+2)(x-q)不含x的二次项,则p与q的关系是( )A.相等B.互为相反数C.互为倒数D.乘积为-15.如图,是在同一坐标系内作出的一次函数l、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,1则方程组的解是()A. B. C.D.6.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A.800(1+a%)2=578 B.800(1-a%)2=578 C.800(1-2a%)=578 D.800(1-a2%)=5787.如图,矩形ABCD的顶点A.C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°8.如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是( )A.6 B.8 C.9.6 D.10二、填空题:9.函数的自变量的取值范围是.10.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是.11.在比例尺1∶10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为 km。
中考天天练中考数学选择题专项训练题库共近600道题目含参考答案
例3.方程的解是()
A. 3B. 2C. 1D.
解:把四个选择支的数值代入方程中,很快就可知道答案为C。
点拨:检验法就是将选择支分别代入题设中或将题设代入选择支中检验,从而确定答案。解答本题时若直接解方程,要浪费很多时间和精力。当结论为具体值时可考虑使用检验法。
四.排除法
例4.在同一坐标平面内,函数与的图象只可能是()
A.50,20B.50,30C.50,50D.135,50
5.若一个多边形的内角和等于 ,则这个多边形的边数是()
A.5B.6C.7D.8
6.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是()
数学选择专项训练4
1.如图,数轴上A点表示的数减去B点表示的数,
结果是( ).
A.8B.-8C.2D.-2
2. 下列运算正确的是( ).
A. B. C. D.
3.化简 的结果是( ).
A. B. C. D.
4.下面的图形中,既是轴对称图形又是中心对称图形的是( ).
A.B.C.D.
5.下列说法中,不正确的是( ).
5.下表是我国部分城市气象台对五月某一天最高温度的预报,当天预报最高温度数据的中位
数是()
城市
北京
上海
杭州
苏州
武汉
重庆
广州
汕头
珠海
深圳
最高温度
(℃)
26
25
29
29
31
32
28
27
28
最新初中数学中考基础训练天天练(共20套含答案)15
初中数学中考基础训练(15)Lex Li时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=--B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.B.C.D.ABDC321第4题图A.112k -<<-B.102k <<C.01k << D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形D.没有对称性7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >>B.c b a >>C.b c a >>D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x =B.()211851580x -= C.()211851580x -=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作(A.1条 B.2条 C.3条10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),( )A.1小时 B.0.9小时 C.0.5小时D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( )第9题图第10题图A.76 B.68 C.52 D.3812.小王利用计算机设计了一个计算程序,输入和输出的数据如下表:A.861B.865C.867D.869二、细心填一填13.化简21111m m m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲).那么通过计算阴影部分的面积可以验证公式______________.15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.a b甲乙第14题图17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=. 答案: 一、选择题13.1m + 14.()()22a b a b a b -=+- 15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=.第17题图移项,得21122x x -=.配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-。
初三数学每日一练
初三数学小测验
2024年 月 日 星期 姓名: 成绩:
18-2
一、单选题
1.顺次连结任意四边形各边中点所得的四边形必定是( )
A .任意四边形
B .平行四边形
C .菱形
D .矩形
二、填空题
2.如图所示,四边形PONM 是平行四边形.则x = .
2题图 3题图 4题图
三、解答题
3.如图,在正方形网格由,每个小正方形的边长部是1,点A ,B ,C 都在格点上,点D ,E 分别是线段AC ,BC 的中点.
(1)图中的△ABC 是不是直角三角形?答:______;(填“是”或“不是”)
(2)计算线段DE 的长.
4.如图,在5×5的网格中,△ABC 的三个顶点都在格点上.
(1)在图1中画出一个以AB 为边的▱ABDE ,使顶点D ,E 在格点上.
(2)在图2中画出一条恰好平分△ABC 周长的直线l (至少经过两个格点).
