电磁学习题库5

合集下载

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案

高考物理电磁学练习题库及答案一、选择题1. 在电场中,带电粒子的运动路径称为()A. 轨道B. 轨迹C. 路径D. 脉冲2. 下列哪项不是电磁感应现象中主要的应用?A. 电动机B. 发电机C. 变压器D. 电吹风3. 在电磁波中,波长越小,频率越()A. 大B. 小C. 相等D. 不确定4. 电流大小与导线截面积之间的关系是()A. 正比例B. 反比例C. 平方反比D. 指数关系5. 下列哪个现象与电磁感应无关?A. 磁铁吸引铁矿石B. 手持电磁铁吸附铁钉C. 相机闪光灯工作D. 电动车行驶二、填空题1. 电流的单位是()2. 电阻的单位是()3. 电势差的单位是()4. 电功的单位是()5. 法拉是电容的单位,它的符号是()三、简答题1. 什么是电磁感应?2. 什么是洛仑兹力?3. 简述电阻对电流的影响。

4. 电势差与电压的关系是什么?5. 什么是电容?四、计算题1. 一根导线质量为0.5kg,长度为2m,放在匀强磁场中,当磁感应强度为0.4T时,该导线受到的洛仑兹力大小为多少?(设导线的电流为2A)2. 一台电视机的功率为200W,使用时电流为2A,求电源的电压是多少?3. 一个电容器带电量为5μC,电容为10μF,求该电容器的电势差。

4. 一台电脑的电压为110V,电流为2A,求功率是多少?5. 一根电阻为10欧姆的导线通过电流2A,求该导线两端的电压。

五、综合题1. 请解释什么是电磁感应现象,并列举两个具体的应用。

2. 电流和电势差之间的关系是什么?请给出相关公式并解释其含义。

3. 请计算一个电感为2H的线圈,通过电流为5A,求该线圈的磁场强度。

4. 一个电容器的电容为20μF,通过电流为0.5A,求该电容器两端的电压。

5. 请简述电阻、电容和电感的区别与联系。

答案及解析如下:一、选择题1. B. 轨迹解析:带电粒子在电场中的运动路径称为轨迹。

2. C. 变压器解析:变压器是电磁感应现象的一种重要应用。

电磁学题库(附答案)

电磁学题库(附答案)

电磁学题库(附答案)《电磁学》练习题1. 如图所示,两个点电荷+q和-3q,相距为d. 试求: (1) 在它们的连线上电场强度E?0的点与电荷为+q的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U=0的点与电荷为+q的点电荷相距多远?+q d --3q-2. 一带有电荷q=33109 C的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动 5 cm 时,外力作功63105 J,粒子动能的增量为 J.求:(1) 粒子运动过程中电场力作功-E q 多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.4. 一半径为R的带电球体,其电荷体密度分布为q L d P =Ar (r≤R) ,??=0(r>R)A为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度?均匀分布在半径分别为r1=10 cm和r2=20 cm的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V,试求两球面的电荷面密度?的值. (?0=-/ N2m2 )6. 真空中一立方体形的高斯面,边长a= m,位于图中所示位y a a x 置.已知空间的场强分布为:O Ex=bx , Ey=0 , Ez=0.z a a 常量b=1000 N/(C2m).试求通过该高斯面的电通量.-7. 一电偶极子电荷q= C的两个异号点电荷组成,两电荷相距l= cm.把这电偶极子放在场强大小为E= N/C的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩. (2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q1= C和q2=- C 的两个点电荷相距20 cm,求离它们都是20 cm处--的电场强度. (真空介电常量?0= C2N1m2 )---9. 边长为b的立方盒子的六个面,分别平行于xOy、yOz 和xOz平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为E?200i?300j .试求穿过各面的电通量.第 1 页共 33 页10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: Ex=bx, Ey=0, Ez=0.高斯面边长a= m,常量b=1000 N/(C2m).试求该闭合面中包含的净电荷.(真空介电常数?0= C22N-12m-2 )11. 有一电荷面密度为?的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布. 12. 如图所示,在电矩为p的电偶极子的电场中,将一电荷为q的点电荷从A 点沿半径为R的圆弧(圆心与电偶极子中心重合,R>>电偶极子正负电荷之间距离)移到B点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E=53104 N/C,方向竖直朝上,把一电荷为q= C的点电荷,置于此电场中的a点,如图所示.求此点电荷在下列过程中-R A ?p B d Ⅲ 45?b 电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b点,ab=45 cm;(2) 沿直线路径Ⅱ向下移到c点,ac=80 cm;(3) 沿曲线路径Ⅲ朝右斜上方向移到d点, ad=260 cm(与水平方向成45°角).a c ⅡⅠ ?E14. 两个点电荷分别为q1=+23107 C和q2=-23107 C,相距 m.求距q1为 m、距q2--为 m处P点的电场强度. (1= Nm2 /C2) 4??0 ?A ?B 15. 图中所示, A、B为真空中两个平行的“无限大”均匀带电平面,A面上电荷面密度?A=- C2m2,B面的电荷面密度?B= 3108 C2m2.试计----算两平面之间和两平面外的电场强度.(真空介电常量?0= C22N-12m-2 )16. 一段半径为a的细圆弧,对圆心的张角为?0,其上均匀分布有正电荷q,如图所示.试以a,q,?0表示出圆心O处的电场强度.A 17. 电荷线密度为?的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB的半径为R,试求圆心O点的场强.第 2 页共 33 页A B q ?0 a O ∞R O B ∞18. 真空中两条平行的“无限长”均匀带电直线相距为a,其电荷线密度分别为-?和+?.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm,其间有一半充以相对介电常量a O x ?r=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量?0= C22N12m2)---r 20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R的导体球带电.(1) 当球上已带有电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为?r的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A、B的面积都是S,极板间距离为d.接上电源后,A板电势UA=V,B板电势UB=0.现将一带有电荷q、面积也是S而厚度可忽略的导体片C平行插在两极板的中间位置,如图所示,试求导体片C的电势. 24. 一导体球带电荷Q.球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为?r1和?r2,分界面处半径为R,如图所示.求两层介质分界面上的极化电荷面密度. 25. 半径分别为 cm与 cm的两个球形导体,各带电荷 C,两球相距很远.若用细-A d d/2 d/2 q CB V ?r1 R Q R O ?r2 导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.( 第 3 页共 33 页1?9?109N?m2/C2) 4??026. 如图所示,有两根平行放置的长直载流导线.它们的直径为a,反向流过相同大小的电流I,电流在导线内均匀分布.试在图示的坐标系中求出I I x O 15a]内磁感强度的分布. x轴上两导线之间区域[a,2227. 如图所示,在xOy平面(即纸面)内有一载流线圈abcda,其中bc弧和da弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向为沿abcda的绕向.设线圈处于B = T,方向与a→b的方向相一致的均匀磁场中,试求:(1) 图中电流元I?l1和I?l2所受安培力?F1和?F2的方向和大小,设?l1 =l2 = mm;-2a 2a a Ib y I?l1 R a O 30°c 45° x R I I?l2d (2) 线圈上直线段ab和cd所受的安培力Fab和Fcd 的大小和方向;(3) 线圈上圆弧段bc弧和da弧所受的安培力Fbc 和Fda的大小和方向.28. 如图所示,在xOy平面(即纸面)内有一载流线圈abcda,其中bc弧和 da弧皆为以O为圆心半径R =20 cm的1/4圆弧,ab和cd皆为直线,电流I =20 A,其流向沿abcda 的绕向.设该线圈处于磁感强度B = T的均匀磁场中,B方向沿x轴正方向.试求:-y I?l1 R a O 30°c 45° x R I I?l2 d I b (1) 图中电流元I?l1和I?l2所受安培力?F1和?F2的大小和方向,设?l1 = ?l2= mm;(2) 线圈上直线段ab和cd所受到的安培力Fab和Fcd 的大小和方向;(3) 线圈上圆弧段bc弧和da弧所受到的安培力Fbc和Fda的大小和方向.29. AA'和CC'为两个正交地放置的圆形线圈,其圆心相重合.AA'线圈半径为 cm,共10匝,通有电流 A;而CC'线圈的半径为 cm,共20匝,通有电流 A.求两线圈公共中心O点的磁感强度的大小和方向.(?0 =4?3107 N2A2) --30. 真空中有一边长为l的正三角形导体框架.另有相互平行并与三角形的 bc边平行的长直导线1和2分别在a 点和b点与三角形导体框架相连(如1 I O a 图).已知直导线中的电流为I,三角形框的每一边长为l,求正三角形中心2 I b e ?点O处的磁感强度B.c 31. 半径为R的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成??角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i,求轴线上的磁感强度.第 4 页共 33 页32. 如图所示,半径为R,线电荷密度为? (>0)的均匀带电的圆线圈,绕过圆 y O R ?心与圆平面垂直的轴以角速度??转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R1和R2,芯子材料的磁导率为?,导线总匝数为N,绕得很密,若线圈通电流I,求. (1) 芯子中的B值和芯子截面的磁通量. (2) 在r R2处的B值.34. 一无限长圆柱形铜导体(磁导率?0),半径为R,通有均匀分布的电流I.今取一矩形平面S (长为1 m,宽为2 R),位置如右图中画斜线部分所示,求通N b R2 R1 I S 1 m 过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R1与电子轨道半径R2的比值.36. 在真空中,电流长直导线1沿底边ac方向经a点流入一电阻均匀的导线构成的正三角形线框,再b点沿平行底边ac方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I,2R b I 2 O 1 I a e c 三角形框的每一边长为l,求正三角形中心O处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,实线表示),AB?EF?R,大圆弧BC的半径为R,小圆弧DE的半径为C I E A BD 60? O R F I ?1R,求圆心O处的磁感强度B的大小和方向. 238. 有一条载有电流I的导线弯成如图示abcda形状.其中ab、cd是直线段,其余为圆弧.两段圆弧的长度和半径分别为l1、R1和l2、R2,且两I a b l2 l1 R1 O c R2 -d ?段圆弧共面共心.求圆心O处的磁感强度B的大小.39. 假定地球的磁场是地球中心的载流小环产生的,已知地极附近磁感强度B为 T,地球半径为R = m.?0 =4?3107 H/m.试用毕奥-萨伐尔定律求该电流环的磁矩大小.-40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩pm与电子轨道运动的动量矩L大小之比,并指出pm和L方向间的关系.(电子电荷为e,电子质量为m)第 5 页共 33 页41. 两根导线沿半径方向接到一半径R = cm的导电圆环上.如图.圆弧ADB是铝导线,铝线电阻率为?1 = ?2m,圆弧ACB是铜导线,铜线电阻率为?2 = ?2m.两种导线截面积相同,圆弧ACB的弧长是圆周长的1/?.直导线在很远处与电源相联,弧ACB上的电流I2 =A,求圆心O点处磁感强度B的大小.(真空磁导率?0 =4?3107 T2m/A)--8-8D I1 R O A C I2 B 42. 一根很长的圆柱形铜导线均匀载有10 A电流,在导线内部作一平面S,S的一个边是导线的中心轴线,另一边是S平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m的一段S平面的磁通量.(真空的磁导率?0 =4?3107 T2m/A,铜的相对磁导率?r ≈1)-S 43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i1和 i2,若i1和i2之间夹角为??,如图,求: (1) 两面之间的磁感强度的值Bi. (2) 两面之外空间的磁感强度的值Bo. (3) 当i1?i2?i,??0时以上结果如何?44. 图示相距为a通电流为I1和I2的两根无限长平行载流直导线.i1 ??i2 a ??(1) 写出电流元I1dl1对电流元I2dl2的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.I1dl1 I1 I2 r12 I2dl245. 一无限长导线弯成如图形状,弯曲部分是一半径为R的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R的长直导线载有电流I,作一宽为R、长为l的假想平面S,如图所示。

