列体重频数分布表
列频数分布表的一般步骤
列频数分布表的一般步骤
频数分布表是统计学中常用的一种数据汇总和展示方法,通过
频数分布表可以清晰地展现出数据的分布情况,有助于我们对数据
进行更深入的分析和理解。
下面将介绍一般步骤来创建频数分布表。
1. 确定数据的范围,首先需要确定要统计的数据的范围,包括
最小值和最大值。
这有助于确定数据的分组范围和间隔。
2. 划分数据组,根据数据的范围,将数据划分为不同的组别,
每个组别称为一个组。
组的划分可以根据数据的实际情况来确定,
通常采用等距分组或等频分组的方法。
3. 统计每个组的频数,统计每个组别中数据出现的次数,即频数。
可以使用计数器或计算机软件来进行统计,确保数据的准确性。
4. 创建频数分布表,将每个组的范围和对应的频数整理到表格中,形成频数分布表。
表格中应包括组的范围、频数以及可以附加
一些其他统计量,如累积频数、相对频数等。
5. 分析和解释结果,最后,对频数分布表进行分析和解释,可
以通过图表或其他可视化方式展示数据的分布情况,从中找出数据的规律和特点,为进一步的数据分析提供参考。
通过以上一般步骤,我们可以清晰地了解数据的分布情况,为后续的数据分析和决策提供有力支持。
频数分布表是统计学中的重要工具,掌握其制作方法对于数据分析和研究具有重要意义。
实验一 频数表的制作(示例)-
实验一:频数分布表的编制统计学的最基本工作是收集数据。
把原始数据收集上来之后,首先要对数据进行整理并分析这些数据的特性和变化规律。
生物统计学中经常遇到的数据有两种类型,一种是连续型数据(continuous data),又称为计量数据(measurement data);另一种是离散型数据(discrete data),又称为计数数据(count data)。
描述数据变化规律的最简单方法是将这些数据列成频数表(frequency table)。
1、离散型数据频数分布表的制作例1:检查200丛稻遗株,每丛内越冬三化螟幼虫的原始调查资料如下(见SAS程序),试编制频数分布表。
data freq_01; input x @@; cards;1 1 0 02 0 0 1 0 2 1 0 1 1 0 1 0 03 0 2 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 5 0 1 0 0 0 04 2 0 0 3 0 4 1 3 1 4 0 1 2 6 0 3 2 1 0 2 0 0 1 1 0 0 0 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 02 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0;proc freq; run;运行结果:2 连续型数据频数分布表的制作例2:在广州天河区称量106头越冬三化螟幼虫的体重(单位:毫克),根据原始资料(见SAS程序),以6毫克为组距,分成13组,第一组下限为10毫克,制作频数分布表。
频数与频率
在6.45~6.95有多少株?
T
(归纳):列频数分布表的一般步骤:
1. 计算最大值与最小值的差
2. 自己确定组距 3. 计算组数
(1)数据在100以内时,通常分成5—12组
极差
(2)一组数据的组数= 组距
的商的整数部分+1
(3) 分点比实际数据多取一位小数
4. 列频数分布表
最喜爱的 文学作品
A
B
C D
学生数
正正正 17 正正正正 20
2
一
1
这种统计表的优点是简单明了,一眼可以看出 哪个最多,哪个最少。
☞ 探究新知
一图知“情”
学生
人数 25
20 20 17
15
这种统计图的优点是直观, 一目了然。不仅可以看出哪 个多、哪个少,还可以比较 出差别是否悬殊很大。
10
5
21
A
4.5 3.6 3.5 3.7 3.7 4.7 2.9
3.2 3.5 3.6 4.8 4.3 3.6
极差为:2
组别(kg) 人数
2.87~5~3.23.15 33..21~5~3.63.55 3.65~5~4.30.95
3、分点怎么取? 组数怎么算?
为了使数据不落在各组的边 界上,在组距不变的情况下, 我们把分点的数取的比实际 数据多一位小数。并把第一
市医院今年10月份出生20名新生婴儿体 重统计表
组别(kg) 划记 人数
2.75~3.15
2
3.15~3.55
7
3.55~3.95
正
6
3.95~4.35
2
4.35~4.75
2
4.75~5.15
1
高中数学复习概率统计题型归纳与讲解03 频率分布直方图
高中数学复习概率统计题型归纳与讲解专题3频率分布直方图例1.要调查某地区高中学生身体素质,从高中生中抽取100人进行跳高测试,根据测试成绩制作频率分布直方图如图,现从成绩在[120,140)之间的学生中用分层抽样的方法抽取5人,应从[120,130)间抽取人数为b,则()A.a=0.2,b=2B.a=0.025,b=3C.a=0.3,b=4D.a=0.030,b=3【解析】解:由题得10×(0.005+0.035+a+0.020+0.010)=1,所以a=0.030.在[120,130)之间的学生人数为:100×10×0.030=30人,在[130,140)之间的学生人数为:100×10×0.020=20人,在[120,140)之间的学生人数为:100×(10×0.030+0.020)=50人,又用分层抽样的方法在[120,140)之间的学生50人中抽取5人,即抽取比例为:110,所以成绩在[120,130)之间的学生中抽取的人数应,30×110=3,即b=3,故选:D.例2.从某企业生产的某种产品中随机抽取100件,测量这些产品的一项质量指标值,由测量表得如下频数分布表:质量指标值分组[70,80) [80,90) [90,100) [100,110) 110,120)频数 14 20 36 18 12估计这种产品质量指标值的平均数为(同一组中的数据用该组区间的中点值作代表)( )A .100B .98.8C .96.6D .94.4【解析】解:平均数x →=0.14×75+0.20×85+0.36×95+0.18×105+0.12×115=94.4.故选:D .例3.“新冠肺炎”席卷全球,我国医务工作者为了打好这次疫情阻击战,充分发挥优势,很快抑制了病毒,据统计老年患者治愈率为71%,中年患者治愈率为85%,青年患者治愈率为91%.如果某医院有30名老年患者,40名中年患者,50名青年患者,则估计该医院的平均治愈率是( )A .86%B .83%C .90%D .84%【解析】解:利用求加权平均数的公式解得:30×71%+40×85%+50×91%30+40+50=0.84=84%,故选:D .例4.已知样本数据x 1,x 2,…,x n (n ∈N *)的平均数与方差分别是a 和b ,若y i =﹣2x i +3(i =1,2,…n ),且样本数据y 1,y 2,…,y n 的平均数与方差分别是b 和a ,则a ﹣b =( )A .1B .2C .3D .4【解析】解:由题意得:{−2a +3=b a =4b ,解得:{a =43b =13,故a ﹣b =1, 故选:A .例5.下面定义一个同学数学成绩优秀的标志为:“连续5次考试成绩均不低于120分”.现有甲、乙、丙三位同学连续5次数学考试成绩的记录数据(记录数据都是正整数):①甲同学:5个数据的中位数为127,众数为120;②乙同学:5个数据的中位数为125,总体均值为127;③丙同学:5个数据的中位数为135,总体均值为128,总体方差为19.8.则可以判定数学成绩优秀同学为( )A .甲、乙B .乙、丙C .甲、丙D .甲、乙、丙【解析】解:在①中,甲同学:5个数据的中位数为127,众数为120,所以前三个数为120,120,127,则后两个数肯定大于127,故甲同学数学成绩优秀,故①成立;在②中,5个数据的中位数为125,总体均值为127,可以找到很多反例,如:118,119,125,128,145,故乙同学数学成绩不优秀,故②不成立;在③中,5个数据的中位数为135,总体均值为128,总体方差为19.8设x 1<x 2<x 3<x 4,则丙的方差为15[(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2+(135﹣128)2]=19.8, ∴(x 1﹣128)2+(x 2﹣128)2+(x 3﹣128)2+(x 4﹣128)2=50,∴(x 1﹣128)2≤50,得|x 1﹣128|≤5,∴x 1≥128﹣5>120,∴丙同学数学成绩优秀,故③成立.