5.如图,已知BD 是△ABC 的角平分线,点E 、F 分别在边AB 、BC 上,ED∥BC,EF∥AC.求证:BE=CF .。
中考数学考前15天冲刺练习试卷含答案(已纠错)
2020届中考数学考前15天冲刺练习第1天一、选择题:1.目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为( )A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×10102.下列图形中,既是轴对称图形,又是中心对称图形的是()3.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=134.下列说法正确的是( )A.32ab3的次数是6次 B.πx的系数为1,次数为2C.-3x2y+4x-1 的常数项是-1 D.多项式2x2+xy+3是四次三项式5.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<1.5 B.x<3 C.x>1.5D.x>36.食堂的存煤计划用若干天,若每天用130kg,则缺少60kg;若每天用120kg,则还剩余60kg.设食堂的存煤共有xkg,计划用y天,则下面所列方程组正确的是()7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35° B.55°C.65°D.75°8.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为()A.6πB.18 C.18πD.20二、填空题:9.已知函数y=,则自变量x的取值范围是.10.不等式x﹣2≥1的解集是.11.如图,要使ΔABC∽ΔACD,需补充的条件是.(只要写出一种)12.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2-b2+5的最小值为__________.三、解答题:13.解方程:﹣=16.14.体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?15. “低碳环保,你我同行”.近几年,各大城市的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A.D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)16.如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE 上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB:OA=1:2 时,求弧FM,AM,AF围成的阴影部分面积.17.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A.B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点?参考答案1.D2.A;3.C4.A5.C;6.B.7.B8.B.9.答案为:x≥﹣0.5且x≠2.10.答案为:x≥3;11.答案为:∠ACD=∠B;12.答案为:1;13.答案为:x=﹣14.14.设要邀请x支球队参加比赛,由题意得0.5x(x﹣1)=28,解得:x=8,x2=﹣7(舍去).1答:应邀请8支球队参加比赛.15.16.17.略;2020届中考数学考前15天冲刺练习第2天一、选择题:1.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108 B.3×107C.3×106 D.0.3×1082.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是,则正面画有正三角形的卡片张数为()A.3 B.5 C.10 D.153.在100个数据中,用适当的方法,抽取50个作为样本进行统计,频数分布表中55~58这一组数据的频率是0.12,那么估计这100个数据中,落在55~58之间的约有()A.120个B.60个C.12个D.6个4.下列关于单项式-的说法中,正确的是( )A.系数是-,次数是2 B.系数是,次数是2 C.系数是-3,次数是3 D.系数是-,次数是35.如图,直线y=0.75x+3与x轴、y轴分别交于A.B两点,把△AOB绕点A逆时针旋转90°后得到△ACD,则点D的坐标是()A.(4,3)B.(﹣3,4)C.(﹣7,4)D.(﹣7,3)6.某商店出售某种商品每件可获利m元,利润率为20%,若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,则提价后的利润率为()A.25% B.20% C.16% D.12.5%7.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC 于点F,则DF:FC=()A.1:4 B.1:3 C.1:2 D.1:18.如图,已知点A(-8,0)、B(2,0),点C在直线y=-0.75x+4上,则使△ABC是直角三角形的点C的个数为( )A. 1 B. 2 C. 3 D. 4二、填空题:9.函数y=的自变量的取值范围是10.不等式x﹣2≥1的解集是.11.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C 的照射下,小明的影长BE= m.12.若二次函数y=x2﹣2016x+2017与x轴的两个交点为(m,0)(n,0)则(m2﹣2017m+2016)(n2﹣2017n+2016)的值为.三、解答题:13.解方程:4-4(x-3)=2(9-x)14.白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?15.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)16.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O 的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC= °时,四边形ODEB是正方形.②当∠BAC= °时,AD=3DE.17.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C 点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是⊙P的切线;(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案1.B2.D.3.D.4.C5.C6.C7.C8.C.9.答案为:x≥﹣3且x≠﹣1.10.答案为:x≥311.答案为:2.12.答案为:2;13.x=-1.14.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8 解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.15.解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.30.答:河宽为68.30米.16.17.解:2020届中考数学考前15天冲刺练习第3天一、选择题:1.a是任意有理数,下面式子中:①>0;②;③;④,一定成立的个数是()A.1个B.2个C.3个D.4个2.