电磁学试题(含答案)

电磁学试题(含答案)

电磁学试题(含答案)⼀、单选题1、如果通过闭合⾯S 的电通量e Φ为零,则可以肯定A 、⾯S 内没有电荷B 、⾯S 内没有净电荷C 、⾯S 上每⼀点的场强都等于零D 、⾯S 上每⼀点的场强都不等于零 2、下列说法中正确的是 A 、沿电场线⽅向电势逐渐降低 B 、沿电场线⽅向电势逐渐升⾼ C 、沿电场线⽅向场强逐渐减⼩ D 、沿电场线⽅向场强逐渐增⼤3、⾼压输电线在地⾯上空m 25处,通有A 1023的电流,则该电流在地⾯上产⽣的磁感应强度为A 、T 104.15-? B 、T 106.15-? C 、T 1025-? D 、T 104.25-? 4、载流直导线和闭合线圈在同⼀平⾯内,如图所⽰,当导线以速度v 向左匀速运动时,在线圈中 A 、有顺时针⽅向的感应电流B 、有逆时针⽅向的感应电C 、没有感应电流D 、条件不⾜,⽆法判断 5、两个平⾏的⽆限⼤均匀带电平⾯,其⾯电荷密度分别为σ+和σ-,则P 点处的场强为A 、02εσ B 、0εσ C 、02εσ D 、0 6、⼀束α粒⼦、质⼦、电⼦的混合粒⼦流以同样的速度垂直进⼊磁场,其运动轨迹如图所⽰,则其中质⼦的轨迹是 A 、曲线1 B 、曲线2C 、曲线3D 、⽆法判断7、⼀个电偶极⼦以如图所⽰的⽅式放置在匀强电场E中,则在电场⼒作⽤下,该电偶极⼦将A 、保持静⽌B 、顺时针转动C 、逆时针转动D 、条件不⾜,⽆法判断 8、点电荷q 位于边长为a 的正⽅体的中⼼,则通过该正⽅体⼀个⾯的电通量为 A 、0 B 、εqC 、04εq D 、06εq 9、长直导线通有电流A 3=I ,另有⼀个矩形线圈与其共⾯,如图所⽰,则在下列哪种情况下,线圈中会出现逆时针⽅向的感应电流? A 、线圈向左运动 B 、线圈向右运动 C 、线圈向上运动 D 、线圈向下运动10、下列说法中正确的是A 、场强越⼤处,电势也⼀定越⾼σ+ σ-P3IB 、电势均匀的空间,电场强度⼀定为零C 、场强为零处,电势也⼀定为零D 、电势为零处,场强⼀定为零11、关于真空中静电场的⾼斯定理0εi Sq S d E ∑=??,下述说法正确的是:A. 该定理只对有某种对称性的静电场才成⽴;B. i q ∑是空间所有电荷的代数和;C. 积分式中的E⼀定是电荷i q ∑激发的;D. 积分式中的E是由⾼斯⾯内外所有电荷激发的。

