Synchronization and State__ Estimation for Discrete-Time Complex Networks with Distributed Delays

合集下载

一种基于代价函数的正交频分复用中符号同步与频偏估计算法

一种基于代价函数的正交频分复用中符号同步与频偏估计算法
π ε k/ N 以看作是接收到的样值点乘上 ej2 。其中ε =
J =
k =0
∑|
r ( k) - r ( k + N ) |
( 4)
我们把类似上面的用于获取目标量 ( 如同步点) 而构造的函数称为代价函数 。代价函数在目标量点 处取得极值 。 考虑到噪声和频偏的影响 ,将式 ( 4) 中的代价函
( Institute of Information Engineering of PLA , Zhengzhou 450002 ,China) Abstract :In this paper an algorithm of symbol synchronization and frequency offset estimation for OFDM based on the cost function is proposed. The algorithm is derived from a cost function , which is based on the character of the OFDM signal frame structure. Theoretical analysis shows that the symbol synchronization is independent from the frequency offset estimation when frequency offset exists. The simulation results indicate that the pro2 posed algorithm has good performance. Key words :Orthogonal frequency division multiplexing (OFDM) ; Symbol synchronization ; Frequency offset Es2 timator ; Cost function ; Algorithm 2 种方法 ,一种是利用接收端已知的导频信号来进

full packet对EVM的影响

full packet对EVM的影响

在对Wi-Fi产品的EVM指标测试过程中,我们经常看到有一个Full Packet的选项,无论是Agilent还是Litepoint的仪器。

当勾选Full Packet这个参数时,会发现EVM会提升2-3dB,我见过最多的可以提升4-6dB。

显而易见,这个参数影响巨大。

在查阅了一些资料以后,我想简单说明一下。

首先,在一个以OFDM 为调制架构的系统如802.11a,对于频率偏移(frequency offset)是很敏感的。

这个频率偏移造成的原因主因有两个,第一是因为传送端的频率震荡器(oscillator)和接收端的频率震荡器没有相同频率所造成。

第二是因为mobile 端的移动造成多普勒效应(Doppler Effect)。

因为频率偏移对OFDM 系统会产生ICI,这会使得系统效能大幅降低,因此解决频率偏移的问题对于802.11a等OFDM 的传输系统相当地重要。

在802.11a 的系统里,它是采用了training sequence 的方式来达到频率同步的目的。

它的做法就是在要传输真正的数据前先送一段training sequence 也就是我现在要介绍的preamble,利用preamble 在接收端可以侦测出现在频率的偏移量是多少,再将它予以更正。

Training sequence 的设计方法有很多种,在802.11a 里它是把training sequence 分成两个部分,第一部份是short sequence,里面包含了10 个相同的小symbol,而这10 个小symbol 可以对burst mode 的系统作frame synchronization以及对频率粗调(coarse synchronization)。

第二部分是long sequence,里面则包含了2 个相同较长的symbol。

这个long sequence 可以做信道预估(channel estimation)以及对频率部分做细调的动作(fine synchronization)。

电网电压不平衡下电压同步信号的检测

电网电压不平衡下电压同步信号的检测

电网电压不平衡下电压同步信号的检测陈益广;闫志乾;王颖【摘要】在对传统锁相环进行充分研究的基础上,通过在两相静止坐标系中利用状态空间估计和一系列数学变换,重新建立电网电压的动态模型,以此获得电网三相电压基波成份的估计值,再利用改进的T/4延迟法分离得到基波电压正负序分量.最后,结合传统锁相环技术实现对基波电压相角的准确跟踪检测.仿真分析表明,该方法既能快速准确的分离出电网电压中正、负序基波分量,又能准确跟踪电网电压的相角,同时可得到电网电压的频率和幅值.%Based on the full study on the traditional phase-locked loop,the dynamic model of the grid voltage can be re-established and the estimation of the three-phase voltage fundamental components can be obtained by a series of transformations in two-phase stationary coordinate system.Positive and negative sequence components of the fundamental voltage can be separated by using the improved T/4 delay method.Then it can realize accurate tracking and detection of the voltage phase angle combined with the traditional phase locked loop technique.Simulation results verify that the method not only can quickly and accurately separate out positive and negative sequence of the grid voltage,but also can realize accurate tracking of the phase angle of the voltage and can get the frequency and amplitude of the voltage at the same time.【期刊名称】《电力系统及其自动化学报》【年(卷),期】2013(025)003【总页数】5页(P98-102)【关键词】状态空间估计;锁相环;正负序分量;谐波【作者】陈益广;闫志乾;王颖【作者单位】天津大学智能电网教育部重点实验室,天津300072;天津大学智能电网教育部重点实验室,天津300072;天津经济技术开发区汉沽现代产业区总公司,天津300480【正文语种】中文【中图分类】TM762近年来随着分布式发电尤其是风力发电的快速发展,风力机组对于电力系统的稳定运行产生着越来越重要的影响。

IEEE_802.15.4协议原理与应用

IEEE_802.15.4协议原理与应用
This will define new PHYs for smart neighbourhood networks. These may include applications such as smart grid applications for the energy industry. It may include the 902 - 928 MHz band.
Master/Slave
Peer-Peer Topology
Peer-to-Peer Cluster tree
Full functional device
Communications flow
Cluster-tree-Topology
Network coordinator
Network coordinator PAN coordinator Non-coordinator FFD
IEEE 802.15.4不同版本
IEEE 802.15.4 Version IEEE 802.15.4 - 2003 Details and comments This was the initial release of the IEEE 802.15.4 standard. It provided for two different PHYs - one for the lower frequency bands of 868 and 915 MHz, and the other for 2.4 GHz. ------ZigBee使用的是这个版本。 This 2006 release of the IEEE 802.15.4 standard provided for an increase in the data rate achievable on the lower frequency bands. This release of the standard updated the PHY for 868 and 915 MHz. It also defined four new modulation schemes that could be used - three for the lower frequency bands, and one for 2.4 GHz. This version of the IEEE 802.15.4 standard defined two new PHYs. One used UWB technology and the other provided for using chirp spread spectrum at 2.4 GHz. Updates for 2.4 GHz, 868 MHz and 915 MHz, UWB and the China 779-787 MHz band. 2.4 GHz, 868 MHz, 915 MHz and Japanese 950 - 956 MHz band. This release defines MAC enhancements to IEEE 802.15.4 in support of the ISA SP100.11a application.

电力系统继电保护中英文对照表

电力系统继电保护中英文对照表

1 Directional protection 方向保护2 Distance protection 距离保护3 Over current protection 过流保护4 Pilot protection高频保护5 Differential protection 差动保护6 Rotor earth-fault protection 转子接地保护7 Stator earth-fault protection 定子接地保护8 Over fluxing protection 过励磁保护9 Back-up protection 后备保护11 Sequential tripping 顺序跳闸12 Start up/Pick up 起动13 Breaker断路器14 Disconnecting switch 隔离开关15 Current transformer 电流互感器16 Potential transformer 电压互感器17 Dead zone/Blind spot 死区18 Vibration/Oscillation 振荡19 Reliability可靠性20 Sensitivity灵敏性21 Speed速动性22 Selectivity选择性23 Step-type distance relay 分段距离继电器24 Time delay延时25 Escapement/interlock/blocking 闭锁26 Incorrect tripping误动27 Phase to phase fault 相间故障28 Earth fault接地故障29 Through- fault穿越故障30 Permanent fault 永久性故障31 Temporary fault瞬时性故障32 Overload 过负荷34 Contact multiplying relay 触点多路式继电器35 Timer relay 时间继电器40 Ground fault relay 接地故障继电器41 Recloser 重合闸42 Zero-sequence protection 零序保护43 Soft strap 软压板44 Hard strap 硬压板45 High resistance 高阻46 Second harmonic escapement 二次谐波制动47 CT line-break CT 断线48 PT line-breakPT 断线49 Secondary circuit 二次回路50 AC circuit breaker 交流开关电路51 AC directional over current relay 交流方向过流继电器52 Breaker point wrench 开关把手53 Breaker trip coil 断路器跳闸线圈54 Bus bar 母线; 导电条55 Bus bar current transformer 母线电流变压器56Bus bar disconnecting switch 分段母线隔离开关57Bus compartment 母线室; 汇流条隔离室58Bus duct 母线槽; 母线管道59 Bus hub 总线插座60 Bus line 汇流线61Bus insulator 母线绝缘器62Bus request cycle 总线请求周期Bus reactor 母线电抗器64Bus protection 母线保护65Bus rings 集电环66Bus rod 汇流母线67Bus section reactor 分段电抗器68Bus structure母线支架; 总线结构69Bus tie switch 母线联络开关70Bus-bar chamber 母线箱71Bus-bar fault 母线故障72Bus-bar insulator 母线绝缘子73Busbar sectionalizing switch 母线分段开关Current attenuation 电流衰减75Current actuated leakage protector 电流起动型漏电保护器76Current balance type current differential relay 电流平衡式差动电流继电器;差动平衡式电流继电器77Current changer 换流器78Current compensational ground distance relay 电流补偿式接地远距继电器79Current consumption 电流消耗80Coil adjuster 线圈调节器81Coil curl 线圈82Coil current 线圈电流83Coil end leakage reactance 线圈端漏电抗84Coil inductance 线圈电感Current transformer phase angle 电流互感器相角86Distance relay; impedance relay 阻抗继电器87Power rheostat电力变阻器88Electrically operated valve电动阀门89Electrical governing system 电力调速系统90Field application relay 励磁继电器; 激励继电器91High tension electrical porcelain insulator 高压电瓷绝缘子92Option board任选板; 选配电路板; 选择板93Oscillator coil振荡线圈94Over-V oltage relay过压继电器95Power factor relay功率因素继电器Protection against overpressure 超压防护97Protection against unsymmetrical load 不对称负载保护装置98 Protection device 保护设备; 防护设备99Protection reactor 保护电抗器100 Protection screen 保护屏101 Protection switch 保护开关102 Insulator cap 绝缘子帽; 绝缘子帽103 Insulator chain 绝缘子串; 绝缘子串104 Insulator arc-over 绝缘子闪络; 绝缘子闪络105Insulator arcing horn 绝缘子角形避雷器; 绝缘子角形避雷器106 Insulator bracket 绝缘子托架; 绝缘子托架Impedance compensator 阻抗补偿器108 Resistance grounded neutral system 中心点电阻接地方式109 Reactance bond电抗耦合; 接合扼流圈110 Reactance of armature reaction 电枢反应电抗111 Under-Voltage relay 欠压继电器112 Voltage differential relay 电压差动继电器114 Relay must-operate value 继电器保证启动值115 Relay act trip继电器操作跳闸116 Relay overrun继电器超限运行117 Longitudinal differential protection 纵联差动保护118 Phase-angle of voltage transformer 电压互感器的相角差119 Zero-sequence current/residual current 零序电流120 Residual current relay 零序电流继电器121 Bus bar protection/bus protection 母线保护122 Breaker contact point 断路器触点123 Cut-off push断路器按钮124 Gaseous shield瓦斯保护装置125 Neutral-poi nt earthi ng 中性点接地126 In ternal fault内部故障127 Auxiliary con tacts辅助触点128 Neutral auto-tra nsformer中性点接地自耦变压器129 Fuse box/fusible cutout 熔断器130 Pulse relay/surge relay 冲击继电器七戒旅长存*2005 七2007-10-26 11:14131 Auxiliary relay/intermediate relay中间继电器132 Common-m ode voltage 共模电压133 Impeda nee mismatch 阻抗失配134 Intermittent fillet weld间断角缝焊接135 Loss of synchronism protect ion 失步保护136 Closing coil 合闸线圈137 Electro polarized relay 极化继电器138 Power direction relay 功率方向继电器139 Direct-to-ground capacity 对地电容140 Shunt running潜动141 Trip/opening跳闸142 Trip switch跳闸开关143 Receiver machine收信机144 High-frequency direction finder 高频测向器145 Capacity charge电容充电146 time over-current 时限过电流148 Surge guard冲击防护149 Oscillatory surge振荡冲击150 Fail safe interlock五防装置151 Differential motion差动152 Capacitive current 电容电流154 Time delay延时156 Normal inverse 反时限157 Definite time定时限158 Multi-zone relay 分段限时继电器159 Fail-safe unit五防161 Unbalance current 不平衡电流162 Blocking autorecloser 闭锁重合闸163 Primary protection 主保护164 Tap分接头165 YC (telemetering) 遥测167 Fault clearing time 故障切除时间168 Critical clearing time 极限切除时间169 Switch station 开关站170 Traveling wave行波171 Protection feature 保护特性172 Fault phase selector 故障选线元件173 Fault type 故障类型174 Inrush 励磁涌流175 Ratio restrain 比率制动176 Laplace and Fourier transforms 拉氏和傅利叶变换177 Short circuit calculations 短路计算178 Load flow calculations 潮流计算179 Oscillatory reactivity perturbation 振荡反应性扰动180 Quasi-steady state 准稳态181 Automatic quasi-synchronization 自动准同步182 Protective relaying equipment 继电保护装置183 AC directional overcurrent relay 交流方向过流继电器184 AC reclosing relay 交流重合闸继电器185 Annunciator relay 信号继电器188 Carrier or pilot-wire receiver relay 载波或导引线接受继电器189 Current-limiting relay 限流继电器190 Definite time relay 定时限继电器192 Lockout relay闭锁继电器;保持继电器;出口继电器193 Micro-processor based protective relay 微机继电保护194 Voltage -controlled overcurrent relay 电压控制过电流继电器196 Fault diagnosis故障诊断197 Back-up protection后备保护198 Overhead line架空线199 High voltage line高压线路200 Underground cable埋地电缆201 Circuit breaker断路器202 Brushless excitation无刷励磁203 Interlock 闭锁204 Trigger 触发器205 Winding-to-winding insulation 绕组间的绝缘206 Porcelain insulator瓷绝缘子207 Tie line联络线208 Leased line租用线路209 Private line专用线路211 Remote Terminal Unit 远程终端设备212 Economic dispatch system 经济调度系统213 State estimation状态估计214 Trip by local protection保护跳闸215 Close by local protection 保护合闸216 Operational (internal) overvoltage 操作(内部)过电压217 Sampling and holding采样保持218 Synchronized sampling 采样同步219 Manipulation操作220 Measuri ng/Meteri ng unit测量元件221 Locus of measured impeda nee测量阻抗轨迹222 Differen tial mode in terfere nee差模干扰223 Output (executive) orga n出口(执行)元件224 Overeurre nt relay with un dervoltage supervision低电压起动的过电流保护225 Low impeda nee busbar protect ion低阻抗母线保护回复2帖帖七戒旅长*膏2005六2007-10-26 11:15228 Half-cycle in tegral algorithm 半周积分算法230 Coordin ati on of relay sett ings保护的整定配合231 Reach (setti ng) of protect ion 保护范围(定值)232 Coordination time interval保护配合时间阶段233 Perce ntage differe ntial relay比率差动继电器234 Electromag netic relay电磁型继电器236 In sta ntan eous un dervoltage protect ion with curre ntsupervisi on 电流闭锁的电压速断保护237 Operating equation (criterion) 动作方程(判据)238 Operating characteristic 动作特性239Harmonic restraining 谐波制动241Segregated current differential protection 分相电流差动保护242Branch coefficient 分支系数243Power line carrier channel (PLC) 高频通道245High speed signal acquisition system 高速数字信号采集系统246Busbar protection with fixed circuit connection 固定联结式母线保护247Fault recorder 故障录波器248Fault phase selection 故障选相Compensating voltage 补偿电压252Polarized voltage 极化电压253Memory circuit 记忆回路254Unblocking signal 解除闭锁信号255Power system splitting and reclosing 解列重合闸256Connection with 90 degree90 度接线257Insulation supervision device 绝缘监视258Inrush exciting current of transformer 励磁涌流259Two star connection scheme 两相星形接线方式260Zero mode component of traveling wave 零模行波261Inverse phase sequence protection 逆相序保护Offset impedance relay 偏移特性阻抗继电器263Frequency response 频率响应264Activate the breaker trip coil 起动断路器跳闸266Permissive under reaching transfer trip scheme 欠范围允许跳闸式267Slight (severe) gas protection 轻(重)瓦斯保护268Man -machine interface 人机对话接口270Three phase one shot reclosure 三相一次重合闸271Out-of-step失步272Accelerating protection for switching onto fault 重合于故障线路加速保护动作275Abrupt signal analysis 突变信号分析276Out flowing current 外汲电流False tripping误动279Turn to turn fault ,inter turn faults 匝间短路280Relay based on incremental quantity 增量(突变量)继电器281Vacuum circuit breaker 真空开关282Power swing (out of step) blocking 振荡(失步)闭锁284Successive approximation type A/D 逐次逼进式A/D285Infeed current 助增电流286Self reset 自动复归287Adaptive segregated directional current differential protection 自适应分相方向纵差保护288Adaptive relay protection 自适应继电保护Angle of maximum sensitivity 最大灵敏角292Out of service 退出运行294Waveform 波形295Outlet 出口296Electromechanical 机电的297 Magnitude of current 电流幅值299Traveling wave signal 行波信号300Measurement signal 测量信号301Traveling wave relay 行波继电器302Transmission line malfunction 输电线路异常运行303 Subsystem 子系统Positive sequence impedance 正序阻抗305Negative sequence impedance 负序阻抗306Zero sequence impedance 零序阻抗307Digital signal processor 数字信号处理器308Frequency sensing 频率测量309Cable relay电缆继电器310Under power protection 低功率保护311Under voltage protection 低电压保护312Transient analysis暂态分析313Voltage sensor电压传感器314Zero-sequence protection 零序保护Zero sequence current transducer 零序电流互感器316Shunt 旁路,并联317Series 串联,级数318Parallel 并联319Saturation 饱和320 Free-standing 独立的,无需支撑物的321Troidal 环形的,曲面,螺旋管形322Bushing 套管323Magnetizing 磁化324Dropout current 回动电流325Reactor grounded neutral system 中性点电抗接地系统Grounding apparatus 接地装置327Dual bus 双总线328Thyristor 晶闸管329Spark gap 火花隙330Damping circuit 阻尼电路331Discharge 放电332Platform 平台333Grading 等级334Line trap 线路陷波器335Field test 实地试验337Off-position“断开”位置,“开路”位置Power-angle功角339Power-angle curve功角特性曲线340Torque-angle 转矩角341Symmetrical components 对称分量342Constant常量,恒定343Coupler耦合器345Concussion震动348Filter滤波器349Analogue模拟350Insulator绝缘子Rated burden\load 额定负载353Primary一次侧的354Remote-control apparatus 远距离控制设备355Capacitance 电容356Capacitor电容器357Reactance电抗358Inductor电感359Internal resistance内阻360Blow-out coil消弧线圈361Bundle-conductor spacer 分裂导线362Bundle factor 分裂系数Electromotive force电动势364伏安特性365Outgo ing line引出线366electrolyte电解质368Load characteristic负载特性369Self-i nductio n自感370Mutual-in ducti on互感371In duct ion coefficie nt感应系数372In ducta nee coup ing电感耦合373Time-i nvaria nt时不变的回复3帖4 帖七戒旅长* *2005 五2007-10-26 11:16374Terminal voltage端电压375非线性特性376External characteristics外特性378Harmonic curre nt正弦电流379Pole-pairs极对数380Quadrature正交381An gular velocity 角频率382Magn etic in duct ion磁感应强度385Armature电枢386Peak value(交变量的)最大值387A mutually in duced e.m.f互感电动势388The applied voltage 外施电压Zero-power-factor 零功率因数390The no-load power factor 空载功率因数391Sinusoidal variations 正弦变量392A lagging power factor 滞后的功率因数393Equivalent circuit 等值电路394Capacitance effect 电容效应395Direct axis 直轴396Quadrature axis 交轴398Concentrated coil 集中绕组399Magnetization curve 磁化曲线400Residual magnetism 剩磁401Rated armature current 额定电枢电流402Series excited 串励403Self excited 自励Shunt excited 并励405spottily excited 他励407Electromagnetic torque 电磁转矩408a retarding torque 制动转矩409Rectangular wave 矩形波410Synchronous speed 同步转速411Electromagnetic brake 电磁制动412synchronous reactance 同步电抗413synchronous condenser 同步调相机414Load shedding 甩负荷415Black-start 黑启动417Distribution feeder 配电馈线418Commissioning 投运419Reactive power compensation 无功补偿器Continuous rating 连续运行的额定值421AI (artificial intelligence) 人工智能422Network topology 网络拓补424Configuration control 组态控制425Topological information拓补信息426Black-out area停电区428Adaptive relaying 自适应继电保护429Adaptive features自适应特性430Phase comparison relays 相位比较继电器431Directional contact 方向触点432Protective gap保护间隙433Protective earthing保护接地434Protective earthing; outer insulation 保护绝缘435Protection switch保护开关436Protective cap 保护帽437Protective panel 保护屏柜439Protection device 保护设备440Protective casing 保护外壳441Catch net; protecting net 保护网442Protection system 保护系统443Protective link 保护线路444Protective ground 保护性接地445Protective cover; Protective housing 保护罩446Protection device; Protective gear 保护装置447Protective transformer 保护变压器448Alarm relay 报警信号继电器449Alarm signal ;alerting signal 报警信号450Admittance relays 导纳型继电保护装置451Low-voltage protection 低压保护452Under-voltage release 低电压跳闸453Under-voltage trip 低电压自动跳闸454Under-run低负荷运行455Under-power protection 低功率保护456Under-power relay 低功率继电器457Under-frequency protection 低频保护458Low-frequency high-voltage test 低频高压实验459Low-voltage relay 低压继电器460Low-voltage release relay 低压释放继电器461Under-frequency protection 低周波保护463Under-impedance relay 低阻抗继电器465Conductance relay 电导继电器466Motor-field failure relay 电动机磁场故障继电器467Dynamoelectric relay 电动式继电器468Electric reset relay 电复位继电器469Power-transformer relay 电力传输继电器471Power system oscillation 电力系统振荡472Electric interlock relay 连锁继电器473Current overload 电流过载474Self-polarizing relay 电流极化继电器475Current-balance relay 电流平衡式继电器476Circuit control relay 电路控制继电器479Capacitance relay 电容继电器480Capacity ground 电容接地Voltage balance relay 电压平衡继电器482Circuit control relay 电路控制继电器483Voltage responsive relay 电压响应继电器484Voltage selection relay 电压选择继电器485Power failure 电源故障486Power-transfer relay 电源切换继电器487vacuum-tube relay 电子管继电器488Ohm relay 电阻继电器489Timing relay; timed relay 定时继电器490Time pulse relay 定时脉冲继电器492Directional over-current relay 方向过流继电器493Directional over-current protection 方向过流保护494Directional distance relay 方向距离继电器495Directional pilot relaying 方向纵联继电保护Cut-off relay 断路继电器498Circuit breaker failure protection 断路器故障保护装置500Open-phase relay 断相继电器501Earth-leakage protection 对地漏电保护502Multiple-reclosing breaker 多次重合闸断路器503Multi-ended circuit protection 多端线路保护506Multiple earth 多重接地507Two-position relay 二位置继电器508Generator protection 发电机保护509Generator cutout relay 发电机断路继电器510Generator protection for negative sequence current 发电机负序电流保护511Transmitting relay 发送继电器512Back-spin timer 反转时间继电器513Auxiliary relay 辅助继电器514Negative phase relay负相位继电器515Negative-phase seque nee impe ndence负相序继电器516Un der-load relay负载不足继电器517Back-up over-speed gover nor附加超速保护装置518In ducti on cup relay感应杯式继电器520In ducti on type relay感应式继电器521In ducti on disc relay感应圆盘式继电器522High sen sitive relay高灵敏度继电器回复4帖5 帖七戒旅长**2005 四2007-10-26 11:16523High-speed impeda nee relay高速阻抗继电器524High-voltage relay高压继电器525Power relay 功率继电器527Transition impedance 过渡阻抗528Thermal protection 过热保护529Temperature limiting relay 过热继电器530Overload relay 过载继电器531Overload trip 过载跳闸532Thermostat relay 恒温继电器533Closing relay 合闸继电器534Transverse differential protection 横差保护535Transfer of auxiliary supply 后备电源切换536Back-up system 后备继电保护537Delay-action relay 缓动继电器538Slow-to release relay 缓放继电器539Converter relay 换流器继电器540Electromechanical relay 机电继电器541Biased differential relaying 极化差动继电保护系统542Discontinuous relay 鉴别继电器543Transistor relay 晶体管继电器544Crystal can relay 晶体密闭继电器545Static relay静电继电器546Fast-operate slow-release relay 快动缓释继电器547Fast-release relay 快释放继电器549Excitation-loss relay失磁继电器553Two-phase short circuit fault 两相短路故障554Two-phase grounding fault 两相接地短路故障556Sensitive polarized relay 灵敏极化继电器558Sensitive relay灵敏继电器560Abnormal overload异常过载561Abnormal overvoltage 事故过电压562Above earth potential 对地电势563Absolute potential绝对电势564AC circuit breaker 交流断路器565AC component交流分量566AC distribution system 交流配电系统567Air-blast circuit breaker 空气灭弧断路器568Air-blast switch 空气吹弧开关569Air brake switch 空气制动开关571Air breaker空气断路器572Air-space cable 空气绝缘电缆573Alive带电的574All-relay interlocking 全部继电连锁575All-relay selector 全继电式选择器578Arc extinguishing coil 灭弧线圈579Arc suppressing reactor 灭弧电抗器580Asymmetric load不对称负载581Asymmetric short circuit 不对称短路582Asynchronous reactance 异步电抗583Asynchronous resistance 异步电阻584Biased differential relaying 极化差动继电保护系统585Bi-directional relay 双向继电器586Blinker继电器吊牌587Blocking relay 连锁继电器589Blowout coil灭弧线圈590Bus hub总线插座591Bus protective relay 母线保护继电器592Bus section breaker 母线分段断路器593Bus terminal fault 母线终端故障594Bus separation 母线分离595Bus tie circuit breaker 母线联络继电器596Bypass旁路597Coil factor 线圈系数598Compound relay 复合电路599Continuous load 持续负载600Counting relay 计数继电器602Cut-off of supply 停止供电603Cut-out relay 短路继电器604Dash current 冲击电流605Data medium 数据载体606Data processing 数据处理607Data transmission 数据传输608Emergency service 事故运行609Emergency standby 事故备用611Extinction coil 消弧线圈612Extinguishing voltage 消弧线圈613Extra high voltage 超高压614Fault line故障线615Fault location 故障定位616Feedback反馈617Feeder馈电线618Interlock连锁619Intermittent fault 间歇故障620Interrupting time 断路时间621Negative direction 反方向622No-load release 无跳闸623Off-peak非峰值的624Operating load 运行负载625Orthogonal正交的626Rated primary voltage 一次额定电压627Rated secondary volage 二次额定电压628Remote controlled 遥控的629Reserve bus 备用母线630Rotor转子631Sectionalizer 分段断路器632Self-energizing自激的633Sequential tripping 顺序跳闸637Surge voltage 冲击电压638Sustained overload 持续过电压639Symmetrical对称的640Fault component 故障分量641Wavelet transform 小波变换642Object-oriented 面向对象643Faults recorder 故障录波644Setting calculation 整定计算645Topology analysis 拓扑分析646Expert system 专家系统647Security 安全性651Load schedule according to frequency change 按周波减载653Semiconductor, semiconductor diode, transistor 半导体、半导体二级管、三极管654Semi-orthogonal wavelet 半正交小波656Saturation, saturation detection, saturation curve 饱和,饱和检测,饱和曲线657Relay location保护安装处658Coordination of relay settings 保护的整定配合659Coordination time interval 保护配合时间阶段660Relay system configuration 保护配置661Redundancy of relaying system 保护配置的冗余度663Protection devices, protection equipment 保护装置664Starting current and returning current of protection device 保护装置的起动电流和返回电流665Alarm 报警666Approximation component 逼近分量668B sampling functionB 样条函数670Transformation matrix 变换矩阵。

