高三物理处理动力学问题的基本思路

合集下载

高考物理题型模拟动力学与能量

高考物理题型模拟动力学与能量

直线运动中动力学方法和能量观点的应用直线运动中多运动过程组合主要是指直线多过程或直线与斜面运动的组合问题(1)解题策略①动力学方法观点:牛顿运动定律、运动学基本规律.②能量观点:动能定理、机械能守恒定律、能量守恒定律.(2)解题关键①抓住物理情景中出现的运动状态和运动过程,将物理过程分解成几个简单的子过程.②两个相邻过程连接点的速度是联系两过程的纽带,也是解题的关键.例1在物资运转过程中常使用如图1所示的传送带.已知某传送带与水平面成θ=37°角,传送带的AB部分长L=5.8 m,传送带以恒定的速率v=4 m/s按图示方向传送,若在B端无初速度地放置一个质量m=50 kg的物资P(可视为质点),P与传送带之间的动摩擦因数μ=0.5(g取10 m/s2,sin 37°=0.6).求:图1(1)物资P从B端开始运动时的加速度大小;(2)物资P到达A端时的动能.答案(1)10 m/s2(2)900 J解析(1)P刚放在B端时,受到沿传送带向下的滑动摩擦力作用,根据牛顿第二定律有mg sin θ+F f =ma F N =mg cos θ F f =μF N联立解得加速度为a =g sin θ+μg cos θ=10 m/s 2(2)P 达到与传送带相同速度时的位移x =v 22a=0.8 m 以后物资P 受到沿传送带向上的滑动摩擦力作用,根据动能定理得 (mg sin θ-F f )(L -x )=12mv 2A -12mv 2 到达A 端时的动能 E k A =12mv 2A =900 J.传送带模型是高中物理中比较常见的模型,典型的有水平和倾斜两种情况.一般设问的角度有两个: 1动力学角度:首先要正确分析物体的运动过程,做好受力分析,然后利用运动学公式结合牛顿第二定律求物体及传送带在相应时间内的位移,找出物体和传送带之间的位移关系. 2能量角度:求传送带对物体所做的功、物体和传送带由于相对滑动而产生的热量、因放上物体而使电动机多消耗的电能等,常依据功能关系或能量守恒定律求解. 变式题组1.如图2甲所示,一质量为m =1 kg 的物块静止在粗糙水平面上的A 点,从t =0时刻开始,物块受到按如图乙所示规律变化的水平力F 作用并向右运动,第3 s 末物块运动到B 点时速度刚好为0,第5 s 末物块刚好回到A 点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2(g 取10 m/s 2),求:图2(1)A与B间的距离;(2)水平力F在5 s内对物块所做的功.答案(1)4 m (2)24 J解析(1)根据题目条件及图乙可知,物块在从B返回A的过程中,在恒力作用下做匀加速直线运动,即F-μmg=ma.由运动学公式知:x AB=12at2代入数值解得x AB=4 m(2)物块在前3 s内动能改变量为零,由动能定理得W1-W f=0,即W1-μmg·x AB=0则前3 s内水平力F做的功为W1=8 J根据功的定义式W=Fx得,水平力F在3~5 s时间内所做的功为W2=F·x AB=16 J则水平力F在5 s内对物块所做的功为W=W1+W2=24 J.2.(2015·宁波期末)航母舰载机滑跃起飞有点像高山滑雪,主要靠甲板前端的上翘来帮助战斗机起飞,其示意图如图3所示,设某航母起飞跑道主要由长度为L1=160 m的水平跑道和长度为L2=20 m的倾斜跑道两部分组成,水平跑道与倾斜跑道末端的高度差h=4.0 m.一架质量为m=2.0×104 kg的飞机,其喷气发动机的推力大小恒为F=1.2×105 N,方向与速度方向相同,在运动过程中飞机受到的平均阻力大小为飞机重力的0.1倍,假设航母处于静止状态,飞机质量视为不变并可看成质点,倾斜跑道看作斜面,不计拐角处的影响.取g=10m/s 2.图3(1)求飞机在水平跑道运动的时间; (2)求飞机到达倾斜跑道末端时的速度大小;(3)如果此航母去掉倾斜跑道,保持水平跑道长度不变,现在跑道上安装飞机弹射器,此弹射器弹射距离为84 m ,要使飞机在水平跑道的末端速度达到100 m/s ,则弹射器的平均作用力为多大?(已知弹射过程中发动机照常工作) 答案 (1)8 s (2)2430 m/s (3)106 N解析 (1)设飞机在水平跑道加速度为a 1,阻力为F f 由牛顿第二定律得F -F f =ma 1L 1=12a 1t 21解得t 1=8 s(2)设飞机在水平跑道末端速度为v 1,倾斜跑道末端速度为v 2,加速度为a 2 水平跑道上:v 1=a 1t 1倾斜跑道上: 由牛顿第二定律得F -F f -mg hL 2=ma 2v 22-v 21=2a 2L 2解得v 2=2430 m/s(3)设弹射器的弹力为F 1,弹射距离为x ,飞机在跑道末端速度为v 3由动能定理得F1x+FL1-F f L1=12 mv23解得F1=106 N.曲线运动中动力学方法和能量观点的应用例2(2016·浙江10月学考·20)如图4甲所示,游乐场的过山车可以底朝上在竖直圆轨道上运行,可抽象为图乙所示的模型.倾角为45°的直轨道AB、半径R=10 m的光滑竖直圆轨道和倾角为37°的直轨道EF.分别通过水平光滑衔接轨道BC、C′E平滑连接,另有水平减速直轨道FG与EF平滑连接,EG间的水平距离l=40 m.现有质量m=500 kg的过山车,从高h=40 m处的A点静止下滑,经BCDC′EF最终停在G点.过山车与轨道AB、EF间的动摩擦因数均为μ1=0.2,与减速直轨道FG间的动摩擦因数μ2=0.75.过山车可视为质点,运动中不脱离轨道,g取10 m/s2.求:图4(1)过山车运动至圆轨道最低点C时的速度大小;(2)过山车运动至圆轨道最高点D时对轨道的作用力;(3)减速直轨道FG的长度x.(已知sin 37°=0.6,cos 37°=0.8)答案见解析解析(1)设C点的速度为v C,由动能定理得mgh -μ1mg cos 45°hsin 45°=12mv 2C代入数据解得v C =810 m/s(2)设D 点速度为v D ,由动能定理得mg (h -2R )-μ1mg cos 45°h sin 45°=12mv 2DF +mg =m v 2DR解得F =7×103 N由牛顿第三定律知,过山车在D 点对轨道的作用力为7×103 N (3)全程应用动能定理mg [h -(l -x )tan 37°]-μ1mg cos 45°h sin 45°-μ1mg cos 37°l -xcos 37°-μ2mgx =0解得x =30 m.多过程问题的解题技巧1.“合”——初步了解全过程,构建大致的运动图景.2.“分”——将全过程进行分解,分析每个过程的规律.3.“合”——找到子过程的联系,寻找解题方法. 变式题组3.(2016·浙江4月选考·20)如图5所示,装置由一理想弹簧发射器及两个轨道组成.其中轨道Ⅰ由光滑轨道AB 与粗糙直轨道BC 平滑连接,高度差分别是h 1=0.20 m 、h 2=0.10 m ,BC 水平距离L =1.00 m.轨道Ⅱ由AE 、螺旋圆形EFG 和GB 三段光滑轨道平滑连接而成,且A 点与F 点等高.当弹簧压缩量为d 时,恰能使质量m =0.05 kg 的滑块沿轨道Ⅰ上升到B 点;当弹簧压缩量为2d 时,恰能使滑块沿轨道Ⅰ上升到C 点.(已知弹簧弹性势能与压缩量的平方成正比,g =10 m/s 2)图5(1)当弹簧压缩量为d 时,求弹簧的弹性势能及滑块离开弹簧瞬间的速度大小; (2)求滑块与轨道BC 间的动摩擦因数;(3)当弹簧压缩量为d 时,若沿轨道Ⅱ运动,滑块能否上升到B 点?请通过计算说明理由. 答案 (1)0.1 J 2 m/s (2)0.5 (3)不能,理由见解析 解析 (1)由机械能守恒定律可得E 弹=ΔE k =ΔE p =mgh 1=0.05×10×0.20 J =0.1 JΔE k =12mv 20可得v 0=2 m/s(2)由E 弹∝d 2可得ΔE k ′=E 弹′=4E 弹=4mgh 1 由动能定理可得-mg (h 1+h 2)-μmgL =-ΔE k ′ μ=3h 1-h 2L=0.5(3)恰能通过螺旋轨道最高点须满足的条件是mg =mv 2R m由机械能守恒定律有v =v 0=2 m/s得R m =0.4 m当R >R m =0.4 m 时,滑块会脱离螺旋轨道,不能上升到B 点.4.如图6所示,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m.取重力加速度大小g =10 m/s 2.图6(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 答案 (1)0.25 m (2)2103m/s 解析 (1)小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v b t ① h =12gt 2②小环在ab 段滑落过程中,根据动能定理可得mgR =12mv 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =12mv 2c ④因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设为θ,则根据平抛运动规律可知sin θ=v bv 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c⑥联立①②④⑤⑥可得v 水平=2103m/s.1.