∴数学成绩优秀有甲和丙2个同学.故选:C .例6.若数据x 1,x 2,…,x n 的平均数x =3,方差s 2=1,则数据2x 1+3,2x 2+3,…,2x n +3的平均数和方差分别为( )A.6,6B.9,2C.9,6D.9,4【解析】解:由题意若数据x1,x2,…,x n的平均数x=3,方差s2=1,可得x1+x2+…+x n=3n,则:2x1+3+x2+3+…+x n+3=2(x1+x2+…+x n)+3n=9n,所以数据2x1+3,2x2+3,…,2x n+3的平均数为9.又S2=1n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=1,所以[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=n,所以1n [(2x1+3﹣9)2+(2x2+3﹣9)2+…+(2x n+3﹣9)2]=4n[(x1﹣3)2+(x2﹣3)2+…+(x n﹣3)2]=4,则数据2x1+3,2x2+3,…,2x n+3的平均数和方差分别为9,4.故选:D.例7.随着城镇化的不断发展,老旧小区的改造及管理已经引起了某市政府的高度重视,为了了解本市甲,乙两个物业公司管理的小区住户对其服务的满意程度,现从他们所服务的小区中随机选择了40个住户,根据住户对其服务的满意度评分,得到A区住户满意度评分的频率分布直方图和B 区住户满意度评分的频率分布表.B区住户满意度评分的频率分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数4610128(Ⅰ)在图2中作出B区住户满意度评分的频率分布直方图,并通过频率分布直方图计算两区住户满意度评分的平均值及分散程度(其中分散程度不要求计算出具体值,给出结论即可);(Ⅱ)根据住户满意度评分,将住户和满意度分为三个等级:满意度评分低于70分,评定为不满意;满意度评分在70分到89分之间,评定为满意;满意度评分不低于90分,评定为非常满意.试估计哪个地区住户的满意度等级为不满意的概率大?若是要选择一个物业公司来管理老旧小区的物业,从满意度角度考虑,应该选择哪一个物业公司?说明理由.【解析】解:(Ⅰ)作出如图所示的频率分布直方图,B区住户满意度评分的频率分布直方图如图所示A区住户满意度评分的平均值为45×0.1+55×0.2+65×0.3+75×0.2+85×0.15+95×0.05=67.5;B区住户满意度评分的平均值为55×0.1+65×0.15+75×0.25+85×0.3+95×0.2=78.5.通过比较两区住户满意度评分的频率分布直方图可以看出,B区住户满意度评分比较集中,而A 区住户满意度评分比较分散.(Ⅱ)记D表示事件:“A区住户的满意度等级为不满意”,记E表示事件:“B区住户的满意度等级为不满意”,则P(D)=(0.010+0.020+0.030)×10=0.6,P(E)=(0.010十0.015)×10=0.25,所以A区住户的满意度等级为不满意的概率较大.若是要选择一个物业公司来管理老旧小区的物业,从满意度等级为满意来考虑,应该选择乙物业公司来为小区服务,这样的话小区住户满意度会高一些.例8.某校在一次期末数学测试中,为统计学生的考试情况,从学校的2000名学生中随机抽取50名学生的考试成绩,被测学生成绩全部介于65分到145分之间(满分150分),将统计结果按如下方式分成八组:第一组[65,75),第二组[75,85),……第八组[135,145],如图是按上述分组方法得到的频率分布直方图的一部分.(1)求第七组的频率,并完成频率分布直方图;(2)用样本数据估计该校的2000名学生这次考试成绩的平均分(同一组中的数据用该组区间的中点值代表该组数据平均值);(3)若从样本成绩属于第六组和第八组的所有学生中随机抽取2名,求他们的分差的绝对值小于10分的概率.【解析】解:(1)由频率分布直方图得第七组的频率为:1﹣(0.004+0.012+0.016+0.030+0.020+0.006+0.004)×10=0.08.完成频率分布直方图如下:(2)用样本数据估计该校的2000名学生这次考试成绩的平均分为:70×0.004×10+80×0.012×10+90×0.016×10+100×0.030×10+110×0.020×10+120×0.006×10+130×0.008×10+140×0.004×10=102.(3)样本成绩属于第六组的有0.006×10×50=3人,样本成绩属于第八组的有0.004×10×50=2人,从样本成绩属于第六组和第八组的所有学生中随机抽取2名,基本事件总数n=C52=10,他们的分差的绝对值小于10分包含的基本事件个数m=C32+C22=4,∴他们的分差的绝对值小于10分的概率p=mn=410=25.例9.我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准x,用水量不超过x的部分按平价收费,超出x的部分按议价收费.下面是居民月均用水量的抽样频率分布直方图.①求直方图中a的值;②试估计该市居民月均用水量的众数、平均数;③设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,并说明理由;④如果希望85%的居民月均用水量不超过标准x ,那么标准x 定为多少比较合理?【解析】解:①由概率统计相关知识,各组频率之和的值为1,∵频率=(频率/组距)*组距,∴0.5×(0.08+0.16+0.4+0.52+0.12+0.08+0.04+2a )=1,解得:a =0.3,∴a 的值为0.3;②由频率分布直方图估计该市居民月均用水量的众数为2+2.52=2.25(吨),估计该市居民月均用水量的平均数为:0.5(0.25×0.08+0.75×0.16+1.25×0.3+1.75×0.4+2.25×0.52+2.75×0.3+3.25×0.12+3.75×0.08+4.25×0.04)=2.035(吨).③由图,不低于3吨人数所占百分比为0.5×(0.12+0.08+0.04)=12%,∴全市月均用水量不低于3吨的人数为:30×12%=3.6(万);④由频率分布直方图得月均用水量低于2.5吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52)=0.73<85%,月均用水量低于3吨的频率为:0.5×(0.08+0.16+0.3+0.4+0.52+0.3)=0.88>85%,∴x=2.5+0.5×0.85−0.730.3×0.5=2.9(吨).例10.如图是某校高三(1)班的一次数学知识竞赛成绩的基叶图(图中仅列出[50,60),[90,100)的数据)和频率分布直方图.(1)求全班人数以及频率分布直方图中的x,y;(2)估计学生竞赛成绩的平均数和中位数(保留两位小数).【解析】解:(1)分数在[50,60)的频率为0.020×10=0.2,由茎叶图知,分数在[50,60)之间的频数为5,所以全班人数为50.2=25(人);分数在[90,100)之间的频数为2,由225=10y,解得y=0.008;又10x=1﹣10×(0.036+0.024+0.020+0.008),解得x=0.012.(2)由频率分布直方图,计算平均数为x=55×0.2+65×0.24+75×0.36+85×0.12+95×0.08=71.4,由0.2+0.24+0.36=0.80,所以中位数在[70,80)内,设中位数为m,则0.20+0.24+(m﹣70)×0.036=0.5,解得m≈71.67,所以中位数约为71.67.例11.某高中数学建模兴趣小组的同学为了研究所在地区男高中生的身高与体重的关系,从若干个高中男学生中抽取了1000个样本,得到如下数据.数据一:身高在[170,180)(单位:cm)的体重频数统计体重(kg)[50,55)[55,60)[60,65)[65,70)[70,75)[75,80)[80,85)[85,90)人数206010010080201010数据二:身高所在的区间含样本的个数及部分数据身高x(cm)[140,150)[150,160)[160﹣170)[170﹣180)[180﹣190)平均体重y(kg)4553.66075(Ⅰ)依据数据一将下面男高中生身高在[170﹣180)(单位:cm)体重的频率分布直方图补充完整,并利用频率分布直方图估计身高在[170﹣180)(单位:cm)的中学生的平均体重;(保留小数点后一位)(Ⅱ)依据数据一、二,计算身高(取值为区间中点)和体重的相关系数约为0.99,能否用线性回归直线来刻画中学生身高与体重的相关关系,请说明理由;若能,求出该回归直线方程;(Ⅲ)说明残差平方和或相关指数R2与线性回归模型拟合效果之间关系.