电力英语-电力系统继电保护专业词汇

电力英语-电力系统继电保护专业词汇

电力英语1-电力系统继电保护专业词汇序号英文全称中文解释1 Directional protection 方向保护2 Distance protection 距离保护3 Over current protection 过流保护4 Pilot protection 高频保护5 Differential protection 差动保护6 Rotor earth-fault protection 转子接地保护7 Stator earth-fault protection 定子接地保护8 Over fluxing protection 过励磁保护9 Back-up protection 后备保护11 Sequential tripping 顺序跳闸12 Start up/Pick up 起动13 Breaker 断路器14 Disconnecting switch 隔离开关15 Current transformer 电流互感器16 Potential transformer 电压互感器17 Dead zone/Blind spot 死区18 Vibration/Oscillation 振荡19 Reliability 可靠性20 Sensitivity 灵敏性21 Speed 速动性22 Selectivity 选择性23 Step-type distance relay 分段距离继电器24 Time delay 延时25 Escapement/interlock/blocking 闭锁26 Incorrect tripping 误动27 Phase to phase fault 相间故障28 Earth fault 接地故障29 Through- fault 穿越故障30 Permanent fault 永久性故障31 Temporary fault 瞬时性故障32 Overload 过负荷34 Contact multiplying relay 触点多路式继电器35 Timer relay 时间继电器40 Ground fault relay 接地故障继电器41 Recloser 重合闸42 Zero-sequence protection 零序保护43 Soft strap 软压板44 Hard strap 硬压板45 High resistance 高阻46 Second harmonic escapement 二次谐波制动47 CT line-break CT断线48 PT line-break PT断线49 Secondary circuit 二次回路50 AC circuit breaker 交流开关电路51 AC directional over current relay 交流方向过流继电器52 Breaker point wrench 开关把手53 Breaker trip coil 断路器跳闸线圈54 Bus bar 母线; 导电条55 Bus bar current transformer 母线电流变压器56 Bus bar disconnecting switch 分段母线隔离开关57 Bus compartment 母线室; 汇流条隔离室58 Bus duct 母线槽; 母线管道59 Bus hub 总线插座60 Bus line 汇流线61 Bus insulator 母线绝缘器62 Bus request cycle 总线请求周期63 Bus reactor 母线电抗器64 Bus protection 母线保护65 Bus rings 集电环66 Bus rod 汇流母线67 Bus section reactor 分段电抗器68 Bus structure 母线支架; 总线结构69 Bus tie switch 母线联络开关70 Bus-bar chamber 母线箱71 Bus-bar fault 母线故障72 Bus-bar insulator 母线绝缘子73 Busbar sectionalizing switch 母线分段开关74 Current attenuation 电流衰减75 Current actuated leakage protector 电流起动型漏电保护器76 Current balance type current differential relay 电流平衡式差动电流继电器;差动平衡式电流继电器77 Current changer 换流器78 Current compensational ground distance relay 电流补偿式接地远距继电器79 Current consumption 电流消耗80 Coil adjuster 线圈调节器81 Coil curl 线圈82 Coil current 线圈电流83 Coil end leakage reactance 线圈端漏电抗84 Coil inductance 线圈电感85 Current transformer phase angle 电流互感器相角86 Distance relay; impedance relay 阻抗继电器87 Power rheostat 电力变阻器88 Electrically operated valve 电动阀门89 Electrical governing system 电力调速系统90 Field application relay 励磁继电器; 激励继电器91 High tension electrical porcelain insulator 高压电瓷绝缘子92 Option board 任选板; 选配电路板; 选择板93 Oscillator coil 振荡线圈94 Over-Voltage relay 过压继电器95 Power factor relay 功率因素继电器96 Protection against overpressure 超压防护97 Protection against unsymmetrical load 不对称负载保护装置98 Protection device 保护设备; 防护设备99 Protection reactor 保护电抗器100 Protection screen 保护屏101 Protection switch 保护开关102 Insulator cap 绝缘子帽; 绝缘子帽103 Insulator chain 绝缘子串; 绝缘子串104 Insulator arc-over 绝缘子闪络; 绝缘子闪络105 Insulator arcing horn 绝缘子角形避雷器; 绝缘子角形避雷器106 Insulator bracket 绝缘子托架; 绝缘子托架107 Impedance compensator 阻抗补偿器108 Resistance grounded neutral system 中心点电阻接地方式109 Reactance bond 电抗耦合; 接合扼流圈110 Reactance of armature reaction 电枢反应电抗111 Under-Voltage relay 欠压继电器112 Voltage differential relay 电压差动继电器114 Relay must-operate value 继电器保证启动值115 Relay act trip 继电器操作跳闸116 Relay overrun 继电器超限运行117 Longitudinal differential protection 纵联差动保护118 Phase-angle of voltage transformer 电压互感器的相角差119 Zero-sequence current/residual current 零序电流120 Residual current relay 零序电流继电器121 Bus bar protection/bus protection 母线保护122 Breaker contact point 断路器触点123 Cut-off push 断路器按钮124 Gaseous shield 瓦斯保护装置125 Neutral-point earthing 中性点接地126 Internal fault 内部故障127 Auxiliary contacts 辅助触点128 Neutral auto-transformer 中性点接地自耦变压器129 Fuse box/fusible cutout 熔断器130 Pulse relay/surge relay 冲击继电器131 Auxiliary relay/intermediate relay 中间继电器132 Common-mode voltage 共模电压133 Impedance mismatch 阻抗失配134 Intermittent fillet weld 间断角缝焊接135 Loss of synchronism protection 失步保护136 Closing coil 合闸线圈137 Electro polarized relay 极化继电器138 Power direction relay 功率方向继电器139 Direct-to-ground capacity 对地电容140 Shunt running 潜动141 Trip/opening 跳闸142 Trip switch 跳闸开关143 Receiver machine 收信机144 High-frequency direction finder 高频测向器145 Capacity charge 电容充电146 time over-current 时限过电流148 Surge guard 冲击防护149 Oscillatory surge 振荡冲击150 Fail safe interlock 五防装置151 Differential motion 差动152 Capacitive current 电容电流154 Time delay 延时156 Normal inverse 反时限157 Definite time 定时限158 Multi-zone relay 分段限时继电器159 Fail-safe unit 五防161 Unbalance current 不平衡电流162 Blocking autorecloser 闭锁重合闸163 Primary protection 主保护164 Tap 分接头165 YC (telemetering) 遥测167 Fault clearing time 故障切除时间168 Critical clearing time 极限切除时间169 Switch station 开关站170 Traveling wave 行波171 Protection feature 保护特性172 Fault phase selector 故障选线元件173 Fault type 故障类型174 Inrush 励磁涌流175 Ratio restrain 比率制动176 Laplace and Fourier transforms 拉氏和傅利叶变换177 Short circuit calculations 短路计算178 Load flow calculations 潮流计算179 Oscillatory reactivity perturbation 振荡反应性扰动180 Quasi-steady state 准稳态181 Automatic quasi-synchronization 自动准同步182 Protective relaying equipment 继电保护装置183 AC directional overcurrent relay 交流方向过流继电器184 AC reclosing relay 交流重合闸继电器185 Annunciator relay 信号继电器188 Carrier or pilot-wire receiver relay 载波或导引线接受继电器189 Current-limiting relay 限流继电器190 Definite time relay 定时限继电器192 Lockout relay 闭锁继电器;保持继电器;出口继电器193 Micro-processor based protective relay 微机继电保护194 V oltage -controlled overcurrent relay 电压控制过电流继电器196 Fault diagnosis 故障诊断197 Back-up protection 后备保护198 Overhead line 架空线199 High voltage line 高压线路200 Underground cable 埋地电缆201 Circuit breaker 断路器202 Brushless excitation 无刷励磁203 Interlock 闭锁204 Trigger 触发器205 Winding-to-winding insulation 绕组间的绝缘206 Porcelain insulator 瓷绝缘子207 Tie line 联络线208 Leased line 租用线路209 Private line 专用线路211 Remote Terminal Unit 远程终端设备212 Economic dispatch system 经济调度系统213 State estimation 状态估计214 Trip by local protection 保护跳闸215 Close by local protection 保护合闸216 Operational (internal) overvoltage 操作(内部)过电压217 Sampling and holding 采样保持218 Synchronized sampling 采样同步219 Manipulation 操作220 Measuring/Metering unit 测量元件221 Locus of measured impedance 测量阻抗轨迹222 Differential mode interference 差模干扰223 Output (executive) organ 出口(执行)元件224 Overcurrent relay with undervoltage supervision 低电压起动的过电流保护225 Low impedance busbar protection 低阻抗母线保护228 Half-cycle integral algorithm 半周积分算法230 Coordination of relay settings 保护的整定配合231 Reach (setting) of protection 保护范围(定值)232 Coordination time interval 保护配合时间阶段233 Percentage differential relay 比率差动继电器234 Electromagnetic relay 电磁型继电器236 Instantaneous undervoltage protection with current supervision 电流闭锁的电压速断保护237 Operating equation (criterion) 动作方程(判据)238 Operating characteristic 动作特性239 Harmonic restraining 谐波制动241 Segregated current differential protection 分相电流差动保护242 Branch coefficient 分支系数243 Power line carrier channel (PLC) 高频通道245 High speed signal acquisition system 高速数字信号采集系统246 Busbar protection with fixed circuit connection 固定联结式母线保护247 Fault recorder 故障录波器248 Fault phase selection 故障选相249 Optoelectronic coupler 光电耦合器件251 Compensating voltage 补偿电压252 Polarized voltage 极化电压253 Memory circuit 记忆回路254 Unblocking signal 解除闭锁信号255 Power system splitting and reclosing 解列重合闸256 Connection with 90 degree 90度接线257 Insulation supervision device 绝缘监视258 Inrush exciting current of transformer 励磁涌流259 Two star connection scheme 两相星形接线方式260 Zero mode component of traveling wave 零模行波261 Inverse phase sequence protection 逆相序保护262 Offset impedance relay 偏移特性阻抗继电器263 Frequency response 频率响应264 Activate the breaker trip coil 起动断路器跳闸266 Permissive under reaching transfer trip scheme 欠范围允许跳闸式267 Slight (severe) gas protection 轻(重)瓦斯保护268 Man-machine interface 人机对话接口270 Three phase one shot reclosure 三相一次重合闸271 Out-of-step 失步272 Accelerating protection for switching onto fault 重合于故障线路加速保护动作275 Abrupt signal analysis 突变信号分析276 Out flowing current 外汲电流277 False tripping 误动279 Turn to turn fault,inter turn faults 匝间短路280 Relay based on incremental quantity 增量(突变量)继电器281 Vacuum circuit breaker 真空开关282 Power swing (out of step) blocking 振荡(失步)闭锁284 Successive approximation type A/D 逐次逼进式A/D285 Infeed current 助增电流286 Self reset 自动复归287 Adaptive segregated directional current differential protection 自适应分相方向纵差保护288 Adaptive relay protection 自适应继电保护289 Pilot protection 纵联保护291 Angle of maximum sensitivity 最大灵敏角292 Out of service 退出运行294 Waveform 波形295 Outlet 出口296 Electromechanical 机电的297 Magnitude of current 电流幅值299 Traveling wave signal 行波信号300 Measurement signal 测量信号301 Traveling wave relay 行波继电器302 Transmission line malfunction 输电线路异常运行303 Subsystem 子系统304 Positive sequence impedance 正序阻抗305 Negative sequence impedance 负序阻抗306 Zero sequence impedance 零序阻抗307 Digital signal processor 数字信号处理器308 Frequency sensing 频率测量309 Cable relay 电缆继电器310 Under power protection 低功率保护311 Under voltage protection 低电压保护312 Transient analysis 暂态分析313 V oltage sensor 电压传感器314 Zero-sequence protection 零序保护315 Zero sequence current transducer 零序电流互感器316 Shunt 旁路,并联317 Series 串联,级数318 Parallel 并联319 Saturation 饱和320 Free-standing 独立的,无需支撑物的321 Troidal 环形的,曲面,螺旋管形322 Bushing 套管323 Magnetizing 磁化324 Dropout current 回动电流325 Reactor grounded neutral system 中性点电抗接地系统326 Grounding apparatus 接地装置327 Dual bus 双总线328 Thyristor 晶闸管329 Spark gap 火花隙330 Damping circuit 阻尼电路331 Discharge 放电332 Platform 平台333 Grading 等级334 Line trap 线路陷波器335 Field test 实地试验337 Off-position “断开”位置,“开路”位置338 Power-angle 功角339 Power-angle curve 功角特性曲线340 Torque-angle 转矩角341 Symmetrical components 对称分量342 Constant 常量,恒定343 Coupler 耦合器345 Concussion 震动348 Filter 滤波器349 Analogue 模拟350 Insulator 绝缘子351 Switch cabinet 开关柜352 Rated burden\load 额定负载353 Primary 一次侧的354 Remote-control apparatus 远距离控制设备355 Capacitance 电容356 Capacitor 电容器357 Reactance 电抗358 Inductor 电感359 Internal resistance 内阻360 Blow-out coil 消弧线圈361 Bundle-conductor spacer 分裂导线362 Bundle factor 分裂系数363 Electromotive force 电动势364 V olt-amphere characteristic 伏安特性365 Outgoing line 引出线366 electrolyte 电解质368 Load characteristic 负载特性369 Self-induction 自感370 Mutual-induction 互感371 Induction coefficient 感应系数372 Inductance couping 电感耦合373 Time-invariant 时不变的374 Terminal voltage 端电压375 Non-linear characteristics 非线性特性376 External characteristics 外特性378 Harmonic current 正弦电流379 Pole-pairs 极对数380 Quadrature 正交381 Angular velocity 角频率382 Magnetic induction 磁感应强度385 Armature 电枢386 Peak value (交变量的)最大值387 A mutually induced e.m.f 互感电动势388 The applied voltage 外施电压389 Zero-power-factor 零功率因数390 The no-load power factor 空载功率因数391 Sinusoidal variations 正弦变量392 A lagging power factor 滞后的功率因数393 Equivalent circuit 等值电路394 Capacitance effect 电容效应395 Direct axis 直轴396 Quadrature axis 交轴398 Concentrated coil 集中绕组399 Magnetization curve 磁化曲线400 Residual magnetism 剩磁401 Rated armature current 额定电枢电流402 Series excited 串励403 Self excited 自励404 Shunt excited 并励405 spottily excited 他励407 Electromagnetic torque 电磁转矩408 a retarding torque 制动转矩409 Rectangular wave 矩形波410 Synchronous speed 同步转速411 Electromagnetic brake 电磁制动412 synchronous reactance 同步电抗413 synchronous condenser 同步调相机414 Load shedding 甩负荷415 Black-start 黑启动417 Distribution feeder 配电馈线418 Commissioning 投运419 Reactive power compensation 无功补偿器420 Continuous rating 连续运行的额定值421 AI (artificial intelligence) 人工智能422 Network topology 网络拓补424 Configuration control 组态控制425 Topological information 拓补信息426 Black-out area 停电区428 Adaptive relaying 自适应继电保护429 Adaptive features 自适应特性430 Phase comparison relays 相位比较继电器431 Directional contact 方向触点432 Protective gap 保护间隙433 Protective earthing 保护接地434 Protective earthing; outer insulation 保护绝缘435 Protection switch 保护开关436 Protective cap 保护帽437 Protective panel 保护屏柜439 Protection device 保护设备440 Protective casing 保护外壳441 Catch net; protecting net 保护网442 Protection system 保护系统443 Protective link 保护线路444 Protective ground 保护性接地445 Protective cover; Protective housing 保护罩446 Protection device; Protective gear 保护装置447 Protective transformer 保护变压器448 Alarm relay 报警信号继电器449 Alarm signal;alerting signal 报警信号450 Admittance relays 导纳型继电保护装置451 Low-voltage protection 低压保护452 Under-voltage release 低电压跳闸453 Under-voltage trip 低电压自动跳闸454 Under-run 低负荷运行455 Under-power protection 低功率保护456 Under-power relay 低功率继电器457 Under-frequency protection 低频保护458 Low-frequency high-voltage test 低频高压实验459 Low-voltage relay 低压继电器460 Low-voltage release relay 低压释放继电器461 Under-frequency protection 低周波保护463 Under-impedance relay 低阻抗继电器465 Conductance relay 电导继电器466 Motor-field failure relay 电动机磁场故障继电器467 Dynamoelectric relay 电动式继电器468 Electric reset relay 电复位继电器469 Power-transformer relay 电力传输继电器471 Power system oscillation 电力系统振荡472 Electric interlock relay 连锁继电器473 Current overload 电流过载474 Self-polarizing relay 电流极化继电器475 