为了了解运动员在三米板跳水中的轨迹过程,特做了简化处理:把运动员看做质量为m =50.0 kg 的质点,竖直起跳位置离水面高h 1=3.0 m ,起跳后运动到最高点的时间t =0.3 s ,运动员下落垂直入水后水对运动员竖直向上的作用力的大小恒为F =1 075.0 N ,不考虑空气阻力,g =10 m/s 2,求:(1)运动员起跳时初速度v 0的大小; (2)运动员在水中运动的最大深度h 2. 答案 (1)3.0 m/s (2)3.0 m解析 (1)运动员上升到最高点时速度为零, 由运动学公式有 0=v 0-gt , 代入数据解得v 0=3.0 m/s(2)运动员从起跳到水中最深,由动能定理有mg (h 1+h 2)-Fh 2=0-mv 202,代入数据解得h 2=3.0 m.2.(2013·浙江6月学考·11)如图1所示,雪道与水平冰面在B 处平滑地连接.小明乘雪橇从雪道上离冰面高度h =8 m 的A 处自静止开始下滑,经B 处后沿水平冰面滑至C 处停止.已知小明与雪橇的总质量m =70 kg ,用速度传感器测得雪橇在B 处的速度值v B =12 m/s ,不计空气阻力和连接处能量损失,小明和雪撬可视为质点.求:(g 取10 m/s 2)图1(1)从A 到C 过程中,小明与雪撬所受重力做了多少功? (2)从A 到B 过程中,小明与雪撬损失了多少机械能?(3)若小明乘雪撬最后停在BC 的中点,则他应从雪道上距冰面多高处由静止开始下滑? 答案 (1)5.6×103 J (2)5.6×102 J (3)4 m解析 (1)从A 到C 过程中,小明与雪撬所受重力做的功W G =mgh代入数据得W G =5.6×103 J(2)从A 到B 过程中重力势能减少:ΔE p =mgh =5.6×103 J 动能增加:ΔE k =12mv 2B =5.04×103 J损失的机械能为:ΔE 机=ΔE p -ΔE k =5.6×102 J(3)设小明乘雪撬在雪道上所受阻力为F f ,在冰面上所受阻力为F f ′,B 、C 间距离为x ,由动能定理有mgh -F fhsin θ-F f ′x =0 mgh ′-F fh ′sin θ-F f ′x2=0解得:h ′=h2=4 m.3.滑沙游戏中,游戏者从沙坡顶部坐滑沙车呼啸滑下.为了安全,滑沙车上通常装有刹车手柄,游客可以通过操纵刹车手柄对滑沙车施加一个与车运动方向相反的制动力F ,从而控制车速.为便于研究,做如下简化:游客从顶端A 点由静止滑下8 s 后,操纵刹车手柄使滑沙车摩擦力变大匀速下滑至底端B 点,在水平滑道上继续滑行直至停止.已知游客和滑沙车的总质量m =70 kg ,倾斜滑道AB 长L AB =128 m ,倾角θ=37°,滑沙车底部与沙面间的动摩擦因数μ=0.5.重力加速度g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力.(1)求游客匀速下滑时的速度大小;(2)求游客匀速下滑的时间;(3)求游客从A 滑到B 的过程中由于摩擦产生的热量.答案 (1)16 m/s (2)4 s (3)44 800 J解析 (1)对游客和滑沙车整体受力分析,由牛顿第二定律有mg sin θ-μmg cos θ=ma 1解得a 1=g (sin θ-μcos θ)=10×(0.6-0.5×0.8) m/s 2=2 m/s 2则游客匀速下滑时的速度v =a 1t 1=2×8 m/s =16 m/s(2)游客加速下滑通过的位移x 1=12a 1t 21=12×2×82 m =64 m 则游客匀速下滑通过的位移x 2=L AB -x 1=128 m -64 m =64 m匀速下滑的时间t =x 2v =6416s =4 s. (3)对游客在斜坡上的运动过程,由动能定理有mgL AB sin θ-W f =12mv 2 解得Q =W f =mgL AB sin θ-12mv 2=44 800 J. 4.(2016·丽水模拟)如图2所示,水平地面与一半径为l 的竖直光滑圆弧轨道相接于B 点,轨道上的C 点处于圆心O 的正下方.在距地面高度为l 的水平平台边缘上的A 点有一质量为m 的小球以v 0=2gl 的速度水平飞出,小球在空中运动至B 点时,恰好沿圆弧轨道在该点的切线方向滑入轨道.小球运动过程中空气阻力不计,重力加速度为g .试求:图2(1)B 点与抛出点A 正下方的水平距离x ;(2)圆弧BC 段所对应的圆心角θ;(3)小球滑到C 点时,对圆弧轨道的压力.答案 (1)2l (2)45° (3)(7-2)mg ,方向竖直向下解析 (1)设小球做平抛运动到达B 点的时间为t ,由平抛运动规律得l =12gt 2,x =v 0t ,联立解得x =2l .(2)设小球做平抛运动到达B 点时的竖直分速度为v y ,速度偏向角为α,v y =2gl ,tan α=v yv 0,根据几何关系可知α=θ,联立解得θ=45°.(3)小球从A 到C 的过程中机械能守恒,设到达C 点时的速度大小为v C ,根据机械能守恒定律有mgl (1+1-cos θ)=12mv 2C -12mv 20 设在C 点处轨道对小球的支持力大小为F ,由牛顿第二定律得F -mg =m v 2C l解得F =(7-2)mg根据牛顿第三定律可知小球对轨道的压力大小为(7-2)mg ,方向竖直向下. 5.如图3所示,一内壁光滑的细管弯成半径为R =0.4 m 的半圆形轨道CD ,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆形轨道在C 点连接完好.置于水平轨道上的弹簧左端与竖直墙壁相连,B 处为弹簧的自然状态.将一个质量为m =0.8 kg 的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A 处,然后将小球由静止释放,小球运动到C 处后对轨道的压力为F 1=58 N.水平轨道以B 处为界,左侧AB 段长为x =0.3 m ,与小球的动摩擦因数为μ=0.5,右侧BC 段光滑.g =10 m/s 2,求:图3(1)弹簧在压缩时所储存的弹性势能;(2)小球运动到轨道最高处D 点时对轨道的压力大小.答案 (1)11.2 J (2)10 N解析 (1)小球运动到C 处时,由牛顿第二定律得:F 1-mg =m v 21R得v 1= F 1-mg Rm代入数据解得v 1=5 m/s根据动能定理E p -μmgx =12mv 21 代入解得E p =11.2 J(2)小球从C 到D 过程,由机械能守恒定律得12mv 21=2mgR +12mv 22 代入数据解得v 2=3 m/s由于v 2>gR =2 m/s所以小球在D 处对轨道外壁有压力,由牛顿第二定律得F 2+mg =m v 22R代入数据解得F 2=10 N根据牛顿第三定律得,小球对轨道的压力大小为10 N.6.(2016·金华十校9月高三模拟)在学校组织的趣味运动会上,某科技小组为大家提供了一个寓学于乐的游戏.如图4所示,将一质量为0.1 kg 的钢球放在O 点,用弹射装置将其弹出,使其沿着光滑的半圆形轨道OA 和AB 运动,BC 段为一段长为L =2.0 m 的粗糙平面,DEFG 为接球槽.圆弧OA 和AB 的半径分别为r =0.2 m ,R =0.4 m ,钢球与BC 段的动摩擦因数为μ=0.7,C 点离接球槽的高度为h =1.25 m ,水平距离为x =0.5 m ,接球槽足够大,g 取10 m/s 2.求:图4(1)要使钢球恰好不脱离圆弧轨道,钢球在A 点的速度v A 多大?在B 位置对半圆轨道的压力多大?(2)要使钢球最终能落入槽中,弹射速度v O 至少多大?答案 (1)2 m/s 6 N (2)21 m/s解析 (1)要使钢球恰好不脱离圆弧轨道:对最高点A :mg =mv 2A R ①由①式可得:v A =2 m/s ②钢球从A 到B 的过程:mg ·2R =12mv 2B -12mv 2A ③在B 点:F N -mg =mv 2B R ④联立①②③④可得:F N =6 N ⑤根据牛顿第三定律可得:钢球在B 位置对半圆轨道的压力为6 N.⑥(2)要使钢球能落入槽中,设C 点速度至少为v C从C 到D :平抛:水平方向:x =v C ·t ,竖直方向:h =12gt 2⑦ 由⑦可得:v C =1 m/s ⑧假设钢球在A 点的速度恰为v A =2 m/s 时,钢球可运动到C 点,且速度为v C ′从A 到C :mg ·2R -μmgL =12mv C ′2-12mv 2A 可得:v C ′2<0故:当钢球在A 点的速度恰为v A =2 m/s 时,钢球不可能达C 点,更不可能平抛入槽.⑨ 要使钢球最终能落入槽中,需要更大的弹射速度,才能使钢球即满足不脱离圆弧轨道,又能落入槽中.从O 到C :mg ·R -μmgL =12mv 2C -12mv 2O ○10 联立⑦⑧○10可得:v O =21 m/s ⑪。

