非线性有限元分析报告

合集下载

连续墙梁的非线性有限元分析

连续墙梁的非线性有限元分析

收稿日期基金项目上海市教育委员会科研资助项目(3Q )作者简介齐良锋(3),女,副教授,博士文章编号:1671-7333(2008)02-0133-03连续墙梁的非线性有限元分析齐良锋1,简 浩2(1.上海应用技术学院土木建筑与安全工程学院,上海 200235;2.上海岩土工程勘察设计研究院有限公司,上海 200002)摘要: 由于墙梁受力情况复杂,在墙梁结构设计过程中,以有限元分析为基础是十分重要的。

采用单元整体式模型、非线性材料本构关系及分布裂缝模型建立连续墙梁非线性有限元模型,并将计算结果与试验结构进行比较,二者吻合较好,说明此模型可以为墙梁结构的设计提供有限元基础分析。

关键词: 连续墙梁;有限元;非线性中图分类号:TU 375.1 文献标识码:ANonline ar Finite E lement analysis of Continuous Wall 2BeamsQ I L ia ng 2feng 1,J IA N Hao 2(1.School of Civil Cons t ruction and Safet y Engi neeri ng ,Shanghai Ins t it ut e of Technology ,Shanghai 200235,Chi na ;2.Shanghai G eotechni cal Investigations &Des i gn Instit ute Co.L td.Shanghai 200002,Chi na)Abstract :Due to complexit y of t he wall 2beam ’s mechanical charact eristics ,it is i mportant t hat t he design of wall 2beam based on fi nite element analysis.Thi s paper has establi shed nonlinear finite element analysi s model of continuous wall 2beam by adopting t he whole unit model ,nonlinear mat erial constit utive relation and distribut ing crack model.The result s of t he experiment and nonli near numerical analysis are matched wit h comparison.This analysis model can provi de t he dat a of fi nit e element analysi s for t he design of wall 2beam.Key words :continuous wall 2beams;finit e element ;nonlinear 墙梁是由支承墙体的钢筋混凝土托梁及其以上墙体两种材料用砂浆砌筑的组合深梁结构,在我国已经有较长的使用历史。

非线性有限元分析1

非线性有限元分析1

非线性问题的类型和求解特点1 非线性问题的类型1. 1 线性分析的含义在有限元分析中的线性假设包含下列含义:即结点位移为无限小量,材料为线弹性,加载时边界条件的性质保持不变。

于是,静力平衡方程可以表示为:[]{}{}R U K = (2.1)其中,[]K 为刚度矩阵,{}R 为荷载矢量。

由于[]K 和{}R 的元素为常数,故位移响应{}U 是荷载矢量{}R 的线性函数。

也就是说,如果{}R 变为{}R α,则{}U 变为{}U α,其中,α为常数。

这就是所谓的线性有限元分析。

如果上述假设中的任何一条不能得到满足,那么就属于非线性有限元分析。

1. 2 非线性分析的必要性结构力学问题,从本质上讲都是非线性的,线性假设只是实际工程问题的一种简化。

当然,任何实际工程问题的求解都避免不了适当地简化,简化是否合理主要应根据求解效果和实际经验来判断。

对于目前工程实际中的很多问题,如地震作用下结构的弹塑性动力响应,高层建筑抗风,大跨度网壳结构动力稳定性,索膜结构找形荷载与裁减分析,大型桥梁风致振动等问题的研究,仅仅假设为线性问题是很不够的,常常需要进一步考虑为非线性问题。

因此,对各种工程结构的非线性分析就是必不可少且日趋重要了。

对于结构力学的非线性问题来说,有限单元法是最为有效的数值分析方法。

1. 3 非线性问题的类型通常,把非线性问题分为两大类,即分为几何非线性和材料非线性。

但从建立基本方程和程序设计的方便出发,又可分为三种类型:1.材料非线性:非线性效应仅由应力应变关系的非线性引起,位移分量仍假设为无限小量,故仍可采用工程应力和工程应变来描述,即仅材料为非线性。

非线性的应力应变关系是结构非线性的常见原因,许多因素都可以影响材料的应力应变性质,包括加载历史(如在弹塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)等。

2.几何非线性:如果结构经受大变形,则变化了的几何形状可能会引起结构的非线性响应,这又可以分为两种情形:第一种情形,大位移小应变。

非线性结构有限元分析

非线性结构有限元分析

在程序中,对增量方程求解的平衡迭代采用修正 的牛顿迭代法或BFGS法。 1. 修正的牛顿迭代法。它与完全的牛顿法的不同在 于迭代过程中系数矩阵保持不变,因此不需要重新形 成和分解刚度阵,从而大大减少了计算量。但是这样 又带来了收敛速度慢和发散问题,对此程序中加入了 加速收敛和发散处理的措施。这些措施并不明显地增 加求解的时间,但却会对修正的牛顿迭代法的性能有 所改进。 2. BFGS法。又称矩阵修正迭代,是拟牛顿法的一 种。它实际上是完全的牛顿法与修正的牛顿法之间的 一种折中方法。因为它在迭代过程中,并不重新形成
0 t t t k xi N k0 xik, xi N kt xik, xi N kt t x( i 10-28) k 1 k 1 k 1 n n n
0 k t k t t k 其中: xi , xi , xi 为节点k,i方向上在0,t, t+△t时刻的
返回
取位移插值函数为: n
t
写成矩阵形式:
t i
ui N u
k 1
t k k i

ui N k uik
k 1
n
(10-26) (10-27)
u [N ] u
t k i

ui [ N ]uik
其中:Nk为插值函数,[N]为形函数矩阵; t k ui ,uik 为k点i方向上t时刻的位移和位移增量; n为单元节点数。 取坐标变换为:
v
v s
{R} [ N ]T qv dv [ N ]T qs ds {R0}
{u}