Current-balance relay 电流平衡式继电器476 Circuit control relay 电路控制继电器479 Capacitance relay 电容继电器480 Capacity ground 电容接地481 V oltage balance relay 电压平衡继电器482 Circuit control relay 电路控制继电器483 V oltage responsive relay 电压响应继电器484 V oltage selection relay 电压选择继电器485 Power failure 电源故障486 Power-transfer relay 电源切换继电器487 vacuum-tube relay 电子管继电器488 Ohm relay 电阻继电器489 Timing relay; timed relay 定时继电器490 Time pulse relay 定时脉冲继电器492 Directional over-current relay 方向过流继电器493 Directional over-current protection 方向过流保护494 Directional distance relay 方向距离继电器495 Directional pilot relaying 方向纵联继电保护497 Cut-off relay 断路继电器498 Circuit breaker failure protection 断路器故障保护装置500 Open-phase relay 断相继电器501 Earth-leakage protection 对地漏电保护502 Multiple-reclosing breaker 多次重合闸断路器503 Multi-ended circuit protection 多端线路保护506 Multiple earth 多重接地507 Two-position relay 二位置继电器508 Generator protection 发电机保护509 Generator cutout relay 发电机断路继电器510 Generator protection for negative sequence current 发电机负序电流保护511 Transmitting relay 发送继电器512 Back-spin timer 反转时间继电器513 Auxiliary relay 辅助继电器514 Negative phase relay 负相位继电器515 Negative-phase sequence impendence 负相序继电器516 Under-load relay 负载不足继电器517 Back-up over-speed governor 附加超速保护装置518 Induction cup relay 感应杯式继电器520 Induction type relay 感应式继电器521 Induction disc relay 感应圆盘式继电器522 High sensitive relay 高灵敏度继电器523 High-speed impedance relay 高速阻抗继电器524 High-voltage relay 高压继电器525 Power relay 功率继电器527 Transition impedance 过渡阻抗528 Thermal protection 过热保护529 Temperature limiting relay 过热继电器530 Overload relay 过载继电器531 Overload trip 过载跳闸532 Thermostat relay 恒温继电器533 Closing relay 合闸继电器534 Transverse differential protection 横差保护535 Transfer of auxiliary supply 后备电源切换536 Back-up system 后备继电保护537 Delay-action relay 缓动继电器538 Slow-to release relay 缓放继电器539 Converter relay 换流器继电器540 Electromechanical relay 机电继电器541 Biased differential relaying 极化差动继电保护系统542 Discontinuous relay 鉴别继电器543 Transistor relay 晶体管继电器544 Crystal can relay 晶体密闭继电器545 Static relay 静电继电器546 Fast-operate slow-release relay 快动缓释继电器547 Fast-release relay 快释放继电器549 Excitation-loss relay 失磁继电器553 Two-phase short circuit fault 两相短路故障554 Two-phase grounding fault 两相接地短路故障556 Sensitive polarized relay 灵敏极化继电器558 Sensitive relay 灵敏继电器560 Abnormal overload 异常过载561 Abnormal overvoltage 事故过电压562 Above earth potential 对地电势563 Absolute potential 绝对电势564 AC circuit breaker 交流断路器565 AC component 交流分量566 AC distribution system 交流配电系统567 Air-blast circuit breaker 空气灭弧断路器568 Air-blast switch 空气吹弧开关569 Air brake switch 空气制动开关571 Air breaker 空气断路器572 Air-space cable 空气绝缘电缆573 Alive 带电的574 All-relay interlocking 全部继电连锁575 All-relay selector 全继电式选择器578 Arc extinguishing coil 灭弧线圈579 Arc suppressing reactor 灭弧电抗器580 Asymmetric load 不对称负载581 Asymmetric short circuit 不对称短路582 Asynchronous reactance 异步电抗583 Asynchronous resistance 异步电阻584 Biased differential relaying 极化差动继电保护系统585 Bi-directional relay 双向继电器586 Blinker 继电器吊牌587 Blocking relay 连锁继电器589 Blowout coil 灭弧线圈590 Bus hub 总线插座591 Bus protective relay 母线保护继电器592 Bus section breaker 母线分段断路器593 Bus terminal fault 母线终端故障594 Bus separation 母线分离595 Bus tie circuit breaker 母线联络继电器596 Bypass 旁路597 Coil factor 线圈系数598 Compound relay 复合电路599 Continuous load 持续负载600 Counting relay 计数继电器602 Cut-off of supply 停止供电603 Cut-out relay 短路继电器604 Dash current 冲击电流605 Data medium 数据载体606 Data processing 数据处理607 Data transmission 数据传输608 Emergency service 事故运行609 Emergency standby 事故备用611 Extinction coil 消弧线圈612 Extinguishing voltage 消弧线圈613 Extra high voltage 超高压614 Fault line 故障线615 Fault location 故障定位616 Feedback 反馈617 Feeder 馈电线618 Interlock 连锁619 Intermittent fault 间歇故障620 Interrupting time 断路时间621 Negative direction 反方向622 No-load release 无跳闸623 Off-peak 非峰值的624 Operating load 运行负载625 Orthogonal 正交的626 Rated primary voltage 一次额定电压627 Rated secondary volage 二次额定电压628 Remote controlled 遥控的629 Reserve bus 备用母线630 Rotor 转子631 Sectionalizer 分段断路器632 Self-energizing 自激的633 Sequential tripping 顺序跳闸637 Surge voltage 冲击电压638 Sustained overload 持续过电压639 Symmetrical 对称的640 Fault component 故障分量641 Wavelet transform 小波变换642 Object-oriented 面向对象643 Faults recorder 故障录波644 Setting calculation 整定计算645 Topology analysis 拓扑分析646 Expert system 专家系统647 Security 安全性651 Load schedule according to frequency change 按周波减载653 Semiconductor, semiconductor diode, transistor 半导体、半导体二级管、三极管654 Semi-orthogonal wavelet 半正交小波656 Saturation, saturation detection, saturation curve 饱和,饱和检测,饱和曲线657 Relay location 保护安装处658 Coordination of relay settings 保护的整定配合659 Coordination time interval 保护配合时间阶段660 Relay system configuration 保护配置661 Redundancy of relaying system 保护配置的冗余度663 Protection devices, protection equipment 保护装置664 Starting current and returning current of protection device 保护装置的起动电流和返回电流665 Alarm 报警666 Approximation component 逼近分量668 B sampling function B样条函数670 Transformation matrix 变换矩阵672 Fault type 故障类别673 Pockels effect 波克尔斯效应674 Wave propagation velocity 波速675 Waveform identification 波形识别法676 Wave impedance, surge impedance 波阻抗677 Compensation voltage 补偿电压678 Compensation theorem, compensation principle 补偿原理679 Unavailability, failure rate 不可用率,失效率680 Immune to electromagnetic interference 不受电磁干扰681 Abnormal operating condition 不正常运行状态682 Sampling interruption service program 采样中断服务程序683 Synchronizing by reference parameter vector 参数矢量同步法684 Operational(internal) over voltage 操作(内部)过电压685 Manipulating organ 操作单元686 Measurement,measuring unit 测量,测量单元687 Measured impedance 测量阻抗688 Locus of measured impedance 测量阻抗轨迹689 Differential relay 差动继电器690 Differential mode interference 差模干扰691 Distributed capacitance of long line 长线分布电容692 Normally closed contacts 常闭节点693 Normally open contacts 常开节点694 Over reach blocking scheme 超范围闭锁式696 Extra-high-voltage transmission line 超高压传输697 Sustained faults 持续性故障698 Output(executive) organ 出口(执行)元件699 Contact 触点、接点700 Capacitor of series compensation 串补电容701 Window function 窗函数702 Differential relay with fast saturated current transformer 带有速饱和变流器的差动继电器703 Single-chip microcontroller 单片机704 Single-phase(three phase) transmission line 单相(三相)传输线705 Unit protection 单元式保护707 Low frequency component, subharmonic 低频分量,低次谐波708 Low impedance bus bar protection 低阻抗母线保护709 Current traveling wave 电流行波710 Electrical apparatus, equipments 电器设备711 Electrical network, power network 电网712 V oltage waveform distortion 电压波形崎变713 V oltage traveling wave 电压行波714 Operating time 动作时间715 Multiphase compensated impedance relay 多相补偿式阻抗继电器716 Generator, generator-transformer set 发电机,发电机-变压器组717 Protection of generator-transformer set 发电机――变压器保护718 Field failure protection of generator 发电机的失磁保护720 Metallic fault 金属性故障721 Transistor type relay 晶体管型继电器723 Differential protection with percentage restraining 具有比率制动的差动继电器724 Pilot protection using distance relay 距离纵联保护726 Stator ground protection based on zero sequence current 零序电流构成的定子接地保护728 Zero sequence ct 零序电流互感器729 Zero sequence current relay 零序电流继电器730 Mutual induction of zero sequence 零序互感的影响731 Bus bar protection 母线保护732 Combined bus and transformer protection 母线和变压器共用保护733 Energy directional relay 能量方向继电器734 Inverse power protection 逆功率保护735 Inverse phase sequence protection 逆相序保护736 Frequency window 频窗737 Frequency component 频率分量738 Slight gas protection, severe gas protection 轻瓦斯与重瓦斯保护739 Man-machine interface 人机对话接口740 Weak power end protection 弱电源端保护741 Three terminal line protection 三端输电线保护742 Digital protection 数字式保护743 Digital signal processor(dsp) 数字信号处理744 Double bus bar protection 双母线保护745 Ultra-high voltage transmission 特高压输电746 Trip relay 跳闸继电器747 Communication interface 通讯接口748 Communication channel 通讯通道749 Mutually coupled lines 有互感线路750 Relay based on transient component 暂态保护751 Relay based on incremental quantity 增量继电器753 Heavy load 重负荷754 Relay acceleration after auto-reclosing 重合闸后加速保护755 Relay acceleration before auto-reclosing 重合闸前加速保护756 Main protection 主保护757 Automatic reclosure 自动重合闸758 Adaptive relay protection 自适应继电保护762 Longitudinal differential relay 纵联差动继电器763 Impedance converter 阻抗变换器764 Impedance circle 阻抗圆765 Angle of maximum sensitivity 最大灵敏角766 Minimum load impedance 最小负荷阻抗767 Blocking signal 闭锁信号768 Arcing fault 电弧接地故障769 Isolated neutral system 中性点绝缘系统770 Arc suppression coil 消弧线圈771 Healthy phases 非故障相772 Remote terminal unit(RTU) 远方终端773 Power line carrier(PLC) 电力线载波774 Parallel port 并行出口775 Serial port 串行接口776 Clock 时钟777 SCADA 监控与数据采集778 Scan 扫描779 Self-check 自检780 Alarm 告警781 Pulse 脉冲782 Ground-fault of ungrounded systems 小电流接地系统785 Load patterns 负荷形式788 V oltage instability 电压不稳789 Fast response 快速响应790 Dynamic attributes 动态特性791 Telemeter data 遥测数据792 Abnormal state 非常态793 Reverse power flows 功率逆潮流796 Phase comparison relays 相位比较继电器798 Switching surge 开关冲击799 Cascading outages 连锁故障800 Adaptive relaying 自适应继电保护801 Time interval 时间间隔802 V oltage dip 电压下降803 Time-current characteristic 时间-电流特性804 Graded time settings 阶梯型时间配置805 Bus coupler CB 母联断路器806 Carrier Channel 高频通道807 Strap 压板808 synchronization check 同期检查809 arc suppression coil 消弧线圈810 Power System Control 电力系统控制811 Power System Transients 电力系统暂态812 Power System Analysis and Computation 电力系统分析与计算813 fault detecting relay 故障检测继电器814 Moving coil relay 动圈式继电器816 fault location 故障定位817 V oltage inception angle 电压初始角818 Buchholtz protecter 瓦斯保护819 Hidden failures 隐形故障820 Magnetic flux 磁通821 Core 铁芯822 Carrier transmitter 收迅机823 Carrier receiver 发迅机824 Margin 裕度826 Protection criterion 保护判据827 Fiber optical communication 光纤通信828 LED 发光二极管829 Solenoid relay 螺管式继电器830 Short-term load forecasting 短期负荷预测831 Diviation character 偏移特性833 Fourier algorithm 傅立叶算法834 Recursive least square algorithm 最小二乘算法835 Kalman filter algorithm 卡尔曼滤波算法836 Zero drift 零点漂移837 Magnetizing inrush current 励磁涌流838 Zero sequence current compensation 零序电流补偿839 Amplitude Comparison 绝对值比较840 Accurate Working Current 精确工作电流841 Accurate Working V oltage 精确工作电压843 Current Transformer Saturation 电流互感器的饱和问题844 Current Differential Criterion 电流差动判据849 Differential Relay with Restraint Characteristic 具有制动特性的差动继电器852 Fault-Component Algorithms 故障分量算法853 Fiber-Optic Pilot 光纤纵联保护854 Generator Stator Winding Short Circuit Faults 发电机定子绕组短路故障855 Generator Stator Single Phase Earth Fault 发电机定子绕组单相接地保护856 Generator Negative Current Protection 发电机负序电流保护857 Generator Out of Step Protection 发电机的失步保护858 High Impedance Busbar Differential Protection 高阻抗母线差动保护862 Non-Sinusoidal Signal 非正弦信号868 Phase-Shifting Algorithm 移相算法869 Transformer Protection Schemes 变压器保护配置原则870 Transverse Differential Protection for Generator Turn-to-Turn Faults 发电机横差动保护871 Star 星形872 Delta 三角形873 Close-up fault 近距离故障874 Polar characteristics 极化特性875 Resultant torque 合成转矩876 Induction cup relay 感应杯式继电器877 Static distance relay 静态距离继电器878 Self-polarize mho 自极化姆欧、导纳继电器879 Rectifier bridge 整流桥880 Tower 杆塔883 Mechanism latch 机械锁884 Pneumatic 气动的885 Attracted armature relay 衔铁(磁铁)吸合式继电器886 Bi-stable 双稳态887 Shutter 挡板888 Chatter 颤振889 Finger 触点的接点890 Multifinger contactor 多触点接触器891 Contact bounce 触点颤动892 Terminal board 端子排893 Dislocation 损失、故障引起的混乱894 Disruption 瓦解、系统解列895 Tripping battery 跳闸用蓄电池896 Test-block 试验端子897 Test-plug 试验插头898 Clip-on leads 夹式引线899 Doubled-ended clip-on leads 双头夹式引线901 Timing relay 延时继电器902 Jumper connection 跳线903 Cross-country faults “越野式”双相同时接地故障904 Polar characteristics 极化特性905 V oltage regulation 电压调节907 Induction-disc relay 感应圆盘式继电器908 Inadvertent energization 过激磁909 Torsional vibration 扭转振动910 Percentage differential protection 比率差动保护。

电力系统继电保护专业英语词汇

电力系统继电保护专业英语词汇

二次谐波制动 CT 断线 PT 断线 二次回路 交流开关电路 交流方向过流继电器 开关把手 断路器跳闸线圈 母线; 导电条 母线电流变压器 分段母线隔离开关 母线室; 汇流条隔离室 母线槽; 母线管道 总线插座 汇流线 母线绝缘器 总线请求周期 母线电抗器 母线保护 集电环 汇流母线 分段电抗器 母线支架; 总线结构 母线联络开关 母线箱 母线故障 母线绝缘子 母线分段开关 电流衰减 电流起动型漏电保护器 电流平衡式差动电流继电器;差 动平衡式电流继电器 换流器 电流补偿式接地远距继电器 电流消耗 线圈调节器 线圈 线圈电流 线圈端漏电抗 线圈电感 电流互感器相角 阻抗继电器 电力变阻器
Second harmonic escapement CT line-break PT line-break Secondary circuit AC circuit breaker AC directional over current relay Breaker point wrench Breaker trip coil Bus bar Bus bar current transformer Bus bar disconnecting switch Bus compartment Bus duct Bus hub Bus line Bus insulator Bus request cycle Bus reactor Bus protection Bus rings Bus rod Bus section reactor Bus structure Bus tie switch Bus-bar chamber Bus-bar fault Bus-bar insulator Bus-bar sectionalizing switch Current attenuation Current actuated leakage protector Current balance type current differential relay Current changer Current compensational ground distance relay Current consumption Coil adjuster Coil curl Coil current Coil end leakage reactance Coil inductance Current transformer phase angle Distance relay; impedance relay Power rheostat