力学三大基本观点尚洪汉

力学三大基本观点尚洪汉

• 变式1:如图所示,将质量均为m厚度不计的两物块A、 变式1 如图所示, 用轻质弹簧相连接, 高处, B用轻质弹簧相连接,只用手托着B物块于H高处,A在 弹簧弹力的作用下处于静止,将弹簧锁定. 弹簧弹力的作用下处于静止,将弹簧锁定.现由静止 物块着地时解除弹簧锁定, 释放A、B ,B物块着地时解除弹簧锁定,且B物块的速 度立即变为0 度立即变为0,在随后的过程中当弹簧恢复到原长时A 物块运动的速度为υ0,且B物块恰能离开地面但不继 续上升. 续上升.已知弹簧具有相同形变量时弹性势能也相 .(1 物块着地后, 向上运动过程中合外力为0 同.(1)B物块着地后,A向上运动过程中合外力为0 ;(2 时的速度υ1;(2)B物块着地到B物块恰能离开地面 但不继续上升的过程中, 物块运动的位移Δ 但不继续上升的过程中,A物块运动的位移Δx; (3)第二次用手拿着A、B两物块,使得 第二次用手拿着A 两物块, 弹簧竖直并处于原长状态,此时物块B 弹簧竖直并处于原长状态,此时物块B离 地面的距离也为H 地面的距离也为H,然后由静止同时释放 A、B,B物块着地后速度同样立即变为 求第二次释放A 刚要离地时A 0.求第二次释放A、B后,B刚要离地时A 的速度υ 的速度υ2.
• 随堂练习1:(2004年·广东)如图所示,轻弹簧的一端 随堂练习1 固定,另一端与滑块B相连,B静止在水平导轨上,弹 簧处在原长状态,另一质量与B相同的滑块A,从导轨 上的P点以某一初速度向B滑行,当A滑过距离L1时,与 B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但 互不粘连,已知最后A恰好返回出发点P并停止.滑块A 和B与导轨的滑动摩擦因数都为µ,运动过程中弹簧最大 形变量为L2,求A从P出发时的初速度v0.
二、力学综合题 的解题方法: 的解题方法: 找状态 明过程 选规律 列方程 求 解

高三物理复习教案模型组合讲解——绳件、弹簧、杆件模型(动力学问题)

高三物理复习教案模型组合讲解——绳件、弹簧、杆件模型(动力学问题)

模型组合讲解——绳件、弹簧、杆件模型(动力学问题)[模型概述]挂件问题是力学中极为常见的模型,其中绳件、弹簧件更是这一模型中的主要模具,相关试题在高考中一直连续不断。

它们间的共同之处是均不计重力,但是它们在许多方面有较大的差别。

[模型回顾][模型讲解]例1.如图1中a所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为,l2水平拉直,物体处于平衡状态。

现将l2线剪断,求剪断瞬时物体的加速度。

图1(1)下面是某同学对题的一种解法:解:设l1线上拉力为,l2线上拉力为,重力为mg,物体在三力作用下保持平衡,,剪断线的瞬间,突然消失,物体即在反方向获得加速度。

因为,所以加速度,方向沿反方向。

你认为这个结果正确吗?请对该解法作出评价并说明理由。

(2)若将图a中的细线l1改为长度相同、质量不计的轻弹簧,如图b所示,其他条件不变,求解的步骤和结果与(1)完全相同,即,你认为这个结果正确吗?请说明理由。

解析:因为l2被剪断的瞬间,l1上的张力发生突变,故物体获得的瞬间加速度由重力的分力提供,大小为,方向垂直l1斜向下,所以(1)错。

因为l2被剪断的瞬间,弹簧的长度不能发生突变而导致弹力不能突变,所以(2)对。

拓展:在(1)中若l1、l2皆为弹性绳,剪断l2的瞬间,小球的加速度为多少?(参考答案)若l1、l2皆为弹性绳,剪断l1的瞬间,小球的加速度为多少?(参考答案)在(2)中剪断l1的瞬间,小球的加速度为多少?(参考答案)例2. 如图2所示,斜面与水平面间的夹角,物体A和B的质量分别为、。

两者之间用质量可以不计的细绳相连。

求:(1)如A和B对斜面的动摩擦因数分别为,时,两物体的加速度各为多大?绳的张力为多少?(2)如果把A和B位置互换,两个物体的加速度及绳的张力各是多少?(3)如果斜面为光滑时,则两个物体的加速度及绳的张力又各是多少?图2解析:(1)设绳子的张力为,物体A和B沿斜面下滑的加速度分别为和,根据牛顿第二定律:对A有对B有设,即假设绳子没有张力,联立求解得,因,故说明物体B运动比物体A的运动快,绳松弛,所以的假设成立。

动力学和能量观点的综合应用-高考物理复习

动力学和能量观点的综合应用-高考物理复习

(2)物块从B点运动到E点的时间t;
答案
11 15 s
物块在斜轨道上的加速度大小 a1=gsin θ
-μgcos θ=6 m/s2,由 L1=vDt2+12a1t22 代入数据解得 t2=13 s 物块从B点运动到E点的时间 t=t1+t2=0.4 s+13 s=1115 s.
(3)EF轨道的长度L2以及物块最后停止的位置到F点的距离s. 答案 6 m 1.35 m
√D.A、B间的动摩擦因数为0.1
由题图乙可知,0~1 s 内,A、B 的加速度大小都为 a=1 m/s2,物体 B 和木板 A 水平方向均受滑动摩擦力.根据牛顿第二定律知二者质量 相等,则木板最终动能 EkA=12mv12=1 J,选项 A 错误; 系统损失的机械能 ΔE=12mv02-12·2m·v2=2 J,选项 B 错误;
(1)小滑块P经过圆弧轨道上B点的速度大小;
答案 2 2 m/s 设滑块 P 经过 B 点的速度大小为 vB,由平抛运动知识有 v0=vBsin 30°, 得 vB=2 2 m/s
(2)小滑块P到达圆弧轨道上的C点时对轨道压力的大小; 答案 50 N
滑块P从B点到达最低点C点的过程中,由机械能守恒定律得 mg(R+Rsin 30°)+12mvB2=12mvC2 解得 vC=4 2 m/s
方法点拨
1.分析思路 (1)受力与运动分析:根据物体的运动过程分析物体的受力情况, 以及不同运动过程中力的变化情况; (2)做功分析:根据各种力做功的不同特点,分析各种力在不同 运动过程中的做功情况; (3)功能关系分析:运用动能定理、机械能守恒定律或能量守恒 定律进行分析,选择合适的规律求解.
方法点拨
解得 μ= 23.
(2)电动机由于传送工件多消耗的电能. 答案 230 J

专题19动力学的两类基本问题及等时圆模型-2024届高三物理一轮复习重难点逐个突破(原卷版)

专题19动力学的两类基本问题及等时圆模型-2024届高三物理一轮复习重难点逐个突破(原卷版)

专题19 动力学的两类基本问题及等时圆模型考点一动力学的两类基本问题1.动力学的两类基本问题应把握的关键(1)两大分析——物体的受力分析和运动分析;(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁(3)由运动学公式和牛顿第二定律列方程求解2.解决动力学基本问题时对力的处理方法(1)在物体受两个力时一般采用“合成法”(2)若物体的受力个数较多(3个或3个以上),则采用“正交分解法”。

3.动力学的两类基本问题的分析方法(1)选定研究对象。

(2)对研究对象进行受力分析并画出受力示意图,根据平行四边形定则,应用合成法或正交分解法,表示出物体所受的合外力,列出牛顿第二定律方程。

(3)对研究对象进行运动分析并画出运动示意图,标出已知量和待求量,选择合适的运动学公式,列出运动学方程。

(4)联立牛顿第二定律方程和运动学方程求解。

1.如图所示,质量m=15 kg的木箱静止在水平地面上,木箱与地面间的动摩擦因数μ=0.2。

现用F=60 N的水平恒力向右拉动木箱(g取10 m/s2)。

求:(1)3 s时木箱的速度大小。

(2)木箱在2 s内的位移大小。

2.(2022·四川·遂宁安居育才卓同国际学校高三阶段练习)如图所示,一个放置在水平台面上的木块,其质量为2kg,受到一个斜向下的、与水平方向成37°角的推力F=10N的作用,使木块从静止开始运动,4s后撤去推力,若木块与水平面间的动摩擦因数为0.1,g取10m/s2,已知sin37°=0.6,cos37°=0.8。