大学电磁学测试题及答案

大学电磁学测试题及答案

大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 电磁波在真空中的传播速度是多少?A. 300,000 km/sB. 299,792 km/sC. 299,792 km/s(光速)D. 299,792 km/s(电磁波速度)答案:C2. 法拉第电磁感应定律描述了什么现象?A. 磁场对电流的作用B. 电流对磁场的作用C. 变化的磁场产生电场D. 变化的电场产生磁场答案:C3. 根据麦克斯韦方程组,以下哪项不是电磁场的基本方程?A. 高斯定律B. 高斯磁定律C. 法拉第电磁感应定律D. 欧姆定律答案:D4. 电容器的电容与哪些因素有关?A. 电容器的面积B. 电容器的间距C. 电介质材料D. 所有以上因素答案:D5. 以下哪种介质不能增强电场?A. 电介质B. 导体C. 真空D. 磁介质答案:B6. 洛伦兹力定律描述了什么?A. 磁场对运动电荷的作用B. 电场对静止电荷的作用C. 重力对物体的作用D. 摩擦力对物体的作用答案:A7. 电磁波的频率和波长之间有什么关系?A. 频率与波长成正比B. 频率与波长成反比C. 频率与波长无关D. 频率与波长成正比(错误选项)答案:B8. 根据楞次定律,当线圈中的磁通量增加时,感应电流的方向如何?A. 与磁通量增加的方向相同B. 与磁通量增加的方向相反C. 与磁通量增加的方向垂直D. 与磁通量增加的方向无关答案:B9. 什么是自感?A. 电路中由于电流变化而产生的电磁感应B. 电路中由于电压变化而产生的电流C. 电路中由于电阻变化而产生的电压D. 电路中由于电感变化而产生的电流答案:A10. 以下哪种材料不是超导体?A. 汞B. 铅C. 铜D. 铝答案:C二、填空题(每空1分,共10分)1. 电场强度的国际单位是_______。

答案:伏特/米2. 电容器储存电荷的能力称为_______。

答案:电容3. 磁场强度的国际单位是_______。

答案:特斯拉4. 麦克斯韦方程组包括_______个基本方程。

高考物理电磁学知识点之电磁感应真题汇编及答案(5)

高考物理电磁学知识点之电磁感应真题汇编及答案(5)

高考物理电磁学知识点之电磁感应真题汇编及答案(5)一、选择题1.穿过一个单匝闭合线圈的磁通量始终为每秒均匀增加2Wb,则()A.线圈中感应电动势每秒增加2VB.线圈中感应电动势始终为2VC.线圈中感应电动势始终为一个确定值,但由于线圈有电阻,电动势小于2VD.线圈中感应电动势每秒减少2V2.如图所示,A、B是两个完全相同的灯泡,D是理想二极管,L是带铁芯的线圈,其电阻忽略不计。

下列说法正确的是A.S闭合瞬间,A先亮B.S闭合瞬间,A、B同时亮C.S断开瞬间,A闪亮一下,然后逐渐熄灭D.S断开瞬间,B逐渐熄灭3.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a、b,垂直放置在磁感应强度为B的匀强磁场中,a的边长为L,b的边长为2L。

当磁感应强度均匀增加时,不考虑线圈a、b之间的影响,下列说法正确的是()A.线圈a、b中感应电动势之比为E1∶E2=1∶2B.线圈a、b中的感应电流之比为I1∶I2=1∶2C.相同时间内,线圈a、b中产生的焦耳热之比Q1∶Q2=1∶4D.相同时间内,通过线圈a、b某截面的电荷量之比q1∶q2=1∶44.如图所示,把金属圆环在纸面内拉出磁场,下列叙述正确的是()A.将金属圆环向左拉出磁场时,感应电流方向为逆时针B.不管沿什么方向将金属圆环拉出磁场时,感应电流方向都是顺时针C.将金属圆环向右匀速拉出磁场时,磁通量变化率不变D.将金属圆环向右加速拉出磁场时,受到向右的安培力5.下列关于教材中四幅插图的说法正确的是()A.图甲是通电导线周围存在磁场的实验。

这一现象是物理学家法拉第通过实验首先发现B.图乙是真空冶炼炉,当炉外线圈通入高频交流电时,线圈产生大量热量,从而冶炼金属C.图丙是李辉用多用电表的欧姆挡测量变压器线圈的电阻刘伟手握线圈裸露的两端协助测量,李辉把表笔与线圈断开瞬间,刘伟觉得有电击说明欧姆挡内电池电动势很高D.图丁是微安表的表头,在运输时要把两个接线柱连在一起,这是为了保护电表指针,利用了电磁阻尼原理6.如图所示,一带铁芯线圈置于竖直悬挂的闭合铝框右侧,与线圈相连的导线abcd内有水平向里变化的磁场.下列哪种变化磁场可使铝框向左偏离 ( )A.B.C.D.7.如图所示,铁芯P上绕着两个线圈A和B, B与水平光滑导轨相连,导体棒放在水平导轨上。