如图所示的几何体的俯视图是()A. B. C. D.3.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A.3个B.不3个C.4个D.5个或5个以上4.下列运算正确的是()A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 5.已知一次函数y=kx﹣3与反比例函数y=﹣kx-1,那么它们在同一坐标系中的图象可能是()6.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2 C. += D.﹣=7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35°B.55°C.65°D.75°8.已知正多边形的边心距与边长的比为一半,则此正多边形为( )A.正三角形B.正方形C.正六边形D.正十二边形二、填空题:9.函数的自变量x的取值范围是.10.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.11.如果x:y:z=1:3:5,那么=__________12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点A.B的横坐标分别为﹣1,3,与y轴负半轴交点C.在下面五个结论中:①bc>0;②a+b+c<0;③c=﹣3a;④当﹣1<x<3时,y>0;⑤如果△ABC为直角三角形,那么仅a=一种情况.其中正确的结论是.(只填序号)三、解答题:13.用加减法解下列方程组:14.甲、乙两站相距275千米,一辆慢车以每小时50千米的速度从甲站出发开往乙站.1小时后,一辆快车以每小时75千米的速度从乙站开往甲站.那么快车开出后几小时与慢车相遇?15.如图,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A.B两处的距离为2米,两棵树之间的距离CE=3米,A.B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)16.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.17.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.参考答案1.B2.D3.D4.C.5.D6.B7.B.8.D9.答案为:且.10.答案为:13≤a<1511.答案为:-5/312.答案为①②③⑤13.答案为:14.答案:1.8.详解:设快车开出后x小时与慢车相遇,由题意得:50(1+x)+75x=275,解得x=1.8,因此,快车开出后1.8小时与慢车相遇.15.16.(2)∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等),又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,,即,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF==.17.2020届中考数学考前15天冲刺练习第4天一、选择题:1.2016年4月14日日本熊本县发生6.2级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为()A.2.36×108B.2.36×109C.2.36×1010D.2.36×10112.下列图形是中心对称图形的是3.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是()A.14B.310C.12D.344.如果多项式x2-7ab+b2+kab-1不含ab项,则k的值为( )A.0 B.7 C.1 D.不能确定5.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().A.2 B.1.5 C.2.5 D.-66.利华机械厂四月份生产零件50万个,若五.六月份平均每月的增长率是20%,•则第二季度共生产零件( )A.100万个B.160万个C.180万个D.182万个7.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A.20°B.25°C.30°D.35°8.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A .10cmB .15cmC .103cmD .202cm二、填空题:9.若式子1 x 有意义,则实数x 的取值范围是 . 10.若关于x 的不等式组无解,则a 的取值范围是11.若,则= .12.一名男生投实心球,已知球行进的高度y (m )与水平距离x (m )之间的关系为y=﹣254(x ﹣2)2+2581,那么该男生此次投实心球的成绩是 .三、解答题: 13.解方程组:14.一家4口,父亲、母亲、儿子、女儿.他们的年龄和是71岁,父亲比母亲大3岁,女儿比儿子大2岁.4年前,全家的年龄之和为56岁.现在每个人的年龄分别是多少岁?15.如图,有一段斜坡BC 长为30米,坡角∠CBD=30°,为方便车辆通行,现准备把坡角降为∠CAD=15°.(1)求坡高CD ;(2)求tan75°的值(结果保留根号)16.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O 又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.17.如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A.D,且AB=BD.(1)求点A的坐标:(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值______(直接写结果).参考答案1.C.2.C.3.C.4.B.5.B.6.D.7.D8.D.9.答案为:x≥1.10.答案为:a≥1;11.答案为:0.2.12.答案为:6分;13.答案为:x=-1,y=-2.14.答案:3,5,30,33.详解:现在全家年龄之和比四年前应该多16岁,但71-56=15(岁),说明四年前弟弟没出生,所以假设弟弟今年3岁,姐姐就是3+2=5岁.设母亲的年龄为x岁,则父亲年龄为(x+3)岁.由题意得:x+(x+3)+5+3=71,2x+11=71,2x=60,x=30,所以父亲今年年龄是30+3=33(岁),四年前弟弟还没出生,三人的年龄和为33+30+512=56(岁),验证结果正确.因此,父亲现在的年龄是33岁,母亲现在的年龄是30岁,姐姐现在的年龄是5岁,弟弟现在的年龄是3岁.15.解:(1)∵∠CDB=90°,∠CBD=30°,BC=30米,∴CD=15米,即坡高CD为15米;(2))∵∠CDB=90°,∠CBD=30°,∠CAD=15°,∴∠BCD=60°,∠BCA=15°,∴∠ACD=75°,AB=BC,∵BC=30米,∴AB=30米,BD=BC•sin60°=30×=15米,CD=15米,∴tan∠ACD=,即tan75°=2+.16.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.17.