求:(1)撤去推力F时木块的速度为多大?(2)木块在水平面上运动的总位移为多少?3.如图所示,楼梯口一倾斜的天花板与水平地面成θ=37°角。

一装潢工人手持木杆绑着刷子粉刷天花板,工人所持木杆对刷子的作用力始终保持竖直向上,大小为F=10 N,刷子的质量为m=0.5 kg,刷子可视为质点,刷子与天花板间的动摩擦因数μ=0.5,天花板长为L =4 m,sin 37°=0.6,cos 37°=0.8,g=10 m/s2。

高三一轮复习秘籍-第三章专题强化三 动力学两类基本问题和临界极值问题

高三一轮复习秘籍-第三章专题强化三 动力学两类基本问题和临界极值问题

第三章牛顿运动定律专题强化三动力学两类基本问题和临界极值问题专题解读1.本专题是动力学方法处理动力学两类基本问题、多过程问题和临界极值问题,高考在选择题和计算题中命题频率都很高.2.学好本专题可以培养同学们的分析推理能力,应用数学知识和方法解决物理问题的能力.3.本专题用到的规律和方法有:整体法和隔离法、牛顿运动定律和运动学公式、临界条件和相关的数学知识.过好双基关————回扣基础知识训练基础题目一、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路:先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下:受力情况二、动力学中的临界与极值问题1.临界或极值条件的标志(1)题目中“刚好”“恰好”“正好”等关键词句,明显表明题述的过程存在着临界点.(2)题目中“取值范围”“多长时间”“多大距离”等词句,表明题述过程存在着“起止点”,而这些“起止点”一般对应着临界状态.(3)题目中“最大”“最小”“至多”“至少”等词句,表明题述的过程存在着极值,这个极值点往往是临界点.2.常见临界问题的条件(1)接触与脱离的临界条件:两物体相接触或脱离,临界条件是弹力F N=0.(2)相对滑动的临界条件:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子断裂的临界条件是绳中张力等于它所能承受的最大张力;绳子松弛的临界条件是F T=0.(4)最终速度(收尾速度)的临界条件:物体所受合外力为零.研透命题点————细研考纲和真题分析突破命题点1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法(2)正交分解法◆类型1已知物体受力情况,分析物体运动情况【例1】(2021·河北卷)如图,一滑雪道由AB 和BC 两段滑道组成,其中AB 段倾角为θ,BC 段水平,AB 段和BC 段由一小段光滑圆弧连接,一个质量为2kg 的背包在滑道顶端A 处由静止滑下,若1s 后质量为48kg 的滑雪者从顶端以1.5m/s 的初速度、3m/s 2的加速度匀加速追赶,恰好在坡底光滑圆弧的水平处追上背包并立即将其拎起,背包与滑道的动摩擦因数为μ=112,重力加速度取g =10m/s 2,sin θ=725,cos θ=2425,忽略空气阻力及拎包过程中滑雪者与背包的重心变化,求:(1)滑道AB段的长度;(2)滑雪者拎起背包时这一瞬间的速度.答案(1)9m(2)7.44m/s解析(1)A→B过程对背包(m1):受力分析,由牛顿第二定律得m1g sinθ-μm1g cosθ=m1a1解得a1=2m/s2①由运动分析得:l=1a1t2②,v1=a1t③2对滑雪者(m2):由运动分析得l=v0(t-t0)+1a2(t-t0)2④2v2=v0+a2(t-t0),其中t0=1s⑤联立①②③④⑤得t=3s,v1=6m/s,v2=7.5m/s,l=9m(2)滑雪者拎起背包过程水平方向动量守恒,有m1v1+m2v2=(m1+m2)v解得v=7.44m/s滑雪者拎起背包时的速度为7.44m/s【变式1】(多选)如图甲所示,质量为m的小球(可视为质点)放在光滑水平面上,在竖直线MN的左侧受到水平恒力F1作用,在MN的右侧除受F1外还受到与F1在同一直线上的水平恒力F2作用,现小球从A点由静止开始运动,小球运动的v-t图像如图乙所示,下列说法中正确的是()A.小球在MN右侧运动的时间为t1-t2B.F2的大小为m v1t1+2mv1 t3-t1C.小球在MN右侧运动的加速度大小为2v1 t3-t1D.小球在0~t4时间内运动的最大位移为v1t2答案BC解析小球在MN右侧运动的时间为t3~t1,故A错误;小球在MN右侧的加速度大小a2=2v1t3-t1,在MN的左侧,由牛顿第二定律可知F1=ma1=mv1t1,在MN的右侧,由牛顿第二定律可知F2-F1=ma2得F2=2mv1t3-t1+mv1t1,故B、C正确;t2时刻后小球反向运动,所以小球在0~t4时间内运动的最大位移是v1t22,故D错误.◆类型2已知物体运动情况,分析物体受力情况【例2】如图甲所示,一质量m=0.4kg的小物块,以v0=2m/s的初速度,在与斜面平行的拉力F作用下,沿斜面向上做匀加速运动,经t=2s的时间物块由A点运动到B点,A、B之间的距离L=10m.已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g取10m/s2.求:(1)物块到达B点时速度和加速度的大小;(2)拉力F的大小;(3)若拉力F与斜面夹角为α,如图乙所示,试写出拉力F的表达式(用题目所给物理量的字母表示).答案(1)8m/s3m/s2(2)5.2N(3)F=mg sinθ+μcosθ+ma cosα+μsinα解析(1)物块做匀加速直线运动,根据运动学公式,有L=v0t+12at2,v=v0+at,联立解得a=3m/s2,v=8m/s(2)对物块受力分析可得,平行斜面方向F cosα-mg sinθ-F f=ma,垂直斜面方向F N=mg cosθ其中F f=μF N解得F=mg(sinθ+μcosθ)+ma=5.2N(3)拉力F与斜面夹角为α时,物块受力如图所示根据牛顿第二定律有F cosα-mg sinθ-F f=ma F N+F sinα-mg cosθ=0其中F f=μF NF=mg sinθ+μcosθ+macosα+μsinα.【变式2】如图所示,粗糙的地面上放着一个质量M=1.5kg的斜面体,斜面部分光滑,底面与地面的动摩擦因数μ=0.2,倾角θ=37°,在固定在斜面的挡板上用轻质弹簧连接一质量m=0.5kg的小球,弹簧劲度系数k=200 N/m,现给斜面施加一水平向右的恒力F,使整体向右以a=1m/s2的加速度匀加速运动(已知sin37°=0.6,cos37°=0.8,g取10m/s2).求:(1)F的大小;(2)弹簧的形变量及斜面对小球的支持力大小.答案(1)6N(2)0.017m 3.7N解析(1)对整体应用牛顿第二定律:F-μ(M+m)g=(M+m)a,解得F=6N.(2)设弹簧的形变量为x,斜面对小球的支持力为F N对小球受力分析:在水平方向:kx cosθ-F N sinθ=ma在竖直方向:kx sinθ+F N cosθ=mg解得x=0.017m,F N=3.7N.多过程问题分析步骤1.将“多过程”分解为许多“子过程”,各“子过程”间由“衔接点”连接.2.对各“衔接点”进行受力分析和运动分析,必要时画出受力图和过程示意图.3.根据“子过程”“衔接点”的模型特点选择合理的物理规律列方程.4.分析“衔接点”速度、加速度等的关联,确定各段间的时间关联,并列出相关的辅助方程.5.联立方程组,分析求解,对结果进行必要的验证或讨论.【例3】如图所示,两滑块A、B用细线跨过定滑轮相连,B距地面一定高度,A可在细线牵引下沿足够长的粗糙斜面向上滑动.已知m A=2kg,m B =4kg,斜面倾角θ=37°.某时刻由静止释放A,测得A沿斜面向上运动的v -t图像如图所示.已知g=10m/s2,sin37°=0.6,cos37°=0.8.求:(1)A与斜面间的动摩擦因数;(2)A沿斜面向上滑动的最大位移;(3)滑动过程中细线对A拉力所做的功.答案(1)0.25(2)0.75m(3)12J解析(1)在0~0.5s内,根据图像,A、B系统的加速度为a1=vt =20.5m/s2=4m/s2对A、B系统受力分析,由牛顿第二定律有m B g-m A g sinθ-μm A g cosθ=(m A+m B)a1得:μ=0.25(2)B落地后,A减速上滑.由牛顿第二定律有m A g sinθ+μm A g cosθ=m A a2将已知量代入,可得a2=8m/s2故A减速向上滑动的位移为x2=v22a2=0.25m0~0.5s内A加速向上滑动的位移x1=v22a1=0.5m所以,A上滑的最大位移为x=x1+x2=0.75m(3)A加速上滑过程中,由动能定理:W-m A gx1sinθ-μm A gx1cosθ=12m A v2-0得W=12J.【变式3】如图所示,一足够长斜面上铺有动物毛皮,毛皮表面具有一定的特殊性,物体上滑时顺着毛的生长方向,毛皮此时的阻力可以忽略;下滑时逆着毛的生长方向,会受到来自毛皮的滑动摩擦力,现有一物体自斜面底端以初速度v0=6m/s冲上斜面,斜面的倾角θ=37°,经过2.5s物体刚好回到出发点,(g=10m/s2,sin37°=0.6,cos37°=0.8).求:(1)物体上滑的最大位移;(2)若物体下滑时,物体与毛皮间的动摩擦因数μ为定值,试计算μ的数值.(结果保留两位有效数字)答案(1)3m(2)0.42解析(1)物体向上滑时不受摩擦力作用,设最大位移为x.由牛顿第二定律可得:mg sin37°=ma1代入数据得:a1=6m/s2由运动学公式有:v20=2a1x联立解得物体上滑的最大位移为:x=3m(2)物体沿斜面上滑的时间为:t1=v0a1=66s=1s物体沿斜面下滑的时间为:t2=t-t1=1.5s下滑过程中,由运动学公式有:x=12a2t22由牛顿第二定律可得:mg sin37°-μmg cos37°=ma2联立解得:μ≈0.421.基本思路(1)认真审题,详尽分析问题中变化的过程(包括分析整体过程中有几个阶段);(2)寻找过程中变化的物理量;(3)探索物理量的变化规律;(4)确定临界状态,分析临界条件,找出临界关系.2.思维方法极限法把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,以达到正确解决问题的目的假设法临界问题存在多种可能,特别是非此即彼两种可能时,或变化过程中可能出现临界条件,也可能不出现临界条件时,往往用假设法解决问题数学法将物理过程转化为数学表达式,根据数学表达式解出临界条件【例4】如图所示,一弹簧一端固定在倾角为θ=37°的光滑固定斜面的底端,另一端拴住质量为m1=6kg的物体P,Q为一质量为m2=10kg的物体,弹簧的质量不计,劲度系数k=600N/m,系统处于静止状态.现给物体Q施加一个方向沿斜面向上的力F ,使它从静止开始沿斜面向上做匀加速运动,已知在前0.2s 时间内,F 为变力,0.2s 以后F 为恒力,sin 37°=0.6,cos 37°=0.8,g 取10m/s 2.求:(1)系统处于静止状态时,弹簧的压缩量x 0;(2)物体Q 从静止开始沿斜面向上做匀加速运动的加速度大小a ;(3)力F 的最大值与最小值.答案(1)0.16m (2)103m/s 2(3)2803N 1603N 解析(1)设开始时弹簧的压缩量为x 0对整体受力分析,平行斜面方向有(m 1+m 2)g sin θ=kx 0解得x 0=0.16m(2)前0.2s 时间内F 为变力,之后为恒力,则0.2s 时刻两物体分离,此时P 、Q 之间的弹力为零且加速度大小相等,设此时弹簧的压缩量为x 1对物体P ,由牛顿第二定律得kx 1-m 1g sin θ=m 1a前0.2s 时间内两物体的位移x 0-x 1=12at 2联立解得a =103m/s 2(3)对两物体受力分析知,开始运动时拉力最小,分离时拉力最大NF min=(m1+m2)a=1603对Q应用牛顿第二定律得F max-m2g sinθ=m2aN.解得F max=m2(g sinθ+a)=2803【变式4】两物体A、B并排放在水平地面上,且两物体接触面为竖直面,现用一水平推力F作用在物体A上,使A、B由静止开始一起向右做匀加速运动,如图a所示,在A、B的速度达到6m/s时,撤去推力F.已知A、B 质量分别为m A=1kg、m B=3kg,A与地面间的动摩擦因数μ=0.3,B与地面间没有摩擦,B物体运动的v-t图像如图b所示.g取10m/s2,求:(1)推力F的大小;(2)A刚停止运动时,物体A、B之间的距离.答案(1)15N(2)6m解析(1)在水平推力F作用下,设物体A、B一起做匀加速运动的加速度为a,由B的v-t图象得:a=3m/s2对于A、B组成的整体,由牛顿第二定律得:F-μm A g=(m A+m B)a代入数据解得:F=15N.(2)撤去推力F后,A、B两物体分离.A在摩擦力作用下做匀减速直线运动,B做匀速运动,设A匀减速运动的时间为t,对于A有:μm A g=m A a A解得:a A=μg=3m/s2根据匀变速直线运动规律有:0=v0-a A t解得:t=2s撤去力F后,A的位移为x A=v0t-1a A t2=6m2B的位移为x B=v0t=12m所以,A刚停止运动时,物体A、B之间的距离为Δx=x B-x A=6m.。