大学物理电磁学题库及答案

大学物理电磁学题库及答案

⼤学物理电磁学题库及答案⼀、选择题:(每题3分)1、均匀磁场的磁感强度B垂直于半径为r 的圆⾯.今以该圆周为边线,作⼀半球⾯S ,则通过S ⾯的磁通量的⼤⼩为 (A) 2 r 2B . (B) r 2B .(C) 0. (D) ⽆法确定的量.[ B ]2、在磁感强度为B的均匀磁场中作⼀半径为r 的半球⾯S ,S 边线所在平⾯的法线⽅向单位⽮量n 与B的夹⾓为,则通过半球⾯S 的磁通量(取弯⾯向外为正)为(A) r 2B . (B) 2 r 2B .(C) - r 2B sin . (D) - r 2B cos .[ D ]3、有⼀个圆形回路1及⼀个正⽅形回路2,圆直径和正⽅形的边长相等,⼆者中通有⼤⼩相等的电流,它们在各⾃中⼼产⽣的磁感强度的⼤⼩之⽐B 1 / B 2为 (A) 0.90. (B) 1.00.(C) 1.11. (D) 1.22.[ C ]4、如图所⽰,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环⼼处的磁感强度(A) ⽅向垂直环形分路所在平⾯且指向纸内.(B) ⽅向垂直环形分路所在平⾯且指向纸外. (C) ⽅向在环形分路所在平⾯,且指向b .(D) ⽅向在环形分路所在平⾯内,且指向a .(E) 为零.[E ]5、通有电流I 的⽆限长直导线有如图三种形状,则P ,Q ,O 各点磁感强度的⼤⼩B P ,B Q ,B O 间的关系为: (A) B P > B Q > B O . (B) B Q > B P > B O . (C) B Q > B O > B P . (D) B O > B Q > B P .[ D ]6、边长为l 的正⽅形线圈,分别⽤图⽰两种⽅式通以电流I (其中ab 、cd 与正⽅形共⾯),在这两种情况下,线圈在其中⼼产⽣的磁感强度的⼤⼩分别为 (A) 01 B ,02 B . (B) 01 B ,l I B 0222 .(C) lIB 0122 ,02 B .al 01l02[ C ]7、在真空中有⼀根半径为R 的半圆形细导线,流过的电流为I ,则圆⼼处的磁感强度为(A) R 140 . (B) R120 .(C) 0. (D) R 140 .[ D ]9、电流I 由长直导线1沿垂直bc 边⽅向经a 点流⼊由电阻均匀的导线构成的正三⾓形线框,再由b 点沿垂直ac 边⽅向流出,经长直导线2返回电源(如图).若载流直导线1、2和三⾓形框中的电流在框中⼼O 点产⽣的磁感强度分别⽤1B 、2B和3B 表⽰,则O 点的磁感强度⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021 B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021 B B.(D) B ≠ 0,因为虽然021 B B,但B 3≠ 0.[ A ]10、电流由长直导线1沿半径⽅向经a 点流⼊⼀电阻均匀的圆环,再由b 点沿切向从圆环流出,经长导线2返回电源(如图).已知直导线上电流强度为I ,圆环的半径为R ,且a 、b 与圆⼼O 三点在同⼀直线上.设直电流1、2及圆环电流分别在O 点产⽣的磁感强度为1B 、2B及3B ,则O 点的磁感强度的⼤⼩ (B) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021 B B,B 3 = 0.(C) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0. (D) B ≠ 0,因为虽然B 1 = B 2 = 0,但B 3≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0.[ C ]11、电流I 由长直导线1沿垂直bc 边⽅向经a 点流⼊由电阻均匀的导线构成的正三⾓形线框,再由b 点流出,经长直导线2沿cb 延长线⽅向返回电源(如图).若载流直导线1、2和三⾓形框中的电流在框中⼼O 点产⽣的磁感强度分别⽤1B 、2B和3B 表⽰,则O 点的磁感强度⼤⼩(C) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021 B B,B 3 = 0. (C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021 B B,但3B ≠ 0.[ C ]12、电流由长直导线1沿平⾏bc 边⽅向经过a 点流⼊由电阻均匀的导线构成的正三⾓形线框,由b 点流出,经长直导线2沿cb 延长线⽅向返回电源(如图).已知直导线上的电流为I ,三⾓框的每⼀边长为l .若载流导线1、2和三⾓框中的电流在三⾓框中⼼O 点产⽣的磁感强度分别⽤1B 、2B和3B 表⽰,则O 点的磁感强度⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为021 B B,B 3= 0.(C) B ≠0,因为虽然021 B B,但B 3≠ 0.(D) B ≠0,因为虽然B 3= 0,但021 B B.[ D ]13、电流由长直导线1沿半径⽅向经a 点流⼊⼀电阻均匀的圆环,再由b 点沿半径⽅向流出,经长直导线2返回电源(如图).已知直导线上电流为I ,圆环的半径为R ,且a 、b与圆⼼O 三点在⼀直线上.若载流直导线1、2和圆环中的电流在O 点产⽣的磁感强度分别⽤1B 、2B和3B 表⽰,则O 点磁感强度的⼤⼩为(D) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021 B B,B 3 = 0.(C) B ≠ 0,因为虽然021 B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3 = 0,但021 B B.[ A ] 15、电流由长直导线1沿半径⽅向经a 点流⼊⼀由电阻均匀的导线构成的圆环,再由b 点沿半径⽅向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆⼼O 点产⽣的磁感强度分别⽤1B 、2B 、3B表⽰,则圆⼼O 点的磁感强度⼤⼩(E) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021 B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3= 0,但021 B B.(D) B ≠ 0,因为B 3≠ 0,021 B B,所以0321 B B B .[ A ]16、如图所⽰,电流由长直导线1沿ab 边⽅向经a 点流⼊由电阻均匀的导线构成的正⽅形框,由c 点沿dc⽅向流出,经长直导线2返回电源.设载流导线1、2和正⽅形框中的电流在框中⼼O 点产⽣的磁感强度分别⽤1B 、2B 、3B 表⽰,则O 点的磁感强度⼤⼩(A) B = 0,因为B1 = B2 = B3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021 B B.B 3 = 0(C) B ≠ 0,因为虽然021 B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021 B B.[ B ]17、如图所⽰,电流I 由长直导线1经a 点流⼊由电阻均匀的导线构成的正⽅形线框,由b 点流出,经长直导线2返回电源(导线1、2的延长线均通过O 点).设载流导线1、2和正⽅形线框中的电流在框中⼼O 点产⽣的磁感强度分别⽤ 1B、2B、3B 表⽰,则O 点的磁感强度⼤⼩(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0、B 3≠ 0,但0321 B B B.(C) B ≠ 0,因为虽然021 B B,但B 3≠ 0.