(1)如图,连接AC、BC,设直线AB交y轴于点E,∵AB∥x轴,CD∥x轴,C、B为抛物线C1、C2的顶点,∴AC=BC,BC=BD,∵AB=BD,∴AC=BC=AB,∴△ABC是等边三角形,∴∠ACE=30°,设AE=m,则CE=AE=m,∵y1=x2+1,∴点C的坐标为(0,1),∴点A的坐标为(﹣m,1+m),∵点A在抛物线C1上,∴(﹣m)2+1=1+m,整理得m2﹣m=0,解得m1=,m2=0(舍去),∴点A的坐标为(﹣,4);(2)如图2,连接AC、BC,过点C作CE⊥AB于点E,设抛物线y1=2x2+b1x+c1=2(x﹣h1)2+k1,∴点C的坐标为(h1,k1),设AE=m,∴CE=m,∴点A的坐标为(h1﹣m,k1+m),∵点A在抛物线y1=2(x﹣h1)2+k1上,∴2(h1﹣m﹣h1)2+k1=k1+m,整理得,2m2=m,解得m1=,m2=0(舍去),由(1)同理可得,CD=BD=BC=AB,∵AB=2AE=,∴CD=,即CD的长为,根据题意得,CE=BC=×=,∴点B的坐标为(h1+,k1+),又∵点B是抛物线C2的顶点,∴y2=a2(x﹣h1﹣)2+k1+,∵抛物线C2过点C(h1,k1),∴a2(h1﹣h1﹣)2+k1+=k1,整理得a2=﹣,解得a2=﹣2,即a2的值为﹣2;(3)根据(2)的结论,a2=﹣a1,CD=﹣﹣(﹣)=+=,根据(1)(2)的求解,CD=2×,∴b1+b2=2.2020届中考数学考前15天冲刺练习第5天一、选择题:1.下列各组中运算结果相等的是( )A.23与32 B.(﹣2)4与﹣24 C.(﹣2)3与﹣23 D.与2.观察下列图形,是中心对称图形的是()A.B.C.D.3.为了解某小区中学生在暑期期间的学习情况,王老师随机调查了7位学生一天的学习时间,结果如下(单位:小时):3.5,3.5,5,6,4,7,6.5.这组数据的中位数是()A.6 B.6.5 C.4 D.54.要使多项式(x2+px+2)(x-q)不含x的二次项,则p与q的关系是( )A.相等B.互为相反数C.互为倒数D.乘积为-15.如图,是在同一坐标系内作出的一次函数l、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,1则方程组的解是()A. B. C.D.6.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A.800(1+a%)2=578 B.800(1-a%)2=578 C.800(1-2a%)=578 D.800(1-a2%)=5787.如图,矩形ABCD的顶点A.C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°8.如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是( )A.6 B.8 C.9.6 D.10二、填空题:9.函数的自变量的取值范围是.10.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是.11.在比例尺1∶10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为 km。
最新数学中考考前15天冲刺练习试卷及答案(第3天)
2019届中考数学考前15天冲刺练习第3天一、选择题:1.a是任意有理数,下面式子中:①>0;②;③;④,一定成立的个数是()A.1个B.2个C.3个D.4个2.如图所示的几何体的俯视图是()A. B. C. D.3.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A.3个B.不3个C.4个D.5个或5个以上4.下列运算正确的是()A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b25.已知一次函数y=kx﹣3与反比例函数y=﹣kx-1,那么它们在同一坐标系中的图象可能是()6.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2 C. += D.﹣=7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35°B.55°C.65°D.75°8.已知正多边形的边心距与边长的比为一半,则此正多边形为( )A.正三角形B.正方形C.正六边形D.正十二边形二、填空题:9.函数的自变量x的取值范围是.10.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.11.如果x:y:z=1:3:5,那么=__________12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点A.B的横坐标分别为﹣1,3,与y轴负半轴交点C.在下面五个结论中:①bc>0;②a+b+c<0;③c=﹣3a;④当﹣1<x<3时,y>0;⑤如果△ABC为直角三角形,那么仅a=一种情况.其中正确的结论是.(只填序号)三、解答题:13.用加减法解下列方程组:14.甲、乙两站相距275千米,一辆慢车以每小时50千米的速度从甲站出发开往乙站.1小时后,一辆快车以每小时75千米的速度从乙站开往甲站.那么快车开出后几小时与慢车相遇?15.如图,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A.B两处的距离为2米,两棵树之间的距离CE=3米,A.B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)16.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.17.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.参考答案1.B2.D3.D4.C.5.D6.B7.B.8.D9.答案为:且.10.答案为:13≤a<1511.答案为:-5/312.答案为①②③⑤13.答案为:14.答案:1.8.详解:设快车开出后x小时与慢车相遇,由题意得:50(1+x)+75x=275,解得x=1.8,因此,快车开出后1.8小时与慢车相遇.15.16.(2)∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等),又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,,即,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF==.17.。
最新中考数学考前15天冲刺练习试卷含答案