(只需写出结论,不需要计算)参考公式:b=∑ni=1(x i−x)(y i−y)∑n i=1(x i−x)2=∑ni=1x i y i−nx⋅y∑n i=1x i2−nx2,a=y−b x.参考数据:(1)145×45+155×53.6+165×60+185×75=38608;(2)1452+1552+1652+1752+1852﹣5×1652=1000.(3)663×175=116025,664×175=116200,665×175=116375.(4)728×165=120120.【解析】解:(1)身高在[170,180)的总人数为:20+60+100+100+80+20+10+10=400,体重在[55﹣60)的频率为:60400=0.15,体重在[70﹣75)的频率为:80400=0.2,平均体重为:52.5×0.05+57.5×0.15+62.5×0.25+67.5×0.25+72.5×0.2+77.5×0.05+82.5×0.025+87.5×0.025≈66.4,(2)因为r=0.99→1,线性相关很强,故可以用线性回归直线来刻画中学生身高与体重的相关,x=145+155+165+175+1855=165,y=45+75+60+53.6+66.45=60,b=∑8i=1x i y i−8x⋅y∑8i=1x i2−8x2=38608+175×66.4−5×165×601000=0.728,a=y−b x=60−0.728×165=−60.12,所以回归直线方程为:y=0.728x−60.12,(3)残差平方和越小或相关指数R2越接近于1,线性回归模型拟合效果越好.例12.市政府为了节约用水,调查了100位居民某年的月均用水量(单位:t),频数分布如下:分组[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3)[3,3.5)[3.5,4)[4,4.5]频数4815222514642(1)根据所给数据将频率分布直方图补充完整(不必说明理由);(2)根据频率分布直方图估计本市居民月均用水量的中位数;(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).【解析】解:(1)频率分布直方图如图所示:(2)∵0.04+0.08+0.15+0.22=0.49<0.5,∴中位数为2+0.5−0.490.25×0.5=2.02,(3)由频率分布直方图得平均数为:0.25×0.04+0.75×0.08+1.25×0.15+1.75×0.22+2.25×0.25+2.75×0.14+3.25×0.06+3.75×0.04+4.25×0.02=2.02.例13.某地区100居民的人均用水量(单位:t)的分组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表;(2)画出频率分布直方图,并根据直方图估计这组数据的众数;(坐标轴单位自定)(3)当地政府制订了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?【解析】解:(1 )分组频数频率[0,0.5 )40.04[0.5,1 )80.08[1,1.5 )150.15[1.5,2 )220.22[2,2.5 )250.25[2.5,3 )140.14[3,3.5 )60.06[3.5,4 )40.04[4,4.5 )20.02(2):频率分布直方图如下图,由图知,这组数据的众数为2.25.(3)人均月用水量在3t以上的居民的比例为6%+4%+2%=12%,即大约是有12%的居民月均用水量在3t以上,88%的居民月均用水量在3t以下,因此,政府的解释是正确的.例14.某校从参加高一年级期末考试的学生中抽出60名学生,将其物理成绩(均为整数)分成六段[40,50),[50,60)…[90,100]后画出如下频率分布直方图.观察图形的信息,回答下列问题:(Ⅰ)估计这次考试的众数m与中位数n(结果保留一位小数);(Ⅱ)估计这次考试的及格率(60分及以上为及格)和平均分.【解析】解:(Ⅰ)众数是最高小矩形中点的横坐标,所以众数为m=75(分);(3分)前三个小矩形面积为0.01×10+0.015×10+0.015×10=0.4,∵中位数要平分直方图的面积,∴n=70+0.5−0.40.03=73.3(7分)(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.03+0.025+0.005)*10=0.75所以,抽样学生成绩的合格率是75% (11分)利用组中值估算抽样学生的平均分45•f1+55•f2+65•f3+75•f4+85•f5+95•f6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71估计这次考试的平均分是71分.(14分)例15.为应对新冠疫情,重庆市于2020年1月24日启动重大突发公共卫生事件一级响应机制,要求市民少出门,少聚集,于是快递业务得到迅猛发展.为满足广大市民的日常生活所需,某快递公司以优厚的条件招聘派送员,现给出了两种日薪薪酬方案,甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪150元,每日前55单没有奖励,超过55单的部分每单奖励10元.(Ⅰ)请分别求出这两种薪酬方案中日薪y(单位:元)与送货单数n的函数关系式;(Ⅱ)根据该公司所有派送员10天的派送记录,发现派送员的日平均派送单数与天数满足以下表格:日均派送单数5054565860频数(天)23221回答下列问题:①根据以上数据,设每名派送员的日薪为X(单位:元),试分别求出这10天中甲、乙两种方案的日薪X的平均数及方差;②结合①中的数据,根据统计学的思想,若你去应聘派送员,选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:172=289,372=1369)【解析】解:(1)甲方案,y =100+n ;乙方案,y ={150,n ≤5510n −400,n >55.(2),①甲方案中,根据已知表格可计算出日平均派送单数为2×50+3×54+2×56+2×58+6010=55,方差为0.2×(50﹣55)2+0.3×(54﹣55)2+0.2×(56﹣55)2+0.2×(58﹣55)2+0.1×(60﹣55)2=9.8,所以,由(1)中变量之间的关系,可以指,甲方案的日薪X 的平均数为155,方差为9.8. 乙方案中,日薪X 的平均数为[5×150+160×2+180×2+200]×0.1=163,日薪方差为0.5×(150﹣163)2+0.2×(160﹣163)2+0.2×(180﹣163)2+0.1×(200﹣163)2=213.4.(3)若去应聘派送员,我会选择乙方案,从平均数的角度来看,乙方案的平均薪酬更高,同时更有激励作用.例16.2019年起,全国地级及以上城市全面启动生活垃圾分类工作,垃圾分类投放逐步成为居民的新时尚.为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收垃圾、有害垃圾和其他垃圾四类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了某市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱 “可回收垃圾”箱 “有害垃圾”箱“其他垃圾”箱厨余垃圾 300 70 30 80 可回收垃圾 30 210 30 30 有害垃圾 20 20 60 20 其他垃圾10201060(1)分别估计厨余垃圾和有害垃圾投放正确的概率;(2)假设厨余垃圾在“厨余垃圾”箱、“可回收垃圾”箱、“有害垃圾”箱、“其他垃圾”箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800.当数据a,b,c,d的方差s2最大时,写出a,b,c,d的值(结论不要求证明),并求此时s2的值.