专题04 动力学经典问题(Word版,含答案)

专题04 动力学经典问题(Word版,含答案)

2020年高三物理寒假攻关---备战一模第一部分考向精练专题04 动力学经典问题1.已知物体的受力情况,求解物体的运动情况解这类题目,一般是应用牛顿第二定律求出物体的加速度,再根据物体的初始条件,应用运动学公式,求出物体的运动情况.2.已知物体的运动情况,求解物体的受力情况解这类题目,一般是应用运动学公式求出物体的加速度,再应用牛顿第二定律求出物体所受的合外力,进而求出物体所受的某个力.可用程序图表示如下:3.解决两类动力学基本问题应把握的关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁。

4.连接体的运动特点轻绳——轻绳在伸直状态下,两端的连接体沿绳方向的速度总是相等.轻杆——轻杆平动时,连接体具有相同的平动速度;轻杆转动时,连接体具有相同的角速度,而线速度与转动半径成正比.轻弹簧——在弹簧发生形变的过程中,两端连接体的速度不一定相等;在弹簧形变量最大时,两端连接体的速率相等.【例1】(2019·四川雅安一模)如图所示,质量为1 kg的物体静止于水平地面上,用大小为6.5 N的水平恒力F作用在物体上,使物体由静止开始运动50 m后撤去拉力F,此时物体的速度为20 m/s,物体继续向前滑行直至停止,g取10 m/s2。

求:(1)物体与地面间的动摩擦因数;(2)物体运动的总位移;(3)物体运动的总时间。

【思路点拨】(1)先做初速度为零的匀加速直线运动,再做匀减速直线运动直到速度为零。

(2)两段运动过程衔接处的速度相同。

【答案】(1)0.25(2)130 m(3)13 s【解析】(1)在拉力F作用下,物体的加速度大小为:a1=v2 2x1对物体,由牛顿第二定律有:F-μmg=ma1,联立解得:μ=0.25。

(2)撤掉拉力F后的加速度大小为:a2=μg=2.5 m/s2撤掉拉力F后的位移为:x2=v22a2=80 m全程总位移为:x =x 1+x 2=50 m +80 m =130 m 。

2019-2020年高三物理第二轮专题复习 专题一力和运动教案 人教版

2019-2020年高三物理第二轮专题复习 专题一力和运动教案 人教版

2019-2020年高三物理第二轮专题复习专题一力和运动教案人教版一、考点回顾1.物体怎么运动,取决于它的初始状态和受力情况。

牛顿运动定律揭示了力和运动的关系,关系如下表所示:2.力是物体运动状态变化的原因,反过来物体运动状态的改变反映出物体的受力情况。

从物体的受力情况去推断物体运动情况,或从物体运动情况去推断物体的受力情况,是动力学的两大基本问题。

3.处理动力学问题的一般思路和步骤是:①领会问题的情景,在问题给出的信息中,提取有用信息,构建出正确的物理模型;②合理选择研究对象;③分析研究对象的受力情况和运动情况;④正确建立坐标系;⑤运用牛顿运动定律和运动学的规律列式求解。

4.在分析具体问题时,要根据具体情况灵活运用隔离法和整体法,要善于捕捉隐含条件,要重视临界状态分析。

二、经典例题剖析1.长L的轻绳一端固定在O点,另一端拴一质量为m的小球,现使小球在竖直平面内作圆周运动,小球通过最低点和最高点时所受的绳拉力分别为T1和T2(速度分别为v0和v)。

5求证:(1)T1-T2=6mg(2)v0≥gL证明:(1)由牛顿第二定律,在最低点和最高点分别有:T1-mg=mv02/L T2+mg=mv2/L由机械能守恒得:mv02/2=mv2/2+mg2L以上方程联立解得:T1-T2=6mg(2)由于绳拉力T2≥0,由T2+mg=mv2/L可得v≥gL5代入mv02/2=mv2/2+mg2L得:v0≥gL点评:质点在竖直面内的圆周运动的问题是牛顿定律与机械能守恒应用的综合题。