2019届中考数学考前15天冲刺练习第1天一、选择题:1.目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为( )A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×10102.下列图形中,既是轴对称图形,又是中心对称图形的是()3.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中有一位同学的年龄登记错误,将14岁写成15岁.经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=134.下列说法正确的是( )A.32ab3的次数是6次 B.πx的系数为1,次数为2C.-3x2y+4x-1 的常数项是-1 D.多项式2x2+xy+3是四次三项式5.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<1.5 B.x<3 C.x>1.5D.x>36.食堂的存煤计划用若干天,若每天用130kg,则缺少60kg;若每天用120kg,则还剩余60kg.设食堂的存煤共有xkg,计划用y天,则下面所列方程组正确的是()7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35° B.55°C.65°D.75°8.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为()A.6πB.18 C.18πD.20二、填空题:9.已知函数y=,则自变量x的取值范围是.10.不等式x﹣2≥1的解集是.11.如图,要使ΔABC∽ΔACD,需补充的条件是.(只要写出一种)12.若一元二次方程ax2+bx+1=0有两个相同的实数根,则a2-b2+5的最小值为__________.三、解答题:13.解方程:﹣=16.14.体育局要组织一次篮球赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,应邀请多少支球队参加比赛?15. “低碳环保,你我同行”.近几年,各大城市的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A.D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)16.如图,在△ABC中,AB=AC,E是BC中点,点O在AB上,以OB为半径的⊙O经过点AE 上的一点M,分别交AB,BC于点F,G,连BM,此时∠FBM=∠CBM.(1)求证:AM是⊙O的切线;(2)当BC=6,OB:OA=1:2 时,求弧FM,AM,AF围成的阴影部分面积.17.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A.B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.(1)求抛物线的函数关系式;(2)判断△ABM的形状,并说明理由;(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点?参考答案1.D2.A;3.C4.A5.C;6.B.7.B8.B.9.答案为:x≥﹣0.5且x≠2.10.答案为:x≥3;11.答案为:∠ACD=∠B;12.答案为:1;13.答案为:x=﹣14.14.设要邀请x支球队参加比赛,由题意得0.5x(x﹣1)=28,解得:x=8,x2=﹣7(舍去).1答:应邀请8支球队参加比赛.15.16.17.略;2019届中考数学考前15天冲刺练习第2天一、选择题:1.人类的遗传物质是DNA,人类的DNA是很大的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为( )A.3×108 B.3×107C.3×106 D.0.3×1082.有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是,则正面画有正三角形的卡片张数为()A.3 B.5 C.10 D.153.在100个数据中,用适当的方法,抽取50个作为样本进行统计,频数分布表中55~58这一组数据的频率是0.12,那么估计这100个数据中,落在55~58之间的约有()A.120个B.60个C.12个D.6个4.下列关于单项式-的说法中,正确的是( )A.系数是-,次数是2 B.系数是,次数是2 C.系数是-3,次数是3 D.系数是-,次数是35.如图,直线y=0.75x+3与x轴、y轴分别交于A.B两点,把△AOB绕点A逆时针旋转90°后得到△ACD,则点D的坐标是()A.(4,3)B.(﹣3,4)C.(﹣7,4)D.(﹣7,3)6.某商店出售某种商品每件可获利m元,利润率为20%,若这种商品的进价提高25%,而商店将这种商品的售价提高到每件仍可获利m元,则提价后的利润率为()A.25% B.20% C.16% D.12.5%7.如图,在平行四边形ABCD中,AC与BD相交于点O,E是OD的中点,连接AE并延长交DC 于点F,则DF:FC=()A.1:4 B.1:3 C.1:2 D.1:18.如图,已知点A(-8,0)、B(2,0),点C在直线y=-0.75x+4上,则使△ABC是直角三角形的点C的个数为( )A. 1 B. 2 C. 3 D. 4二、填空题:9.函数y=的自变量的取值范围是10.不等式x﹣2≥1的解集是.11.如图,小明站在距离灯杆6m的点B处.若小明的身高AB=1.5m,灯杆CD=6m,则在灯C 的照射下,小明的影长BE= m.12.若二次函数y=x2﹣2016x+2017与x轴的两个交点为(m,0)(n,0)则(m2﹣2017m+2016)(n2﹣2017n+2016)的值为.三、解答题:13.解方程:4-4(x-3)=2(9-x)14.白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?15.如图所示,我市某中学课外活动小组的同学利用所学知识去测量釜溪河沙湾段的宽度.小宇同学在A处观测对岸C点,测得∠CAD=45°,小英同学在距A处50米远的B处测得∠CBD=30°,请你根据这些数据算出河宽.(精确到0.01米,参考数据≈1.414,≈1.732)16.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O 的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC= °时,四边形ODEB是正方形.②当∠BAC= °时,AD=3DE.17.如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C 点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是⊙P的切线;(3)若将△ADE绕点D逆时针旋转90°,E点的对应点E′会落在抛物线y=ax2+bx+c上吗?请说明理由;(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.参考答案1.B2.D.3.D.4.C5.C6.C7.C8.C.9.答案为:x≥﹣3且x≠﹣1.10.答案为:x≥311.答案为:2.12.答案为:2;13.x=-1.14.解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8 解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.15.解:过C作CE⊥AB于E,设CE=x米,在Rt△AEC中:∠CAE=45°,AE=CE=x在Rt△BCE中:∠CBE=30°,BE=CE=x,∴x=x+50解之得:x=25+25≈68.30.答:河宽为68.30米.16.17.解:2019届中考数学考前15天冲刺练习第3天一、选择题:1.a是任意有理数,下面式子中:①>0;②;③;④,一定成立的个数是()A.1个B.2个C.3个D.4个2.如图所示的几何体的俯视图是()A. B. C. D.3.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( )A.3个B.不3个C.4个D.5个或5个以上4.