【解析】解:(1)根据题意,厨余垃圾共300+70+30+80=480吨,其中投放正确的有300吨,则厨余垃圾投放正确的概率P1=300480=58,有害垃圾共20+20+60+20=120吨,其中投放正确的有60吨,则害垃圾投放正确的概率P2=60120=12;(2)根据题意,厨余垃圾在四种垃圾箱的投放量分别为a,b,c,d,其中a>0,a+b+c+d=800,则其平均数x=8004=200,则其方差S2=14[(a﹣200)2+(b﹣200)2+(c﹣200)2+(d﹣200)2],当a=600,b=c=d=0时,s2最大,而x=a+b+c+d4=200,此时s2=14[(600﹣200)2+(0﹣200)2+(0﹣200)2+(0﹣200)2]=120000例17.某市教育局为了解全市高中学生在素质教育过程中的幸福指数变化情况,对8名学生在高一,高二不同学习阶段的幸福指数进行了一次跟踪调研.结果如表:学生编号12345678高一阶段幸福指数9593969497989695学生编号12345678高二阶段幸福指数9497959695949396(1)根据统计表中的数据情况,分别计算出两组数据的平均值及方差;(2)请根据上述结果,就平均值和方差的角度分析,说明在高一,高二不同阶段的学生幸福指数状况,并发表自己观点.【解析】解:(1)8名学生在高一阶段的幸福指数的平均数为:x=18(95+93+96+94+97+98+96+95)=95.5,方差为:S12=18∑8i=1(x i−x1)2=2.25,8名学生在高二阶段的幸福指数的平均数为:y=18(94+97+95+96+95+94+93+96)=95,方差为:S22=18∑8i=1(y i−y)2=1.5;(2)①∵x>y,∴可以认为这8名学生在高一的平均幸福指数大于在高二的平均幸福指数,②∵S12>S22,∴可以认为这8名学生在高二的幸福指数的稳定性大于在高一的幸福指数的稳定性.例18.2020年1月,教育部《关于在部分高校开展基础学科招生改革试点工作的意见》印发,自2020年起,在部分高校开展基础学科招生改革试点(也称“强基计划”).强基计划聚焦高端芯片与软件、智能科技、新材料、先进制造和国家安全等关键领域以及国家人才紧缺的人文社会科学领域,选拔培养有志于服务国家重大战略需求且综合素质优秀或基础学科拔尖的学生.新材料产业是重要的战略性新兴产业,如图是我国2011﹣2019年中国新材料产业市场规模及增长趋势图.其中柱状图表示新材料产业市场规模(单位:万亿元),折线图表示新材料产业市场规模年增长率(%).(1)求从2012年至2019年,每年新材料产业市场规模年增长量的平均数(精确到0.1);(2)从2015年至2019年中随机挑选两年,求两年中至少有一﹣年新材料产业市场规模年增长率超过20%的概率;(3)由图判断,从哪年开始连续三年的新材料产业市场规模的方差最大.(结论不要求证明)【解析】解:(1)从2012年起,每年新材料产业市场规模的年增加值依次为:0.3,0.2,0.3,0.5,0.6,0.4,0.8,0.6,(单位:万亿元),∴年增加的平均数为:0.3+0.2+0.3+0.5+0.6+0.4+0.8+0.68=0.5万亿元.(2)设A表示事件“从2015年至2019年中随机挑选两个,两年中至少有一年新材料产业市场规模增长率超过20%”,依题意P(A)=1−C22C52=910.(3)从2017年开始连续三年的新材料产业市场规模的方差最大.。
标准正态分布示意图
lgG = lg(12571032040)=lg(571032040)1/12=1/1 2(7lg5+3lg10+lg20+lg40)=0.89966
为简化计算, 可两边取对数
G = lg-1(lgG)= lg-10.89966 = 7.94
加权法: G=lg-1( lgx/ ), 当变量值个数 较多或变量值为频数表资料时
(3) (4)=(2)(3) (5)=(2)(4)
1 127
16129
• 129 131
4 524
68644
• 133 135
9 1215
164025
• 137 139
28 3829
540988
• 141 143
35 5005
715715
• 145 147
27 3969
583443
• 149 151
11 1661
250811
• 153 155
4 620
96100
• 157161 159 • 合计 •
1 159
120 17172
(ƒ)( ƒx)
25181
2461136
( ƒx2)
•
2461136 - (17172)2/120
• s=
•
120 - 1
•
• 三、变异系数: 又称离散系数。代号为CV。
甲的变异程度>乙组
一、极差和四分位间距
• (一)全距: R(range), 亦称极差。即一组变量 值中最大值与最小值之差。
• R甲=4.0 - 2.8 = 1.2 • R乙=3.8 - 3.0 = 0.8 • 优点: 简单明了 • 缺点: 仅考虑了资料的最大值与最小值, 不能反
Excel电子表格编制频数分布表的方法
2019年第 4期
浙江畜牧兽医
9图 3 200头大白母猪仔猪一月 Nhomakorabea窝重资料
选项中根据需要进行选择,如选定输出区域为 $A $23,那么频数分布表就以该单元格为左上角输出, 如同时选定柏拉图和累积百分率,见图 4,再点击确 定按钮,得频数分布表如图 5。
2.3 用粘贴函数 Frequency编制频数分布表 首 先在 Excel表格中选择存放结果的区域,为方便起 见通常放在分组列的右侧,如 $L$1:$L$14,然 后打开粘贴函数 frequency对话框,如图 2,在 Data array中输入 $A$1:$J$21,在 Binsarray中输入 $K$1:$K$14,见图 6,再按组合键“Ctrl+Shift+ Enter”,即同时按 下 “Ctrl+Shift+Enter”三 个 键,得 频数分布表如图 7。
以直接按照用数据表示的变量值进行分组,通常收 集得到的数据就是已经按变量值分组的数据,如果 原始数据没有分组,同样可以采用直方图或粘贴函 数 Frequency来制作频数分布表。在制作频数分布 表时,只要在接收区域中输入与原始数据相同的变 量值就可以了,其它过程同连续型数据。
对于用文字描述的变量,必须先进行变量转换, 将文字转换成数字即可,在完成频数分布表制作后, 可以再将数字反转换成原变量。例如,在研究猪毛 色遗传时,得到的原始记录为“黑,白和花”毛色,这 时可以将它们分别转换成 1,2和 3,然后利用直方 图或粘贴函数 Frequency来制作频数分布表,最后 再将 1,2和 3转换成黑,白和花即可。 4 直方图对话框
Excel电子表格提供了二种编制频数分布表的 方法,第一种是在加载了 “分析工具库”宏的 情 况 下,采用“分析工具库”中的“直方图”,见图 1;第二 种是直接采用粘贴函数“frequency”,见图 2。
05-概率分布-正态分布
而后根据指标的实际用途确定单侧或双侧界值,根
据研究目的和使用要求选定适当的百分界值,常用 95%。 .
双侧临界值:标准正态分布双侧尾部面积之和等于α 时所 对应的正侧变量值,记作Zα /2。
单侧临界值:标准正态分布单侧尾部面积等于α 时所对应 的正侧变量值,记作Zα 。
以不同的方法计算参考值范围:
3. 求上、下界值
下界: x 1.96s 117.4 1.9610.2 97.41( g / l ) 上界: x 1.96s 117.4 1.9610.2 137.39( g / l )
所以,该地健康女性血红蛋白的95%参考值范围是 (97.41,137.39)g/l。
体重频率密度
图5-1 体重频率密度图
图5-2 概率密度曲线示意图
故对连续性随机变量而言:
变量某区间取值的概率 = 正态曲线该变量区间的面 积
推 断:
测得一个孕妇体重在54-68kg的概率有多大? 孕妇体重在哪个范围内算是正常的呢?
一、正态分布的概念和 密度函数
正态分布( normal distribution):是描述连续型
X 1.64S X 1.96S
X 2.58S
X-1.28S
X 1.28S X 1.64S
X 2.33S
X-1.64S X-2.33S
举例1:调查某地120名健康女性血红蛋白,直方图显 示其分布近似正态,试估计该地健康女性血红蛋白 的95%参考值范围。 解析: 1. 分布近似正态 2. 过高过低均为异常 正态分布法求参考值范围 设定双侧界值
3. 标准正态分布区间(-2.58,2.58)的面积占总面积的99%
2.左半侧Z 值对应面积的查法:标准正态分布是以 0 为中 心左右对称,所以该表只计算曲线下一半的面积即可 。
湘教版八年级数学下册第5章《数据的频数分布》教案
频率之和为 1,频数=数据总数×频率.