加之小球通过最高点有极值限制。

这就构成了主要考查点。

2.质量为M 的楔形木块静置在水平面上,其倾角为α的斜面上,一质量为m 的物体正以加速度a 下滑。

求水平面对楔形木块的弹力N 和摩擦力f 。

解析:首先以物体为研究对象,建立牛顿定律方程: N 1‘=mgcosα mgsinα-f 1’=ma ,得:f 1‘=m(gsinα-a) 由牛顿第三定律,物体楔形木块有N 1=N 1’,f 1=f 1‘然后以楔形木块为研究对象,建立平衡方程:N =mg +N 1cosα+f 1sinα=Mg +mgcos 2α+mgsin 2α-masinα =(M +m)g -masinαf =N 1sinα-f 1cosα=mgcosαsinα-m(gsinα-a)cosα=macosα 点评:质点在直线运动问题中应用牛顿定律,高考热点是物体沿斜面的运动和运动形式发生变化两类问题。

2024届高考物理复习讲义:专题强化九 动力学和能量观点的综合应用(一)——多运动组合问题

2024届高考物理复习讲义:专题强化九 动力学和能量观点的综合应用(一)——多运动组合问题

专题强化九动力学和能量观点的综合应用(一)——多运动组合问题学习目标掌握运用动力学和能量观点分析复杂运动的方法,进而利用动力学和能量观点解决多运动组合的综合问题。

1.分析思路(1)受力与运动分析:根据物体的运动过程分析物体的受力情况,以及不同运动过程中力的变化情况。

(2)做功分析:根据各种力做功的不同特点,分析各种力在不同运动过程中的做功情况。

(3)功能关系分析:运用动能定理、机械能守恒定律或能量守恒定律进行分析,选择合适的规律求解。

2.方法技巧(1)“合”——整体上把握全过程,构建大致的运动情景。

(2)“分”——将全过程进行分解,分析每个子过程对应的基本规律。

(3)“合”——找出各子过程之间的联系,以衔接点为突破口,寻求解题最优方案。

例1(2022·浙江1月选考,20)如图1所示,处于竖直平面内的一探究装置,由倾角α=37°的光滑直轨道AB、圆心为O1的半圆形光滑轨道BCD、圆心为O2的半圆形光滑细圆管轨道DEF、倾角也为37°的粗糙直轨道FG组成,B、D和F为轨道间的相切点,弹性板垂直轨道固定在G点(与B点等高),B、O1、D、O2和F点处于同一直线上。

已知可视为质点的滑块质量m=0.1kg,轨道BCD和DEF的半径R=0.15m,轨道AB长度l AB=3m,滑块与轨道FG间的动摩擦因数μ=7 8。

滑块与弹性板作用后,以等大速度弹回,sin37°=0.6,cos37°=0.8。

滑块开始时均从轨道AB上某点静止释放,图1(1)若释放点距B 点的长度l =0.7m ,求滑块到最低点C 时轨道对其支持力F N 的大小;(2)设释放点距B 点的长度为l x ,求滑块第1次经F 点时的速度v 与l x 之间的关系式;(3)若滑块最终静止在轨道FG 的中点,求释放点距B 点长度l x 的值。

答案(1)7N (2)v =12l x -9.6(m/s)(0.85m ≤l x ≤3m)(3)见解析解析(1)滑块从A 到C 的过程只有重力做功,机械能守恒,则mgl sin 37°+mgR (1-cos 37°)=12m v 2C 在C 点根据牛顿第二定律有F N -mg =m v 2CR代入数据解得F N =7N 。

高三物理 动力学两类基本问题

高三物理 动力学两类基本问题
的速度竖直向上抛出一个小球,小球上升到最高点时比平台高出 h=6 m,若空气阻力 f 大 小不变,g=10 m/s2.求:
(1)空气阻力与小球重力大小的比值mfg; (2)小球从抛出到落到地面所经过的时间 t.
思路点拨:根据运动情况确定加速度利用牛顿第二定律结合运动中的受力情况求解. 规范解答:(1)从抛出到最高点,2a1h=v20(1 分) 代入数据求得 a1=12 m/s2(1 分) 根据牛顿第二定律:mg+f=ma1(1 分) mfg=0.2.(1 分) (2)上升过程所用时间 t1=va10=1 s(1 分) 下落过程加速度 a2=mgm-f=mg-m0.2mg=8 m/s2(1 分) 下落过程所用时间 t2,则有 h+H=12a2t22(1 分) 得 t2=2 s(1 分) 总时间 t=t1+t2=3 s.(2 分)
8s 3g.
答案:(1)0.5 (2)
8s 3g
考点二:连接体问题的应用
【例2】 (综合题)如图所示,倾角为θ的光滑斜面固 定在水平地面上,质量为m的物块A叠放在物体B 上,物体B的上表面水平.当A随B一起沿斜面下 滑时,A、B保持相对静止.求B对A的支持力N和 摩擦力f.
解析:当A随B一起沿斜面下滑时,物块A受到竖直向下的重力mg、B对A竖直向上的支 持力N和水平向左的摩擦力f的作用而一起做加速运动,如图(甲). 设B的质量为M,以A、B为整体,根据牛顿第二定律,有 (m+M)·gsin θ=(m+M)a,得a=gsin θ. 将加速度沿水平方向和竖直方向进行分解,如图(乙)所示,则ax=acos θ=gsin θcos θ, ay=asin θ=gsin2 θ
(1)小球的加速度;
(2)最初2 s内小球的位移.
解析:(1)小球在斜杆上受力分析如图所示. 垂直杆方向:Fcos θ=mgcos θ+N① 沿杆方向:Fsin θ-mgsin θ-f=ma② 其中:f=μN③ ①②③联立,并代入数据,得 a=0.4 m/s2. (2)最初 2 s 内的位移 s=12at2=0.8 m.

高三物理一轮复习 牛顿运动定律知识点总结

高三物理一轮复习 牛顿运动定律知识点总结

高三物理一轮复习牛顿运动定律知识点总结高三物理一轮复习,应该如何快速掌握知识点,灵活运用物理公式呢?学霸1对1小编整理出高三物理一轮复习,牛顿运动定律知识点总结,希望能帮助高三生轻松应对一轮复习。

1、运用牛顿第二定律解题的基本思路(1)通过认真审题,确定研究对象.(2)采用隔离体法,正确受力分析.(3)建立坐标系,正交分解力.(4)根据牛顿第二定律列出方程.(5)统一单位,求出答案.2、解决连接体问题的基本方法是:(1)选取最佳的研究对象.选取研究对象时可采取“先整体,后隔离”或“分别隔离”等方法.一般当各部分加速度大小、方向相同时,可当作整体研究,当各部分的加速度大小、方向不相同时,要分别隔离研究.(2)对选取的研究对象进行受力分析,依据牛顿第二定律列出方程式,求出答案.3、解决临界问题的基本方法是:(1)要详细分析物理过程,根据条件变化或随着过程进行引起的受力情况和运动状态变化,找到临界状态和临界条件.(2)在某些物理过程比较复杂的情况下,用极限分析的方法可以尽快找到临界状态和临界条件.易错现象:(1)加速系统中,有些同学错误地认为用拉力F直接拉物体与用一重力为F的物体拉该物体所产生的加速度是一样的。

(2)在加速系统中,有些同学错误地认为两物体组成的系统在竖直方向上有加速度时支持力等于重力。

(3)在加速系统中,有些同学错误地认为两物体要产生相对滑动拉力必须克服它们之间的最大静摩擦力。

高中物理牛顿运动定律的应用(二)1、动力学的两类基本问题:(1)已知物体的受力情况,确定物体的运动情况.基本解题思路是:①根据受力情况,利用牛顿第二定律求出物体的加速度.②根据题意,选择恰当的运动学公式求解相关的速度、位移等.(2)已知物体的运动情况,推断或求出物体所受的未知力.基本解题思路是:①根据运动情况,利用运动学公式求出物体的加速度.②根据牛顿第二定律确定物体所受的合外力,从而求出未知力.(3)注意点:①运用牛顿定律解决这类问题的关键是对物体进行受力情况分析和运动情况分析,要善于画出物体受力图和运动草图.不论是哪类问题,都应抓住力与运动的关系是通过加速度这座桥梁联系起来的这一关键.②对物体在运动过程中受力情况发生变化,要分段进行分析,每一段根据其初速度和合外力来确定其运动情况;某一个力变化后,有时会影响其他力,如弹力变化后,滑动摩擦力也随之变化.2、关于超重和失重:在平衡状态时,物体对水平支持物的压力大小等于物体的重力.当物体在竖直方向上有加速度时,物体对支持物的压力就不等于物体的重力.当物体的加速度方向向上时,物体对支持物的压力大于物体的重力,这种现象叫超重现象.当物体的加速度方向向下时,物体对支持物的压力小于物体的重力,这种现象叫失重现象.对其理解应注意以下三点:(1)当物体处于超重和失重状态时,物体的重力并没有变化.(2)物体是否处于超重状态或失重状态,不在于物体向上运动还是向下运动,即不取决于速度方向,而是取决于加速度方向. (3)当物体处于完全失重状态(a=g)时,平常一切由重力产生的物理现象都会完全消失,如单摆停摆、天平失效、浸在水中的物体不再受浮力、液体柱不再产生向下的压强等.易错现象:(1)当外力发生变化时,若引起两物体间的弹力变化,则两物体间的滑动摩擦力一定发生变化,往往有些同学解题时仍误认为滑动摩擦力不变。