下列运算正确的是()A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 5.已知一次函数y=kx﹣3与反比例函数y=﹣kx-1,那么它们在同一坐标系中的图象可能是()6.甲乙两地相距420千米,新修的高速公路开通后,在甲、乙两地行驶的长途客运车平均速度是原来的1.5倍,进而从甲地到乙地的时间缩短了2小时.设原来的平均速度为x千米/时,可列方程为()A. +=2 B.﹣=2 C. += D.﹣=7.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35°B.55°C.65°D.75°8.已知正多边形的边心距与边长的比为一半,则此正多边形为( )A.正三角形B.正方形C.正六边形D.正十二边形二、填空题:9.函数的自变量x的取值范围是.10.若x=5是关于x的不等式2x+5>a的一个解,但x=4不是它的解,则a的取值范围是.11.如果x:y:z=1:3:5,那么=__________12.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点A.B的横坐标分别为﹣1,3,与y轴负半轴交点C.在下面五个结论中:①bc>0;②a+b+c<0;③c=﹣3a;④当﹣1<x<3时,y>0;⑤如果△ABC为直角三角形,那么仅a=一种情况.其中正确的结论是.(只填序号)三、解答题:13.用加减法解下列方程组:14.甲、乙两站相距275千米,一辆慢车以每小时50千米的速度从甲站出发开往乙站.1小时后,一辆快车以每小时75千米的速度从乙站开往甲站.那么快车开出后几小时与慢车相遇?15.如图,小明家小区空地上有两颗笔直的树CD、EF.一天,他在A处测得树顶D的仰角∠DAC=30°,在B处测得树顶F的仰角∠FBE=45°,线段BF恰好经过树顶D.已知A.B两处的距离为2米,两棵树之间的距离CE=3米,A.B、C、E四点在一条直线上,求树EF的高度.(≈1.7,≈1.4,结果保留一位小数)16.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为5,CF=2EF,求PD的长.17.如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.参考答案1.B2.D3.D4.C.5.D6.B7.B.8.D9.答案为:且.10.答案为:13≤a<1511.答案为:-5/312.答案为①②③⑤13.答案为:14.答案:1.8.详解:设快车开出后x小时与慢车相遇,由题意得:50(1+x)+75x=275,解得x=1.8,因此,快车开出后1.8小时与慢车相遇.15.16.(2)∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等),又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)设EF=x,则CF=2x,∵⊙O的半径为5,∴OF=2x﹣5,在RT△OEF中,,即,解得x=4,∴EF=4,∴BE=2EF=8,CF=2EF=8,∴DF=CD﹣CF=10﹣8=2,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=10,BE=8,∴AE=6,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴,即,∴PF=,∴PD=PF﹣DF==.17.2019届中考数学考前15天冲刺练习第4天一、选择题:1.2016年4月14日日本熊本县发生6.2级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为()A.2.36×108B.2.36×109C.2.36×1010D.2.36×10112.下列图形是中心对称图形的是3.定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两数,能与2组成“V数”的概率是()A.14B.310C.12D.344.如果多项式x2-7ab+b2+kab-1不含ab项,则k的值为( )A.0 B.7 C.1 D.不能确定5.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().A.2 B.1.5 C.2.5 D.-66.利华机械厂四月份生产零件50万个,若五.六月份平均每月的增长率是20%,•则第二季度共生产零件( )A.100万个B.160万个C.180万个D.182万个7.如图,平行四边形ABCD中,DB=DC,∠C=70°,AE⊥BD于E,则∠DAE等于()A.20°B.25°C.30°D.35°8.如图,从一张腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的高为()A .10cmB .15cmC .103cmD .202cm二、填空题:9.若式子1 x 有意义,则实数x 的取值范围是 . 10.若关于x 的不等式组无解,则a 的取值范围是11.若,则= .12.一名男生投实心球,已知球行进的高度y (m )与水平距离x (m )之间的关系为y=﹣254(x ﹣2)2+2581,那么该男生此次投实心球的成绩是 .三、解答题: 13.解方程组:14.一家4口,父亲、母亲、儿子、女儿.他们的年龄和是71岁,父亲比母亲大3岁,女儿比儿子大2岁.4年前,全家的年龄之和为56岁.现在每个人的年龄分别是多少岁?15.如图,有一段斜坡BC 长为30米,坡角∠CBD=30°,为方便车辆通行,现准备把坡角降为∠CAD=15°.(1)求坡高CD ;(2)求tan75°的值(结果保留根号)16.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O 又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.17.如图1,点C、B分别为抛物线C1:y1=x2+1,抛物线C2:y2=a2x2+b2x+c2的顶点.分别过点B、C作x轴的平行线,交抛物线C1、C2于点A.D,且AB=BD.(1)求点A的坐标:(2)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=2x2+b1x+c1”.其他条件不变,求CD的长和a2的值;(3)如图2,若将抛物线C1:“y1=x2+1”改为抛物线“y1=4x2+b1x+c1”,其他条件不变,求b1+b2的值______(直接写结果).参考答案1.C.2.C.3.C.4.B.5.B.6.D.7.D8.D.9.答案为:x≥1.10.答案为:a≥1;11.答案为:0.2.12.答案为:6分;13.答案为:x=-1,y=-2.14.答案:3,5,30,33.详解:现在全家年龄之和比四年前应该多16岁,但71-56=15(岁),说明四年前弟弟没出生,所以假设弟弟今年3岁,姐姐就是3+2=5岁.设母亲的年龄为x岁,则父亲年龄为(x+3)岁.由题意得:x+(x+3)+5+3=71,2x+11=71,2x=60,x=30,所以父亲今年年龄是30+3=33(岁),四年前弟弟还没出生,三人的年龄和为33+30+512=56(岁),验证结果正确.因此,父亲现在的年龄是33岁,母亲现在的年龄是30岁,姐姐现在的年龄是5岁,弟弟现在的年龄是3岁.15.