【类型二】 频率、频数与扇形统计图 为培养学生良好学习习惯,某学
校计划举行一次“整理错题集”的展示活动, 对该校部分学生“整理错题集”的情况进行 了一次抽样调查,根据收集的数据绘制了不
(2)非常好的频数是 200×0.21=42,一 般的频数是 200-42-70-36=52,较好的 频率是27000=0.35,一般的频率是25020=0.26,
解:(1)先将数据分成以下八组,并得到
5.7 3.9 4.0 4.0 7.0 3.7 9.5 4.2 6.4 3.5
相应各组的学生人数.
4.5 4.5 4.6 5.4 5.6 6.6 5.8 4.5 6.2 7.5
身高(cm)
学生数
身高(cm)
学生数
频数分布表:
140~144
2
160~164
20 分 组
湘教版八年级数学下册第 5 章《数据的频 数分布》教案
5.1 频数与频率
6 组的频数为 5.故选 D.
1.理解频率的概念,理解样本容量、频 数、频率之间的相互关系,会计算频率;(重 点,难点)
2.了解频数、频率的一些简单实际应用.
一、情境导入 某医院 2 月份出生的 20 名新生婴儿的 体重如下(单位:kg):4.7、2.9、3.2、3.5、 3.6、4.8、4.3、3.6、3.8、3.4、3.4、3.5、2.8、 3.3、4.0、4.5、3.6、3.5、3.7、3.7.已知这一 组数的平均数为 3.69,s2=0.2749,请说明这 组数据的平均数和方差能说明医院新生婴 儿体重在哪一个范围内人数最多,在哪一个 范围内人数最少?你能说出体重在 3.55~ 3.95kg 这一范围内的婴儿数是多少吗?用 什么方法? 二、合作探究 探究点一:频数
《频数分布表和频数分布直方图》word教案 (公开课获奖)2022苏教版 (3)
7.4 频数分布表和频数分布直方图学习目标:1.了解频数分布的意义,会绘制频数分布表和频数分布直方图;2.通过经历调查、统计、研讨等活动,开展学生实践能力与合作意识;3.通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.重点、难点:了解频数分布的意义,会得出一组数据的频数分布表和频数分布直方图.决定组距与组数,数据分布规律。
一.【预学指导】七年级学生的身高在什么范围内?整体情况如何?首先,抽样测量某中学七年级40名同学的身高,结果如下(单位:cm):144 148 159 156 157 163 156 164 156 159169 163 156 162 163 164 155 162 153 155160 165 160 161 166 159 161 157 155 167162 165 159 147 162 172 156 165 157 161问:①上述共有______个数据;②这些数据中最小值是________,最大值是_______,它们相差________;③研究这些数据,大局部数据大概在怎样的范围?怎么分析?二.【问题探究】问题1:某中学为了了解八年级学生身高的范围和整体分布情况,抽样调查了八年级50名同学的身高,结果如下〔单位:cm〕:150 148 159 156 157 163 156 164 156 159 169 163 170 162 163 164 155 162 153 155 160 165 160 161 166 159 161 157 155 167 162 165 159 147 163 172 156 165 157 164 152 156 153 164 165 162 167 151 161 162怎样描述、分析这50名学生身高的分布情况?1. 组距:每组两个端点之间的距离;注意:为了使每个数据都落在相应的组内,可取比数据多一位小数来分组,并把第1组的起点略微减小一点,把上述数据“划记〞到相应的组中,得到相应数据出现的频数.2. 频数分布图(左以下图);频数分布直方图(右以下图).3.频数折线图.将每个小长方形上面一条边的中点顺次用折线连接起来的频数分布直方图.问题2:问题讨论.1、用频数分布表整理数据的步骤如何?2、绘制频数分布表时,如何分组?3、根据上面的频数分布表、频数分布直方图,你能获得哪些信息?对该校八年级学生身高的整体分布情况能做出怎样的估计?4、条形统计图、频数分布直方图,从不同的角度直观、形象地描述、分析数据.请比拟它们各自的特点.三.【拓展提升】1.根据某班40名同学的体重频数分布直方图,答复以下问题:〔1〕体重在哪个范围内的人数最多?〔2〕体重超过的同学占全班同学的百分之几?2.100个数据的分组及各组的频数如下:59.5~61.5 2 61.5~63.5 563.5~65.5 9 65.5~67.5 1567.5~69.5 21 69.5~71.5 1971.5~73.5 13 73.5~75.5 975.5~77.5 5 77.5~79.5 22试画出这组数据的频数分布直方图.四.【课堂小结】1.频数分布表和频数分布直方图的作用是什么?2.频数分布直方图的特点是什么?五.【反应练习】1.一组数据有80个,其中最大值为140,最小值为40,取组距为10,那么可以分成( )A.10组 B.9组 C.8组 D.7组2.在对n个数据整理时,把这些数据分成7组,那么各组的频数之和、频率之和为( )A.n和1 B.n和n C.1和n D.1和13. 某校九年级共有学生400人,为了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的频率分布表中,各小组频数之和等于_______;假设某一小组的频数为4,那么该小组的频率为_______;假设~这一小组的频率为,那么可估计该校九年级学生视力~范围内的人数约为________.4.某校八年级学生进行体育测试,八年级(2)班男生的立定跳远成绩绘制成如图l2—23所示的频数分布直方图,图中从左到右各矩形的高之比是2:3:7:5:3,最后一组的频数是6,根据直方图所表达的信息,解答以下问题.(1)该班有多少名男生?(2)假设立定跳远的成绩在米以上(包括米)为合格,那么该班的这项测试合格率是多少?9.1 单项式乘单项式力.教学重点:理解单项式相乘的法那么,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法那么解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?〔1〕体积的表示方法;〔2〕面对你的侧面积的表示方法.探索新知让学生在交流的根底上思考以下问题:〔1〕体积的表示方法:①3a·2a·a=________________=6a3,②3a·2a·b=________________=6a2b.侧面积的表示方法:3a·2a=________________=6a2.〔2〕从不同的表示中你发现了什么?〔3〕通过下面两个计算我们来进一步的探讨:〔2a2b〕〔3ab2〕=[2 ×3]•〔a2•a〕〔b•b2〕=6a3b3系数相乘相同字母相同字母〔4ab2〕〔5b〕=[4×5]•〔b2•b〕•a=20ab3系数相乘相同字母只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢?通过探索得到单项式乘单项式的计算法那么:〔1〕将它们的系数相乘;〔2〕相同字母的幂相乘;〔3〕只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ). 注:教师强调格式标准,板书过程.〔通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.〕练习1:判断正误:〔1〕3x 3·(-2x 2)=5x 3; 〔2〕3a 2·4a 2=12a 2; 〔3〕3b 3·8b 3=24b 9; 〔4〕-3x ·2xy =6x 2y ; 〔5〕3ab +3ab =9a 2b 2.练习2:课本练一练 第1、2题.例 2 计算:〔1〕(2x )3·(-3xy 2); 〔2〕(-2a 2b )·(-a 2)·14bc . 注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算.练习3:计算:〔1〕(a 2)2·(-2ab ) ;〔2〕-8a 2b ·(-a 3b 2) ·14b 2 ; 〔3〕(-5a n +1b ) ·(-2a )2;〔4〕[-2(x -y )2]2·(y -x )3.【盘点收获】【课后作业】补充习题和同步练习。
2.2.1频率分布表和频率分布直方图
第一课时
知识探究(一):频率分布表
【问题】 我国是世界上严重缺水的国家 之一,某市政府为了节约生活用水,计 划在本市试行居民生活用水定额管理, 即确定一个居民月用水量标准a,用水量 不超过a的部分按平价收费,超出a的部 分按议价收费.通过抽样调查,那么标准a 制定为多少较合理呢?为了较为合理的 确定出这个标准,需要做哪些工作 ?