(D) B ≠ 0,因为虽然B 3= 0,但021 B B19、如图,边长为a 的正⽅形的四个⾓上固定有四个电荷均为q 的点电荷.此正⽅形以⾓速度绕AC 轴旋转时,在中⼼O 点产⽣的磁感强度⼤⼩为B 1;此正⽅形同样以⾓速度绕过O 点垂直于正⽅形平⾯的轴旋转时,在O 点产⽣的磁感强度的⼤⼩为B 2,则B 1与B 2间的关系为(A) B 1 = B 2. (B) B 1 = 2B 2.(C) B 1 = 21B 2. (D) B 1 = B 2 /4.[C ]20、边长为L 的⼀个导体⽅框上通有电流I ,则此框中⼼的磁感强度 (A) 与L ⽆关. (B) 正⽐于L 2. (C) 与L 成正⽐. (D) 与L 成反⽐. (E) 与I 2有关.[ D ]21、如图,流出纸⾯的电流为2I ,流进纸⾯的电流为I ,则下述各式中哪⼀个是正确的? (A) I l H L 2d 1 . (B) I l H L 2d(C) I l H L 3d . (D) I l H L 4d .1 2C q 4[ D ]22、如图,在⼀圆形电流I 所在的平⾯内,选取⼀个同⼼圆形闭合回路L ,则由安培环路定理可知(A) 0d Ll B,且环路上任意⼀点B = 0. (B) 0d L l B,且环路上任意⼀点B ≠0.(C) 0d Ll B,且环路上任意⼀点B ≠0.(D)0d Ll B,且环路上任意⼀点B =常量.[ B ]23、如图,两根直导线ab 和cd 沿半径⽅向被接到⼀个截⾯处处相等的铁环上,稳恒电流I 从a 端流⼊⽽从d 端流出,则磁感强度B沿图中闭合路径L 的积分 L(A) I 0 . (B) I 031.(C) 4/0I . (D) 3/20I .[ D ]24、若空间存在两根⽆限长直载流导线,空间的磁场分布就不具有简单的对称性,则该磁场分布(A) 不能⽤安培环路定理来计算. (B) 可以直接⽤安培环路定理求出. (C) 只能⽤毕奥-萨伐尔定律求出.(D) 可以⽤安培环路定理和磁感强度的叠加原理求出.[ D ] 25、取⼀闭合积分回路L ,使三根载流导线穿过它所围成的⾯.现改变三根导线之间的相互间隔,但不越出积分回路,则(A) 回路L 内的 I 不变,L 上各点的B不变.(B) 回路L 内的 I 不变,L 上各点的B改变.(C) 回路L 内的 I 改变,L 上各点的B不变.(D) 回路L 内的 I 改变,L 上各点的B改变.[ B ] 27、在图(a)和(b)中各有⼀半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) 1d L l B 2d L l B , 21P P B B (B)1d L l B2d L l B , 21P P B B . (C)1d L l B2d L l B, 21P P B B .(D)1d L l B2d L l B, 21P P B B .[ C ]L OIIIa bc d120°L 2P 1 P 2I 1 I 2 I 3I 1 I 2 (a)(b)⊙⊙⊙⊙⊙28、如图,⼀个电荷为+q 、质量为m 的质点,以速度v沿x 轴射⼊磁感强度为B 的均匀磁场中,磁场⽅向垂直纸⾯向⾥,其范围从x = 0延伸到⽆限远,如果质点在x = 0和y = 0处进⼊磁场,则它将以速度v -从磁场中某⼀点出来,这点坐标是x = 0 和(A) qB m y v . (B) qB m y v 2 . (C) qB m y v 2 . (D) qBm y v.[ B ]30、A 、B 两个电⼦都垂直于磁场⽅向射⼊⼀均匀磁场⽽作圆周运动.A 电⼦的速率是B 电⼦速率的两倍.设R A ,R B 分别为A 电⼦与B 电⼦的轨道半径;T A ,T B 分别为它们各⾃的周期.则(A) R A ∶R B =2,T A ∶T B =2. (B) R A ∶R B 21,T A ∶T B =1.(C) R A ∶R B =1,T A ∶T B 21. (D) R A ∶R B =2,T A ∶T B =1.[ D ]31、⼀铜条置于均匀磁场中,铜条中电⼦流的⽅向如图所⽰.试问下述哪⼀种情况将会发⽣? (A) 在铜条上a 、b 两点产⽣⼀⼩电势差,且U a > U b . (B) 在铜条上a 、b 两点产⽣⼀⼩电势差,且U a < U b . (C) 在铜条上产⽣涡流. (D) 电⼦受到洛伦兹⼒⽽减速.[ A ]32、⼀电荷为q 的粒⼦在均匀磁场中运动,下列哪种说法是正确的? (A) 只要速度⼤⼩相同,粒⼦所受的洛伦兹⼒就相同.(B) 在速度不变的前提下,若电荷q 变为-q ,则粒⼦受⼒反向,数值不变. (C) 粒⼦进⼊磁场后,其动能和动量都不变. (D)洛伦兹⼒与速度⽅向垂直,所以带电粒⼦运动的轨迹必定是圆.[ B ] 34、图为四个带电粒⼦在O 点沿相同⽅向垂直于磁感线射⼊均匀磁场后的偏转轨迹的照⽚.磁场⽅向垂直纸⾯向外,轨迹所对应的四个粒⼦的质量相等,电荷⼤⼩也相等,则其中动能最⼤的带负电的粒⼦的轨迹是(A) Oa . (B) Ob .(C) Oc . (D) Od .[ C ]O ×× ×⼤学物理电磁学35、如图所⽰,在磁感强度为B的均匀磁场中,有⼀圆形载流导线,a 、b 、c 是其上三个长度相等的电流元,则它们所受安培⼒⼤⼩的关系为(A) F a > F b > F c . (B) F a < F b < F c .(C) F b > F c > F a . (D) F a > F c > F b .[ C ]36、如图,长载流导线ab 和cd 相互垂直,它们相距l ,ab 固定不动,cd 能绕中点O 转动,并能靠近或离开ab .当电流⽅向如图所⽰时,导线cd 将 (A) 顺时针转动同时离开ab .(B) 顺时针转动同时靠近ab . (C) 逆时针转动同时离开ab.(D) 逆时针转动同时靠近ab .[ D ]37、两个同⼼圆线圈,⼤圆半径为R ,通有电流I 1;⼩圆半径为r ,通有电流I 2,⽅向如图.若r << R (⼤线圈在⼩线圈处产⽣的磁场近似为均匀磁场),当它们处在同⼀平⾯内时⼩线圈所受磁⼒矩的⼤⼩为(A) R r I I 22210 . (B) R r I I 22210 .(C) r R I I 22210 . (D) 0.[ D ]339、有⼀N 匝细导线绕成的平⾯正三⾓形线圈,边长为a ,通有电流I ,置于均匀外磁场B中,当线圈平⾯的法向与外磁场同向时,该线圈所受的磁⼒矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na . (C) 60sin 32IB Na . (D) 0.[ B ]40、有⼀矩形线圈AOCD ,通以如图⽰⽅向的电流I ,将它置于均匀磁场B 中,B的⽅向与x 轴正⽅向⼀致,线圈平⾯与x 轴之间的夹⾓为, < 90°.若AO 边在y轴上,且线圈可绕y 轴⾃由转动,则线圈将(A) 转动使⾓减⼩.(B) 转动使⾓增⼤. (C) 不会发⽣转动.(D) 如何转动尚不能判定.[ D ]41、若⼀平⾯载流线圈在磁场中既不受⼒,也不受⼒矩作⽤,这说明: (A) 该磁场⼀定均匀,且线圈的磁矩⽅向⼀定与磁场⽅向平⾏.O r R I 1I 2(B) 该磁场⼀定不均匀,且线圈的磁矩⽅向⼀定与磁场⽅向平⾏. (C) 该磁场⼀定均匀,且线圈的磁矩⽅向⼀定与磁场⽅向垂直.(D) 该磁场⼀定不均匀,且线圈的磁矩⽅向⼀定与磁场⽅向垂直.[ A ]42、图⽰⼀测定⽔平⽅向匀强磁场的磁感强度B(⽅向见图)的实验装置.位于竖直⾯内且横边⽔平的矩形线框是⼀个多匝的线圈.线框挂在天平的右盘下,框的下端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场对线框的作⽤⼒⽽破坏了天平的平衡,须在天平左盘中加砝码m 才能使天平重新平衡.若待测磁场的磁感强度增为原来的3倍,⽽通过线圈的电流减为原来的21,磁场和电流⽅向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为 (A) 6m . (B) 3m /2. (C) 2m /3. (D) m /6.