高三物理第一轮复习教案第三单元 牛顿运动定律

高三物理第一轮复习教案第三单元 牛顿运动定律

《高三第一轮复习教案》:第三单元:牛顿运动定律回顾:1、静力学问题的解题基本思路是(核心求解问题:共点力的平衡):确定对象,受力分析,选取坐标,正交分解,立出方程,联立求解。

基本方法:整体法,隔离法2、运动学问题的解题基本思路是(核心求解问题:匀变速直线运动的规律):确定对象,运动分析,画出草图,选择规律,立式求解。

基本方法:函数式计算(选公式),图象应用而动力学问题既研究受力又研究运动,是前两部分内容的综合1、牛顿第一定律(1)内容(2)注意:A、力不是运动的原因,即运动可以不受力的作用。

B、力是改变物体运动状态的原因,即产生a。

C、运动的原因是物体具有惯性。

(惯性是物体保持原运动状态的能力)D、一切物体都具有惯性,惯性的大小仅由质量决定。

例题分析:1、关于伽利略的理想实验,下列说法正确的是(BD )A、只要接触而相当光滑,物体就能在水平面上一直做匀速直线运动B、这个实验实际上是永远无法何等到的C、利用气垫导轨,就能使实验成功D、虽然是想像中的实验,但是它是建立在可靠的事实基础上的2、下列说法正确的是( C )A、大卡车的速度小,轿车的速度大,所以轿车的惯性大B、汽车在速度大的时候比在速度小的时候难以停下所以汽车速度大时的惯性大C、乒乓球可以被快速地来回抽杀,是因为其惯性小的缘故D、用同样的力骑自行车,车胎没气时速度增加得慢,运动状态难以改变,因此,比有气时的惯性大3、理想实验有时更能深刻地反映自然规律,伽利略设想了一个是理想实验,其中有一个实验事实,其余是推论。

①减小第二个斜面的倾角,小球在这斜面上仍然要达到原来的高度;②两个对接的斜面,让静止的小球沿一个斜面滚下,小球将滚上另一个斜面;③如果没有摩擦,小球将上升到原来的高度;④继续减小第二个斜面的倾角,最后使它成水平面,小球要沿水平面做匀速运动(1)请将上述理想实验的设计步骤按照正确的顺序排列②③①④ (只要填写序号)(2)在上述的设想步骤中,有的属于可靠的事实,有的则是理想的推论,下列关于事实和推论的分类正确的是( B )A、①是事实,②③④是推论B、②是事实,①③④是推论C、③是事实,①②④是推论D、④是事实,①②③是推论学生练习:1、在车厢顶板上用细线挂一小球,车内的观察者,根据观察到的现象,判断正确的是(BCD )A、若细线保持竖直,车一定是静止的B、若细线保持竖直,车可能在做匀速直线运动C、若细线向右偏斜,车可能向左转弯D、若细线的前偏,车可能向前减速2、如图所示,车厢在平直轨道上匀加速向左行驶,车厢顶落有油滴滴落在车厢地板上,车厢地板O点位于A点的正下方,则当滴管依次滴下三滴油时,下列说法正确的是( C )A、这三滴油依次落在O点的右方,且一滴比一滴高O点远B、这三滴油依次落在O点的右方,且一滴比一滴高OC、这三滴油依次落在O点的右方,且在同一个位置上D、这三滴油依次落都在O点上3、关于惯性,下列说法中正确的是()A、推动原来静止的物体比推动正在运动的物体所需的力大,所以静止的物体惯性大B、正在行驶的质量相同的两辆汽车,速度大的不易停下来,所以速度大的物体惯性大C、自由下落的物体处于完全失重状态,所以这时物体的惯性消失了D、以上说法均不正确4、伽利略的斜面实验证明了()A、使物体运动必须有力的作用,没有力作用的物体将静止B、使物体静止必须有力的作用,没有力的作用物体就运动C、物体没有外力的作用,一定处于静止状态D、物体不受外力的作用时,总保持原来的匀速直线运动状态或静止状态2、牛顿第三定律(1)内容(2)注意:A、作用力与反作用力必定是相同性质的力。

高考物理难题解题攻略

高考物理难题解题攻略

高考物理难题解题攻略高考物理难题解题攻略1. 对于多体问题,要灵活选取研究对象,善于寻找相互联系。

选取研究对象和寻找相互联系是求解多体问题的两个关键。

选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。

2. 对于多过程问题,要仔细观察过程特征,妥善运用物理规律。

观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。

分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律逐个进行研究。

至于过程之间的联系,则可从物体运动的速度、位移、时间等方面去寻找。

3. 对于含有隐含条件的问题,要注重审题,深究细琢,努力挖掘隐含条件。

注重审题,深究细琢,综观全局重点推敲,挖掘并应用隐含条件,梳理解题思路或建立辅助方程,是求解的关键.通常,隐含条件可通过观察物理现象、认识物理模型和分析物理过程,甚至从试题的字里行间或图象图表中去挖掘。

4. 对于存在多种情况的问题,要认真分析制约条件,周密探讨多种情况。

解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。

高中物理考试答题技巧选择题的答题技巧解答选择题时,要注意以下几个问题:(1)注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。

(2)相信第一判断:只有当你发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。

特别是对中等程度及偏下的同学尤为重要。

切记:每年高考选择题错误率高的不是难题,而是开头三个简单题。

不要再最简单的地方,轻敌栽坑!实验题的做题技巧(1)实验题一般采用填空题或作图题的形式出现。

填空题:数值、单位、方向或正负号都应填全面;作图题:①对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。

高三物理动力学知识点总结

高三物理动力学知识点总结

高三物理动力学知识点总结动力学是物理学的一个重要分支,研究物体的运动以及受力与运动之间的关系。

在高三物理学习中,动力学是一个必须要掌握的重要知识点。

本文将对高三物理动力学的关键知识点进行总结,帮助你复习和理解这一内容。

一、牛顿第一定律——惯性定律牛顿第一定律也被称为惯性定律,它指出:当物体所受外力为零时,物体将保持匀速直线运动或静止。

这一定律将力与物体的运动状态联系起来,为后续的力学研究提供了基础。

二、牛顿第二定律——力的作用定律牛顿第二定律是动力学的核心内容,它给出了力与物体加速度之间的关系。

牛顿第二定律的数学表达式为:F=ma,其中F代表物体所受合力,m代表物体的质量,a代表物体的加速度。

这一定律揭示了物体运动状态的变化与受力大小和方向之间的关系。

三、牛顿第三定律——作用与反作用定律牛顿第三定律指出:如果物体A对物体B施加一个力,那么物体B对物体A也会施加一个大小相等、方向相反的力,这两个力称为作用力和反作用力。

牛顿第三定律描述了物体间相互作用的特性,是解释物体之间相互作用的基石。

四、动力学公式的应用在物理学中,有一些常用的动力学公式为我们解决问题提供了便利,例如:1. 加速度公式:a=(v-u)/t,其中v代表物体的末速度,u代表其初速度,t为运动所经历的时间。