频率 组距 0.5 0.4 0.3 0.2 0.1
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 月均用水量/t
频率分布表.
分组
[0,0.5) [0.5,1) [1,1.5) [1.5,2) [2,2.5) [2.5,3) [3,3.5) [3.5,4) [4,4.5] 合计
频数
频数 4 8 15 22 25 14 6 4 2
思考: 频率分布直方图中
小长方形的高
频率 组距
小长方形的面积表示什么?
小长方形的面积表示该组的频率.
所有小长方形的面积和=?
所有小长方形的面积和=1.
知识探究(二):频率分布直方图
思考:频率分布直方图非常直观地表明了 样本数据的分布情况,你能根据上述频率 分布直方图指出居民月均用水量的一些数 据特点吗?
2
0.02
100 1.00
知识探究(一):频率分布表
思考:如果市政府希望85%左右的居民每 月的用水量不超过标准,根据上述频率分 布表,你对制定居民月用水量标准(即a的 取值)有何建议?
知识探究(一):频率分布表
思考:如果市政府希望85%左右的居民每 月的用水量不超过标准,根据上述频率分 布表,你对制定居民月用水量标准(即a的 取值)有何建议?
优点:直观地表明了样本数据的分布情况,清楚 的看出数据分布的总体态势。 缺点:从直方图本身得不出原始的数据内容,造 成原有数据信息的丢失。
第二章统计描述
G ' lg1(
fi lg Xi ) lg1(
1 0.6021 4 0.9031
1 2.709Байду номын сангаас )
fi
40
lg1(67.1282) 48 40
G 1: 48
中位数(median, M)
适合于表达偏态资料、或分布不明的资料的平 均水平,尤其适合于表达只知数据的个数、但 部分较大或较小数据的具体数值未准确知道的 资料的平均水平。
血清总胆固醇 2.5~ 3.0~ 3.5~ 4.0~ 4.5~ 5.0~ 5.5~ 6.0~ 6.5~
7.0~7.5 合计
频数f 1 8 9 23 25 17 9 6 2 1
101
fx 2.75 26 33.75 97.75 118.75 89.25 51.75 37.5 13.5 7.25 478.25
13
174
单侧正常值范围的上限为 1.81
14
188
(mol/L)。
1.69~
4
192
1.93~
4
196
2.17~
1
197
2.42~
2
199
2.66~
0
199
2.90~3.14
1
200
3.四分位数间距(quartile interval, Q)
Q=P75-P25
Q=QU-QL
优缺点:用四分位数间距作为描述数据分布离散 程度的指标,比极差稳定,但仍未考虑到每个数 据的大小,常用于描述偏态频数分布以及分布的 一端或两端无确切数值资料的离散程度。
第1四分位数记作Q1,第2、第3四分位数,分别记作 Q2、Q3;第1百分位数,记作P1。同理,还有第2、第 3、 ···、第99百分位数,分别记作P2、P3、 ···、P99。
(典型题)湘教版八年级下册数学第5章 数据的频数分布含答案
湘教版八年级下册数学第5章数据的频数分布含答案一、单选题(共15题,共计45分)1、为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是()A.0.1B.0.15C.0.2D.0.32、在频数分布表中,各组的频率之和等于()A.1B.2C.3D.43、已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,所以第六组的频率是()A.0.1B.0.2C.0.3D.0.44、频率不可能取到的数为().A.0B.0.5C.1D.1.55、一组数据共50个,分为6组,第1—4组的频数分别是5,7,8,10,第5组的频率是0.20,则第6组的频数是()A.10B.11C.12D.156、学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.3B.0.25C.0.15D.0.17、某校测量了初三班学生的身高(精确到),按为一段进行分组,得到如下频数分布直方图,则下列说法正确的是()A.该班人数最多的身高段的学生数为人B.该班身高低于的学生数为人C.该班身高最高段的学生数为人D.该班身高最高段的学生数为人8、如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()A.2~4小时B.4~6小时C.6~8小时D.8~10小时9、一组数据共40个,分为6组,第1到第4组的频数分别为10,5,7,6,第5组的频率为0.1,则第6组的频数为( )A.4B.10C.6D.810、小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/分钟0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)20 16 9 5则通话时间不超过15分钟的频率是()A.0.1B.0.4C.0.5D.0.911、对一组数据进行适当整理,下列结论正确的是()A.众数所在的一组频数最大B.若极差等于24,取组距为4时,数据应分为6组C.绘频数分布直方图时,高与频数成正比D.各组的频数之和等于112、对八年级200名学生的体重进行统计,在频率分布表中,40kg—45kg这一组的频率是0.4,那么八年级学生体重在40kg—45kg的人数是()A.8人B.80人C.4人D.40人13、如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是()A.该班总人数为50B.步行人数为30C.乘车人数是骑车人数的2.5倍D.骑车人数占20%14、为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1B.0.2C.0.3D.0.415、下表是校女子排球队员的年龄分布,则校女子排球队的平均年龄为()年龄/岁13 14 15频数 1 4 5二、填空题(共10题,共计30分)16、一个样本有100个数据,最大的是351,最小的是75,组距为25,可分为________ 组.17、在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为________ .18、已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是________.19、现将某校七年一班女生按照身高共分成三组,下表是这个班级女生的身高分组情况统计表,则在统计表中的值是________.第一组第二组第三组每个小组女生人数9 8每个小组女生人数占15%班级女生人数的百分比20、某中学学生会为研究该校学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图1,图2),请你根据图中提供的信息解答下列问题:(1)在这次研究中,一共调查了学生________ 名.(2)“其它”在扇形图中所占的圆心角是________ 度.(3)在图2中补全频数分布直方图.(4)根据此次被调查的结果,________ (填“可以”或“不可以”)估计这个学校所在的区的学生的兴趣爱好情况,理由是:________21、某校九年级班名学生的血型统计如下表:血型型型型型</td>频率则该班学生型血的有________名22、在对某班的一次数学测验成绩进行的,统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),该班有________名学生;69.5~79.5这一组的频数________.频率是________23、某学校食堂为了了解服务质量,随机调查了来食堂就餐的200名学生,调查的结果如图所示,根据图中给出的信息,这200名学生中对该食堂的服务质量表示很满意的有________人.24、某口袋中装有红色、黄色、蓝色三种颜色的小球(小球出颜色外完全相同)共60个.通过多次摸球实验后,发现摸到红球、黄球的频率分别是30%和45%,由此估计口袋中蓝球的数目约为________个.25、将50个数据分成3组,其中第一组和第三组的频率之和为0.7,则第二小组的频数是________.