外载荷阵 (10-6) 为节点位移对时间的二 次导数;
为节点位移对时间的一 次导数。
{u}

非线性有限元分析报告

非线性有限元分析报告

非线性有限元分析1 概述在科学技术领域内,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。

但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。

对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。

这类问题的解决通常有两种途径。

一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。

但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。

因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。

特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。

已经发展的数值分析方法可以分为两大类。

一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。

其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。

但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。

另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。

如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。

诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。

但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。

1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。

非线性结构有限元分析

非线性结构有限元分析
0
t t t k xi N k0 xik, xi N kt xik, xi N kt t x( i 10-28) k 1 k 1 k 1
n
n
n
0 k t k t t k 其中: xi , xi , xi 为节点k,i方向上在0,t, t+△t时刻的 节点坐标值。
(10-25)

T T t T t t t e C e dv dv W e t tv t t t tv t tv t dv
此为改进的拉格朗日( U·L )公式。 三、非线性问题有限元基本方程 有了方程(10-19),(10-25)式,就可以按通常的方 法进行有限元离散,从而得到非线性问题的有限元基本方程。
第一节
有限元基本方程
一、线性问题的基本方程 由复杂结构受力平衡问题的虚功方程有:
T T T v v v s s
dv u q dv u q ds u R
T 0 0
mu u dv Du u dv
[M ]
t t
{u} [ D]

t t
{u} [ K ]t t {u} t t {R} (10-8)

解此方程也用隐式时间积分,显式时间积分或振形迭加 法求解。
二、非线性问题的基本方程 对于非线性问题通常不能用一步直接求解方案,必须分成 若干步加载,按各个阶段不同的非线性性质逐步求解,即增量求 解方案。 1.增量形式的平衡方程: 已知设:0,△t,2△t‥‥的位移和应力(各载荷步的) 要求出:t+△t步时的位移和应力。 ①全拉格朗日(T·L)公式 以t=0时刻状态为度量基准,求t+△t时刻的值。 由虚功方程: 其中:

线性和非线性有限元分析

线性和非线性有限元分析

Strain-rate dependence of tensile response of cortical bone. (Adapted from J. H. McElhaney, J. Appl. Physiology, 21(1966) 1231.)‫‏‬
为何线性有限元
• 线性元是对自然界非线性问题的小范围和小规 模逼近 • 线性材料是人为假设的 • 人类在构造建筑和机械结构时假设它们不会在 人造环境和人为的载荷条件下产生大的物理量 变 • 线性有限元可以解决大部分民用建筑结构和民 用机械结构问题 • 非线性问题可以用多个线性问题的解来逼近
ZIENKIEWICZ &CHANG popularize the method with the practicing engineering community (有限元在工程界广泛推广) IRONS &RAZZAQUE frontal solution technique successful implementation of finite elements (成功应用单元前沿刚度矩阵方程解法) isoparametric elements , modern finite element methods (参数元,从长现代有限元) theory of distributions, generalized functions, weak solutions of pde’s (广义函数,偏微分方程弱解) the decade of the mathematics of finite elements (数学家的十年)
几何非线性:
• • • Large deformation (线性和非线性材料大变形) Contact Non linearity(线性材料接触和非线性材料接触) Nonlinear Buckling (线性和非线性材料屈曲)

工程结构的空间非线性有限元分析

工程结构的空间非线性有限元分析

h trt to n n r a e t d whc s otn u e n t n lssn n te ieain meh d a d ic e s s me o ih wa fe s d i e a ay i o — ln a r b e a d o h h i e r p lm o n terrs e t e s oto n s we e ds u sd. M ie t o ih b c me y i rt n me o n n h i e p ci h rc mi g r ic se v x d me d wh c e o sb t ai t d a d i — h e o h

s ae c mpe tu t r cl o lx sr cu e.Ths a t l n rd c d t p c o i ri e ito u e he s a e n n— ln a nt lme ta ay i to c ie rf i ee n n lssme d, i e h
c a e me o no ,ef cie ov d s o to n sa d is f in i f u ey i r t n me o d i — e r s t d u in f t l s l h r mi g u % e ee o rl t ai t d a n h e v y e c n n i s p e o h n
有 限元法 作为 一种 理论 基 础 和广 泛 应 用 的数
对 于空 间问题 , 须将 所 考 虑 的物 体 划 分 为 空 间 必
摘要 : 限元法作 为一 种 非常有 效 的数 值 分析 方 法 , 分 析 大型 复杂 结构 中得到 广 泛 应 用。探 有 在
讨 了在分析 非线性 问题 时常使 用的迭代 法 和增 量 法及 其 各 自的 缺 点。 而 由迭 代 法和 增 量 法 结 合 而成 的混 合方 法 , 效 的解决 了纯粹 迭代 法 和增 量 法的 不足 。 并应 用此 混合 方 法 , 工 程 结 有 对 构进 行 了有限 元计算 , 分析 了其 承我 能 力 , 小了分析 空 间非 线性 问题 的误 差 。 减 关键 词 : 间非 线性 ; 限元 ; 代 法 ; 空 有 迭 增量 法 ; 载 能力 承