2. 动量定理:F=(Δp)/t,其中F为物体所受合力,Δp为物体动量的变化量,t为时间。

3. 弹力公式:F=kx,其中F为弹簧所受弹力,k为弹簧的弹性系数,x为弹簧变形的位移。

五、摩擦力与斜面运动在动力学中,对摩擦力的理解是非常重要的。

摩擦力是一种特殊的力,它的大小与物体之间的接触面以及物体之间的粗糙程度有关。

摩擦力可以影响物体的运动状态,例如在斜面上运动时,摩擦力可以改变物体的加速度,影响物体上滑或下滑的情况。

总结高三物理动力学知识点的学习对于理解物体的运动规律和力的作用具有重要意义。

通过学习惯性定律、力的作用定律和作用与反作用定律,我们可以准确描述物体的运动状态。

第六章第三节 研究动力学问题的三个

第六章第三节 研究动力学问题的三个

0.45 同一个力学问题,有
【规律总结】
时可以有多种解法,如在本题中,利 用三大观点中的任何一个都可以解答
本题.遇到这种情况时,我们应根据
题目情景和要求选用合适的方法.多 数情况下,从能量和动量的角度解题 相对简单一些.
第六章
动量
动量观点解决动力学问 题
例2 (满分样板
20分)(2011· 高考大
短、作用力变化快,故常用动量定理 或动量守恒定律求解,该方法不用考 虑过程的细节.
第六章
动量
3.使用方法 (1)对动量定理:确定研究对象,做好 受力分析和过程分析,选取正方向, 明确合外力的冲量及初末动量的大小 和方向(正、负),最后列动量定理方 程求解.
第六章
动量
(2)对动量守恒定律:确定研究对象, 做好受力分析和过程分析,判断是否 符合动量守恒的三种情况,选取正方 向,明确初末状态动量的大小和方向 (正、负),最后列动量守恒定律方程 求解.
第六章
动量
此过程中动能损失为 1 2 1 ΔE= mv0 - ×3mV2②(2 分) 2 2 1 2 解得 ΔE= mv0 (2 分) 3 分成两块钢板后, 设子弹穿过第一块钢 板时两者
第六章
动量
的速度分别为 v1 和 V1,由动量守恒得 mv1+mV1=mv0③(1 分) 因为子弹在钢板中受到的阻力为恒力, ΔE 射穿第一块钢板的动能损失为 ,由 2 能量守恒得 1 2 1 1 2 ΔE 2 mv1+ mV1= mv0 - ④(2 分) 2 2 2 2
第六章
动量
联立①②③④式,且考虑到 v1 必须大 于 V1,得 3 1 v1 = + 2 6 v0⑤(2 分) 设子弹射入第二块钢板并留在其中后 两者的共同速度为 V2,由动量守恒得 2mV2=mv1⑥(2 分)

人教版物理高三年级《牛顿运动定律的应用》教学设计

人教版物理高三年级《牛顿运动定律的应用》教学设计

§3 牛顿运动定律的应用教学目标:1.掌握运用牛顿三定律解决动力学问题的基本方法、步骤2.学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解3.理解超重、失重的概念,并能解决有关的问题4.掌握应用牛顿运动定律分析问题的基本方法和基本技能教学重点:牛顿运动定律的综合应用教学难点:受力分析,牛顿第二定律在实际问题中的应用教学方法:讲练结合,计算机辅助教学教学过程:一、牛顿运动定律在动力学问题中的应用1.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题):(1)已知物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等.(2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向).但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案.两类动力学基本问题的解题思路图解如下:可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。

点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如2/2,2,21,0202200t t t t v v v t s v as v v at t v s at v v =+===-+=+=等. 2.应用牛顿运动定律解题的一般步骤(1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型.(2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象.(3)分析研究对象的受力情况和运动情况.(4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上.(5)根据牛顿第二定律和运动学公式列方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算.(6)求解方程,检验结果,必要时对结果进行讨论.3.应用例析【例1】一斜面AB 长为10m ,倾角为30°,一质量为2kg 的小物体(大小不计)从斜面顶端A 点由静止开始下滑,如图所示(g 取10 m/s 2)(1)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B 点时的速度及所用时间.(2)若给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下滑,则小物体与斜面间的动摩擦因数μ是多少?解析:题中第(1)问是知道物体受力情况求运动情况;第(2)问是知道物体运动情况求受力情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例题3】长为l的的细线一 端固定,另一端系一质量 为m的小球。现将小球拉 到使细线处于水平且刚好 拉直状态由静止释放,小 球经时间t到达最低点。求: (1)小球过最低点的速度; (2)该过程细线拉力的冲 量。
m
【例题4】质量为M的小车A左端固定 一根轻弹簧,车静止在光滑水平面上, 一质量为m的小物块B从右端以速度 v0冲上小车并压缩弹簧,然后又被弹 回,回到车右端时刚好与车保持相对 静止。求这过程弹簧的最大弹性势能 Ep和全过程系统摩擦生热Q各多少?
【例题1】质量为m的小球 从沙坑上方某高度处自 由下落,到达沙坑经时 间t停止运动,且此时陷 入沙坑的深度为h。为了 简化处理,假定小球在 陷入沙坑的过程中,沙 对小球的阻力恒定,试
【例题2】质量之比为3:2的两个滑 块,以相同的动量在地面滑行,已 知两滑块与地面间有相同的动摩擦 因数。则两滑块的滑行加速度大小 之比为_________;两滑块的滑行 时间之比为__________;两滑块 的滑行距离之比为__________。
专题: 处理动力学问题的基本思路
一、处理动力学问题的基本思 路有三
• 牛顿运动定律 • 功和能(动能定理和机械能守恒 定律) • 冲量和动量(动量定理和动量守 恒定律)
二、对处理动力学问题三种方 法的整合
• 在一个具体问题中,到底该用哪 种 方法? • 运用这三种思路解题会有什么样 的规律可循? • 如何才能做到灵活运用这三种方 法?

【例题5】如图所示,a、b、c三个相同 的小球,a从光滑斜面顶端由静止开 始自由下滑,同时b、c从同一高度分 别开始自由下落和平抛。下列说法正 确的有 A.它们同时到达同一水平面 B.它们的加速度相同 C.它们的末动能相同
(2)从地面以速度v1竖 直向上抛出一皮球, 皮球落地时速度大小 为v2 ,若皮球运动过 程中所受空气阻力的 大小与其速率成正比, 试求皮球在空中的运 动时间。
v t
f
tபைடு நூலகம்
•;
/ 智能照明
wnd52xpy
•动了什么按钮,只听有石门被打开的声音,随后就被人推了进去,蒙着眼睛的布条也随之掉落。初月被室内的强光晃了眼,等她再睁开眼的时候,
看见室内数十排架子,各处机关运行,一张小纸条从一处运到另一处被整理归类再到摆放都是自动进行。另一边陈列的都是各式各样的兵器,刀 枪剑戟,鞭斧钩杈,在最深处的墙上订着一副十字架,架上还留有斑斑血迹,让人害怕。“萧公子,带我来这里干什么?”“初月姑娘,在下真 的是小看你了。”“萧公子,初月不知你在说什么?”萧煜痕强行掰过来初月的脸,捏着她的下巴,恶狠狠的说。“事到如今就不必装傻了,我虽 不知道你的目的所为何,但是我萧煜痕的地盘被你看见了,你就休想要活着走出去了。”“你,这又不是我自愿看见的,倒是萧公子带我来此处 参观,难不成这还是我碍着你什么了?”“你倒是牙尖嘴利,真当我不敢对你做什么吗?纪雪芙真是太小看我萧煜痕了,你以为你做了什么我不 知道吗?派你来试探我的底细,甚至还有可能打我灵芝草的主意,休想。”“你,卑鄙。”“哼,人在江湖走怎么能不用点特殊手段呢?我本来 不想做这么绝,但我告诉你,落在我萧煜痕手里,你就休想觉得自己轻易能从这里出去,我倒是佩服你一个女子临危不乱的魄力,只是你家60估 计会被你这个蠢笨的奴婢连累了吧。”“你什么意思?”“你说,我要是拿你去换你家60,你家60会如何?”“你,休要动我家60,我既然落在你 手里就没想着或者出去,要头一颗,要命一条。”“好,很好。”萧煜痕顿了顿又说:“来人。”突然‘咻咻咻’的从空中飞下来了四个黑衣人, 为首的似乎叫——飞廉。“请主子吩咐。”“给我好好招呼她,留着气,别给弄死了。” “是。”另一边,城主府。“60,60不好了,刚才我去 天香楼后面街头,等了两个时辰都不见初月姐姐出来,你说是不是出什么事情了?”“不要慌,一定不能自乱阵脚。”“可是。”“这萧煜痕一 向诡计多端,我虽与他交往不深,但也看得出他并非有勇无谋之人,他若是明白初月对于我们的意义必然不会轻易动手 ,只怕是要吃点苦 头。”“那初月姐姐不还是很危险?” “萧煜痕的目标是我,不是初月,所以他一定会想办法让我上钩,但我上钩是小事,但是哥哥的身体却是 不能再拖了,一定要想办法得到灵芝草。”“是,60。”这时门外小厮匆匆赶来,进到内院通报求见。“60,门外有人让一个小乞丐送来一封书 信,说是务必要请60亲启,奴才见事关重大,不得不先来面见60。”“你做的很好,下去吧。”纪雪芙打发了家丁,这才拆开信封,惊得连忙退 了几步,退到桌子边的椅子上跌坐,木月见状准备上前搀扶,未果,问出了声。“60,这是怎么了?”“初
相关文档
最新文档