解:(1)∵∠CDB=90°,∠CBD=30°,BC=30米,∴CD=15米,即坡高CD为15米;(2))∵∠CDB=90°,∠CBD=30°,∠CAD=15°,∴∠BCD=60°,∠BCA=15°,∴∠ACD=75°,AB=BC,∵BC=30米,∴AB=30米,BD=BC•sin60°=30×=15米,CD=15米,∴tan∠ACD=,即tan75°=2+.16.解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.17.(1)如图,连接AC、BC,设直线AB交y轴于点E,∵AB∥x轴,CD∥x轴,C、B为抛物线C1、C2的顶点,∴AC=BC,BC=BD,∵AB=BD,∴AC=BC=AB,∴△ABC是等边三角形,∴∠ACE=30°,设AE=m,则CE=AE=m,∵y1=x2+1,∴点C的坐标为(0,1),∴点A的坐标为(﹣m,1+m),∵点A在抛物线C1上,∴(﹣m)2+1=1+m,整理得m2﹣m=0,解得m1=,m2=0(舍去),∴点A的坐标为(﹣,4);(2)如图2,连接AC、BC,过点C作CE⊥AB于点E,设抛物线y1=2x2+b1x+c1=2(x﹣h1)2+k1,∴点C的坐标为(h1,k1),设AE=m,∴CE=m,∴点A的坐标为(h1﹣m,k1+m),∵点A在抛物线y1=2(x﹣h1)2+k1上,∴2(h1﹣m﹣h1)2+k1=k1+m,整理得,2m2=m,解得m1=,m2=0(舍去),由(1)同理可得,CD=BD=BC=AB,∵AB=2AE=,∴CD=,即CD的长为,根据题意得,CE=BC=×=,∴点B的坐标为(h1+,k1+),又∵点B是抛物线C2的顶点,∴y2=a2(x﹣h1﹣)2+k1+,∵抛物线C2过点C(h1,k1),∴a2(h1﹣h1﹣)2+k1+=k1,整理得a2=﹣,解得a2=﹣2,即a2的值为﹣2;(3)根据(2)的结论,a2=﹣a1,CD=﹣﹣(﹣)=+=,根据(1)(2)的求解,CD=2×,∴b1+b2=2.2019届中考数学考前15天冲刺练习第5天一、选择题:1.下列各组中运算结果相等的是( )A.23与32 B.(﹣2)4与﹣24 C.(﹣2)3与﹣23 D.与2.观察下列图形,是中心对称图形的是()A.B.C.D.3.为了解某小区中学生在暑期期间的学习情况,王老师随机调查了7位学生一天的学习时间,结果如下(单位:小时):3.5,3.5,5,6,4,7,6.5.这组数据的中位数是()A.6 B.6.5 C.4 D.54.要使多项式(x2+px+2)(x-q)不含x的二次项,则p与q的关系是( )A.相等B.互为相反数C.互为倒数D.乘积为-15.如图,是在同一坐标系内作出的一次函数l、l2的图象,设l1:y=k1x+b1,l2:y=k2x+b2,1则方程组的解是()A. B. C.D.6.某商品原价800元,连续两次降价a%后售价为578元,下列所列方程正确的是()A.800(1+a%)2=578 B.800(1-a%)2=578 C.800(1-2a%)=578 D.800(1-a2%)=5787.如图,矩形ABCD的顶点A.C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°8.如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是( )A.6 B.8 C.9.6 D.10二、填空题:9.函数的自变量的取值范围是.10.若不等式(2k+1)x<2k+1的解集是x>1,则k的范围是.11.在比例尺1∶10 000 000的地图上,量得甲、乙两个城市之间的距离是8 cm,那么甲、乙两个城市之间的实际距离应为 km。
(完整word版)陕西中考数学15题——22题专题训练(一)
陕西中考15题-—22题专题训练(一)15.计算+|2﹣3|﹣()﹣1﹣(2015+)0.16.(1))解方程:=﹣1.(2)化简:÷(x+2﹣)17.如图,已知在△ABC中,∠A=90°,请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).18.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53。
5;C:53。
5~60。
5;D:60.5~67.5;E:67。
5~74。
5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?19.如图,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.20.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0。
5米,EF=0.25米,目测点D到地面的距离DG=1。
5米,到旗杆的水平距离DC=20米,求旗杆的高度.21.暑假期间,小刚一家乘车去离家380公里的某景区旅游,他们离家的距离y(km)与汽车行驶时间x (h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5小时时离目的地多远?22.有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示),另有一个不透明的口袋装有分别标有数0、1、2的三个小球(除数字不同外,其余都相同).小亮转动一次转盘,停止后指针指向某一扇形,记下扇形所对应的数,小红任意摸出一个小球,记下小球上所对应的数,然后计算这两个数的乘积.(1)请你用画树状图或列表的方法,求这两个数的乘积为0的概率;(2)小亮与小红做游戏,规则是:若这两个数的积为奇数,小亮赢;否则,小红赢.你认为该游戏公平吗?为什么?陕西中考15题-—22题专题训练(二)15.计算:|﹣3|﹣×+(﹣2)2.16.(1)解方程:.(2)化简:(﹣).17.如图,已知△ABC,∠C=90°,AC<BC.求作一点D为BC上一点,且到A,B两点的距离相等.18.为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.19.在Rt△ABC中,∠BAC=90°,D是BC的中点,E 是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.20.如图,某测量人员的眼睛A与标杆顶端F、电视塔顶端E在同一条直线上,已知此人的眼睛到地面的距离AB=1。
【精选推荐】中考数学压轴题天天练(十五)试题及答案
【精选推荐】中考数学压轴题天天练(十五)试题及答案天天练(十五)(时间:20分钟 分值:45分)一、选择题(共5小题,每小题3分) 1.如果3a=5,3b=10,那么3a -b的值为( )A .12B .-5C .9D .192.自然界中的数学不胜枚举,如蜜蜂建造的蜂房既坚固又省料,其厚度为0.000 073米,将0.000 073 用科学记数法表示为( )A .73×10-6B .0.73×10-4C .7.3×10-4D .7.3×10-53.已知直线y =ax (a ≠0)与双曲线y =k x(k ≠0)的一个交点坐标为(-2,3),则它们的另一个交点坐标是( )A .(-2,-3)B .(-3,-2)C .(2,-3)D .(3,-2)4.如图1,四边形ABCD 为⊙O 的内接四边形,∠AOC =110°,则∠ADC =( )图1A .55°B .110°C .125°D .70°5.如图2,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则DE 的长为( )图2A .158B .103C .2512D .125二、填空题(共5小题,每小题4分) 6.