钢筋混凝土结构非线性有限元分析共3篇

钢筋混凝土结构非线性有限元分析共3篇

钢筋混凝土结构非线性有限元分析共3篇钢筋混凝土结构非线性有限元分析1钢筋混凝土结构是现代建筑结构中常用的一种结构形式。

由于钢筋混凝土结构自身的复杂性,非线性有限元分析在该结构的设计和施工过程中扮演着重要的角色。

非线性有限元分析是建立在解析的基础之上的,它可以更真实地模拟结构在实际载荷下的变形和破坏特性。

本文对钢筋混凝土结构的非线性有限元分析进行细致的介绍。

首先需要了解的是,钢筋混凝土结构存在多种非线性问题,如材料非线性、几何非线性和边界非线性等。

这些非线性问题极大地影响了结构的受力性能。

在结构的设计阶段,要对这些非线性因素进行充分分析。

钢筋混凝土结构在材料方面存在很多非线性问题,例如,混凝土的拉应力-应变曲线存在非线性变形,钢筋的本构关系存在弹塑性和损伤等等。

这些材料的非线性特性是钢筋混凝土结构变形和破坏的重要因素。

钢筋混凝土结构材料的非线性特性需要通过相关试验来获得,例如混凝土的轴向拉伸试验和抗压试验,钢筋的拉伸试验等,试验数据可以被用来建立预测结构非线性响应的有限元模型。

钢筋混凝土结构在几何方面存在很多非线性问题,例如,结构的非线性变形、结构的大变形效应、结构的初始应力状态等等。

钢筋混凝土结构几何的非线性效应可通过有限元分析明确地描述。

要对几何非线性进行分析,通常使用非线性有限元分析程序,其中包括基于条件梯度最优化技术的材料和几何非线性分析以及有限元法分析中使用的高级非线性模拟技术。

钢筋混凝土结构的边界条件也可能导致结构的非线性响应,例如基础的扰动、结构的支承和约束条件等。

所有这些条件都会导致模型在分析中出现非线性行为。

最后,非线性有限元分析可以简化结构设计的过程,并且可以更准确地分析结构的性能。

另外,分析过程中还可以考虑更多因素,例如局部的材料变形、应力浓度等等,让设计人员了解到结构的真实状态。

总之,钢筋混凝土结构非线性有限元分析是现代建筑结构中常用的一种结构分析方式,对于设计和施工都有着重要的意义。

无翼缘短肢剪力墙的非线性有限元分析

无翼缘短肢剪力墙的非线性有限元分析

无 翼 缘 短 肢 剪 力 墙 的 非 线 性 有 限 元 分 析
仇 永志

李丽平
要: 利用有限元的分析方法对这种无翼缘的短肢剪力墙结构体 系进行 了简化模 拟, 采用等效荷 载的办法进行 了双肢
短肢剪力墙 性能分析 , 讨论 了短肢 剪力墙 的受力特 点和破坏形态 , 以完善短肢剪力墙结构设计。
参考文献 :
1 E S18 20 , 水池外壁一般 喷涂沥 青 防水 层。用作 防水层 的沥青必 须符 [ ] C C 3 :0 2 给 水 排 水 工 程 钢 筋 混 凝 土 水 池 结 构 设 计 规 程 [] S. 合规定标准 , 施工前应检查 是否合格 。施工前应将 池外壁洗刷干
2 印l 2 2 o 1I 在 5 之 间的剪力墙 , ~8 其受力性 能较 为复杂 。由于无翼缘 短肢剪 力墙 的抗震 性能较差 ,高层 建筑混 《
凝土结构技术规程》 规定尽 量避免无翼缘 的短肢剪力墙 。本文对
l I
1 0 0
确定条件不 同情况下的弹性模 量和泊松 比。 本文按照受力简图来模拟 双肢剪力墙 的受力情况 , 在施加荷
筑 的顺序为 : 基础底板一池 壁一 环梁一顶盖 。池壁 连续 浇筑 的顺 要求设计 人员要 了解 施工 , 了解施 工中新材 料、 新技 术、 新方 法 , 序: 基础底板一池壁一环梁及顶盖。 2. 3 防 水 层 施 工 使设计切合施工 、 方便施工 。
ZHAO J a - i CE M e- e i n we N i d Ab ta t o u ig o h h r c e so en o c d c n r t trp n tu t r ,t i p p rd s u s st ek y tc n q e & u e n t — sr c :F c s n t ec a a t r fr if r e o ce e wa e o d s r c u e h s a e i se h e h iu sme s r sa d me h n c e

钢筋混凝土的非线性有限元分析

钢筋混凝土的非线性有限元分析

2 钢筋混凝土结构常规设计方法的缺陷
果。

4 一 2
维普资讯
J东建材 20 年第 2 “ 06 期
水泥与混凝土
系模型、 裂缝问题 以及有限元分析的计算机程序等几个 问题 。
3 钢筋混凝土的非线性有限元分析
最 把 有 限冗 方法 川十 钢 筋混 凝 土 结 构分 析 的是 N o S o d lS g 和 c r e i 。他 们在 早期 进行 的研 究 已包 含 了钢
承 载 能力 。 这种 设 计方 法在 一定程 度 上能 满足 工程 的要 (钢 筋 的影 响情 况也 类似 。 2 ) 每个 设 计理想 的混 凝土
其配筋率都近似等 同地提高构件的刚度 , 因此钢 求。 随着 国民经济的发展 , 越来越多大型、 复杂的钢筋混 构件 , 凝土 结 构需要 修建 , 且对 设计 周期 和工 程 质量 也提 出 筋 混凝土构件 实际的相对刚度 与采用纯混凝土截面计 而 了更高的要求 。这样一来, 常规的线弹性理论分析方法 算得 到 的构件 相 对刚 度基 本…致 。 用于钢筋混凝土结构和构件 的设计就力不从心。 设计人 因此 , 混凝:框架结构采用线弹性分析方法来进行 员常有 “ 算不清楚 ” 以及 “ 到底会 不会倒 ” 的困惑。为 结构分析是合理的,计算结果可以满足工程实际需要。 例如楼板 、 剪力墙 以及其它特种混 此 ,钢筋混凝土非线性有限元分析方法开始受到重视。 但是对于其它结构 , 其裂缝和钢筋的分布都是及其复杂 的, 单 简 同时, 随着有限元理论和计算机技术的进步 , 钢筋混凝 凝上结构, 尤其 是各 种混 土 非 线性 有 限元 分 析 方 法也 得 以迅速 的发 展 并 发挥 出 地采 用常 规 的相对 刚 度去 求解 是不 妥 的 。 凝_ 十构件 的 混合 结构 更是 如此 。 些 结构需 要采 用有 限 这 巨大 的作用 。 元分析方法才 能获得接近结构实际工作性状 的分析结