基于饱和约束和时变观测器设计的异构航天器姿态控制策略

基于饱和约束和时变观测器设计的异构航天器姿态控制策略

基于饱和约束和时变观测器设计的异构航天器姿态控制策略作者:***来源:《南京信息工程大学学报》2020年第03期摘要針对空间异构环境下易产生非线性和不确定性影响,多个异构航天器进行姿态控制存在执行器输入饱和约束,对有限的资源进行协作调度难度大等问题,提出了异构航天器包含饱和输入和不确定性动态的鲁棒一致性追踪控制策略.在该控制策略中,参考系统的动态权重矩阵被允许是完全未知的,因此现有的方法并没有可行解.通过引入有向生成树假设,一种新的权重平均方法被提出来构造分布式观测器动态.通过综合分布式观测和非线性动态,一类新的鲁棒一致性追踪控制器被设计.仿真结果表明:当同步行为和分布式观测动态能够被同时获得并且达到领导者状态,异构系统的鲁棒一致性问题将被解决.同时,通过利用多个航天器的动态模型,设计了不同性能指标的参数条件,验证和分析了提出方法的有效性.关键词异构航天器;合作控制;饱和;姿态控制;非线性中图分类号 TP13文献标志码 A0 引言随着载人航天技术的不断成熟,未来太空运输中将会出现多种类型的载人航天器.特别是随着太空资源的不断开发,利用有限的异构航天器资源对未知目标进行合作探测与识别具有重要意义.基于此,合作控制作为空间信息物理系统的主要技术,近年来受到了广泛关注[1-3].例如典型的技术包括机器人合作控制、合作机器学习算法、分布式任务优化、智能交通等.值得指出的是,合作控制能够利用有限的通信资源和原材料供应降低能源的消耗和生产成本.基于此,不同类型的合作控制协议被开发来获得更多的合作利益.由于在实际的工程应用中,系统通常包含非线性和不确定性,特别是包含异构组件或者参数,因此面向异构系统的合作控制技术具有更优的可靠性和实用性.实际上,对于异构系统而言,主要的挑战是闭环系统不存在共同的平衡点,因此其系统的稳定性分析显著地不同于同质系统的稳定性,因而其问题研究也更具挑战.传统的异质系统合作控制主要有两类方法.一种是准同步分析方法,它强调异质系统在合作控制时会存在一个有界的同步误差等级,典型的工作包括同步分析[4]、分布式脉冲同步[5]、部分一致性分析[6]、混杂系统准一致性[7]等.然而,由于有界的误差等级在估计时依赖一个较强的假设,即所有追踪者都需要与领导者存在一条直接相关联的链路.这种分析对于大规模复杂互连系统是有效的.然而,对于异质系统仅存在有限资源可以调度的场景下,分布式合作一致性很难实现.另外一种方法是合作输出调节,它拓展传统的输出调节从单一对象到多个体系统.假设一部分个体能够获得领导者的系统矩阵,该方法进而被拓展到合作自适应输出调节问题[8].然而,合作输出调节依然需要领导者的系统矩阵是完全或者部分个体可知的,这直接关系到调节方程的可解性.在一些实际应用中,如果领导者的系统矩阵是完全未知的,例如外系统动态变化的频率是未知的,但是其信号可以通过有限的设备被估计或者探测到.在这种情况下,如何实现完全一致性行为更具挑战.本文关注异质系统存在输入饱和约束和不确定性动态的鲁棒一致性追踪问题.由于执行器的能力限制,输入饱和是一种常见的非线性行为.如果忽视饱和的影响,系统的性能会退化甚至导致系统变得不稳定.对于输入饱和约束,一个典型的方法是低增益反馈控制,它通过一系列参数化的镇定反馈增益来实现半全局镇定.当参数趋于零时,反馈增益将趋于零.典型的实现方法包括特征根配置、参数 ARE (Algebraic Riccati Equation)方法,以及参数Lyapunov 方法.然而,对于含有非线性和不确定动态的异质系统,当设计参数趋于零时,反馈增益趋于零会导致系统变得不稳定.为了解决该问题,一种变异的低增益饱和控制方法[9]被提出.因此不同于已有的工作,本文的贡献包括三个方面.第一,本文考虑在异质系统的合作控制中,领导者的系统矩阵是完全未知的.为了解决这个问题,本文提出了两类系统动态:第一种是分布式观测器动态,它主要利用邻居信息对领导者的状态进行估计;第二种是追踪动态,它主要实现个体对其观测信号的追踪一致性.我们的目的是实现这两种动态的同步收敛.显然,这种设计可以拓展准同步分析应用于分布式协调控制.特别地,我们仅仅要求通信拓扑包含有向生成树,它可以拓展准同步中要求的全连通条件.第二,本文提出的双重同步框架,其分布式观测并不依赖领导者系统矩阵.通过提出适当的估计动态,我们能够拓展输出调节方法应用于领导者系统矩阵完全未知的情形.第三,本文关注的异质系统合作控制考虑输入饱和约束.由于存在非线性和不确定性动态,我们并不要求控制器的增益会无穷趋于零.通过利用变异的低增益饱和控制方法,我们能够提高合作系统的鲁棒性,使其方法在异构航天器姿态控制中具有更好的控制性能.本文的结构如下:第一章介绍异构航天器的姿态控制模型.第二章介绍异构航天器的姿态控制策略,这也是本文的主要工作.第三章通过一个仿真例子来验证所提方法的有效性.最后,第四章给出本文的结论.3 仿真结果与性能比较本文考虑7个异构航天器的鲁棒一致性追踪问题,其中异构参数主要包括惯性矩阵、高度等参数.为了确保方法的有效验证,所选取的异构的参数都来自于文献[10-12].3.1 异构航天器的鲁棒一致性追踪定义0为目标系统的标签,1,…,N为追踪系统的标签.为了分析提出控制策略的有效性,在仿真中,首先设置参数γ=0.2,ω=1.则有α>ω/λ0=9.182 7.设置α=9.2>9.182 7,ρ=0.001,dilj=0.1,非线性动态和模型不确定将被引入在异构航天器系统.利用求解器可以获得不等式(17)和(18)的可行解.相应地,我们可以构造分布式观测器(10)和追踪控制器(14).基于以上设计,异构航天器的姿态控制问题将被解决.特别地,图1给出了roll-yaw系统和俯仰角系统的状态轨迹.从图1中可以看到所有的状态将渐近收敛到目标系统.结果表明:即使目标系统的动态矩阵是完全未知的,通过提出的鲁棒一致性追踪策略,异构航天器系统的姿态控制问题仍然能够被完全解决.3.2 不同參数下的异构航天器姿态控制性能分析为了分析饱和等级对异构航天器姿态控制的影响,选取γ=0.2,0.1,0.01,0.001为参数对反馈增益进行参数化.相应地,可以分别构造4组分布式观测器(10)和追踪控制器(14).定义控制器的输入能量为u=∑6i=‖ui‖,观测器的输入能量为ξ=∑6i=‖ξi‖,同步追踪误差为e=∑6i=‖xi-ξ0‖.图2给出了控制器输入、观测器输入和同步追踪误差在不同增益参数下的收敛情况.为了对比不同参数下的控制性能,我们引入了均值、标准差和方差3个指标.其性能分析如图3所示.通过图3可知,当增益参数趋于零时,观测器输入和控制器的均值、方差和标准差都将逐渐减少.较小的控制器增益,其同步追踪误差的均值、方差和标准差也将适当地增加,这是由于饱和约束引起的性能损失.也就是说,当执行器存在输入饱和时,异构系统的姿态控制收敛速度依赖增益参数的设计.当增益参数减少时,饱和现象将不会存在执行器,这是以牺牲控制性能为代价的.4 结束语本文针对实际空间环境中异构航天器存在强非线性和不确定性等影响,以及考虑执行器存在输入饱和约束等问题,提出了面向异构航天器包含饱和输入和不确定性动态的鲁棒一致性追踪控制策略.该控制策略允许目标系统的动态权重矩阵是完全未知的.通过提出新的权重矩阵平均观测器动态,设计了一类新的鲁棒一致性追踪控制器.该控制策略综合了分布式观测和一致性追踪协议,能够在保证追踪性能的同时提高控制策略的鲁棒性.仿真结果表明,利用不同的低增益参数,输入饱和现象被解决,并且异构航天器的姿态控制性能得到了保证.分析表明,提出的控制策略基于分布式参数,具有较强的灵活性,易于工程实现.参考文献References[1] Du H B,Li S H.Attitude synchronization for flexible spacecraft with communication delays[J].IEEE Transactions on Automatic Control,2016,61(11):3625-3630[2] Zhou B.On stability and stabilization of the linearized spacecraft attitude control system with bounded inputs[J].Automatica,2019,105:448-452[3] 王茜,周彬,段广仁.输入饱和系统的离散增益调度控制及其在在轨交会中的应用[J].自动化学报,2014,40(2):208-218WANG Qian,ZHOU Bin,DUAN Guangren.Discrete gain scheduled control of input saturated systems with applications in on-orbit rendezvous[J].Acta Automatica Sinica,2014,40(2):208-218[4] He W L,Qian F,Han Q L,et al.Synchronization error estimation and controller design for delayed lur'e systems with parameter mismatches[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(10):1551-1563[5] He W L,Qian F,Lam J,et al.Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control:Error estimation,optimization and design[J].Automatica,2015,62:249-262[6] Ding L,Zheng W X,Guo work-based practical set consensus of multi-agent systems subject to input saturation[J].Automatica,2018,89:316-324[7] Zhang W B,Ho D W C,Tang Y,et al.Quasi-consensus of heterogeneous-switched nonlinear multiagent systems[J].IEEE Transactions on Cybernetics,2019:1-11[8] Cai H,Lewis F L,Hu G Q,et al.The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems[J].Automatica,2017,75:299-305[9] Wang B H,Chen W S,Zhang B.Semi-global robust tracking consensus for multi-agent uncertain systems with input saturation via metamorphic low-gain feedback[J].Automatica,2019,103:363-373[10] Zhong R,Zhu Z H.Attitude stabilization of tug-towed space target by thrust regulation in orbital transfer[J].ASME Transactions on Mechatronics,2019,24(1):373-3833.2 不同參数下的异构航天器姿态控制性能分析为了分析饱和等级对异构航天器姿态控制的影响,选取γ=0.2,0.1,0.01,0.001为参数对反馈增益进行参数化.相应地,可以分别构造4组分布式观测器(10)和追踪控制器(14).定义控制器的输入能量为u=∑6i=‖ui‖,观测器的输入能量为ξ=∑6i=‖ξi‖,同步追踪误差为e=∑6i=‖xi-ξ0‖.图2给出了控制器输入、观测器输入和同步追踪误差在不同增益参数下的收敛情况.为了对比不同参数下的控制性能,我们引入了均值、标准差和方差3个指标.其性能分析如图3所示.通过图3可知,当增益参数趋于零时,观测器输入和控制器的均值、方差和标准差都将逐渐减少.较小的控制器增益,其同步追踪误差的均值、方差和标准差也将适当地增加,这是由于饱和约束引起的性能损失.也就是说,当执行器存在输入饱和时,异构系统的姿态控制收敛速度依赖增益参数的设计.当增益参数减少时,饱和现象将不会存在执行器,这是以牺牲控制性能为代价的.4 结束语本文针对实际空间环境中异构航天器存在强非线性和不确定性等影响,以及考虑执行器存在输入饱和约束等问题,提出了面向异构航天器包含饱和输入和不确定性动态的鲁棒一致性追踪控制策略.该控制策略允许目标系统的动态权重矩阵是完全未知的.通过提出新的权重矩阵平均观测器动态,设计了一类新的鲁棒一致性追踪控制器.该控制策略综合了分布式观测和一致性追踪协议,能够在保证追踪性能的同时提高控制策略的鲁棒性.仿真结果表明,利用不同的低增益参数,输入饱和现象被解决,并且异构航天器的姿态控制性能得到了保证.分析表明,提出的控制策略基于分布式参数,具有较强的灵活性,易于工程实现.参考文献References[1] Du H B,Li S H.Attitude synchronization for flexible spacecraft with communication delays[J].IEEE Transactions on Automatic Control,2016,61(11):3625-3630[2] Zhou B.On stability and stabilization of the linearized spacecraft attitude control system with bounded inputs[J].Automatica,2019,105:448-452[3] 王茜,周彬,段广仁.输入饱和系统的离散增益调度控制及其在在轨交会中的应用[J].自动化学报,2014,40(2):208-218WANG Qian,ZHOU Bin,DUAN Guangren.Discrete gain scheduled control of input saturated systems with applications in on-orbit rendezvous[J].Acta Automatica Sinica,2014,40(2):208-218[4] He W L,Qian F,Han Q L,et al.Synchronization error estimation and controller design for delayed lur'e systems with parameter mismatches[J].IEEE Transactions on Neural Networks and Learning Systems,2012,23(10):1551-1563[5] He W L,Qian F,Lam J,et al.Quasi-synchronization of heterogeneous dynamic networks via distributed impulsive control:Error estimation,optimization and design[J].Automatica,2015,62:249-262[6] Ding L,Zheng W X,Guo work-based practical set consensus of multi-agent systems subject to input saturation[J].Automatica,2018,89:316-324[7] Zhang W B,Ho D W C,Tang Y,et al.Quasi-consensus of heterogeneous-switched nonlinear multiagent systems[J].IEEE Transactions on Cybernetics,2019:1-11[8] Cai H,Lewis F L,Hu G Q,et al.The adaptive distributed observer approach to the cooperative output regulation of linear multi-agent systems[J].Automatica,2017,75:299-305[9] Wang B H,Chen W S,Zhang B.Semi-global robust tracking consensus for multi-agent uncertain systems with input saturation via metamorphic low-gain feedback[J].Automatica,2019,103:363-373[10] Zhong R,Zhu Z H.Attitude stabilization of tug-towed space target by thrust regulation in orbital transfer[J].ASME Transactions on Mechatronics,2019,24(1):373-383。

光滑Chua系统异宿轨道存在性的证明

光滑Chua系统异宿轨道存在性的证明

光滑Chua系统异宿轨道存在性的证明陈建军;禹思敏【摘要】本文用待定系数法证明了具有三次多项式光滑Chua系统异宿轨道的存在性.首先,将光滑Chua系统转换为只含有一个变量的非线性微分方程.其次,证明了该非线性微分方程存在一个指数形式的无穷级数展开式表示的异宿轨道.最后,证明了该无穷级数展开式的一致收敛性,结合Shilnikov不等式,论证了该系统存在Smale马蹄,因而是Shilnikov意义下的混沌.%In this paper, the undetermined coefficient method is applied to prove the existence of heteroclinic orbit in a smooth Chua system with a cubic polynomial. Firstly, the smooth Chua system is converted to a nonlinear differential equation with only one variable. Secondly, the nonlinear differential equation is verified to have a heteroclinic orbit expressed by the infinite series expansion with the exponential form. Finally, the uniform convergence of the series expansion of the heteroclinic is proved. Combining the existence of heteroclinic orbit with Shilnikov inequalities, Smale horseshoses has been found in the smooth Chua system, and it is chaotic in the sense of Shilnikov.【期刊名称】《工程数学学报》【年(卷),期】2011(028)005【总页数】9页(P693-701)【关键词】待定系数法;异宿轨道;Shilnikov定理;光滑型Chua系统【作者】陈建军;禹思敏【作者单位】广东工业大学自动化学院,广州510006;广东工业大学自动化学院,广州510006【正文语种】中文【中图分类】O191 引言近年来,混沌在非线性科学、工程和数学等领域中获得了广泛研究和应用[1-3].目前大多数研究混沌的方法是在数值仿真基础上进行的,如计算李氏指数和分岔图等[4,5].而有关严格的数学分析证明混沌存在性的文献却不多[6-8],主要原因是用解析方法论证系统的混沌特性难度较大,从而使得有些混沌系统在提出若干年之后才被严格的数学所证明.Chua系统主要包括分段线性型和光滑型两种基本类型,其混沌机理研究一直为国内外学者所关注.例如,对于三分段线性型Chua系统,Chua在1986年给出了混沌存在性严格的数学证明[6].另一方面,Mees、Li和Chen等提出在满足同宿轨和异宿轨的基本特性、Shilnikov不等式和特征方程等条件下,直接确定状态方程中的各个参数,进而证明了三分段线性型Chua系统,两分段线性型Lorenz系统混沌的存在性[9,10].但有关光滑型Chua系统混沌存在性的结果却鲜见报道.众所周知,最常用的证明自治系统混沌存在性的判定定理是Shilnikov定理[11,12],近年来,Shilnikov方法有了一些新进展[10,13-21],Zhou等用Shilnikov定理对Chen系统的混沌轨道特性进行了详细的分析,并第一次得到其精确的边界[13].Li等基于shilnikov定理证明了Chen系统存在或者不存在同宿轨道和异宿舍轨道时,各个参数应满足的条件[15].文献[19]对Arneodo等提出的具有三个参数的连续分段线性的微分方程族,在结合Hopf-Zero分岔的情况下,证明了系统族存在一类具有两个参数的同宿轨道.特别是对于具有平方项和交叉项的三阶二次型广义Lorenz系统族,Zhou等提出在满足同宿轨和异宿轨基本特性、Shilnikov不等式和特征方程条件下,利用无穷级数展开法,并保证级数的收敛性,证明了同宿轨道和异宿轨道的存在性[16-18].在此基础上,我们基于Shilnikov定理和待定系数法,给出了非线性项为三次多项式的光滑型Chua系统中异宿轨道无穷级数的数学表达式和一致收敛性的结果,由此证明了该系统中异宿轨道的存在性.2 预备知识2.1 Shinikov定理对于一个三阶自治系统式中矢量场f:R3→R3∈Cr(r≥2),设xe∈R3是(1)式的一个平衡点,满足f(xe)=0.若系统在平衡点xe处的Jacobin矩阵J=Df(xe)的特征值为r,σ±jw,且满足σγlt;0,w=0,其中σ,γ,w∈R,则称xe为双曲鞍焦点,简称鞍焦点.假设系统有两个不同的鞍焦平衡点1和2,系统的一个动态有界轨道,当t→±∞,这个轨道都趋近同一个平衡点,则这个轨道就是同宿轨道,而异宿轨道是连接两个不同的鞍焦点类型的平衡点,当t→+∞,轨道趋近平衡点1,而t→−∞,该轨道趋近平衡点2.异宿轨道Shilnikov定理:令xe1和xe2分别为(1)式的两个不同的平衡点,若同时满足以下两个条件,则存在斯梅尔马蹄意义下的混沌.1) xe1和xe2均为鞍焦点,并满足Shilnikov不等式|σi/γi|lt;1(i=1,2),式中γ1γ2gt;0,或者σ1σ2gt;0;2) 存在一条连接两个平衡点xe1和xe2异宿轨道.2.2 具有三次多项式的光滑Chua系统具有三次多项式光滑Chua系统的无量纲状态方程为[22]其中f(x)为三次多项式,其数学表达式为f(x)=cx3−dx.上面(2)式和(3)式中αgt;0,βgt;0,cgt;0,dgt;0为参数,取α=10,β=100/7,c=2/7,d=1/7,得混沌吸引子相图,如图1所示.图1: 光滑Chua系统混沌吸引子相图由(2)和(3)式求得系统的三个平衡点分别为O1(0,0,0),0).从图1可以看出,该系统的轨道交替围绕着平衡点O2和O3旋转,由此可知该系统有一个异宿轨道连接O2和O3.3 光滑Chua系统的异宿轨道经计算,得(2)式中平衡点O2和O3对应的Jacobi矩阵为对应的特征方程为其中记∆=4P3+27Q2,由三次方程求根公式知,当∆gt;0时,(5)式有唯一的负实根γ1和一对共轭复根σ1±jw1,γ1,σ1,w1的数学表达式为根据(5)式和(6)式,得特征方程(4)式的一个实根γ和一对共轭复根σ1±jw分别为可知平衡点O2和O3,它们所对应的Jacobi矩阵都有(7)式的三个相同的根.根据(2)式,得当k=2时,有注意到(14)式中α1=0,否则由(15),(16)式可以得出αk=0(k≥1,k∈N∗),所以有对比(4)式得知l是系统在O3的Jacobi矩阵所对应特征方程的负实根,记经推导,(16)式可以进一步简化为式中C为常数,其数学表达式为其中(i,j,p)∈N∗,且i≥1,j≥1,p≥1.在(2)式中,当∆gt;0时,方程只有唯一的负实根,故当k∈N∗,k≥2时,有由(15)和(16)式,得出αk(k ∈ N∗,k ≥ 2)完全由α,β,c,d,l,α1决定,并且有αk=φk(k∈N∗,k≥2),其中φk(k∈ N∗,k≥2)是关于参数α,β,c,d,l的函数.注意到方程(11)具有对称性,若tgt;0,x(t)是方程(11)的解,而当tlt;0时,−x(−t)也是方程(11)的解.当tlt;0时,得进而得出连接O2和O3的异宿轨道具有如下形式为保证φ(t)的连续性,要求φ(0−)=φ(0+),得显见f(0)=−rlt;0.计算φk(2≤k≤13),得同理,经计算得从上述数据中可知,当k为偶数时,φklt;0;当k为奇数时,φkgt;0(k≥2).于是当k为奇数,且常数α2为充分大正数时,有F(α2)gt;0,由零点定理得F(α1)=0,α1∈(0,α2).由于F′(α1)gt;0,(22)式无重根.当k为偶数时,φklt;0,可以得出方程不存在正实根,它有k/2对共轭复根.表1给出了k为奇数时,(22)式所对应的关于α1正实根的值.表1: k为奇数时,(22)式对应关于α1正实根的值k=3 α1=0.6842 k=5α1=0.6285 k=7 α1=0.6197 k=9 α1=0.6117 k=11 α1=0.6051 k=13α1=0.5996当k继续增大时,计算可知α1的值基本稳定在0.5996,于是可近似认为α1=0.5996,因此数值仿真可以说明满足方程(22)的α1确实存在.下面证明无穷级数(12)式的一致收敛性.4 异宿轨道的收敛性现仅考虑能产生混沌吸引子的典型参数α=10,β=100/7,c=2/7,d=1/7,对于其它参数,如果它的异宿轨道存在,证明与此相似.当tgt;0时,由(15)和(16)式得故Ak单调递减且收敛于0.注意到Bk是系数α1,α2,···,αk−1的不高于三次的多项式函数.由(21)式知α1,α2,···,αk−1有界,于是Bk有界,其部分和序列也有界.因此,由Dirichlet判别法,得以下级数收敛于是|φ(t)|收敛.同理可证明当tlt;0时,|φ(t)|也收敛.显然满足Shilnikov不等式,其中的一个异宿轨道如图2所示.图2: α=10,β=100/7,c=2/7,d=1/7时光滑Chua系统的异宿轨道当∆gt;0时,由(6)式和(7)式,得γlt;0.对于(4)式,由根与系数的关系得由(23)式,得γ+2σlt;0.故只须σgt;0,Shilnikov不等式|σ/γ|lt;1成立,若σgt;0,有经上述分析,可得出如下结论:若光滑Chua系统参数αgt;0,βgt;0,cgt;0,dgt;0,满足∆gt;0和(24)式,并有(20)式所表示的异宿轨道时,该系统是Shilnikov意义下的混沌.5 结论基于Shilnikov定理和待定系数法,对参数α=10,β=100/7,c=2/7,d=1/7的非线性项为三次多项式光滑Chua系统进行了研究.导出了异宿轨道无穷级数的数学表达式,并证明了其一致收敛性,由此证明了该系统中存在一条Shilnikov类型的异宿轨道,根据Shilnikov判定定理,知该系统有Smale马蹄,因而是Shilnikov意义下的混沌.参考文献:【相关文献】[1]Lv J H,Chen G R.Generating multiscroll chaotic attractors:theories,metholds and applications[J].International Journal of Bifurcation and Chaos,2006,16(4):775-858[2]李战国,徐伟.不确定混沌系统自适应改进投影同步与参数估计[J].工程数学学报,2010,27(1):30-36 Li Z G,Xu W.Adaptive modif i ed projective synchronization and parameter estimation for chaotic systems with uncertain parameters[J].Chinese Journal of Engineering Mathematics,2010,27(1):30-36[3]Lou J,Wen Q Z.Modelling cancer dynamics in HIV-1 infected individuals[J].Chinese Journal of Engineering Mathematics,2010,27(2):375-379[4]Yu S M,Tang K S,Chen G R.Generation of n×m-scroll attractors under a Chua-circuit framework[J].International Journal of Bifurcation and Chaos,2007,17(11):3951-3964 [5]Tsuneda A.A gallery of attractors from smooth Chua’s equation[J].International Journal of Bifurcation and Chaos,2005,15(1):1-49[6]Chua L,Komuro M,Matsumto T.The double scroll family[J].IEEE Transaction on Circuits and System,1986,33(11):1072-1118[7]Stewart I.The Lorenz attractor exists[J].Nature,2002,406:948-949[8]Matsumoto T,Chua L O,Ayaki K.Reality of chaos in the double scroll circuit:a computer-assisted proof[J].IEEE Transaction on Circuits and System,1988,35(7):909-925[9]Mees A I,Chapman P B.Homoclinic and heteroclinic orbits in the double scroll attractor[J].IEEE Transaction on Circuits and System,1987,34(9):1115-1120[10]Li Z,Chen G R,Halang W A.Homoclinic and heteroclinic orbits in a modif i ed Lorenz system[J].Information Sciences,2004,165(3-4):235-245[11]Shilnikov L P.A case of the existence of a countable number of periodicmotions[J].Soviet Mathmatics Docklady,1965,6:163-166[12]Shilnikov L P.On a new type of bifurcation of multidimensional dynamicalsystems[J].Soviet Mathmatics,1969,10(1):1368-1371[13]Zhou T S,Tang Y,Chen G plex dynamical behaviors of the chaotic Chen’s system[J].International Journal of Bifurcation and Chaos,2003,13(9):2561-2574[14]Li X L,Li X M,Zheng Z H.Homoclinic shadowing and its application to chaotic systems[J].International Journal of Bifurcation and Chaos,2008,18(5):1363-1375[15]Li T,Chen G T,Chen G R.On homoclinic and heteroclinic orbits of Chen’ssystem[J].International Journal of Bifurcation and Chaos,2006,16(10):3035-3041[16]Zhou T S,Tang Y,Chen G R.Chen’s attractor exists[J].International Journal of Bifurcation and Chaos,2004,14(9):3167-3177[17]Zhou T S,Chen G R.Classification of chaos in 3d autonomous quadratic system-1 basic framwork and methods[J].International Journal of Bifurcation and Chaos,2006,16(9):2459-2479[18]Sun F Y.Shilnikov heteroclinic orbits in a chaotic system[J].International Journal of Modern Physics B,2007,21(25):4429-4436[19]Llibre J,Ponce E,Teruel A E.Horseshoes near homoclinic orbits for piecewise linear differential system in R3[J].International Journal of Bifurcation and Chaos,2007,17(4):1171-1184[20]Lin W,Chen G R.Heteroclinical repellers imply chaos[J].International Journal of Bifurcation and Chaos,2006,16(5):1471-1489[21]Yao M H,Zhang W.Shilnikov-type multipulse orbits and chaotic dynamics of a parametrically and externally excited rectangular chin plate[J].International Journal of Bifurcation and Chaos,2007,17(3):851-875[22]Zhong G Q.Implemention of Chua’s circuit with a cubic nonlinearity[J].IEEE Transaction on Circuits and System,1994,41(12):934-941。