(E) 9m /2.[ B ]43、如图,⽆限长直载流导线与正三⾓形载流线圈在同⼀平⾯内,若长直导线固定不动,则载流三⾓形线圈将(A) 向着长直导线平移.(B) 离开长直导线平移. (C) 转动. (D) 不动.[ A ]44、四条皆垂直于纸⾯的载流细长直导线,每条中的电流皆为I .这四条导线被纸⾯截得的断⾯,如图所⽰,它们组成了边长为2a 的正⽅形的四个⾓顶,每条导线中的电流流向亦如图所⽰.则在图中正⽅形中⼼点O 的磁感强度的⼤⼩为(A) I aB 02 . (B) I a B 02 . (C) B = 0. (D) I a B 0.[ C ]46、四条平⾏的⽆限长直导线,垂直通过边长为a =20 cm 的正⽅形顶点,每条导线中的电流都是I =20 A ,这四条导线在正⽅形中⼼O 点产⽣的磁感强度为 ( 0 =4 ×10-7 N ·A -2)(A) B =0. (B) B = 0.4×10-4 T . (C) B = 0.8×10-4 T. (D) B =1.6×10-4T .[ C ]BI 1I a a47、有⼀半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平⾯圆线圈,导线长度不变,并通以同样的电流,则线圈中⼼的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2.[ B ]55、⼀闭合正⽅形线圈放在均匀磁场中,绕通过其中⼼且与⼀边平⾏的转轴OO ′转动,转轴与磁场⽅向垂直,转动⾓速度为,如图所⽰.⽤下述哪⼀种办法可以使线圈中感应电流的幅值增加到原来的两倍(导线的电阻不能忽略)?(A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的⾯积增加到原来的两倍,⽽形状不变. (C) 把线圈切割磁⼒线的两条边增长到原来的两倍.(D) 把线圈的⾓速度增⼤到原来的两倍.[ D ]56、⼀导体圆线圈在均匀磁场中运动,能使其中产⽣感应电流的⼀种情况是 (A) 线圈绕⾃⾝直径轴转动,轴与磁场⽅向平⾏.(B) 线圈绕⾃⾝直径轴转动,轴与磁场⽅向垂直. (C) 线圈平⾯垂直于磁场并沿垂直磁场⽅向平移.(D) 线圈平⾯平⾏于磁场并沿垂直磁场⽅向平移.[ B ]57、如图所⽰,⼀矩形⾦属线框,以速度v从⽆场空间进⼊⼀均匀磁场中,然后⼜从磁场中出来,到⽆场空间中.不计线圈的⾃感,下⾯哪⼀条图线正确地表⽰了线圈中的感应电流对时间的函数关系?(从线圈刚进⼊磁场时刻开始计时,I 以顺时针⽅向为正)[ C ]58、两根⽆限长平⾏直导线载有⼤⼩相等⽅向相反的电流I ,并各以d I /d t 的变化率增长,⼀矩形线圈位于导线平⾯内(如图),则:(A) 线圈中⽆感应电流. (B) 线圈中感应电流为顺时针⽅向.BIO (D)IO (C)O (B)I(C) 线圈中感应电流为逆时针⽅向.(D) 线圈中感应电流⽅向不确定.[ B ]59、将形状完全相同的铜环和⽊环静⽌放置,并使通过两环⾯的磁通量随时间的变化率相等,则不计⾃感时(A) 铜环中有感应电动势,⽊环中⽆感应电动势. (B) 铜环中感应电动势⼤,⽊环中感应电动势⼩. (C) 铜环中感应电动势⼩,⽊环中感应电动势⼤. (D) 两环中感应电动势相等.[ D ]60、在⽆限长的载流直导线附近放置⼀矩形闭合线圈,开始时线圈与导线在同⼀平⾯内,且线圈中两条边与导线平⾏,当线圈以相同的速率作如图所⽰的三种不同⽅向的平动时,线圈中的感应电流(A) 以情况Ⅰ中为最⼤. (B) 以情况Ⅱ中为最⼤.(C) 以情况Ⅲ中为最⼤. (D) 在情况Ⅰ和Ⅱ中相同.[ B ]61、⼀个圆形线环,它的⼀半放在⼀分布在⽅形区域的匀强磁场B中,另⼀半位于磁场之外,如图所⽰.磁场B的⽅向垂直指向纸内.欲使圆线环中产⽣逆时针⽅向的感应电流,应使(A) 线环向右平移. (B) 线环向上平移. (C) 线环向左平移.(D) 磁场强度减弱.[ C ]62、如图所⽰,⼀载流螺线管的旁边有⼀圆形线圈,欲使线圈产⽣图⽰⽅向的感应电流i ,下列哪⼀种情况可以做到? (A) 载流螺线管向线圈靠近. (B) 载流螺线管离开线圈.(C) 载流螺线管中电流增⼤.(D) 载流螺线管中插⼊铁芯.[ B ]63、如图所⽰,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪⼀种情况下可使线圈中产⽣的感应电动势与原电流I的⽅向相反. (A) 滑线变阻器的触点A 向左滑动. (B) 滑线变阻器的触点A 向右滑动. (C) 螺线管上接点B 向左移动(忽略长螺线管的电阻).(D) 把铁芯从螺线管中抽出.[ A ]b d bc dc d v v I64、⼀矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀⾓速度旋转(如图所⽰).设t =0时,线框平⾯处于纸⾯内,则任⼀时刻感应电动势的⼤⼩为(A) 2abB | cos t |. (B) abB(C)t abB cos 21. (D) abB | cos t |.(E) abB | sin t |.[ D ]65、⼀⽆限长直导体薄板宽为l ,板⾯与z 轴垂直,板的长度⽅向沿y 轴,板的两侧与⼀个伏特计相接,如图.整个系统放在磁感强度为B 的均匀磁场中,B的⽅向沿z 轴正⽅向.如果伏特计与导体平板均以速度v向y 轴正⽅向移动,则伏特计指⽰的电压值为(A) 0. (B) 21v Bl .(C) v Bl . (D) 2v Bl .[ A ]66、⼀根长度为L 的铜棒,在均匀磁场 B中以匀⾓速度绕通过其⼀端的定轴旋转着,B 的⽅向垂直铜棒转动的平⾯,如图所⽰.设t =0时,铜棒与Ob 成⾓(b 为铜棒转动的平⾯上的⼀个固定点),则在任⼀时刻t 这根铜棒两端之间的感应电动势是:(A) )cos(2 t B L . (B) t B L cos 212.(C) )cos(22 t B L . (D) B L 2 .(E)B L 221.[ E ]67、如图,长度为l 的直导线ab 在均匀磁场B中以速度v 移动,直导线ab 中的电动势为(A) Bl v . (B) Bl v sin . (C) Bl v cos . (D) 0.[ D ]68、如图所⽰,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场⽅向的轴OO 转动(⾓速度与B 同⽅向),BC 的长度为棒长的31,则(A) A 点⽐B 点电势⾼. (B) A 点与B 点电势相等.(B) A 点⽐B 点电势低. (D) 有稳恒电流从A 点流向B 点.O Ba bz By lVBL O blb avOO ′ BB A C[ A ]69、如图所⽰,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸⾯内绕轴O 作逆时针⽅向匀⾓速转动,O 点是圆⼼且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计时.图(A)—(D)的--t 函数图象中哪⼀条属于半圆形导线回路中产⽣的感应电动势?[ A ]70、如图所⽰,M 、N 为⽔平⾯内两根平⾏⾦属导轨,ab 与cd 为垂直于导轨并可在其上⾃由滑动的两根直裸导线.外磁场垂直⽔平⾯向上.当外⼒使ab 向右平移时,cd (A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ D ]72、已知⼀螺绕环的⾃感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的⾃感系数(A) 都等于L 21. (B) 有⼀个⼤于L 21,另⼀个⼩于L 21.(C) 都⼤于L 21. (D) 都⼩于L 21.[ D ]73、⾯积为S 和2 S 的两圆线圈1、2如图放置,通有相同的电流I .