基于ANSYS的钢筋混凝土结构非线性有限元分析

基于ANSYS的钢筋混凝土结构非线性有限元分析

2、应力-应变曲线:描述了混凝土和钢筋的在往复荷载作用下的变形和能量吸收能力,显示 了结构的塑性变形和损伤演化过程。
参考内容
引言
钢筋混凝土结构在建筑工程中具有重要地位,其非线性行为对结构性能影响 显著。因此,进行钢筋混凝土结构的非线性有限元分析对于预测结构响应、优化 结构设计具有实际意义。本次演示将根据输入的关键词和内容,建立钢筋混凝土 结构非线性有限元分析模型,并详细描述分析过程、结果及结论。
基于ANSYS的钢筋混凝土结构 非线性有限元分析
基本内容
引言:
钢筋混凝土结构是一种广泛应用于建筑工程的重要材料,其非线性力学行为 对结构设计的安全性和稳定性具有重要影响。为了精确模拟钢筋混凝土结构的真 实行为,需要借助先进的数值计算方法,如非线性有限元分析。ANSYS作为一种 广泛使用的有限元分析软件,为钢筋混凝土结构的非线性分析提供了强大的支持。
对于钢筋混凝土,其非线性行为主要来自两个方面:混凝土的本构关系和钢 筋与混凝土之间的相互作用。在非线性有限元分析中,需要建立合适的模型来描 述这些行为。例如,可以采用各向异性本构模型来描述钢筋混凝土的力学行为, 该模型可以捕捉到材料在不同主应力方向上的不同响应。
二、ANSYS中混凝土本构关系研 究
在进行荷载试验时,通过施加不同大小和方向的荷载,检测结构的变形和破 坏过程。采用静力荷载试验和动力荷载试验两种方式,分别模拟实际结构在不同 荷载条件下的响应。在试验过程中,记录各阶段的位移、应变和荷载数据。
在进行有限元分析时,采用ANSYS软件对试验数据进行模拟分析。首先进行 模态分解,了解结构的基本振动特性。随后进行屈曲分析,预测结构的失稳趋势。 通过调整模型参数和网格划分,对比分析不同方案下的有限元计算结果,为结构 的优化设计提供依据。

高强钢筋混凝土梁非线性有限元分析

高强钢筋混凝土梁非线性有限元分析

高强钢筋混凝土梁非线性有限元分析摘要:本文采用高强混凝土箍筋约束本构关系模型yook-kong yong模型和5参数的willam-warnke破坏准则,根据实际工况,建立了适合本文的混凝土本构关系,从所得的应力—应变曲线图可知,高强混凝土开裂后,压区混凝土在相当长的时间仍处于弹性工作阶段,这一点和普通混凝土不同。

高强钢筋混凝土梁中配置适量箍筋可以增加相当可观的混凝土延性,使高强混凝土的脆性得到很大改善。

关键词:高强混凝土;本构关系;有限元法;非线性分析中图分类号: tu528 文献标识码: a 文章编号:高强混凝土基本构件包括受弯构件和压弯构件,受弯构件主要指高强钢筋混凝土梁,压弯构件包括高强钢筋混凝土柱和剪力墙,由于高强混凝土一般用于高层建筑和大跨度桥梁,因此评价高强混凝土构件的性能时,就不仅仅是其承载力,还包括其刚度、大变形能力和抗震性能。

本文主要研究钢筋高强混凝土梁在均布荷载作用下的承载力性能。

一、问题的描述一钢筋混凝土简支梁,承受荷载,梁跨度,设计时确定梁截面为,采用混凝土,纵向钢筋为,箍筋为四肢箍。

按非线性方法进行此梁的受力分析。

图1 均布荷载作用下钢筋混凝土简支梁二、基本假定(1) 构件从开始受力直至破坏,沿轴线一段距离(如相邻裂缝间距)范围内的平均应变始终保持平面变形;(2) 采用的混凝土本构模型为yook—kong yong模型,构件中箍筋的约束作用均考虑在混凝土的本构模型中;(3) 采用整体式钢筋混凝土模型,将钢筋弥散于混凝土中,并且认为这种材料是均匀、连续、各向同性的材料;(4) 混凝土材料采用5参数的willam—warnke破坏准则,用于检查混凝土开裂和压碎;(5) 采用von mises屈服准则,用于判断混凝土是否进入塑性;(6) 混凝土开裂模式采用弥散模型;(7) 一般不考虑时间(龄期)和环境温、湿度等的作用,即忽略混凝土的收缩、徐变和温湿度变化等引起的应力和变形状态。