电子通信领域经典书籍推荐

电子通信领域经典书籍推荐

电子通信领域经典书籍推荐【书名】:光同步数字传输网/viewthread.php?tid=71513&extra=page%3D2【语言】:中文【作者】:韦乐平【推荐理由】:SDH传输的必备资料,凡有志于传输领域的同志应该人手一本【相关信息】:无【书名】:数字通信【语言】:英文、中文【作者】:John G. Proakis【推荐理由】:一本万中选一的书,按信道做分析,虽然公式多,不是通俗易懂,但整体论述严谨,做数字通信必看的【相关信息】:无【书名】:数字通信——基础与应用【语言】:英文、中文【作者】:BERNARD SKLAR【推荐理由】:本书作者工程出身,做过通信的实际项目,讲解理论贴合通信工程师需求,特别是信道编解码部分,引经据典,比较详细【相关信息】:无【书名】:WCDMA技术与系统设计:第三代移动通信系统的无线接入(原书第三版)【语言】:有英文和中文【作者】:(芬)Harri Holma,Antti Toskala【推荐理由】:正在看,看了一半,觉得很好,内容较全,讲解较好,第三版加入了新的内容。

【相关信息】:无Elements of Information Theory(1991,2006)【书名】:Elements of Information Theory(1991,2006)【语言】:English【作者】:THOMAS M. COVER and JOY A. THOMAS【推荐理由】:信息论的经典著作,看了以后你会深入理解信息理论的精髓,看一些外文论文时不会再一头雾水。

第一版1991年,第二版2006年。

multiuser detection(1998)【书名】:multiuser detection(1998)【语言】:English【作者】:Sergio Verdu【推荐理由】:多用户检测的经典著作,大牛Verdu是普利斯顿大学的教授,是多用户检测最重要的开创人。

这本书介绍了CDMA系统里的多用户检测。

stata空间模型中赤池信息准则和施瓦茨准则实现

stata空间模型中赤池信息准则和施瓦茨准则实现

赤池信息准则(本人C)和施瓦茨准则(BIC)是在stata空间模型中常用的模型选择准则。

它们可以帮助我们在众多可能的模型中选择出最为合适的模型,从而提高模型的预测准确性和解释能力。

让我们来了解一下赤池信息准则和施瓦茨准则的基本概念。

赤池信息准则是由赤池广一(Akaike)教授于1974年提出的,它是一种以信息熵为基础的模型选择准则。

赤池信息准则的计算公式为本人C = -2ln(L)+2k,其中ln(L)代表模型的最大似然函数值,k代表模型的参数个数。

而施瓦茨准则是由施瓦茨瓦尔德(Schwarz)教授于1978年提出的,它是一种以贝叶斯信息准则为基础的模型选择准则。

施瓦茨准则的计算公式为BIC = -2ln(L)+k*ln(n),其中ln(L)代表模型的最大似然函数值,k代表模型的参数个数,n代表样本量。

在stata中,我们可以使用一些内置的命令来实现赤池信息准则和施瓦茨准则的模型选择。

以空间滞后模型为例,我们可以使用命令“spml”来估计模型,同时在命令中添加“aic”或“bic”选项即可得到相应的本人C值或BIC值。

通过比较不同模型的本人C值和BIC值,我们可以选择出最为合适的模型。

通过本人C和BIC准则进行模型选择的优势在于,它们可以在一定程度上避免了过拟合的问题。

过拟合是指模型在训练数据上表现非常好,但在测试数据上表现较差的情况。

本人C和BIC准则考虑了参数个数对模型准确性的影响,因此可以有效地避免过拟合问题的发生。

另外,本人C和BIC准则也考虑了样本量的大小,在样本量较小的情况下能够更好地适应模型选择。

当然,在使用本人C和BIC准则进行模型选择时也存在一些局限性。

本人C和BIC准则并不能保证我们选择出来的模型就一定是真实的最佳模型,它们只是在一定程度上帮助我们选择出最为合适的模型。

另外,本人C和BIC准则在参数个数较多的情况下可能会偏向选择出较为简单的模型,而在参数个数较少的情况下可能会偏向选择出较为复杂的模型。

电子行业专业词汇术语(专业超全)

电子行业专业词汇术语(专业超全)

电子行业专业词汇术语(专业超全)————————————————————————————————作者:————————————————————————————————日期:电子行业专业词汇术语GRR Gauge Repeatability Reproducibility 量测的再现性与再生性FPI First Piece Inspection 首件检查Sampling without replacement 不放回抽样SQA: Source(Supplier) Quality Audit 供货商品质审核1. QC : quality control 质量管理2. IQC : incoming quality control 进料质量管理3. OQC : output quality control 出货质量管理4. PQC : process quality control 制程质量管理也称IPQC : in process quality control .5. AQL : acceptable quality level 允收标准6. CQA: customer quality assurance 客户品质保证7. MA : major defeat 主要缺点8. MI : minor defeat 次要缺点9. CR :critical defeat 关键缺点10. SMT : surface mounting technology表面粘贴技术11. SMD :surface mounting device 表面粘贴程序SMC : surface mounting component 表面粘贴组件12.ECN : engineering change notice 工程变更通知13.DCN : design change notice 设计变更通知14.PCB : printed circuit board 印刷电路板15.PCBA : printed circuit board assembly装配印刷电路板16. BOM : bill of material 材料清单17. BIOS : basically input and output system基本输入输出系统18. MIL-STD-105E : 美国陆军标准,也称单次抽样计划.19. ISO : international standard organization 国际标准化组织20. DRAM: 内存条21. Polarity : 电性22. Icicles : 锡尖23. Non-wetting : 空焊24. Short circuit : 短路25. Missing component : 缺件26. Wrong component :错件27 . Excess component :多件28. Insufficient solder : 锡少29 . Excessive solder :锡多30. Solder residue: 锡渣31. Solder ball : 锡球32. Tombstone : 墓碑33 . Sideward:侧立34. Component damage :零件破损35. Gold finger:金手指36. SOP : standard operation process 标准操作流程37. SIP : standard inspection process 标准检验流程38 .The good and not good segregation :良品和不良品区分39. OBW : on board writer 熸录BIOS40 . Simple random sampling : 简单随机抽样41. Histogram : 直方图42 . Standard deviation : 标准差43. CIP : Continuous improvement program 持续改善计划44. SPC : Statistical process control 制程统制45 . Sub-contractors : 分包商46. SQE: Supplier quality engineering 47. Sampling sample :抽样计划48. Loader : 治具49. QTS: Quality tracking system 质量追查系统50. Debug : 调试51. Spare parts: 备用品52. Inventory report for : 库存表53. Manpower/Tact estimation 工时预算54. Calibration : 校验55. S/N :serial number 序号56. Corrugated pad : 波纹垫57.Takeout tray: 内包装盒58. Outer box : 外包装箱59. Vericode : 检验码60. Sum of square : 平方和61. Range : 全距62. Conductive bag : 保护袋63. Preventive maintenance :预防性维护64. Base unit : 基体65. Fixture : 制具66. Probe : 探针67. Host probe : 主探针68. Golden card : 样本卡69. Diagnostics program : 诊断程序70. Frame : 屏面71. Lint-free gloves : 静电手套72 .Wrist wrap : 静电手环73. Target value : 目标值74. Related department : 相关部门75. lifted solder 浮焊76.plug hole孔塞77. Wrong direction 极性反ponent damage or broken 零件破损79.Unmelted solder熔锡不良80.flux residue松香未拭81.wrong label or upside down label贴反82. mixed parts机种混装83. poor solder mask绿漆不良84. oxidize 零件氧化85.stand off height浮高86. IC reverse IC反向87.supervisor课长88. Forman组长89. WI=work instruction作业指导90. B.P. 非擦除状态91. Internal notification: 内部联络单92. QP :Quality policy质量政策93. QT: Quality target 品质目标94. Trend:推移图95.Paret柏拉图96. UCL: Upper control limit管制上限97.LCL:Lower control limit管制下限98. CL: Center line中心线99.R.T. Rolled throughout yield直通率100. PPM: Parts per million 不良率101.DPU: Defects per unit 单位不良率102.Resistor: 电阻103.Capacitor:电容104. Resistor array : 排阻105. Capacitor array: 排容106. DIODE: 二极管107.SOT: 三极管108. Crystal:震荡器109.Fuse:保险丝110.Bead: 电感inductance 111.Connector:联结器112.ADM: Administration Department行政单位113. CE: Component Engineering零件工程114. CSD :Customer Service Department客户服务部115. ID: Industrial Design工业设计116.IE: Industrial Engineering工业工程117. IR: Industrial Relationship工业关系118. ME: Mechanical Engineering机构工程119. MIS :Management Information System信息部120. MM: Material Management资材121. PCC: Project Coordination/Control专案协调控制122. PD: Production Department生产部123. PE: Product Engineering产品工程124. PM: Product Manager产品经理125. PMC: Production Material Control生产物料管理126. PSC: Project Support & Control产品协调127. Magnesium Alloy:镁合金128. Metal Shearing:裁剪129.CEM:Contract Electronics Manufacturing电子制造服务企业EMS: Electronics Manufacturing Services130. ERP: Enterprise Resource Planning 企业资源规划SCM+CRM+ERP+EAI=Network direct TM links procurement, production, Logistics and sales采购,生产,后勤管理及市场营销的融合EAI: Enterprise application Integration 企业应用系统整合CRM: Customer Relationship Planning 客户服务规划SCM : Supply chain management 供应链管理131. OJT: On job training 在职培训132.Access Time: 光盘搜寻时间133. B2CEC:Business to consumer electronic commerce 企业对消费者的电子商务B2BEC:Business to business electronic Commerce 企业间的电子商务L:Copper Clad Laminate 铜箔基板135. Intranet: 企业内部通讯网路136. ISP: Internet Service Provider网络服务提供者ICP: Internet Content Provider网络内容提供者137. GSM: Global System for Mobile Communication 泛欧数字式行动电话系统GPS: 全球卫星定位系统138. Home Page: 网络首页139.Video Clip:影像文件140. HTML:超文标记语言141.Domainname: 网域名称142. IP: 网络网域通讯协议地址143.Notebook:笔记型计算机144. VR: Virtual Reality虚拟实境145. WAP: Wireless Application Protocol无线应用软件协议146. LAN : Local area network局域网络WW World Wide Web世域网W AN: Wide Area Network 广域网络147. 3C: Computer, Communication, Consumer electronic 计算机, 通讯, 消费性电子三大产品的整合rmation Supplier Highway:信息高速公路149.UPS:Uninterrupted power system不断电系统150.Processed material: 流程性材料151.Entity/Item:实体152.Quality loop:质量环153.Quality losses: 质量损失154.Corrective action:纠正措施155. Preventive action:预防措施156.PDCAlan/Do/Check/Action计划/实施/检查/处理157. Integrated circuits(IC):集成电路158.Application program: 应用程序159.Utilities:实用程序160.Auxiliary storage/Second storage:;辅助存储器161.Silicon chip:硅片162Diskette drive:软驱163.Display screen/Monitor:显示器164.Foreground:前面165.Montherboard:母板166.Mermory board: 内存板167.Slot:插槽168.Busata-bus/address-bus/Control bus: 总线/数据总线/地址总线/控制总线169.Plotter:绘图170.MPC:Multimedia personal computer多媒体171.Oscillator:振荡器172.Automatic teller terminal:自动终端(出纳)机173.Joystick port:控制端口174.VGA: Video Graphics Array显示卡175.Resolution:分辨率176.Register:寄存器177.ISA: Industry Standard Architecture 工业标准结构178.EISA: Extended Industry Architecture 扩展工业标准结构179.Adapter: 适配器180.Peripheral:外部设备181.Faxmodem:调制解调器181.NIC:Network interface card网络接口卡182. SCSI: Small computer system interface 183.VESA: Video Electronic Standards Association184. SIMM: Single in-line memory module 单排座存储器模块(内存条) 185.Casing:外箱186.Aluminum:铝质187.Ceramic: 陶瓷的188.Platter:圆盘片189.Actuator:调节器190.Spindle:轴心191.Actuation arm: 存取臂192.Default code: 缺省代码193.Auxiliary port:辅助端口194.Carriage return : 回车195.Linefeed:换行197.Video analog: 视频模拟196.ASCII: American Standard Code for Information Interchange美国信息互换标准代码198.TTL: Transistor- Transistor logic晶体管-晶体管逻辑电路199.Three-prong plug:三芯电插头200.Female connector:连接插座201.Floppy disk:软盘202.Output level: 输出电平203.V ertical/Horizontal synchronization: 场/行同步204.H(Horizontal)-Phase:行相位patible:兼容机206.Hardware Expansion Card: 硬件扩充卡207.Buffer:缓冲208.CRM:Customer relationship Management 客户关系管理209.WIP: Work in process半成品210.Waiver:特别采用211.CXO系列—CEO: Chief Executive Office 首席执政官;执行总裁COO: Chief Operating OfficeCFO: Chief Finance OfficerCBO: Chief Business OfficerCTO: Chief Technology OfficerCIO: Chief Information OfficerCGO: Chief Government Officer212. NASDAQ: 纳斯达克证券市场NASDAQ Automated Quotation system213.VC: Venture Capital 风险投资214. PDA: Personal Date Assistant个人数字助理PLA: Personal Information Assistant个人信息助理215. PPAP: Advanced Product Quality Planning and Control Plan 生产性零组件核准程序216. FMEA: Potential Failure Mode and Effects Analysis 失效模式与效应分析217. MSA: Measurement Systems Analysis 量测系统分析218. QAS: Quality System Assessment 质量系统评鉴219. Cusum: 累计总合图220. Overall Equipment Effectiveness设备移动率221. Benchmarking: 竞争标杆Analysis of motion/Ergonomics动作分析/人体工程学222. Roka Yoke 防错法MCR: machine capability ratio 机器利用率223. Mistake Proofing 防呆法Taguchi methods田口式方法224, Vertical integration垂直整合Surveillance定期追踪审查225. EMS: Electronics Manufacturing Supply-chain226. Cause & Effects charts特性要因图227. Scatter: 散布图Fool-Proof System 防呆系统228. VE: Value Engineering 价值工程QFD: Quality Function Development 质量机能展开229. Arrow Chart 箭头图法Affiliate Chart亲和图法230. PDPC: Process Decision Program Chart System Chart系统图法231. Relation Chart 关边图法Matrix Chart矩阵图法232. Matrix Data Analysis 矩阵数据分析法234. Brain-storm 脑风暴法JIT: Just In Time:及时性生产模拟235. Deming Prize: 戴明奖Prototype技术试作236. BPM: Business Process Management 业务流程管MBO目标管理237. MBP:方针管理FTA:故障树分析QSC 服务质量238. IPPB: Information 情况planning策划Programming规划Budget预算239. EQ: Emotion Quotient:情商IQ: Intelligence Quotient:智商240. Implied Needs:隐含要求Specified Requirement:规定要求241. Probation:观察期Incoming Product released for urgent production 紧急放行242.Advanced quality planning 先进的质量策划243. AOQ: Average Outgoing Quality 平均检出质量AOQL: Average Outgoing Quality Limit 平均检出质量界限244.Approved Supplier List 经核准认可的供应商名单245.Attribute date 特征Benchmarking 基准点Calibration 校准246.Capable process工序能力Capability Index序能力指数Capability ratio工序能力率247.CHANG CYCLE TIME 修改的时间周期Continuous improvement 持续改进248. Control plans控制策划Cost of quality 质量成本249. Cycle time reduction减少周期时间250. Design of experiments 实验设计Deviation / Substitution偏差/置换251. ESD: Electrostatic discharge静电释放252. EH&S: Environmental, Health, and Safely 环境,健康.安全253. ESS: Environmental Stress Screening 环境应力筛选254. FMEA: Failure Mode Effect Analysis 失误模式效应分析255. First Article approval 产品的首次论证256. First pass yield 一次性通过的成品率257. First sample inspection第一次样品检验258. FMECA: Failure mode effect and critically analysis 失误模式,效应及后果分析259. Gauge control 测量仪器控制260. GR&R: Gauge repeatability and reproducibility 测量仪器重复性和再现性261. HALT: Highly Accelerated Life Test 高加速寿命试验262. HAST: Highly Accelerated Stress Test 高加速应力试验263. IN-CONTROL PROCESS 受控制工序264. INDUSTRIAL AVERAGE 工业平均数265. JIT (just in time) manufacturing (实时)制程266. Key characteristic关健特征267. Key component关健构件268. Life Testing寿命试验269. Lot traceability 批量可追溯性270. Material review board原材料审查部门MCR: machine capability ratio机械能力率271. NONCONFORMANCE不符合272. OUT-OF-CONTROL PROCESS失控工序273. Pilot Application试产(试用) 274. PPM: Parts per million百万分之一275. Preventive VS detection预防与探测Preventive maintenance预防维护276. Process capability index工序能力指277. Process control工序控制278. Process improvement工序改进279. Process simplification 过程简化280. Quality Clinic Process Chart (QCPC)质量诊断过程图281. Quality information system质量资料体系282. Quality manual质量手册283. Quality plan质量计划284. Quality planning质量策划285. Quality policy质量方针286. Quality system质量体系287. Reliability可靠性RUN Chart趋势表288. Skill Matrix技能表289. Statistical quality control (SQC)统计质量控制290. Teamwork 团队工作291. Total quality management全面质量管理292. Variable data变量数据293. Variation影响变量294. Value Analysis值分析295. Visual Factory形象化工厂296. Survey Instructions调查指引297. Profile 概况298. Improvement Plan改进计划299. Evaluation评估300. implementation实施301. Compliance符合302. Supplier Audit Report供方审核报告303. Site Audit现场审核304. Typical agenda典型的议事日程305. Internal and external failure costs内部和外部的失误成本306. Failure rate percentage 失误百分率307. Productivity (output / input)生产率(产出/投入) 308. Customer complaints 客户投诉309. Customer satisfaction indices 客户满意度指数310. Root cause analysis of failures失误根原分析品管中英文名词对照表Accuracy准确度Active主动Action评价.处理Activity活动Add加Addition rule加法运算规则Analysis Covariance协方差分析Analysis of Variance方差分析Appraisal Variation评价变差Approved承认ASQC美国质量学会Attribute计数值Audit审核Automatic database recovery数据库错误自动回复Average平均数balance平衡Balance sheet资产负债对照表Binomial二项分配Body机构Brainstorming Techniques脑力风暴法Business Systems Planning企业系统规划Cable电缆Capability能力Cause and Effect matrix因果图.鱼骨图Center line中心线check检查Check Sheets 检查表Chi-square Distribution 卡方分布Clutch spring 离合器弹簧Coining 压印加工Common cause 共同原因Complaint 投诉Compound factor 调合因素Concept 新概念Condenser 聚光镜Conformity 合格Connection 关联Consumer’s risk 消费者之风险Control 控制Control characteristic 管制特性Control chart 管制图Control plan 管制计划Correction 纠正Correlation Methods 相关分析法Cost down 降低成本CPI: continuouse Process Improvement 连续工序改善Creep 渐变Cross Tabulation Tables 交*表CS: customer Sevice 客户中心Cushion 缓冲Customer 顾客DSA: Defects Analysis System 缺陷分析系统Data 数据Data Collection 数据收集Data concentrator 资料集中缓存器DCC: Document Control Center 文控中心Decision 决策.判定Defects per unit 单位缺点数Description 描述Detection 难检度Device 装置Digital 数字Do 执行DOE: Design of Experiments 实验设计Element 元素Else 否则Engineering recbnology 工程技术Entropy 函数Environmental 环境Equipment 设备Estimated accumulative frequency 计算估计累计数E Equipment Variation 设备变异Event 事件External Failure 外部失效,外部缺陷FA: Failure Analysis 坏品分析Fact control 事实管理Fatique 疲劳FMEA: Failure Mode and Effect analysis 失效模式与效果分析FPY 合格率FQA: Final Quality Assurance 最终品质保证FQC: Final Quality control 最终品质控制Full-steer完全转向function职能Gauge system量测系统Grade等级Gum-roll橡皮滚筒Health meter体重计Heat press冲压粘着Histogram直方图Hi-tech高科技hypergeometric超几何分配hysteresis磁滞现象Improvement改善Inductance电感Information信息Initial review先期审查Inspection检验Internal Failure内部失效,内部缺陷IPQC: In Process Quality Control制程品质控制IQC: Incomming Quality Control来料品质控制IS International Organization for Standardization国际标准组织Law of large number大数法则Link连接LCL: Lower Control limit管制下限LQC: Line Quality Control生产线品质控制LSL: Lower Size Limit规格下限Machine机械Manage管理Materials物料Measurement量测Median中位数Miss feed漏送Module,sub-system,sub-unit单位Momentum原动力Monte garlo method原子核分裂热运动法MSA: Measurement System Analysis量测系统分析Multiplication rule乘法运算规则NIST 美国:标准技术院Normal常态分布Occurrence发生率On.off system开,关系统Operation Instruction作业指导书Organization组织Parameter参数Parto柏拉图Parts零件Parts per million不良率Passive消极的,被动的Plan计划Pulse 脉冲Policy 方针Population 群体Power 力量,能源PQA: Process Quality Assurance 制程品质保证Practice 实务Precision 精密度preemptive 先占式多任务Pressure 压缩Prevention 预防Probability 机率Probability density function 机率密度函数Procedure 流程Process 过程Process capability analysis制程能力分析图Process control and process capability制程管制与制程能力Producer’s risk生产者之风险Product产品Production生产Program方案Projects项目QA: Quality Assurance品质保证QC: Quality Control品质控制QE: Quality Engineering品质工程QFD: Quality Function Desgin品质机能展开Quality质量Quality manual品质手册Quality policy品质政策Random experiment随机试验Random numbers随机数Range全距Record记录Reflow回流Reject拒收Repair返修Repeatusility再现性Reproducibility再生性Requirement要求Residual误差Response响应Responsibilities职责Review评审Reword返工Robustness稳健性Rolled yield直通率RPN: Risk Priority Number风险系数sample抽样,样本Sample space样本空间Sampling with replacement放回抽样Sampling without peplacement不放回抽样Scatter diagram散布图分析Scrap报废Screw螺旋Severity严重度Shot-peening微粒冲击平面法Simple random sampling简单随机取样Size规格SL: Size Line规格中心线Slip滑动Stratified random sampling分层随机抽样SOP: Standard Operation Procedure标准作业书SPC: Statistical Process Control统计制程管制Special cause特殊原因Specification规范SQA: Source(Supplier) Quality Assurance供货商品质保证Stage sampling分段随机抽样Standard Deviation标准差Sum of squares统计表supplier平方和System供方systematic sampling系统,体系Statistical tables系统抽样Taguchi-method田口方法Technical committees技术委员会Test piece测试片Theory原理Time stamp时间戳印Time-lag延迟Title 题Torque转矩Total求和TQC: Total Quality Control全面品质控制TQM: Total Quality Management全面品质管理Traceablity追溯Training培训Transaction processing and logging交易处理Trouble困扰Up and down上和下UCL: Upper Control Limit管制上限USL: Upper Size Limit规格上限V alidation确认Variable计量值Variance变异和Vector向量Verification验证Version版本VOC: voice of Customer客户需求VOE: V oice of Engineer工程需[转帖]电子行业相关的英语词汇-1 backplane 背板2 Band gap voltage reference 带隙电压参考3 benchtop supply 工作台电源4 Block Diagram 方块图5 Bode Plot 波特图6 Bootstrap 自举7 Bottom FET Bottom FET 8 bucket capcitor 桶形电容9 chassis 机架10 Combi-sense Combi-sense11 constant current source 恒流源12 Core Sataration 铁芯饱和13 crossover frequency 交叉频率14 current ripple 纹波电流15 Cycle by Cycle 逐周期16 cycle skipping 周期跳步17 Dead Time 死区时间18 DIE Temperature 核心温度19 Disable 非使能,无效,禁用,关断20 dominant pole 主极点21 Enable 使能,有效,启用22 ESD Rating ESD额定值23 Evaluation Board 评估板24 Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied. 超过下面的规格使用可能引起永久的设备损害或设备故障。