线圈1的电流所产⽣的通过线圈2的磁通⽤ 21表⽰,线圈2的电流所产⽣的通过线圈1的磁通⽤ 12表⽰,则 21和 12的⼤⼩关系为: (A) 21 =2 12. (B) 21 > 12.(C) 21 = 12. (D) 21 =2112.[ A ]76、两根很长的平⾏直导线,其间距离d 、与电源组成回路如图.已知导线上的电流为I ,两根导线的横截⾯的半径均为r 0.设⽤L 表⽰两导线回路单位长度的⾃感系数,则沿导线单位长度的空间内的总磁能W m 为 (A) 221LI .(B) 221LI0d π2])(2π2[2002r r r r d I r I I (C) ∞.t O (A)t O(C)t O (B)t O(D)C DOBc abd N MB12S 2 SI II I d 2r 0(D)221LI 020ln 2r dI [ A ]77、真空中⼀根⽆限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为(A) 200)2(21a I (B) 200)2(21a I (C) 20)2(21I a (D) 200)2(21a I [ B ] 79、对位移电流,有下述四种说法,请指出哪⼀种说法正确.(A) 位移电流是指变化电场.(B) 位移电流是由线性变化磁场产⽣的. (C) 位移电流的热效应服从焦⽿─楞次定律.(D) 位移电流的磁效应不服从安培环路定理.[ A ]80、在感应电场中电磁感应定律可写成t l E L K d d d,式中K E 为感应电场电场强度.此式表明:(A) 闭合曲线L 上K E处处相等. (B) 感应电场是保守⼒场.(C) 感应电场的电场强度线不是闭合曲线. (D) 在感应电场中不能像对静电场那样引⼊电势的概念.[ D ]⼆、填空题(每题4分)81、⼀磁场的磁感强度为k c j b i a B (SI),则通过⼀半径为R ,开⼝向z 轴正⽅向的半球壳表⾯的磁通量的⼤⼩为πR 2c Wb .82、真空中有⼀载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲⾯S的磁通量 = Ss d B=0.若通过S ⾯上某⾯元S d 的元磁通为d ,⽽线圈中的电流增加为2I 时,通过同⼀⾯元的元磁通为d ',则d ∶d '=1:285、在真空中,将⼀根⽆限长载流导线在⼀平⾯内弯成如图所⽰的形状,并通以电流I ,则圆⼼O 点的磁感强度B 的值为0I/(4a ).87、在真空中,电流由长直导线1沿半径⽅向经a 点流⼊⼀由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆⼼O 在同⼀直线上,则O 处的磁感强度B 的⼤⼩为_ 0I/(4R )__.I IIa Oa b1 O 291、边长为2a 的等边三⾓形线圈,通有电流I ,则线圈中⼼处的磁感强度的⼤⼩为___9µ0I /(4πa )__.92、两根长直导线通有电流I ,图⽰有三种环路;在每种情况下, l Bd 等于:________µ0I ___(对环路a ).________0____(对环路b ).___2µ0I ____(对环路c ).94、如图,在⽆限长直载流导线的右侧有⾯积为S 1和S 2的两个矩形回路.形回路的⼀边与长直载流导线平⾏.则通过⾯积为S 1路的磁通量与通过⾯积为S 2的矩形回路的磁通量之__1:1__.96、如图所⽰的空间区域内,分布着⽅向垂直于纸⾯的匀强磁场,在纸⾯内有⼀正⽅形边框abcd (磁场以边框为界).⽽a 、b 、c 三个⾓顶处开有很⼩的缺⼝.今有⼀束具有不同速度的电⼦由a 缺⼝沿ad ⽅向射⼊磁场区域,若b 、c 两缺⼝处分别有电⼦射出,则此两处出射电⼦的速率之⽐v b /v c =_1:2_101、电⼦在磁感强度为B的匀强磁场中垂直于磁⼒线运动.若轨道的曲率半径为R ,则磁场作⽤于电⼦上⼒的⼤⼩F =__ R(eB)2/(m e )__. 103、质量m ,电荷q 的粒⼦具有动能E ,垂直磁感线⽅向飞⼊磁感强度为B 的匀强磁场中.当该粒⼦越出磁场时,运动⽅向恰与进⼊时的⽅向相反,那么沿粒⼦飞⼊的⽅向上磁场的最⼩宽度L =__)/(2qB Em _____.104、如图所⽰,⼀根通电流I 的导线,被折成长度分别为a 、b ,夹⾓为 120°的两段,并置于均匀磁场B中,若导线的长度为b 的⼀段与B平⾏,则a ,b 两段载流导线所受的合磁⼒的⼤⼩为___2/3aIB __.cdB105、如图所⽰,在真空中有⼀半径为a的3/4圆弧形的导线,其中通以稳恒电流I,导线置于均匀外磁场B中,且B与导线所在平⾯垂直.则该载流导线bc所受的磁⼒⼤⼩为__aIB2__.108、⼀⾯积为S,载有电流I的平⾯闭合线圈置于磁感强度为B的均匀磁场中,此线圈受到的最⼤磁⼒矩的⼤⼩为___ IBS__,此时通过线圈的磁通量为____0_.当此线圈受到最⼩的磁⼒矩作⽤时通过线圈的磁通量为__BS__.109.已知载流圆线圈1与载流正⽅形线圈2在其中⼼O处产⽣的磁感强度⼤⼩之⽐为B1∶B2 =1∶2,若两线圈所围⾯积相等,两线圈彼此平⾏地放置在均匀外磁场中,则它们所受⼒矩之⽐M1∶M2 =23)2110、已知⾯积相等的载流圆线圈与载流正⽅形线圈的磁矩之⽐为2∶1,圆线圈在其中⼼处产⽣的磁感强度为B0,那么正⽅形线圈(边长为a)在磁感强度为B的均匀外磁场中所受最⼤磁⼒矩为)__.111、有⼀长20 cm、直径1 cm的螺线管,它上⾯均匀绕有1000匝线圈,通以I = 10 A的电流.今把它放⼊B = 0.2 T的均匀磁场中,则螺线管受到的最⼤的作⽤⼒F =__0__螺线管受到的最⼤⼒矩值M =_0.157Nm __.112、电流元lId在磁场中某处沿直⾓坐标系的x轴⽅向放置时不受⼒,把电流元转到y轴正⽅向时受到的⼒沿z轴反⽅向,该处磁感强度B指向___+x _⽅向.113、如图,有⼀N匝载流为I的平⾯线圈(密绕),其⾯积为S,则在图⽰均匀磁场B的作⽤下,线圈所受到的磁⼒矩为_ NISB _.线圈法向⽮量n将转向__ y轴正⽅向_.114、如图,半圆形线圈(半径为R)通有电流I.线圈处在与线圈平⾯平⾏向右的均匀磁场B中.线圈所受磁⼒矩的⼤⼩为IBR221 ,⽅向为__在图⾯中向上_.把线圈绕OO'轴转过⾓度n2,(n=1,2,…)时,磁⼒矩恰为零.IyxzOOB116、如图所⽰,在纸⾯上的直⾓坐标系中,有⼀根载流导线AC 置于垂直于纸⾯的均匀磁场B中,若I = 1 A ,B = 0.1 T ,则AC 导线所受的磁⼒⼤⼩为_5×10-3N __. 117、如图,⼀根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab 所受磁场的作⽤⼒的⼤⼩为BIR 2,⽅向沿y 轴正向 119、⼀⽆限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸⾯内,则P 点磁感强度B的⼤⼩为aI B 830120、⼀弯曲的载流导线在同⼀平⾯内,形状如图(O 点是半径为R 1和R 2的两个半圆弧的共同圆⼼,电流⾃⽆穷远来到⽆穷远去),则O 点磁感强度的⼤⼩是2020100444R IR IR IB121、已知两长直细导线A 、B 通有电流I A = 1 A ,I B = 2 A ,电流流向和放置位置如图.设I A 与I B 在P 点产⽣的磁感强度⼤⼩分别为B A 和B B ,则B A 与B B之⽐为1:1__,此时P 点处磁感强度P B与x 轴夹⾓为_30o __.137、⼀平⾏板空⽓电容器的两极板都是半径为R 的圆形导体⽚,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 dt dE R /20 .140、平⾏板电容器的电容C 为20.0 F ,两板上的电压变化率为d U /d t =1.50×105 V ·s -1,则该平⾏板电容器中的位移电流为_3A _.I A I B。