基于PLAXIS的板桩结构非线性有限元分析

基于PLAXIS的板桩结构非线性有限元分析

析 ,并 与 弹性 线法 和 m 法 的计 算结 果 进行 对 比分
析 ,验 证 了 P A I L X S软件 的精 确性 和可靠性 ,说 明
分 析领 域 ,为板 桩 结 构 的受 力 分 析 提供 了有 利 的
分析工具。D w i 利用文克勒弹簧单元和非线性 a kn s
收稿 日期 :2 1— 2 2 0 0 1— 1
No - i e ra l sso h he t pi l ba e n PLAXI n ln a na y i ft e s e - l wa l s d o e
G I i—o g ME G Qn, I h n go Z A G B U n sn , N i L e —u , H N o J g Z
21 0 1年 6月
水 运 工 程
Po t & W ae wa En n e i r tr y gie rng
J n 2 1 u.0 1
No. S ra .45 6 e ilNo 4
第 6期
总 第 4 4期 5
基 于 P AXI L S的板桩 结构 非 线 性有 限元 分 析
( 、摩擦角 (, 、剪胀角 ( ) f , ) ) 、粘聚力 () c、
泊松 比 () 和 弹性模 量 () u E ,这些 参 数可通 过 常 规 的土工试 验获 得 。
布荷 载 为 3 P 。本文 仅 考虑 设 计 低水 位 永 久 组 0k a 合 状 况 ,此 时板 桩 墙后 剩 余 水 头 为 01 . m。码 头 8
Ke r s h e i l f i lme tP AXI; e s n b ly v wo d :s e t l wali t ee n; L De ;ne S ra o a it i

第14章-几何非线性有限元分析1

第14章-几何非线性有限元分析1
几何非线性问题: 板、壳等薄壁结构在一定载荷作用下,尽管应变
很小,甚至未超过弹性极限,但是位移较大。这时 必须考虑变形对平衡的影响,即平衡条件必须建立 在变形后的位形上,同时应变表达式应包括位移的 二次项---平衡方程和几何条件都是非线性的;
金属成型材料在受载时都可能出现很大的应变, 这时除了采用非线性的平衡方程和几何关系外,还 需要引入相应的应力应变关系。
的应力,用
t ij
( j 1,2,3)


边界静力平衡条件
t τ ji t n j tdAtdTi
3.5 应力张量- Lagrange应力张量、 Kirchhoff应力张 量(名义应力张量)
然而在分析过程中,必须联系应力与应变。如果应变是用变形前
的坐标(初始位形)表示的Green应变张量,那么,还需定义与之
3.1 物体运动的物质描述-体积及面积变换公式
0ni 0 dA eijk d 0xjd 0xk t ni tdA eijk d txjd txk d txi 0txi,jd 0x j d 0xi 0t xi,jd tx j
t ni tdA eijk( 0txj ,m )( 0txk ,n )d0xm d 0xn
相对应的,即关于变形前位形的应力张量。
对于变形后的位形(现时位形)tA ,
t dTi
有Euler应力张量
t τ ji t n j tdAtdTi
0 dTi
对于变形前的位形(初始位形) 0A,
可以定义名义应力
0 dTi 0 dA
? 0 dTi
3.5 应力张量- Lagrange应力张量、 Kirchhoff应力张
1 2
t 0
u
j
,i

非线性问题有限元分析

非线性问题有限元分析

【问题描述】如图I所示的模型,纵向尺寸均为100mm,水平尺寸均为30mm,圆角半径均为10mm,模型厚度为4mm。

图I 本例中所使用的模型【要求】在ANSYS Workbench软件平台上,通过改变材料属性,分别对该模型进行线性材料静力分析以及非线性材料的静力分析,并加以对比。

1.分析系统选择(1)运行ANSYS Workbench,进入工作界面,首先设置模型单位。

在菜单栏中找到Units下拉菜单,依次选择Units>Metric(kg,mm,s,℃,mA,N,mV)命令。

(2)在左侧工具箱【Toolbox】下方“分析系统”【Analysis Systems】中双击“静力结构分析”【Static Structural】系统,此时在右侧的“项目流程”【Project Schematic】中会出现该分析系统共7个单元格。

相关界面如图1所示。

图1 Workbench中设置静力分析系统2.输入材料属性(1)在右侧窗口的分析系统A中双击工程材料【Engineering Data】单元格,进入工程数据窗口。

(2)我们首先进行的是线性材料问题,选用系统默认的结构钢作为材料即可。

(3)可以看见,系统本身默认结构钢【Structural Steel】已在备选材料窗口中,在此不必再另行选择,直接单击【Project】选项卡回到项目流程界面即可。

3.导入几何模型(1)双击分析系统A中的“几何”【Geometry】单元格。

(2)找到菜单栏中的文件【File】选项,依次选择【File】>【Import External Geometry File】,在弹出的对话框中找到模型文件“non-linear.igs”并打开。

(3)单击工具栏中的【Generate】选项,即选项,确认生成导入的模型。

导入完成后的模型如图2所示。

(4)至此,模型导入步骤完成。

图2 导入的模型3.网格划分(1)双击Workbench界面中系统A的第四个单元格,模型【Model】单元格,进入【Static Structural】的静力分析模块。

预应力混凝土管桩受弯承载力非线性有限元分析

预应力混凝土管桩受弯承载力非线性有限元分析
吻 合较 好 。
关 键 词 : 应 力 混 凝 土 管 桩 ; 弯 承 载 力 ; 线 性 有 限 元 分 析 预 受 非
中 图 分 类 号 : U3 5 T 7 文 献标 识 码 : A 文 章 编 号 : 0 64 4 ( 0 7 0 — 0 — 4 1 0 — 5 0 2 0 ) 4 0 50
No i e r Fi t e e nln a nie El m ntAna y i f t e Be d c r y ng l s so h n — a r i Ca a iy o e t e s d Co c e e Pi e Pie p c t f Pr s r s e n r t p l s
摘 要 : 应 力 混 凝 土 管 桩 在 水 平 地 震 作 用 下 , 桩 与桩 帽 接合 部 承 受较 大 的 弯矩 作 用 , 发 生 弯 曲破 坏 。本 预 管 易 文 采 用 非线 性 有 限 元 方 法 , 2根 预 应 力 混凝 土 管 桩 试 件 的受 弯 承 载 力 进 行 了模 拟 分 析 , 将 分 析 结 果 与 试 对 并 件 的试 验结 果进 行 了对 比分 析 。分 析 结 果 表 明 , 建 立 的计 算 模 型 是 合 理 可 行 的 , 算 分 析 结 果 与 试 验 结 果 所 计
e e i n a e nd c t d t tt o m e v o gr e ntwih t a t r,t o e h t xp rme t lon s i ia e ha he f r r ha e a go d a e me t he l t e hus pr v d t a