三、解答题(共6题,共计25分)26、为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.组别捐款额(x)户数元A 1≤x<50 aB 50≤x<100 10C 100≤x<150D 150≤x<200E x≥200请结合以上信息解答下列问题.(1)a等于多少?本次调查样本的容量是多少?(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区有1500户住户,请根据以上信息估计,全社区捐款不少于150元的户数是多少?27、某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市24000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率x<60 20 0.1060≤x<70 28 0.1470≤x<80 54 0.2780≤x<90 a 0.2090≤x<100 24 0.12100≤x<110 18 b110≤x<120 16 0.08请根据以上图表提供的信息,解答下列问题:(1)表中a和b所表示的数分别为多少;(2)请在图中,补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24000名九年级考生数学成绩为优秀的学生约有多少名?28、为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<30 4第2组30≤x<35 8第3组35≤x<40 16第4组40≤x<45 a第5组45≤x<50 10请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.29、一组数据有30个数,把它们分成四组,其中第一组,第二组的频数分别为7,9,第三组的频率为0.1,则第四组的频数是多少?30、为迎接中国共产党建党90周年,某校举办“红歌伴我成长”歌咏比赛活动,参赛同学的成绩分别绘制成频数分布表和频数分布直方图(均不完整)如下:分数段频数频率80≤x<85 9 0.1585≤x<90 m 0.4590≤x<95 ■■95≤x<100 6 n(1)求m,n的值分别是多少;(2)请在图中补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?参考答案一、单选题(共15题,共计45分)1、C2、A3、A4、D5、A6、A7、D8、B9、D10、D11、C12、B13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共6题,共计25分)28、30、。
《频数与频率》典型例题
《频数与频率》典型例题例题01如图是某单位职工的年龄(取正整数)的频数分布图,根据图形提供的信息回答下列问题:(1) 该单位职工有多少人?(2) 不小于38岁但小于44岁的职工数占职工总人数的百分之多少?(3) 如果42岁的职工4人,那么年龄在42岁以上的职工有几人?例题02 A校初一(1)30名男同学身体体重登记表利用上面的数据画出该校初一(1)班30名男同学身高频率分布表和频率分布直方图.例题03某年级40名男生的体重数据如下(单位:千克):51 54 56 61 60 56 54 51 59 56 54 51 59 5654 50 59 56 53 50 58 56 53 49 48 52 56 5857 55 52 57 57 57 55 52 55 55 52 55问大部分男生的体重处于哪个范围?男生的体重整体分布有什么特点?例题04判断下列叙述是否正确.(1)在同时抛掷三枚硬币的实验中,要观察出现3个正面朝上”和不出现3个正面朝上”的频率变化情况。
记录数据的统计表的栏目设置应包括出现0个正面朝上”、出现1个正面朝上”、出现2个正面朝上”、出现3个正面朝上” 这4类,每类又分为频数”和频率”(2)为了用直方图比较两种水果的各种维生素B的含量,通常画一幅直方图的效果比画两幅直方图的效果强.(3)甲种电视机每小时耗电200W,乙种电视机每小时耗电150W .下图中的描述是恰当的.参考答案例题01解答(1)观察直方图可知:在34〜36岁之间有4人,36〜38岁之间有6人,……,因此,该单位职工共有4 + 6+ 11+ 10+ 9+ 6 + 4 = 50 (人).(2) 由于不小38岁岁但小于44岁的职工共有11+ 10+ 9= 30 (人).30 所以所求的百分比为-0 100% =60% . 50(3) 由于42岁以上(含42岁)的职工有(9+ 6+ 4)= 19人,而已知42 岁的职工有4人,所以年龄在42岁以上的职工有(19-4)= 15人.身高频率分布表 分组/cm 频数 频率 155〜160 2 0.07 160〜165 4 0.13 165〜170 6 0.2 170〜175 10 0.33 175〜180 5 0.17 180〜185 3 0.1 总计301频率分布直方图如图.解答 (I )制作频数分布表将体重按3千克的距离分段,统计频数,得到下表: 重量段 47.5 〜50.5 50.5 〜53.5 53.5 〜56.5 56.5 〜59.5 59.5 〜62.5频数记录 FI正不 正正正一 正不 丅 频数491692(2)绘制直方图,根据上表,得下图.47J50.553,556.559.562.5 重嚴(3)绘折线图例题02解答例题03分析将每个小长方形上面一条边的中点顺次连结起来,即得频数拆线图,如下图所示.(4)到此可知:大部分男生的体重介于53.5千克到56.5千克,体重低于50千克的少,高于60千克的更少.说明绘拆线图时,并非一定要同时画出直方图.也可以直接描出各个中点,连线即可.例题04解答 (I)错误.统计表的栏目只须设为出现3个正面朝上”和不出现3个正面朝上”这两类.无关的实验结果(指出现0个正面朝上”、出现1 个正面朝上”、出现2个正面朝上”)不必统计.(2)正确(3)错误.从高度看,甲电视机的每小时耗电量确实是乙电视机每小时耗电量的4倍.但以面积看,却是8倍,这给读者以误导,因此描述不恰当.3 3甲种电视机乙种电视机精析与解答(I)错误•统计表的栏目只须设为出现3个正面朝上”和不出现3个正面朝上”这两类•无关的实验结果(指出现0个正面朝上”、出现1个正面朝上”、出现2个正面朝上”)不必统计.(2)正确(3)错误.从高度看,甲电视机的每小时耗电量确实是乙电视机每小时耗电量的4倍.但以面积看,却是8倍,这给读者以误导,因此描述不恰当.3 3。
计量资料的频次分布表的步骤
计量资料的频次分布表的步骤引言计量资料的频次分布表是统计学中常用的一种数据可视化工具,用于展示一组数据中各个取值的频率分布情况。
通过绘制频次分布表,可以直观地了解数据集的分布特征和统计属性。
本文将介绍计量资料的频次分布表的步骤,以帮助读者更好地理解和应用这一统计工具。
步骤一:数据收集与整理首先,我们需要收集到一组待分析的计量资料。
计量资料可以是连续型变量或离散型变量,例如身高、体重、考试成绩等。
在数据收集阶段,需要确保数据的准确性和完整性。
同时,如果数据存在缺失值或异常值,需要进行相应的处理,以保证数据的可靠性和准确性。
步骤二:确定分组区间和组数在绘制频次分布表之前,我们需要对数据进行分组。
分组是将连续型数据离散化的过程,旨在将一组连续的取值划分为若干个互不重叠的区间。
确定分组区间和组数的选择是频次分布表绘制过程中的关键步骤。
确定分组区间的常见方法有等宽分组和等深分组。
等宽分组是将数据的取值范围等分为几个相等宽度的区间,适用于数据分布比较均匀的情况;而等深分组是将数据按照大小顺序排列,然后按照相同数量的观测值进行分组,适用于数据分布不均匀的情况。
根据数据的特点和实际需求,选择合适的分组方法。
确定组数的方法也有多种,常用的有Sturges公式、Scott公式和Freedman-Diaconis公式等。
这些公式通过数据样本的大小来确定组数,一般推荐使用一个较为合理的组数,以充分展示数据的分布情况。
步骤三:计算频数和频率在确定分组区间和组数之后,接下来我们需要计算各个分组的频数和频率。
频数是指落入某个分组区间的观测值的个数,频率是指某个分组的频数与总观测值数的比值。
频数和频率是描述数据分布的重要指标,能够直观地展示不同取值的出现次数及所占比例。
计算频数和频率的过程包括两个步骤。
首先,我们需要将数据按照分组区间进行分类,将每个观测值归属到相应的分组中。