若|a |=2,a -2=________.7.关于x 的一元二次方程(k -2)x 2-3x +2=0有实数根,则k 的取值范围为__________. 8.一个小球在如图3所示的方格地板上自由滚动,并随机停留在某块地板上,若每块地板大小、质地完全相同,那么该小球停留在黑色区域的概率是__________.图39.若二次函数y =x 2-2x +k 的部分图象如图4所示,则关于x 的一元二次方程x 2-2x +k =0的一个解为x 1=3,另一个解x 2=__________.图410.如图5,若菱形ABCD 的顶点A ,B 的坐标分别为(4,0),(-1,0),点D 在y 轴上,则点C 的坐标是__________.图5三、解答题(共1小题)11.(10分)如图6,AB =CD ,DE ⊥AC ,BF ⊥AC ,垂足分别为点E ,F ,已知AE =CF .图6(1)求证:△ABF ≌△CDE ; (2)求证:AB ∥CD . 参考答案1.A 2.D 3.C 4.C 5.B 6.0 7.k ≤258且k ≠2 8.389.-1 10.(-5,3)11.证明:(1)∵AE =CF ,∴AE +EF =CF +EF ,即AF =CE . 又BF ⊥AC ,DE ⊥AC ,∴∠AFB =∠CED =90°.在Rt △ABF 与Rt △CDE 中,⎩⎪⎨⎪⎧AB =CD ,AF =CE ,∴Rt △ABF ≌Rt △CDE (HL).(2)∵Rt △ABF ≌Rt △CDE ,∴∠A =∠C . ∴AB ∥CD .。
历年九年级数学中考基础训练十五及答案
中考基础训练(15)时间:30分钟 你实际使用 分钟班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=o∠∠∠ B.123360++=o∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=A. B. C. D.A B DC32 1 第4题图9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.410.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时D.1.5小时11.如图,I e 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF=o∠,则A ∠的度数为( ) A.76oB.68oC.52oD.当输入数据是时,输出的数是( )A.861 B.865C.867D.869二、细心填一填13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________.P第9题图第10题图第11题图14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42o 改为36o .已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.a b甲 乙 第14题图第17题图。
数学中考考前15天冲刺练习试卷及答案(第11天)
2019届中考数学考前15天冲刺练习第11天一、选择题:1.地球上的陆地面积约为149000000平方千米,这个数字用科学记数法表示应为( )A.0.149×106B.1.49×107C.1.49×108D.14.9×1072.下列图形中,既是轴对称图形又是中心对称图形的是()3.某校四个绿化小组一天植树的棵数如下:10,x,10,8.已知这组数据的众数与平均数相等,则这组数据的中位数是()A.8 B.9 C.10 D.124.下列运算正确的是()A.x2+x3=x5B.(x﹣2)2=x2﹣4 C.2x2•x3=2x5 D.(x3)4=x75.二次函数y=-x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,且x1<x2<1,则y1与y2的大小关系是( )A.y1≤y2B.y1<y2 C.y1≥y2D.y1>y26.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x株,则可以列出的方程是( )A.(3+x)(4﹣0.5x)=15 B.(x+3)(4+0.5x)=15 C.(x+4)(3﹣0.5x)=15D.(x+1)(4﹣0.5x)=157.如图,任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是 ( )A.80cm B.40cm C.20cm D.10cm8.如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是( )A.6 B.8 C.9.6 D.10二、填空题:9.将因式内移的结果为_______10.关于x对不等式(2a-b)x+a-5b>0的解集是x<1,则关于x的不等式2ax-b>0的解集是11.一个矩形的长为a,宽为b(a>b),如果把这个矩形截去一个正方形后所余下的矩形与原矩形相似,那么a:b= .12.如图,抛物线y=﹣x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个命题:①当x>0时,y>0;②若a=﹣1,则b=3;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为6.其中真命题的序号是.三、解答题:13.解方程组:14.有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?15.如图,已知长江路西段与黄河路的夹角为150°,长江路东段与淮河路的夹角为135°,黄河路全长AC=20km,从A地道B地必须先走黄河路经C点后再走淮河路才能到达,城市道路改造后,直接打通长江路(即修建AB路段).问:打通长江路后从A地道B地可少走多少路程?(参考数据:≈1.4,≈1.7)16.如图,已知Rt△ABC,∠C=900,O在BC上,以O为圆心,OC为半径作⊙O,交BC于D,与AB相切于点E,F点为半圆上一点,连接DE、CF、EF.(1)若∠B=320,求∠F的度数;(2)若AB=6,⊙O的半径为3,求BD的长度.17.如图,直线AB分别交y轴、x轴于A.B两点,OA=2,tan∠ABO=0.5,抛物线y=﹣x2+bx+c过A.B两点.(1)求直线AB和这个抛物线的解析式;(2)设抛物线的顶点为D,求△ABD的面积;(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t取何值时,MN的长度L 有最大值?最大值是多少?参考答案1.B2.C;3.C4.B5.A.6.B7.C8.C.9.略10.答案为:x<0.25;11.答案为:.12.答案为②③.13.答案为:x=1,y=-1;14. (1)设每轮传染中平均一个人传染了x个人,由题意,得1+x+x(1+x)=64.解得x1=7,x2=-9(不合题意,舍去).答:每轮传染中平均一个人传染了7个人.(2)7×64=448(人).答:又有448人被传染.15.解:如图所示:过点C作CD⊥AB于点D,在Rt△ACD中,∠CAD=30°,AC=20km,则CD=10km,AD=10km,在Rt△BCD中,∠CBD=45°,CD=10km,故BD=10km,BC=10km,则AC+BC﹣AB=20+10﹣10﹣10≈7(km),答:打通长江路后从A地道B地可少走7km的路程.16.解答:(1)∠F=56°;(2)BD=2.17.。