L in h n , XU M ig CH EN — u , LI Big k n IJa — o g n , Li a h U n — a g

材料非线性有限元分析

材料非线性有限元分析
1 ijkl
e p 1 d ij d ij d ij Dijkl d kl f , ij d
A f , p Dijkl f , kl M
ij
dij ( D
dij ( D
1 ijkl
H (l ) f , ij f , kl )d kl Dep1,ijkl d kl A
1 J 2 [( 1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 ] 6 2 2
随动强化的米塞斯屈服准则
这种材料的屈服面方程为
p ij 1 1 p p f ( sij , , k ) [ ( sij ij )( sij ij )] 2 0 0 2
kk pp

纯剪
单向拉伸
Gp是塑性剪切 模量
Ep是塑性拉伸 模量
A f , p Dijkl f , kl M
ij
f , kl Dijkl f , kl
s ij G 2J 2G s ij G 2 2 2
由此可得A=G+Gp(或A=G+Ep/3),又因 1 1G G p Dijkl Dijkl f , kl Dklij f , kl sij skl A A 1 G G G 2 s ij s ij s kl s 2 kl G Gp G Gp p p d ij Dijkl d kl 由此可得弹塑性矩阵为
J 2 sij sij / 2
,因此
由于偏张量第一不变量=0
J1 sii 0
1 2 2 2 J 2 [( s11 s22 ) 2 ( s22 s33 ) 2 ( s33 s11 ) 2 ] s12 s23 s31 6

材料非线性有限元分析

材料非线性有限元分析

材料非线性有限元分析材料非线性有限元分析是一种重要的计算力学方法,用于研究在载荷作用下,材料会发生非线性行为的情况。

这种分析方法已经被广泛应用于工程领域,例如建筑结构、航空航天以及汽车工业等。

本文将详细介绍材料非线性有限元分析的原理、方法和应用。

首先,我们来介绍一下材料非线性。

在工程领域,材料的非线性行为主要包括弹塑性、损伤、断裂、破坏等。

这些非线性行为往往在高载荷作用下会显著增加结构的应力和应变,从而导致结构的失效。

因此,准确地预测和分析这些非线性行为对于工程设计和结构优化具有重要意义。

材料非线性有限元分析是一种基于有限元方法的计算机模拟技术,用于模拟和分析复杂结构在非线性载荷下的力学行为。

它通过将结构离散为许多小的有限元单元,并以数学模型描述每个单元的材料行为,从而建立了结构的有限元模型。

然后,结构的力学行为可以通过求解相应的离散形式的力学方程得到。

在材料非线性有限元分析中,有两个关键问题需要解决。

首先是材料本构模型的建立。

材料本构模型是描述材料应力和应变关系的数学模型,常用的包括弹性模型、塑性模型、损伤模型等。

选择合适的材料本构模型对准确预测和分析结构的非线性行为至关重要。

其次是数值方法的选择。

对于材料非线性问题,通常需要使用迭代算法,如牛顿-拉夫森法,来求解非线性方程。

此外,还需要选择适当的数值积分方法,以解决离散形式的力学方程。

材料非线性有限元分析在许多领域都有广泛的应用。

在结构工程领域,它可以用于分析钢筋混凝土结构、大跨度桥梁以及高层建筑等的受力性能。

在航空航天领域,材料非线性有限元分析可用于研究飞机机翼、航天器的结构强度和振动特性。

在汽车工业中,它可以用于分析车辆的碰撞、耐久性和振动特性。

总结起来,材料非线性有限元分析是一种重要的计算力学方法,能够准确地模拟和分析结构在非线性载荷下的力学行为。

它在工程领域有着广泛的应用,能够为工程设计和结构优化提供科学依据。

未来随着计算机硬件和数值方法的不断发展,材料非线性有限元分析将在更多领域得到应用,并为解决工程实际问题提供更准确和高效的方法。

白鹤滩拱坝三维非线性有限元分析

白鹤滩拱坝三维非线性有限元分析

to ( o d t nOn ) t ema mu p i cp ltn i t e s M P )o h p te m a eo h a i in C n ii e ,h x o i m rn i a e sl sr s ( TS n t eu sr a f c ft ed m S e
6 0 P , c u rn tt erg ta c n tt eb to ee a in o 5 , n h xm u p i cp l . 4M a o c r iga h ih rh e d a h o t m lv t f5 0m a dt ema i m rn ia o c mp e sv te so h o sr a c 4 5 Ⅳ Pa o c rig a h et rh e da h lv to o rs ie sr s nt ed wn te m f ei 1 . 0 I , c u rn tt elf c n t eee a in a S a t
Ke r s h d a l tu t r ;a c a ;n n ie rt ywod : y r u i s r c u e rh d c m o l ai n y;fnt lm e tm eh d iieee n t o
白鹤滩水电站位于金沙江下游四川省宁南县 和云南省巧家县境 内, 上接乌东德梯级 , 下邻溪洛 渡 梯级 , 离 溪洛 渡水 电站 15k 距 9 m。白鹤滩 水 电 站的开发任务 以发 电为主, 兼有 防洪 、 拦沙 、 改善 下游 航运条 件 和 发展 库 区通 航 等 , 西 电东送 骨 是 干电源点之一 。电站装机容量 1 0 200MW , 多年 平均发电量 53 1 k ・ 。白鹤滩水 电站水 3. 亿 W h 库控制流域面积 4. 3 k 2总库容 11 4 亿 30 万 m , 9. 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非线性有限元分析1 概述在科学技术领域,对于许多力学问题和物理问题,人们已经得到了它们所应遵循的基本方程(常微分方程或偏微分方程)和相应的定解条件(边界条件)。