引信专委会获得中国兵工学会优秀分支机构表彰

引信专委会获得中国兵工学会优秀分支机构表彰

邱上飞等:改进的时频同步与信道联合估计方法67[6]Aminjavaheri A,Farhang A,Rezazadehreyhani A,et al.Impactoftimingandfrequencyo f setson multica r ier waveform candidates for5G[C]//Signal Processing and Signal Processing Education :IEEE, 2015178-183.[7]Thein C,Fuhrwerk M,Peissig J.CFO estimation algo­rithm for OQAM-OFDM systems based on the conjugate symmetry property)C]//Signal Processing Conference.US:IEEE,2012;470-473.[8]Bolcskei H.Blind estimation of symbol timing and carrierfrequency offset in pulse shaping OFDM systems[C]// IEEEInternationalConferenceon AcouQticQ,Speech, %IEEE,19992749-2752.[9]Mattera D,Tanda M.Blind symbol timing and CFO esti­mation for OFDM/OQAM systems]J].IEEE Transac­tions on Wireless Communications,2013,12(1):268-277.[10]Fusco T,Petrella A,Tanda M.Blind carrier-frequencyoffset estimation for pulse shaping OFDM/OQAM sys­tems[J].Signal Processing,2008,88(8):1958-1970. [1叮Fuco T,Tanda M.Blind CFO estimators for OFDM/OQAM systems with null subcarriers[J].Journal of CommunicationQ,2007,2(3)%17-23.[12]赵宇,陈西宏,薛伦生.OFDM/OQAM系统中基于BEM信道模型的盲载波频偏估计算法[J].系统工程与,2016,38(6)1435-1439.[13]TildeFuQco,AngeloPetre l a,MarioTanda.Data-aidedQymboltimingandCFOQynchronizationforfilterbank multicarrierQyQtemQ[J].IEEE TranQactionQon Wire-leQQCommunication,2009,8(5)%2705-2715.[14]FuQco T,Petre l a A,Tanda M.JointQymboltimingand CFO estimation for OFDM/OQAM systems in mul-tpathchannels[J].Euras4pJournalonAdvances4nS4g-nalProcess4ng,2010(1)1-11.[15]Baghak4A,ChampagneB.Jo4ntcarrerfrequencyo f-set,samplng tme o f set and channelestmatonfor OFDM-OQAM systems[C]//Vehicular Technology %IEEE,20181-5.[16]StitzT H,ViholainenA,IhalainenT,etal.CFOeQti-mationandcorrectionina WiMAX-likeFBMCQyQtem[C]//2009Signal ProceQQing AdvanceQin WireleQQCommunications.IEEE,SPAWC09Workshop on.US%IEEE,2009633-637.[17]Stitz T H,Ihalainen T,Viholainen A,etal.Pilot-Basedsynchronization and equalization in filter bank multicarriercommunications[J].Eurasip Journalon AdvancesinSignalProcessing,2010(1)1-18.[18]Thein C,Fuhrwerk M,PeissigJ.Frequency-domainprocessingforsynchronizationandchannelestimationin OQAM-OFDM systems[C]//Signal Processing Ad­vances in Wireless %IEEE,2013% 634-638.[19]JavaudinJP,LacroixD,RouxelA.Pilot-aidedchannelestimation for OFDM/OQAM[C]//Vehicular Technol-ogyConPerenceSpring,%IEEE,20031581-1585.[20]QIU S F,XUE L S.An improved scattered pilot chan­nel estimation method for OFDM/OQAM system[C]// InternationalConferenceonComputerandCommunica-tionQ(ICCC).US%IEEE,2017141-146.引信专委会获得中国兵工学会优秀分支机构表彰11月16日,中国兵工学会下发了《关于表彰2019年度中国兵工学会优秀分支机构的决定》的文件,对在2019年学会工 作中做出突出成绩的10个分支机构及相关单位予以表彰&引信专业委员会在2019年的专委会工作中开展活动积极,成绩突出,被评为“优秀专业委员会”。

通信领域经典书籍推荐

通信领域经典书籍推荐

电子通信领域经典书籍推荐评论:上面的东西是往其它地方转载的,主要侧重在通信,做点自己的补充数字通信总体的书籍首推Prokais的书,讲得比较全,也不算很深,入门不错,但本科生看起来还是有些难度,因为随机过程不一定理解得有多好,学过的话就好办多了。

其次可以看Gallager的新书,大牛对通信的看法很特别,看完以后通信的基本框架就掌握了,也不一定要看得很深入,如果时间不允许的话。

通信系统,网络方面的书没有专门看过,最好结合电信网和计算机网一起来看,在两者的比较之中可以对网络认识更清楚一些,毕竟电信的人和计算机的人思维方式,处理问题的方法都很不相同,两者也会互相借鉴一些方法。

计算机界的人冲到通信界来抢饭碗就是一个证明,不说引起矛盾的话了,电信网和因特网的书以及各种参考资料实在太多,对理解通信系统来说,Simon.Haykin的Communication.Systems不错,这些年网络很火,通信网包括的东西很多,传输技术,交换技术,复用技术等纷繁复杂。

各层协议一个接一个的提。

有的协议虽然不难,但很烦,看起来都头大(比如ATM ?),要理解的话,还是从分层结构结合实际网络来,这方面绝对不能停留在理论上,搞排队论之类的也是这样,实际情况很重要。

信源编码的书不多,看过David Salomon的<数据压缩>,07年的新书,写得不错,国内东南吴乐南也有一本,不过比较小,具体涉及到语音和图像视频编码可以参考专门的书籍,需要语音和图像处理的基础。

语音方面推荐语音信号数字处理那本书,谁写的忘记了,图像处理就参考Gonzalez冈萨雷斯的书吧,也是经典。

信道编码的书不少,Lin Shu(林舒)的最为推荐,第二版,大而全而新,王新梅的做代数码的可以参考,概率解码的就算了,还有一些据说也是好书,但没看过,弄好一本已足够。

如果要具体到编解码算法的时候,T odd K. Moon的书Error.Correction.Coding.Mathematical.Methods.and.Algorithms不错,比较具体。