然后,统计每个分组的观测值个数,即为频数;同时计算频率,即为频数除以总观测值数。
数学苏教版3教材梳理2.2.2频率分布直方图与折线图含解析
庖丁巧解牛知识·巧学一、关于频率分布直方图的概念由于频率分布表数字较多,阅读困难,为了将频率分布表中的结果直观形象地表示出来,我们通常画频率分布直方图。
画图时,应以横轴表示分组,纵轴表示频率与组距的比值.以每个组距为底,以各频率除以组距的商为高,分别画成矩形,这样得到的直方图就是频率分布直方图.二、关于频率分布直方图的绘制方法频率分布直方图是在频率分布表的基础上绘制而成的,它的前期工作就是准确列出频率分布表,然后在平面直角坐标系中画出频率分布直方图,具体步骤如下:(1)求极差,即计算最大值与最小值的差.(2)决定组距和组数。
组距与组数的确定没有固定标准,需要尝试、选择,力求有合适的组数,以能把数据的规律较清楚地呈现为准。
太多或太少都不好,不利对数据规律的发现.组数应与样本的容量有关,样本容量越大组数越多。
(3)决定分点,将数据分组.分组时,通常规定分组的区间是“左闭右开”的,避免数据被重复计算。
(4)列频率分布表.一般分“分组"“频数”“频率”三列,最后一行是“合计”。
注意频数的合计应是样本容量,频率合计应是1。
(5)画频率分布直方图。
建立直角坐标系,图中横轴为分组,图中的纵轴表示“频率/组距".各组数据以小长方形表示,其中,小长方形的宽为组距,小长方形的高=组距频率,频率=样本容量频率=组距×组距频率=小长方体的面积。
各小长方形的面积总和为1.由此可以看出,直方图中的各小长方形的面积表示相应的各组的频率。
这样频率分布直方图就以面积的形式反映了数据落在各个小组的频率的大小。
误区警示 直方图中小长方形的高并不表示各组数据的频率,而是频率与组距之比,小长方形的面积才是各组数据的频率.辨析比较 频率分布表在数量表示上比较确切,但不够直观、形象,分析数据的总体态势不太方便,频率分布直方图形象、直观,与频率分布表相比较,频率直方图能直观地表明数据的分布形状,但原始数据不能在图中表示,说明直方图丢失了一些信息。
stata频数分布表的命令
Stata频数分布表的命令引言在统计学中,频数分布表是一种用于展示数据分布情况的表格。
它将样本数据按照不同取值或者取值区间进行分类,并统计每个类别中的观测频数和频率。
频数分布表能够帮助我们更好地理解数据的分布特征,揭示样本的集中趋势、离散程度以及可能存在的异常值。
在Stata统计软件中,我们可以使用一些命令来生成频数分布表,本文将详细介绍这些命令的使用方法和常见应用场景。
一、tab命令tab命令是Stata中最常用的生成频数分布表的命令之一。
它可以根据变量的不同取值生成单变量的频数分布表。
1. 语法tab varname [if] [in] [weight] [, options]•varname是要生成频数分布表的变量名。
•if和in是用于筛选数据的条件表达式,可选参数。
•weight用于给观测赋予权重,可选参数。
•options用于设置输出的格式和内容,可选参数。
2. 示例为了更好地理解tab命令的使用方法,我们将使用Stata自带的auto数据集作为示例进行说明。
auto数据集包含1978年的一些汽车信息,其中的变量包括汽车品牌、汽车类型、汽车重量等。
use autotab rep78上述代码中,我们使用了use命令加载了auto数据集,然后通过tab rep78命令生成了关于汽车维修评级(rep78)的频数分布表。
执行该命令后,Stata会输出如下的频数分布表:Repair |Record | Freq. Percent Cum.-----------+-----------------------------------1 |2 2.56 2.562 | 8 10.26 12.823 | 30 38.46 51.284 | 18 23.08 74.365 | 18 23.08 97.44|Total | 76 100.00从以上分布表中,我们可以看出rep78变量的取值范围为1到5,其中维修评级为3的汽车最多,共有30辆。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
徐汇中学 郑斌
古希腊哲学家苏格拉底 曾经说过:“世界上没有完 全相同的两片叶子。”
经过仔细观察,我们从上述四幅图片 可以大致得到如下结论:
同种生物的不同 个体之间有差异
同种生物的差异性
徐汇中学 郑斌
讨论:班上同学有哪些不同的地方?
男女性别的不同。 身高高矮的不同。 其他:眼睑jian、耳垂、 指纹……
人体之间的差异
身高、性别、体重 脉搏、指距
眼睑:双眼皮与单眼皮 肤色 舌:能否卷舌
耳朵:有无耳垂
手:惯用左手还是右手
视力:近视/远视/正常
指纹
事实上,没有两个人的 特征是完全相同的。不同种 类的生物有许多不同的地方, 但即使是相同种类的生物也 有不同的地方。这说明每个 生物个体都有其独特的地方。
怎样将班上的同学分成两组?
男生一组,女生一组。 有无耳垂一组,无耳垂的一组。
双眼皮的一组,单眼皮的一组。
人体各项特征的差异是否都有明确的分界? 有些差异有明确的分界,可以用“有/没 有,能/不能”等方式显示,例如有没有耳垂, 能不能卷舌等。——称为不连续变异 还有一些差异没有明确的分界,只是程 度上的不同,例如身高、体重、脉搏、指距 等。——称为连续变异,可以通过图表的方 式显示。 可以用什么方法展示这些差异?
分 组
14 / 15
15 / 16
16 / 17
17 / 18
18 / 19
19 / 20
20 / 21
21 / 22
22 / 23
23 / 24
学生 数 (个)
对直方图的解释
指距最大的一组人数是_______ 哪个指距人数最多_______ 最大和最小的指距是_____、_______
身高
1、计算最大值与最小值的差 170-142=32 2、决定组距与组数: (最大值-最小值)/组距= 32 / 4 = 8
可以用直方图描述一些连续 变异的数据
示例:
9班学生体重直方图
列体重频数分布表
最高值)
体重直方图பைடு நூலகம்作
数出每一组频数(不含
分 组
学生数 (个)
25 / 31
31 / 37
37 / 43
43 / 49
49 / 55
55 / 61
61 / 67
67 / 73
3
9
13
5
7
3
1
1
示例体重直方图制作
1、计算最大值与最小值的差69-25=44
直方图相对更加直观
制作直方图的一般步骤
1、收集原始数据
2、计算最大值与最小值的差
3、决定组距与组数: (最大值-最小值)/组距= 4、列频数分布表 数出每一组频数(不含最高值) 5、绘制直方图
横轴表示各组数据,纵轴表示频数,该组内的频 数为高,画出一个个矩形。
班级指距分布情况分析 (填入P50上表)
学生 数 (个)
4
12
4
6
7
4
0
3
小结
不同生物间有差异,同种 生物不同个体间也有差异,这 种个体间差异有些可通过直方 图简洁而直观地表现出来。
同种生物的差异性
作业:练习册P19(1)
卷舌
能卷舌
不能卷舌
眼睑
单眼皮
双眼皮
肤色
白种人
黑种人
棕色种人 黄种人
THANKS
2、决定组距与组数: (最大值-最小值)/组距= 46 / 6 = 7.67取8 组距=6 3、列频数分布表 数出每一组频数(不含最高值)
列脉搏频数分布表
数出每一组频数(不含最高值)
分 组
60 / 68
68 / 74
74 / 80
80 / 86
86 / 92
92 / 98
98 104 / / 104 110
2、决定组距与组数: (最大值-最小值)/组距= (69-25)/6组距= 7.33组数取整数8
即 组距=6组数为8
3、列频数分布表 数出每一组频数(不含最高值)
对体重直方图的解释
3 体重最小的一组人数是_______ 个 37~43 哪个体重人数最多_______ 73 、____kg 25 最大和最小的体重是____kg
3、列频数分布表 数出每一组频数(不含最高值)
列身高频数分布表
数出每一组频数(不含最高值)
分 组
142 146 150 154 158 162 166 / / / / / / / 146 150 154 158 162 166 170
170 / 174
学生 数 (个)
6
7
9
7
11
1
0
1
脉搏
1、计算最大值与最小值的差 106-60=46