但能够用解析方法求出精确解的只是少数方程性质比较简单,并且几何形状相当规则的问题。

对于大多数工程实际问题,由于方程的某些特征的非线性性质,或由于求解区域的几何形状比较复杂,则不能得到解析的答案。

这类问题的解决通常有两种途径。

一是引入简化假设,将方程和几何边界简化为能够处理的情况,从而得到问题在简化状态下的解答。

但是这种方法只是在有限的情况下是可行的,因为过多的简化可能导致误差很大甚至是错误的解答。

因此人们多年来一直在致力于寻找和发展另一种求解途径和方法——数值解法。

特别是五十多年来,随着电子计算机的飞速发展和广泛应用,数值分析方法已成为求解科学技术问题的主要工具。

已经发展的数值分析方法可以分为两大类。

一类以有限差分法为代表,主要特点是直接求解基本方程和相应定解条件的近似解。

其具体解法是将求解区域划分为网格,然后在网格的结点上用差分方程来近似微分方程,当采用较多结点时,近似解的精度可以得到改善。

但是当用于求解几何形状复杂的问题时,有限差分法的精度将降低,甚至发生困难。

另一类数值分析方法是首先建立和原问题基本方程及相应定解条件相等效的积分提法,然后再建立近似解法并求解。

如果原问题的方程具有某些特定的性质,则它的等效积分提法可以归结为某个泛函的变分,相应的近似解法实际上就是求解泛函的驻值问题。

诸如里兹法,配点法,最小二乘法,伽辽金法,力矩法等都属于这一类方法。

但此类方法也只能局限于几何形状规则的问题,原因在于它们都是在整个求解区域上假设近似函数,因此,对于几何形状复杂的问题,不可能建立合乎要求的近似函数。

1960年,R.W.CLOUGH发表了有限单元法的第一篇文献“The Finite Element Method in Plane Stress Analysis”,这同时也标志着有限单元法(FEM)的问世。

有限单元法的基本思想是将连续的求解区域离散为一组有限个,且按一定方式相互联接在一起的单元的组合体。

由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模型化几何形状复杂的求解域。

并且可以利用在每一个单元假设的近似函数来分片地表示全求解域上待求的未知场函数,从而使一个连续的无限自由度问题变成离散的有限自由度问题。

现已证明,有限单元法是基于变分原理的里兹法的另一种形式,从而使里兹法分析的所有理论基础都适用于有限单元法,确认了有限单元法是处理连续介质问题的一种普遍方法。

利用变分原理建立有限元方程和经典里兹法的主要区别是有限单元法假设的近似函数不是在全求解域而是在单元上规定的,而且事先不要求满足任何边界条件,因此可以用来处理很复杂的连续介质问题。

在短短四十余年的时间里,有限单元的分析方法已经迅速地发展为适合于使用各种类型计算机解决复杂工程问题的一种相当普及的方法。

如今,有限元广泛地应用于各个学科门类,已经成为工程师和科研人员用于解决实际工程问题,进行科学研究不可或缺的有力工具。

有限单元法的应用围已由弹性力学平面问题扩展到空间问题,板壳问题,由静力平衡问题扩展到稳定问题,动力问题和波动问题。

分析的对象从弹性材料扩展到塑性,粘弹性,粘塑性和复合材料等,从固体力学扩展到流体力学,传热学等连续介质力学领域。

在工程分析中的作用已从分析和校核扩展到优化设计并和计算机辅助设计技术相结合。

各种各样商业化的大型通用有限元软件层出不穷,不断推出新。

可以预见,随着现代力学,计算数学,计算机技术等学科的发展,有限单元法作为一个具有巩固理论基础和广泛应用围的数值分析工具,必将得到进一步的完善和发展。

2 非线性问题的类型和求解特点2.1 非线性问题的类型2. 1. 1 线性分析的含义在有限元分析中的线性假设包含下列含义:即结点位移为无限小量,材料为线弹性,加载时边界条件的性质保持不变。

于是,静力平衡方程可以表示为:[]{}{}R U K = (2.1)其中,[]K 为刚度矩阵,{}R 为荷载矢量。

由于[]K 和{}R 的元素为常数,故位移响应{}U 是荷载矢量{}R 的线性函数。

也就是说,如果{}R 变为{}R α,则{}U 变为{}U α,其中,α为常数。

这就是所谓的线性有限元分析。

如果上述假设中的任何一条不能得到满足,那么就属于非线性有限元分析。

2. 1. 2 非线性分析的必要性结构力学问题,从本质上讲都是非线性的,线性假设只是实际工程问题的一种简化。

当然,任何实际工程问题的求解都避免不了适当地简化,简化是否合理主要应根据求解效果和实际经验来判断。

对于目前工程实际中的很多问题,如地震作用下结构的弹塑性动力响应,高层建筑抗风,大跨度网壳结构动力稳定性,索膜结构找形荷载与裁减分析,大型桥梁风致振动等问题的研究,仅仅假设为线性问题是很不够的,常常需要进一步考虑为非线性问题。

因此,对各种工程结构的非线性分析就是必不可少且日趋重要了。

对于结构力学的非线性问题来说,有限单元法是最为有效的数值分析方法。

2. 1. 3 非线性问题的类型通常,把非线性问题分为两大类,即分为几何非线性和材料非线性。

但从建立基本方程和程序设计的方便出发,又可分为三种类型:1.材料非线性:非线性效应仅由应力应变关系的非线性引起,位移分量仍假设为无限小量,故仍可采用工程应力和工程应变来描述,即仅材料为非线性。