On the Synchronization Techniques for Wireless OFDM Systems

On the Synchronization Techniques for Wireless OFDM Systems

On the Synchronization Techniques for Wireless OFDM SystemsBo Ai,Member,IEEE,Zhi-xing Yang,Chang-yong Pan,Jian-hua Ge,Yong Wang,Member,IEEE,and Zhen LuAbstract—The latest research works on the synchronization scheme for either continuous transmission mode or burst packet transmission mode for the wireless OFDM communications are overviewed in this paper.The typical algorithms dealing with the symbol timing synchronization,the carrier frequency syn-chronization as well as the sampling clock synchronization are briefly introduced and analyzed.Three improved methods for the fine symbol timing synchronization in frequency domain are also proposed,with several key issues on the synchronization for the OFDM systems discussed.Index Terms—Carrier frequency synchronization,continuous mode and burst packet mode transmission systems,OFDM, sampling clock synchronization,symbol timing synchronization.I.I NTRODUCTIONO FDM,associated with other related technologies have found its wide applications in many scientific areas due to its high spectrum efficiency,its robustness against both multi-path and pulse noises,its highly reliable transmission speed under serious channel conditions,adaptive modulation for each sub-carrier according to the channel conditions, and etc.It has become fundamental technology in the future 4G-multimedia mobile communications systems[1].Many digital transmission systems have adopted OFDM as the modulation technique such as digital video broadcasting terrestrial TV(DVB-T)[2],digital audio broadcasting(DAB), terrestrial integrated services digital broadcasting(ISDB-T), digital subscriber line(xDSL),WLAN systems based on the IEEE802.11(a)[3]or Hiperlan2,multimedia mobile access communications(MMAC),and thefixed wireless access(FW A) system in IEEE802.16.3standard.OFDM has also found its application in Cable TV systems.Technologies fundamentally based on OFDM,such as vector OFDM(V-OFDM),wide-band OFDM(W-OFDM),flash OFDM(F-OFDM)have also shown their great advantages in certain application areas.There are some disadvantages,however,appeared in the OFDM systems,for example,the large Peak-to Average Power Ratio(PAPR)as well as high sensitivity to the synchronization errors.Synchronization issues are of great importance in allManuscript received April26,2005;revised October27,2005.This work was supported in part by the National Natural Science Funds in China(Nos. 50177001,60372007,and60332030)and by the Ministry of Information Industry Foundation under Grant no.2002291.B.Ai is with the Dept.of E&E Tsinghua University,State Key Lab.on Microwave and Digital Communications,China(100084).He is also with the Engineering College of Armed Police Force,Xi’an,China(710086)(e-mail: abeffort_apple@).Z.Yang and C.Pan are with the Dept.of E&E Tsinghua University,State Key Lab.on Microwave and Digital Communications,China(100084).J.Ge and Y.Wang are with the National key Lab.of Integrated Service Net-works,Xidian Univ.,Xi’an,China(710071).Z.Lu is with the Dept.of Electronic Engineering in Shanghai Jiaotong Uni-versity,China(200052).Digital Object Identifier10.1109/TBC.2006.872990digital communications systems,especially in the OFDM systems.Synchronization errors not only cause inter-symbol interference(ISI)but also introduce inter-carrier interference (ICI)due to the loss of orthogonality among all sub-carriers. In this paper,we focus on the synchronization schemes in the OFDM systems.Fundamental theory for the synchronization is briefly described in Section II and in Section III,the symbol timing scheme and three improved methods for thefine symbol timing in frequency domain are proposed.We then conduct the analysis on the carrier frequency recovery as well as the sampling clock synchronization methods in Sections IV and V respectively.In Section VI,joint estimation of all the synchro-nization errors including timing,frequency and phase offsets is simply described.Technical forecast is made in Section VII with conclusions drawn in Section VIII.II.O VERVIEW FOR THE S YNCHRONIZATION IN OFDM S YSTEMS Synchronization is of great importance for all digital com-munication systems.OFDM systems are very sensitive to both timing and carrier frequency offset,especially,when combined with other multi-access techniques such as FDMA,TDMA,and CDMA.Therefore,synchronization is extremely crucial to the OFDM systems.A.Three Synchronization Issues in the OFDM Systems There are three major synchronization issues in the OFDM systems:a.The symbol timing synchronization,which is to deter-mine the correct symbol start position before the FFT de-modulation at the receiver end.b.The carrier frequency synchronization(i.e.,carrier fre-quency recovery technique),which is utilized to eliminate the carrier frequency offset caused by the mismatch from the local oscillators between the transmitter and the re-ceiver,nonlinear characteristic of the wireless channel as well as the Doppler shift.c.The sampling clock synchronization,which is to miti-gate the sampling clock errors due to the mismatch of the crystal oscillators.All these synchronization errors will significantly degrade system performance[4],[5].B.Synchronization Technologies in the Continuous Mode and Burst Packet Mode Transmission SystemsAccurate synchronization is indispensable to suppress the negative impact of the synchronization errors in the commu-nication systems no matter,whether it is in continuous or burst packet mode transmission systems.However,these two different modes require different synchronization schemes:0018-9316/$20.00©2006IEEEa.In the burst packet mode,synchronization ought to beestablished at any time because when data streams are ready to transmit is unknown The duration of the training symbols used for synchronization in this mode is rela-tively short and synchronization should be done within a single training symbol time for the systems such as IEEE 802.11(a)[3]and HiperLan/2to avoid the reduction of the system capacity.It is inappropriate to do averaging over many symbols or pilots because of the stringent re-quirement on synchronization time and the less number of sub-carriers.It is also important for the systems in this mode to establish the synchronization in time domain and this will greatly reduce the acquisition time since it avoids the feedback from frequency domain.b.In the continuous mode such as DAB,DVB-T[2]sys-tems,averaging method can be used to improve the es-timation accuracy because there is no stringent require-ment on the acquisition time.In this mode,large numbers of sub-carriers has been utilized and,it is appropriate to apply the cyclic prefix(CP)or pilots to these synchroniza-tion methods.III.S YMBOL T IMING S YNCHRONIZATIONWhen signals are transmitted through severe channel con-ditions of multi-path fading,pulse noise disturbance and the Doppler Shift,it is important to solve symbol timing synchro-nization problemfirst during the design process of an OFDM receiver.The symbol timing error can not only disturb the amplitude as well as the phase of the received signal,but also introduce ISI. In order to perform the FFT demodulation correctly,the symbol timing synchronization must be done to determine the starting point(i.e.FFT window)of the OFDM symbol.The cyclic prefix (CP,or Guard Interval,GIB)can be removed afterwards.The concept of the GIB wasfirst proposed by A.Peled[6],which can prevent OFDM symbols from ISI disturbance and keeps the orthogonality among all the sub-carriers.Fig.1shows the vari-ation of the signal constellation due to the symbol timing errors. Fig.1(a)and(1b)represent the symbol starting point within GIB(case1)and outside ISI-Free region(case2)respectively. It clearly shows how bad the signal constellation could be due to the symbol timing errors.Accurate and steady symbol timing synchronization can be realized through the coarse symbol timing,thefine symbol timing as well as the symbol timing control structure combined together.The coarse symbol timing synchronization isfirst executed in time domain and then,thefine symbol timing in frequency domain is done to ensure a more accurate estimation. The symbol timing control structure is utilized to coordinate the operations of the coarse and thefine symbol timing.A.The Coarse Symbol Timing Algorithms in Continuous Mode The conventional algorithms for the coarse symbol timing synchronization in time domain are MLE(Maximum Like-lihood Estimation)utilizing the cyclic prefix of the OFDM symbols.The most representative algorithm was proposed by J.J.Van de Beek[7].However,good performanceachieves(a)(b)Fig.1.(a)Constellation variation due to the symbol timing error.The total subcarriers N=2048,cyclic prefix L=128,64-QAM mapping.No carrier frequency and sampling clock offset.The normalized symbol timing offset is 36(samples)Case1.(b)Constellation variation due to the symbol timing error. The total subcarriers N=2048,cyclic prefix L=128,64-QAM mapping. No carrier frequency and sampling clock offset.The normalized symbol timing offset is36(samples)Case2.only under the AWGN channel.When the channel condition becomes severely degraded,data in GIB is badly contaminated by ISI,there will be significantfluctuation for the starting point estimated for the OFDM symbol.And suchfluctuation will have the significant influence on the carrier frequency offset as well as the sampling clock offset estimation in frequency domain.To improve the performance of ML Estimator,a novel scheme utilizing both CP and pilots to do the coarse symbol timing synchronization was proposed by ndström [8].It has better performance compared to that of[7]under the multi-path fading channel.However,the nonnegligible fluctuation still exists because of the ISI contamination on the data within GIB and the limited number of pilots used for estimation.In order to mitigate thefluctuation,T.M.Schmidlintroduced a new method making use of the training symbols in time domain,in which a timing function was defined[9]. It has better performance compared to those proposed by J.J.Van de Beek and ndström.Unfortunately,it has a“flat region”in the estimation,which,to a great extent,increases the variance of the symbol timing estimator.Some new schemes has been proposed in the literatures [10]–[13]in recent years to overcome the defects of the al-gorithms mentioned above,with the target to decrease the fluctuation of the starting point of the estimated symbol as well as to make the estimation within the ISI-Free region.The convolution characteristic of the cyclic prefix are utilized in literature[10],while,PN sequences are adopted in[11]–[13], to take the advantage of the intrinsic,fairly good correlation property of PN:Kasami sequence is utilized in[11]with the excellent correlation properties;and in[12],[13],a novel timing recovery methods for TDS-OFDM(key techniques for the Terrestrial Digital Multimedia/Television Broadcasting System,namely DMB-T proposed by Tsinghua University [14])is developed.This scheme is based on the searching and tracking on the correlation peaks of the PN sequences,which is as the GIB for each OFDM symbol.Because of the excellent correlation properties of the so-called m-sequence,the perfor-mance of these algorithms[10]–[13]outperforms those from[7]–[9]under the multi-path fading channels.B.The Fine Symbol Timing Synchronization in Continuous ModeThefine symbol timing synchronization in frequency domain is often required to guarantee the estimation accuracy.A pre-amble structure including a synchronizationfield(S-filed)and a cell-searchingfield(C-field)is proposed in literature[15]with thefine symbol timing done by using the cell identification method.In[16],a specially designed pilot symbol structure is utilized to generate afine symbol timing -puter simulations and analysis verify their good estimation per-formances but low bandwidth efficiency.The residual symbol timing error may cause the phase rotation of the sub-carriers in frequency domain.In this Section,we propose three improved algorithms to do thefine symbol timing based on the algorithm introduced by[17].Computer simulations show that these pro-posed methods have better performance compared with the al-gorithm in[17]when under serious channel conditions.In the following,we referred the algorithm in[17]as Algorithm1,and named our proposed methods as Algorithm2,Algorithm3and Algorithm4respectively.Algorithm2:(1)(2)Where,denotes the number of scattered pilots(SP),isa complex variable forthe SP inthe OFDMsymbol,is the phase deviation of the two adjacent SP’s causedby the symbol timing offsetof OFDM symbol,is thedistance between the two adjacent SP’s.,,denotestheFig.2.Performance comparison among Algorithm1,2,3,and4for thesymbol timing estimation.The total subscribers N=2048,cyclic prefixL=128,SNR=5dB,Rayleigh fading channel[2],normalized carrierfrequency offset is0.135and048respectively.integer part of symbol timing offset,useful symbol duration pe-riod and the nominal sampling frequency respectively.This al-gorithm has the same limited estimation range as that in Algo-rithm1and its estimation accuracy is influenced by the carrierfrequency offset[17].Algorithm3::Algorithm1and2perform the estimation onthe adjacent SP’s within the same OFDM symbol.In algorithm3and4,we derive the offset for thefine symbol timing from thepilots in the two consecutive OFDM symbols(Fig.2).Thatis,(3)Where,denotes the complex conjugationof,Algorithm4::The same as that in Algorithm3,SP’s of con-secutive OFDM symbols can be utilized.But the only differentfrom algorithm3is the phase characteristic of known pilots isnow givenby:(4)Lots of computer simulations validate the following conclu-sions:a.The performances of algorithms2and4outperformthat of algorithms1and3under multi-path fading channels re-spectively.This is because the phase characteristic is utilized inalgorithms2and4,while,the power characteristic is utilizedin algorithms1and3.It is well known that,power character-istic is much more sensitive to the multi-path fading channelsthan phase characteristic.b.When the normalized decimal car-rier frequency offset is less than certain value(about0.15thatof sub-carrier spacing),the performance of algorithms3and4outperform that of algorithms1and2and the best estimationresults can be obtained with Algorithm4.c.When the normal-ized decimal carrier frequency offset is larger than certain value(about0.15that of sub-carrier spacing),the performances of al-gorithms1and2outperform that of algorithms3and4and thebest estimation results can be achieved by Algorithm2.The de-tailed analysis for the effects of the carrier frequency offset onthefine symbol timing synchronization can be found in[17].Fig.3.Frequency synchronization estimator.C.The Symbol Timing Synchronization Algorithms in Burst Packet Transmission ModeThe synchronization requirements vary with the applications, therefore,we should adopt the appropriate synchronization techniques in both continuous and burst packet transmission modes respectively.As being discussed in Section II-B,it is inappropriate to do the symbol timing synchronization with pi-lots in the burst packet mode due to the stringent requirements on synchronization time.In[18],a novel scheme to do the coarse symbol timing with training symbols is proposed and, the computer simulations based on IEEE802.11(a)standard [3]illustrate that more accurate coarse symbol timing synchro-nization can be achieved by the convolution method in time domain than that by the ordinary MLE method,no matter it is in the office environment[19]or under much severe channel conditions[2].This really comes from the fully utilization of the convolution property of CP.D.Symbol Timing Synchronization Control ModelOther than the accuracy of the estimation in the symbol timing synchronization process,the robust and efficient syn-chronization control structure to ensure the system stability is also requested.A new symbol timing synchronization control model has been proposed in[10].Similar to those control models in[17],[20],it also has two synchronization states:the acquisition state and the tracking state.The difference is that the threshold and counters are utilized to perform the control process with less computational complexity than those in[17].IV.C ARRIER F REQUENCY R ECOVERY T ECHNIQUES Carrier frequency offset(CFO)caused by the Doppler shift, local oscillators mismatch between the transmitter and the re-ceiver ends,may introduce ICI and destroy the orthogonality of OFDM sub-carriers,resulting in the losses of SNR.With the insertion of the GIB in OFDM symbols,symbol timing error within a certain range will not introduce ISI and ICI.OFDM system is more sensitive to the CFO and the sampling clock offset(SCO).Regarding to higher modulation modes such as 64-QAM,tiny CFO may introduce severe degradation on the system performance[21].Carrier frequencyoffset puts an extra phase factorofin the received signal,where is the sub-carrierspacing,is the CFO normalizedby and is usu-ally divided into an integerpart,(multiple of the sub-carrier spacing,causing a shift of the sub-carrier indices),and a dec-imalpart,(less than half of the sub-carrier spacing,causes a number of impairments,including attenuation and rotation of the sub-carriers and ICI).We can divide CFO into three parts:the integer part,the coarse decimal part and thefine decimal part.CFO can usually be compensated for through the following procedures shown in Fig.3.First,a coarse symbol starting point for the FFT demod-ulation is provided by the coarse symbol timing module and then,the estimation and correction of the coarse decimal fre-quency offset in time domain is performed to minimize the ICI impact on the estimation in frequency domain,with the integerpart estimated in frequency domain to get the correct sub-car-rier index.Finally,the residual frequencyoffset,i.e.thefine decimal frequency offset is estimated.A tracking loop structure (the Acquisition and the Tracking Mode Switching module)can be exploited to coordinate the coarse decimal part,the integer part and thefine decimal part of the frequency offset.Each of them makes unique contribution to the recovery of the carrier frequency offset[50].Many literatures have discussed how to make OFDM systems less sensitive to the carrier frequency offset,for instances,per-form the windowing on the transmitted signals or use self-can-cellation schemes[22],[23].However,long prefix adopted in systems with these approaches results in low bandwidth effi-ciency.Generally,we can divide the carrier frequency recovery algorithms into three categories:a.Methods are based on training symbols or pilots[9],[24]–[33],named Data Aided(DA)method.b.Methods use of the intrinsic structure of OFDM symbols,e.g.cyclic prefix[7],[34]–[40],which is called Non DataAided(NDA)method.c.Blind approaches [41]–[43],which relies on the signal statistics and often has very high computational com-plexity,some approaches may have extra requirements on the channel statistics.A.Integer Carrier Frequency OffsetThe integer as well as the coarse decimal CFO correction can make the sub-carriers spacing offset less than half of sub-car-rier spacing in the present of more than tens of sub-carriers.Most algorithms for the integer CFO estimation [9],[29],[31],[44]–[47]nowadays have two major defects:a.Limited esti-mation range on CFO;b.Stringent requirement on the symbol timing synchronization.The earliest algorithm in this category was proposed by P.H.Moose [47]with the estimation rangelimitedwithin,that is,only 1/2that of sub-carrier spacing.P.H.Moose tried to overcome this problem by increasing thesub-carrier spacing to avoid phase offsetexceeding .How-ever,the increase of sub-carrierspacing satisfying (5)may decrease the useful OFDM symbol durationtime ,resulting in tighter requirements on the symbol timing synchronization.Besides,the increase of the sub-carrier spacing will not enlarge the range of the integer part estimation to a very largeextent.(5)T.M.Schmidl et al.,later,proposed an improved algorithm [9]with better performance under multi-path fading channel,and its estimation range was one time wider than that by P.H.Moose [47].Unfortunately,a large pre fix is still needed,for ex-ample,in DVB-T [2]systems,pre fix (2k mode)must be used.On the other hand,its estimation range is still very limited and is sensitive to the symbol timing errors.Three improved estimation algorithms are proposed in litera-ture [48]to overcome these defects.All of them use the power and phase characteristic of the known pilots,which is insensitive to the symbol timing errors and have a wider estimation rangeof integer part of CFO (i.e.,as largeas,with the total number of useful sub-carriers in one OFDM symbol).B.Coarse Decimal Carrier Frequency OffsetAs mentioned earlier,CFO estimation should follow three procedures.If the decimal part of CFO,however,can be es-timated in frequency domain,why should we carry out the coarse CFO estimation in time domain first?There are two main reasons:a.To reduce ICI caused by CFO,which lays the foundation on a more accurate CFO estimation in frequency domain;b.To estimate and compensate for the CFO all in time do-main,reducing the synchronization time,and is suitable for the systems of burst packet transmission mode.The early-proposed typical algorithm on the coarse decimal CFO estimation was from J.J.Van de Beek et al.[7]with CP characteristic exploited.T.M.Schimdl et al.,later,proposed a new algorithm named SCA [9].However,either of them has a very stringent requirement on the symbol timing.An improved algorithm,not so sensitive to the symbol timing errors was pro-posed recently in literature [49],with only(is the length of the Guard Interval)correlation window length utilized for es-timation,avoiding the data portion contaminated by the incor-rect phase information from the symbol timing errors.Computer simulations show that when the decimal part of the CFO approaches to 0.5of the sub-carrier spacing,the estimated value may,due to the multi-path fading,the phase noises as well as the discontinuity of the arctangent function,jump to the inverse polarity,as pointed out in literature [47].For example,if the decimal frequency offset in data streams is 0.498of the sub-carrier spacing,the estimate result with the typical algorithms mentioned above may be -0.467of the sub-carrier spacing.The strategy to avoid the above problem in P.H.Moose algorithm is to reduce the length of the DFT and use larger carrier spacing,degrading the overall system performance.A second-order IIR filtering can be used to solve this problem [49].C.Fine Decimal Carrier Frequency OffsetAfter correction based on the coarse decimal CFO estima-tion,the residual decimal CFO in data streams may be reduced to only 1%,and then the fine decimal CFO estimation deals with the residual CFO.The typical algorithm was also proposed by P.H.Moose [47].However,it suffered a problem of poor band-width ef ficiency.In fact,pilots embedded in the OFDM symbols can be utilized to do the fine decimal CFO.D.Carrier Frequency Offset Control ModelIt is necessary to have a control module to coordinate the operations of the integer CFO,the coarse decimal CFO and the fine decimal CFO [48].As shown in Fig.3,this module consists of two modes:the acquisition mode and the trackingmode.After the estimation on the integerpartand fine dec-imalpartin frequency domain,the counter value COUN will increase or decrease depending on whether the valueofis larger than a constant A (set by the system per-formance requirement,forexample,).The value of COUN decides whether it is in the tracking or the acquisition mode.Performance and detailed analysis on this control model is presented in [50]showing excellent performance in estima-tion,tracking and correction of CFO.E.Carrier Frequency Offset in the Burst Packet Mode There is no stringent requirement on acquisition time in the continuous systems such as DAB,DVB-T [2]and DMB-T [14],averaging method or filtering over many OFDM symbols can be adopted to increase estimation accuracy,where it is appro-priate to adopt those methods based on CP or pilots.Some lit-eratures make use of the null sub-carriers for power detection to estimate the CFO [51].However,for systems in the burst packet mode,repetitive structure is often utilized with,no differ-ence either between these null sub-carriers or the idle time be-tween neighboring blocks.Those methods,therefore,are inap-propriate in the burst packet mode.Because of the short duration time of packets,it has more stringent requirement on synchro-nization acquisition time (i.e.,acquisition done within a single OFDM symbol).Besides the requirement on estimation accu-racy,fast convergence is also needed.The accuracy of the CFO estimation in time domain,nonfeed back synchronization model are equally important to these systems and,the synchronization should be established only in time domain [13],[48].(a)(b)Fig. 4.Constellation variation due to the sampling clock offset.Total sub-carriers N=2048,cyclic prefix L=128,64-QAM modulation, normalized sampling clock offset is1ppm,after200OFDM symbols.Other factors follow DVB-T standard[2].V.S AMPLING C LOCK S YNCHRONIZATIONThe sampling clock errors are mainly from the mismatch of the crystal oscillators between the transmitter and the re-ceiver.Other factors such as multi-path fading,noise distur-bance,symbol timing estimation errors may also contribute to the sampling clock offset(SCO).The sampling clock errors will negatively influence the symbol timing synchronization.For ex-ample,assume1ppm sampling clock offset in2K mode with a GIB of512samples in DVB-T[2],the FFT window will move one sample around every400symbols.The higher the sam-pling clock offset,the more the influence on the symbol timing synchronization.Fig.4shows signal constellation variation due to the sam-pling clock offset.It is obvious that the larger the SCO,the more severe the distortion.Detailed analysis on the effects of sampling clock offset on symbol timing is presented in[52].In order to analyze the effects of SCO on the system performance in a more explicit way,SCO is divided into two parts:the sam-pling clock phase offset and the sampling clock frequency offset [17],[20],[53],[54].Effects of the sampling clock phase offset is similar to that of the symbol timing offset,leading to the signal phase distortion;while the sampling clock frequency offset in-troduces ICI.By defining Inter-Sample-Interference,effects of the sampling clock offset on system performance could be ana-lyzed deeply[55].The synchronous sampling and the asynchronous sampling are two different kinds of methods for the sampling clock syn-chronizations[56]–[58].1)Timing algorithms are usually used in the synchronoussystems to control both phase and frequency of a V oltageControl Crystal Oscillator(VCXO)[53],[59]–[61].Compared to the asynchronous digital sampling systems,it has large timingfluctuation due to high-level phasenoises.The need of the analog circuits makes it inconve-nient for the system integration[62].2)An independent oscillator is often exploited for samplingin an all-digital system.Timing algorithms are used tocontrol NCO(Numerical Control Oscillator)and then usethe NCO output to control the interpolatorfilter.BER per-formance of the asynchronous system in[54],[62]showsthat the asynchronous systems are more sensitive to CFOthan the synchronous puter simulations in[63]demonstrate that unrealistic interpolator may causecyclic tracking errors in asynchronous systems,whichnever occurs in the synchronous systems.The estimated sampling clock offset and decimal part of symbol timing error may be considered as an adjusting variable when we do sampling clock synchronization.This sampling clock adjusting variable is derived in frequency domain and then fed back to time domain to adjust digital oscillator,guar-anteeing the stability of the loop control circuit.VI.J OINT E STIMATION A LGORITHMSSome algorithms can be utilized for the joint estimation of all the synchronization errors including the symbol timing,the carrier frequency and the sampling clock offsets.Algorithms mentioned in the former sections such as[7]–[9],[47],are the typical algorithms to do the joint estimation of symbol timing and decimal CFO.The decimal CFO estimation utilizing the de-tected phase of the received frequency-domain complex data in the pilot sub-carriers or training symbols,is to be performed after the estimation of symbol timing errors.However,just as we have analyzed in Section IV-B,they all have stringent require-ment on the symbol timing synchronization.Some new joint es-timation algorithms are proposed recently[64],[65],in[64], the proposed algorithm with a weighted least squares technique generates offset estimates with minimum RMS errors.Multiple received OFDM symbols as an observation interval are utilized in[65],both of which are less sensitive to the symbol timing errors.The joint estimation and tracking of symbol timing and sam-pling clock errors are presented in[17],[53].The main problem。

MFSK信号符号率估计算法研究

MFSK信号符号率估计算法研究

密级:学士学位论文题目MFSK信号符号率估计算法研究学科部:目录第1章前言 (1)1.1 论文的研究背景 (1)1.2 MFSK调制原理 (2)第2章MFSK信号符号率估计 (5)2.1 MFSK信号符号率的估计 (5)2.2 MFSK信号符号率估计计算机仿真及结论 (7)第3章结论 (10)参考文献(References) (11)致谢 (12)MFSK信号符号率估计算法研究摘要:符号率是数字通信中的重要调制参数之一,在信号调制识别和信号解调中,知道调制信号的符号率能够有效地减小信号的错误识别及解调的误码率,特别在非协作通信,准确估计符号率尤为重要。

在通信系统中,数字接收机要对接收到的信号进行解调,需要准确的知道信号的符号率,为了提高码元同步的性能,及在解调中准确的对信号进行采样,也需要估计信号的符号率。

本文主要是研究MFSK信号的符号率估计算法的估计算法,其中重点研究了一种基于小波变换的MFSK信号符号率估计算法,并且利用MA TLAB的仿真功能建立了算法仿真系统,对算法的性能进行了仿真。