非线性的应力应变关系是结构非线性的常见原因,许多因素都可以影响材料的应力应变性质,包括加载历史(如在弹塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)等。

2.几何非线性:如果结构经受大变形,则变化了的几何形状可能会引起结构的非线性响应,这又可以分为两种情形:第一种情形,大位移小应变。

只是物体经历了大的刚体平动和转动,固连于物体坐标系中的应变分量仍假设为无限小。

此时的应力应变关系则根据实际材料和实际问题可以是线性的也可以是非线性的。

第二种情形,大位移大应变。

也即最一般的的情况,此时结构的平动位移,转动位移和应变都不再是无限小量,本构关系也是非线性的。

3.状态非线性:除以上两种非线性问题之外,还有一种非线性问题,即由于系统刚度和边界条件的性质随物体的运动发生变化所引起的非线性响应。

例如,一根只能拉伸的钢索可能是松散的,也可能是绷紧的;轴承套可能是接触的,也可能是不接触的; 冻土可能是冻结的,也可能是融化的。

这些系统的刚度和边界条件由于系统状态的改变在不同的值之间突然变化。

状态改变也许和载荷直接有关,也可能由某种外部原因引起。

最为典型的就是接触问题,接触是状态非线性类型中一个特殊而重要的子集。

通常情况下,状态非线性问题可以在上述材料非线性和几何非线性类型中的每一种同时出现,从而使得问题的分析变得更为复杂。

2.2 非线性问题的求解特点2. 2. 1 非线性分析的基本问题非线性分析的基本问题是求出在当前荷载作用下的平衡状态。

如果作用的荷载被描述成时间的函数,则物体有限元离散系统的平衡方程可以表示为:{}{}0=-F R t t (2.2)其中,矢量{}R t由t 时刻外荷载的结点力分量所构成,而矢量{}F t 则表示t 时刻的单元应力所引起的结点力分量。

平衡方程(2.2)应针对t 时刻的几何位形建立,并应计入所有的非线性效应。

如果是动力分析,矢量{}R t中还应当包括惯性力和阻尼力。

在求解非线性问题时,(2.2)式应在全部加载历史中成立。

变量t 的引入并不意味着一定是动力问题。

在静力分析中,t 不具有真实“时间”的含义,它的不同取值只是表示相应于不同位形的不同的荷载水平。

但是,在动力分析或具有时间效应的静力分析中,变量t 就有了它本来的“时间”的含义。

2. 2. 2 非线性方程组的增量逐步解法对于许多工程结构,我们所关心的常常是在特定的荷载水平下,或相应的时间物体中的应力和变形。

实际问题根据其解法可以分为两大类型。

第一类问题无需计算中间变形过程,可直接求解在给定荷载下的平衡位形。

但是,如果问题的几何性质或材料性质与路径相关或与时间相关,即该问题依赖于变形历史,则中间变形过程的计算是不可缺少的,这就是第二类问题。

从本质上来说,非线性问题是第二类问题。

此时,往往采用增量分析的方法。

增量逐步解法的基本思想是:假定t 时刻的解为已知,要求t +Δt 时刻的解,其中,Δt 是适当选择的时间增量。

在t +Δt 时刻,式(2.2)写成为:{}{}0=-∆+∆+F R t t t t (2.3)这里,左上标表示为t +Δt 时刻的量。

由于t 时刻的解为已知,因此,可以写为: {}{}{}F F F t tt +=∆+ (2.4) 式中,{}F 表示t 到t +Δt 时间间隔,由于单元应力增量所引起的结点力增量矢量。

这一矢量可以近似表示为:{}[]{}U K F t ≈ (2.5)式中,[]K t为相应于t 时刻材料和几何条件的切线刚度矩阵。

{}U 为Δt 时间间隔中的结点位移增量,现在它还是未知的。

将式(2.4)和(2.5)代入式(2.3)中,得到:[]{}{}{}F R U K t t t t -=∆+ (2.6)上式中只有位移增量{}U 为未知,一旦解出,即可算得t +Δt 时刻的位移: {}{}{}U U U t t t +=∆+ (2.7)根据{}U t t ∆+,就容易算出t +Δt 时刻的应力及{}F t t ∆+,{}K t t ∆+,于是马上可以着手下一步的计算。

但要指出的是,式(2.5)是一个近似表达式,因此t +Δt 时刻的解也是近似的,如果急于求成的作下去,最终结果可能出现不可忽视的重大误差以致于达到荒谬的地步。

解决这一困难的办法是以花费计算时间为代价,即在t 到t +Δt 时步中进行足够次数的迭代,以保证最终的解获得足够的精度。

2. 2. 3 引入修正Newton -Raphson 迭代格式的增量逐步解法现在更多采用的方法是在每一个荷载增量步中,使用Newton -Raphson 迭代法或修正的Newton -Raphson 迭代法。

由于后者不需要每次迭代时都计算切线刚度矩阵,因此在实际中具有更广泛的应用。

现对该方法做简单的介绍。

在t 时刻到t +Δt 时刻的时步中,修正Newton -Raphson 法的迭代公式可以表示为:[]{}(){}{}()1-∆+∆+-=∆i t t t t i t F R U K (2.8){}(){}(){}()i i t t i t t U U U ∆+=-∆+∆+1 (2.9)其中,i 表示迭代步数,依次取1,2,3,…,其迭代所用的初始值正是t 时刻的解,即: {}(){}{}(){}F F U U t t t t t t ==∆+∆+00,(2.10)式(2.8)的右端项:{}{}()1-∆+∆+-i t t t t F R 称为第i 步迭代前的不平衡荷载。

相关文档
最新文档