仿真表明该算法在信噪比不低于5dB时,正确率可达到90%以上。

关键词:小波变换;自相关;符号率MFSK signal Symbol Rate Estimation AlgorithmABSTRACT:Symbol rate is an important digital communication modulation parameters,Modulation in the signal identification and signal demodulation in the,Know that the symbol rate of modulation signals to effectively reduce the error signal recognition and demodulation of the bit error rate,Particularly in the non-cooperative communication,An accurate estimate of the rate is particularly important symbols.In communication systems,Docking digital receiver to receive the signal demodulation,Aware of the need for accurate signal symbol rate,In order to improve the performance of Symbol Synchronization,And accurate demodulation of the signal sampling,Also need to estimate the symbol rate signal.This article is to examine the MFSK signal symbol rate estimation algorithm of the estimation algorithm,Which focus on a wavelet-based MFSK signal symbol rate estimation algorithm,The use of MATLAB and set up the simulation algorithm simulation system,The performance of the algorithm simulation.Simulation shows that the algorithm when the signal to noise ratio of not less than 5dB,Accuracy rate of 90% can be achieved.Key Words: Wavelet Transform; autocorrelation; Symbol Rate第1章前言1.1 论文的研究背景我们所处的这个时代是一个信息技术日新月异的时代,各种通信方式和通信技术的不断更新和广泛应用,使我们所处的空间中充满了各种各样的电磁波。

书签同步作文模板翻译英语

书签同步作文模板翻译英语

书签同步作文模板翻译英语英文回答:Bookmark Synchronization Essay Template。

Introduction。

Begin with a brief overview of the topic of bookmark synchronization. Define bookmark synchronization and explain its purpose.State the thesis statement, which should clearly articulate the main argument of the essay.Body Paragraph 1。

Discuss the benefits of bookmark synchronization. How does it enhance the user experience?Provide specific examples to illustrate theconvenience and efficiency offered by bookmark synchronization.Consider including statistics or case studies that support the arguments presented.Body Paragraph 2。

Analyze the challenges associated with bookmark synchronization.Discuss potential issues such as privacy concerns, cross-platform compatibility, and the handling of large numbers of bookmarks.Offer solutions or recommendations for mitigating these challenges.Body Paragraph 3 (Optional)。

基于事件触发的神经网络控制器稳定性分析

基于事件触发的神经网络控制器稳定性分析

基于事件触发的神经网络控制器稳定性分析郭欣; 高燕; 蒋琳; 张志姝【期刊名称】《《测控技术》》【年(卷),期】2019(038)010【总页数】5页(P113-117)【关键词】神经网络; 数据采样控制; 事件触发机制; 时滞模型; 非线性系统【作者】郭欣; 高燕; 蒋琳; 张志姝【作者单位】上海工程技术大学电子电气工程学院上海 201620【正文语种】中文【中图分类】TP273在现代先进控制领域中,由于神经网络的优越性,使其在信号处理、关联记忆、模式识别等许多领域中被广泛地应用[1-2],利用神经网络进行系统状态估计[3-5]以及图像识别和分类[6-7]。

在文献[8]、文献[9]中通过高灵敏传感器采集被控系统的当前状态,然后传给基于TLFCFFNN(Three-Layer Fully Connected Feed-Forward Neural-Network)控制器,最后通过零阶保持器(ZOH)来控制连续时间被控系统。

由于采样数据系统的分析是困难而且复杂的,许多重要的方法已被提出[10-11]。

但输入延迟法是用的较多的方法[12-13]。

通过输入延迟方法,系统可以被认为是一个由ZOH产生的具有时变延迟的连续时间系统,然后,LMI(Linear MatrixInequality)方面的稳定条件将由LKF(Lyapunov-Krasovskii Functional)泛函方法建立。

在文献[14]中提出了一种基于TLFCFFNN为基础的控制器,它由采样器、神经网络控制器和零阶保持器组成,用于控制连续时间的非线性系统,文献根据Lyapunov稳定性理论,充分考虑了时滞的影响。

上述文献都是采用基于时间触发的方式来研究连续系统的信息传输,这些都会导致网络信息的冗余,造成宽带资源的浪费,同时增加网络负载的压力。

事件触发机制只有在系统当前状态满足所给的触发条件时才通过网络进行数据的传输,可以减少网络通信带宽的资源占用,文献[15]中作者详细讨论了基于事件触发机制下非线性系统的稳定性条件,以及在存在量化误差下,系统的稳定性条件,但是文献中并未对控制器做深入研究。

全相位OFDM系统的调制解调新算法

全相位OFDM系统的调制解调新算法

全相位OFDM系统的调制解调新算法张亮【摘要】To solve the problem of frequency spectrum,a method using all-phase FFT is presented in this paper.Based on the theory of all-phase FFT and OFDM,the mathematical expression,model and algorithm of modulation and demodulation in all-phase OFDM system were derived.The all-Phase FFT can adjudicate the phase and amplitude by using the function of spectrum analysis.The simulation results show that All-Phase OFDM system has less phase error,spectrum leakage and lower BER than OFDM.%为解决OFDM系统中的频偏问题,利用全相位FFT技术,在全相位FFT和OFDM理论基础上,推导出全相位OFDM调制解调的数学表达式,建立了全相位OFDM调制解调系统模型和算法.全相位FFT利用自身的频谱分析功能来实现对信号相位和振幅的判决.实验结果表明:由频偏引起的相位误差和泄漏明显减小,系统误码率显著降低,验证出全相位OFDM的性能要好于现有的OFDM系统.【期刊名称】《哈尔滨工业大学学报》【年(卷),期】2012(044)005【总页数】5页(P97-100,105)【关键词】OFDM;全相位OFDM;调制;解调;频率偏移【作者】张亮【作者单位】天津大学电子信息工程学院,天津300072/天津工业大学电工电能新技术天津市重点实验室,天津300387【正文语种】中文【中图分类】TN929.5众所周知,OFDM系统有频谱利用率高、抗频率选择性衰落强等特点[1-6].但OFDM的缺点也很突出,如因为无线信道存在着时变性,一旦传输中信号频谱发生偏移,或者可能发生的情况为发射机与接收机振荡器之间存在频率偏差,OFDM子载波间的正交性就会遭到破坏,导致系统子载波之间出现相互干扰.文献[7]用基于训练序列的Schmidl&Cox方法来捕获载波频偏,但捕获范围比较小;文献[8]提出频域互相关方法,但只能获得整数倍数的频偏估计;Classen等[9]提出利用导频来进行频偏估计,精度较高,但计算复杂,速度很慢.本文把全相位FFT技术应用到OFDM系统,给出了全相位OFDM的调制解调算法及数学模型,有效的解决了OFDM系统的频偏问题.1OFDM系统模型及调制解调算法1.1OFDM系统模型基于IFFT的OFDM系统模型[10-11]如图1所示,在发送端由二进制数据流先经过信道纠错编码和交织,随后对处理结果进行数字调制,在得到的调制符号中插入导频,这时串行数据会被变换到一组并行的信道上进行IFFT,把结果串行输出并添加循环前缀,这样就形成了基本的OFDM符号(如图2).OFDM符号经过调制,处理成模拟信号,最后通过射频电路被发送出去.而接收(RX)则是发送的逆过程,所接收的OFDM符号经过同步处理,由模拟信号转换成数字信号,这些串行信号先被去除循环前缀,再进行串并转换,数字解调,调制后数据进行解交织,前向解码得到信源发送的信息(如图3).图1 OFDM系统原理图2 OFDM信号调制图3 OFDM信号解调1.2 OFDM系统调制解调算法OFDM信号可以表示为N个独立调制的正交子载波之和,即其中:gk(t)(k=0,1,…,N-1)表示第N个子载波,并可以表示为gk(k)=ej2πfkt,t∈[0,Ts);dn,k表示第n个信号间隔中第k个载波上加载的调制信号,其中每个信号的间隔为Ts,而N个符号则在Ts中传输.符号序列dn,k通过串并转换将速率是N/Ts的一系列串行符号序列转换为速率为1/Ts的N路并行符号序列.在第n个信号间隔中传输的信号可定义为第n个OFDM帧信号,即可以认为第n个OFDM帧Fn(t)系N个符号组成,而每个符号则在N个正交子载波中的1个上进行了调制.由于载波之间彼此相互正交,于是有因此,利用子载波的正交性可以用下式解调每个子载波上调制的信号,即如果没有码间干扰,那么上式可以表示为可以很好解调出发射信号中加载的子载波信号,恢复出发射符号序列.2 全相位OFDM系统模型及调制解调算法本节把全相位FFT技术运用到OFDM系统中,以克服OFDM系统的缺点.2.1 全相位OFDM系统模型全相位OFDM系统结构如图4所示,对于N阶变换,全相位FFT需要(2N-1)个数据,而OFDM信号是N个数据经IFFT形成的,不可能直接对原OFDM信号进行全相位FFT解码.图4 全相位OFDM系统原理要得到(2N-1)个数据,只需在发送端将原IFFT后形成的N阶OFDM信号重复一次,去掉第1个数据后,形成(2N-1)个数据组成全相位ODFM信号,如图5所示. 相应的,在接收端用全相位FFT对全相位OFDM信号进行解调,如图6所示,先乘以三角窗,再移位相加组成N个全相位预处理后的数据,再进行N阶快速傅里叶变换,经过校正后输出信号.图5 全相位OFDM调制信号图6 全相位OFDM信号解调全相位OFDM信号是OFDM信号的重复,使频谱利用率降低了近一半,但是OFDM在实际应用中为了克服频偏影响,插入大量的导频信号和保护间隔,占用了大量的带宽,也造成了频带的严重浪费.全相位OFDM重复了信号,但每个子载波能携带更多信息,节省了频带.待发送的全相位OFDM信号D(t)为其中t∈[0,T].接收端对接收到的信号进行如下解调:2.2 全相位OFDM系统调制解调算法在发送端,全相位OFDM需要把N个数据进行重复,而生成(2N-1)个数据,将整个信道分成(2N-1)个子信道.把这些子信道码元分别调制到(2N-1)个子载波频率f0,f1,…,f2N-1上,相邻频率相差1/(2N-1).对于任意一点x(N),其N维向量为把每个向量循环并移位,把样本点x(N)移到首位,会得到另外的N个N维向量:以x(N)为基准相加得到全相位数据向量:…x(2n-1)+(n-1)x(n-1)]T.3 仿真结果仿真1.用计算机生成如下单载波信号,N=256,频率为30 Hz,相位为30°,图7为采用FFT处理后的频谱图,图8为采用全相位FFT处理后的频谱图.图7 应用FFT技术后的频谱图8 应用全相位FFT技术后的频谱用全相位FFT技术处理后的检测结果误差很小,信号的频谱泄露非常少,而且相位几乎没有出现误差.当多个单指数频率信号复用时,频谱之间的干扰必然大为减轻,所以将全相位FFT用于OFDM是有效的.仿真2.用计算机生成1个多载波信号,频率分别为20 Hz和30 Hz,相位分别为45°和90°.图9为经FFT和全相位FFT处理后的频谱对比图.图9 FFT和全相位FFT处理多载波频谱对比图中A表示幅度.当OFDM出现频偏后,在频率间隔的整数倍点上,全相位FFT 谱上的样点要比FFT谱小,也就是说,各路子载波间的泄露少,即子载波间干扰少,全相位OFDM的误码率必然要比传统OFDM系统低得多.仿真3.图10和图11显示了N为64,频偏为1.003时OFDM和全相位OFDM 的64-QAM频偏星座图.图10 存在频偏时OFDM恢复的星座在同等频偏条件下,OFDM产生了很多误码,而全相位FFT的输出明显减弱了频偏的影响,星座集中度较高.可见,全相位FFT解调性能比FFT的解调性能要好,全相位FFT技术可以有效的纠正由载波偏移而引起星座点幅值和相角的偏差,达到了降低系统误码率的目的.图10中,OFDM的频偏使星座图都出界了,即发生了误码,而在图11中,全相位OFDM系统的64-QAM星座仍无误码,全相位OFDM重复占了频带,但每个子载波携带更多信息的同时节省了频带.图11 存在频偏时全相位OFDM恢复的星座4 结论1)当单指数频率信号发生频偏时,全相位FFT的频谱泄露非常的少,相位误差几乎为零;2)当OFDM发生频偏时,全相位FFT的谱泄露程度要比FFT低,所以基于全相位FFT的数字解调能力比基于FFT的更强;3)当发生同等频偏时,全相位FFT拥有更优良的抑制谱泄漏性能,明显减弱了频偏对系统的影响,引起的子载波间干扰要少的多,有效的降低了系统的误码率;4)全相位FFT的抗频偏能力更强,比FFT更适合应用于OFDM系统;5)全相位OFDM重复了OFDM的信号,使频谱利用率下降,但是全相位OFDM 信号携带更多信息,以重复占据的方式节省了频带.参考文献:[1]BARACCA P,TOMASIN S,VANGELISTA L,et al.Per sub-block equalization of very long OFDM blocks in mobile communications [J].IEEE Transactions on Communications,2011,59(2):363-368. [2]SUH S,BASU A,SCHLOTTMANN C,et al.Low-power discrete Fourier transform for OFDM:a programmable analog approach[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2011,58(2):290-298.[3]EGHBALKHAH B,BORNOOSH B,AMINI-SHESHDEH Z,et al.A new preamble-less timing synchronization method for OFDM systems undermulti-path channels[C]//In proceeding of Design&Technology of Integrated Systems in Nanoscale Era.Hammamet,Tunisie:[s.n.],2007:196-199.[4]WEN Jyh-horng,LEE Gwo-Ruey,LIU Jia-wei,et al.Joint frame synchronization and channel estimation scheme using regression method in OFDM systems[C]//Proceedings of the Wireless Communications,Networking and Mobile Computing.Piscataway:IEEE,2007:164-167. [5]TANG S,PENG K,GONG K,et al.Robust frame synchronization for Chinese DTTB system[J].IEEE Transactions on Broadcasting,2008,54,(1):152-158.[6]WANG Jing,SHI Wenxiao,LI Haibo.Joint estimation of symbol timing and frequency offset for OFDM systems based on selective superimposed pilots[C]//Proceedings of the 8th International Conference on Electronic Measurement and Instruments.Piscataway:IEEE,2007:224-225.[7]SCHMIDL T M,COX D C.Robust frequency and timing synchronization for OFDM[J].IEEE Trans Commun,1997,45(12):1613-1621.[8]KISHORE C N,REDDY V U.A new method of frame synchronization and frequency offset estimation in OFDM system[C]//International Conference on Signal Processing and communications.Piscataway:IEEE,2004:70-75.[9]CLASSEN F,MEYR H.Frequency synchronization algorithms for OFDM systems suitable for communication over frequency selective fadingchannels[C]//IEEE Vehicular Technology Conference.Piscataway:IEEE,1994:1655-1659.[10]LIU Hui,LI Guoqing.OFDM-based broadband wireless networks [M].Xi’an:Xi’an Jiaotong University,2008:24-25.[11]MO R,CHEW Y H,TJHUNG T T,et al.New blind frequency offset estimator for OFDM systems over frequency selective fading channels [J].Signal Process,2007,87(1):148-161.。

定时和频率偏差对OFDM系统性能影响

定时和频率偏差对OFDM系统性能影响

50%,系统
性能明显下降。
0
10
10
-1
10 BER 10
-2
-3
10
-4
理想状态 定时偏差 ∆tf =25 频率偏差 ∆fc=20.25
1 2 3 4 5 SNR 6 7 8 9 10
10
-5
图 3 理想情况和同步误差情况下的误码率曲线 Fig.3 BER curve in the ideal situation and in the situation of synchronization offset
-1-

R
k
= = = = =
∑ ∑ ∑ ∑
1 N
N −1 n=0
rn e
− j 2 π nk
/ N
N −1 n=0
y (t ) ( x (t ) ⎛ 1 ⎜ ⎝ N
t = nT
s
e
− j 2 π nk
/ N
N −1 n=0
t = nT
S
e
− j ( 2 π ∆ f c nT
ˆ
以及 η ′′ = η ′e− j 2πnk / N = ηe − j[2πn( f cTs + k / N )] 都是由于噪声引起的干扰。 显然,
ˆ
噪声只是相位发生了旋转,而它的平均功率并未发生变化。 如果还存在符号定时偏差 ∆t f 时,就相当于从循环前缀的后面 ∆n f
N 个样值进行 FFT 运算。利用循环前缀的性质:
a 1.5 1 0.5 0 -0.5 -1 -1.5 -1.5 Q Q 2 1.5 1 0.5 0 -0.5 -1
b
0 -1 -2 -3 -3
-1.5 -1 -0.5 0 I 0.5 1 1.5 -2 -2 -1 0 I 1 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Yurong Liu, Zidong Wang, Senior Member, IEEE, Jinling Liang, and Xiaohui Liu
Abstract—In this paper, a synchronization problem is investigated for an array of coupled complex discrete-time networks with the simultaneous presence of both the discrete and distributed time delays. The complex networks addressed which include neural and social networks as special cases are quite general. Rather than the commonly used Lipschitz-type function, a more general sectorlike nonlinear function is employed to describe the nonlinearities existing in the network. The distributed infinite time delays in the discrete-time domain are first defined. By utilizing a novel Lyapunov–Krasovskii functional and the Kronecker product, it is shown that the addressed discrete-time complex network with distributed delays is synchronized if certain linear matrix inequalities (LMIs) are feasible. The state estimation problem is then studied for the same complex network, where the purpose is to design a state estimator to estimate the network states through available output measurements such that, for all admissible discrete and distributed delays, the dynamics of the estimation error is guaranteed to be globally asymptotically stable. Again, an LMI approach is developed for the state estimation problem. Two simulation examples are provided to show the usefulness of the proposed global synchronization and state estimation conditions. It is worth pointing out that our main results are valid even if the nominal subsystems within the network are unstable. Index Terms—Complex networks, discrete time delays, distributed time delays, linear matrix inequality (LMI), Lyapunov– Krasovskii functional, neural networks, state estimation, synchronization.
Manuscript received January 8, 2008. This work was supported in part by the Engineering and Physical Sciences Research Council of the U.K. under Grant GR/S27658/01, by an International Joint Project sponsored by the Royal Society of the U.K. and the National Natural Science Foundation of China (NSFC), by the Royal Society Sino-British Fellowship Trust Award of the United Kingdom, by the Natural Science Foundation of Jiangsu Province of China under Grant BK2007075, by the NSFC under Grant 60774073, and by the Alexander von Humboldt Foundation of Germany. This paper was recommended by Associate Editor P. De Wilde. Y. Liu is with the Department of Mathematics, Yangzhou University, Yangzhou 225002, China (e-mail: liuyurong@). Z. Wang and X. Liu are with the Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, U.K. (e-mail: Zidong.Wang@). J. Liang was with the Department of Information Systems and Computing, Brunel University, Uxbridge UB8 3PH, U.K. She is now with the Department of Mathematics, Southeast University, Nanjing 210096, China (e-mail: jinlliang@). Color versions of one or more of the figures in this paper are available online at . Digital Object Identifier 10.1109/TSMCB.2008.925745
1314
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 5, OCTOBER 2008
Synchronization and State Estimation for Discrete-Time Complex Networks With Distributed D OMPLEX networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicate dynamics. Examples of such complex networks include the Internet, which is a network of routers or
C
domains, the World Wide Web, which is a network of web sites, the brain, which is a network of neurons, and an organization, which is a network of people. Since the introduction of the small-world network principle by Watts and Strogatz [35], a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences. Synchronization is attracting more and more research attention due to its ubiquity in many system models of the natural world, for example, the large-scale and complex networks of chaotic oscillators [15], [19], [26], [32], the coupled systems exhibiting spatiotemporal chaos and autowaves [28], [29], and the array of coupled neural networks [1], [14], [18], [27], [36], [37]. Time delays occur commonly in complex networks because of the network traffic congestions as well as the finite speed of signal transmission over the links [4], [8], [9], [12], [13], [29], [30], [38]. Also, the network couplings often give rise to delays in biological neural networks, gene regulatory networks, communication networks, and electrical power grids [2], [9], [17], [19]. It has been recognized that time delays can cause complex dynamics such as periodic or quasi-periodic motions, Hopf bifurcation, and higher dimensional chaos. In recent years, the synchronization problem for various types of networks with delayed coupling has been extensively studied [2], [9], [17], [19], [23], [37]. For example, the synchronization criteria have been established in [17] for complex dynamical network models with coupling delays for both continuous and discrete-time cases, which have further been improved in [9] by using less conservative delay-dependent techniques. A variational method has been used in [23] to deal with the synchronization problem for an array of linearly coupled identical connected neural networks with delays, whereas the similar problem has been addressed in [37] for an array of coupled nonlinear systems with delay and nonreciprocal time-varying coupling. It is worth mentioning that most of the reported results have addressed the synchronization problem for networks with discrete time delays. Another kind of time delay, namely, continuously distributed delays, has started to gain research attention in the context of synchronization because a complex network usually has a spatial nature due to the presence of an amount of parallel pathways of a variety of node sizes and lengths. Very recently, in [22], the synchronization problem has been investigated for coupled networks with both discrete and distributed time delays.
相关文档
最新文档