大学电磁学试题及答案

大学电磁学试题及答案

大学电磁学试题及答案一、选择题1. 下列哪个不是电磁场的性质?A. 磁场比电场强B. 磁场可以存储能量C. 磁场的形状与电流的形状无关D. 磁场可以做功2. 下列哪个不是电场的性质?A. 电场是矢量场B. 电场可以存储能量C. 电场的形状与电荷的分布有关D. 电场可以做功3. 以下哪个定理描述了电场的闭合性?A. 麦克斯韦方程组B. 电场强度叠加定理C. 安培环路定理D. 电场能量密度定理4. 以下哪个定理描述了磁场的无源性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理5. 在匀强电场中沿着电场方向移动电荷,电荷所受的力是:A. 垂直于电场方向的力B. 与电场方向相反的力C. 与电场方向相同的力D. 没有受力6. 以下哪个定理描述了磁场的涡旋性?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 磁场能量密度定理7. 当通过匀强磁场的导线以垂直于磁场方向的速度运动时,导线中将感应出电动势。

这个现象被称为:A. 法拉第现象B. 洛伦兹力C. 磁通量D. 磁感应强度8. 以下哪个定理描述了电磁感应现象?A. 麦克斯韦方程组B. 磁场强度叠加定理C. 安培环路定理D. 法拉第定律9. 高频交流电的传输会存在什么现象?A. 电流大于电压B. 电流和电压同相C. 电流小于电压D. 电流和电压反相10. 在电磁波中,电场和磁场之间的关系是:A. 电场和磁场互相作用B. 电场和磁场无关联C. 电场和磁场相互垂直D. 电场和磁场相互平行二、解答题1. 描述安培环路定理的表达式以及其含义。

安培环路定理的表达式是:$\oint \mathbf{B}\cdot d\mathbf{l} =\mu_0I_{\text{enc}}$。

该定理表示通过某一闭合回路的磁感应强度的环路积分等于该回路所围绕的电流的总和与真空中的磁导率的乘积。

即磁场的闭合性质。

2. 描述麦克斯韦方程组中法拉第电磁感应定律的表达式以及其含义。

(完整版)电磁学题库(附答案)

(完整版)电磁学题库(附答案)

《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

电磁场考试试题及答案

电磁场考试试题及答案

电磁场考试试题及答案一、选择题(每题5分,共20分)1. 麦克斯韦方程组描述了电磁场的基本规律,下列哪一项不是麦克斯韦方程组中的方程?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定律答案:C2. 在电磁波传播过程中,电场和磁场的相位关系是:A. 相位相同B. 相位相反C. 相位相差90度D. 相位相差180度答案:C3. 根据洛伦兹力定律,带电粒子在磁场中运动时受到的力的方向是:A. 与速度方向相同B. 与速度方向相反C. 与速度方向垂直D. 与磁场方向垂直答案:C4. 以下哪种介质的磁导率不是常数?A. 真空B. 铁C. 铜D. 空气答案:B二、填空题(每题5分,共20分)1. 根据高斯定律,通过任何闭合表面的电通量与该闭合表面所包围的总电荷量成正比,比例常数为____。

答案:\(\frac{1}{\varepsilon_0}\)2. 法拉第电磁感应定律表明,闭合回路中的感应电动势等于通过该回路的磁通量变化率的负值,其数学表达式为 \(\mathcal{E} = -\frac{d\Phi_B}{dt}\),其中 \(\Phi_B\) 表示____。

答案:磁通量3. 根据安培环路定律,磁场 \(\vec{B}\) 在闭合回路上的线积分等于该回路所包围的总电流乘以比例常数 \(\mu_0\),其数学表达式为\(\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{enc}}\),其中\(I_{\text{enc}}\) 表示____。

答案:回路所包围的总电流4. 电磁波在真空中的传播速度为 \(c\),其值为 \(3 \times 10^8\) 米/秒,该速度也是光速,其物理意义是____。

答案:电磁波在真空中传播的速度三、简答题(每题15分,共40分)1. 简述电磁波的产生机制。

答案:电磁波是由变化的电场和磁场相互作用产生的。

当电场变化时,会在周围空间产生磁场;同样,变化的磁场也会在周围空间产生电场。

电磁学试题库

电磁学试题库

《电磁学》试题库渭南师范学院²物理系第一章静电场(一)填空题0111 一带正电小球移近不带电导体时,小球将受到_________力;一带负电小球移近不带电导体时,小球将受到_________力;一带正电小球靠近不带电的接地导体时,小球将受到力;一带负电小球与不带电的接地导体接触时小球将_________力。

0211 由库仑定律知,当r→0时,F→∞,但将二带同号电荷的小球推靠在一起并不很费力,其原因是_________。

0322 在一带正电荷的大导体附近放置一个检验电荷+q 0,测得其受到的力为F,若考虑到电量q0不是足够小,则F/q0将比实际场强_________。

0423 三个在一直线上带负电的小球A、B、C,带电量之比为1∶3∶5,A、C固定,若使B也不动,则AB和BC距离之比为_________。

0522 将某电荷[WTBX]Q分成[WTBX]q和(Q-q)两部分,并将两部分分离开一定距离,则它们之间的库仑力为最大时Q与q的关系为_________。

0622 将一单摆小球带上正电荷置于方向竖直向下的匀强电场,则单摆的周期变_________。

0721 将一孤立带电导体接地,则电荷将会_________;将充电的电容器一极板接地,则电荷_________。

0821 当其它电荷移近两个点电荷时,则这两个电荷之间的库仑力_________。

0911 若两个点电荷连线中点处的场强为零,则表明这两个点电荷是_________电荷。

1023 库仑力和万有引力都是与距离的平方成反比的力,从场的角度看库仑力是电荷在电场中受到的力,那么万有引力就是_________受到的力。

1111 电力线一般并不是点电荷在电场中的运动轨迹,其原因是_________。

1211 静电场的高斯定理表明〖CD#4〗只与高斯面内的电荷有关,而_________与高斯面内外的电荷都有关。

1311 若高斯面内无净电荷,则高斯面上各点的 E_________;若高斯面上各点的E 都为零,则高斯面内的净电荷_________。

高考物理电磁学计算题(五)含答案与解析

高考物理电磁学计算题(五)含答案与解析

高考物理电磁学计算题(五)组卷老师:莫老师一.计算题(共50小题)1.如图甲所示,竖直虚线MN、PQ间有垂直于纸面向里的匀强磁场,MN左侧有水平的平行金属板,板的右端紧靠虚线MN,在两板的电极E、F上加上如图乙所示的电压,在板的左端沿两板的中线不断地射入质量为m,电荷量为+q的带电粒子,粒子的速度均为v0,侧移最大的粒子刚好从板的右侧边缘射入磁场,两板长为L,若远大于T,磁场的磁感应强度为B,U0=不计粒子的重力,求:(1)两板间的距离d为多少?(2)要使所有粒子均不能从边界PQ射出磁场,PQ、MN间的距离至少多大?(3)若将下板下移,则所有粒子进入磁场后,要使所有粒子均不能从边界PQ射出磁场,PQ、MN间的距离又至少为多大?2.如图所示的xoy坐标系中,在第Ⅰ象限内存在沿y轴负向的匀强电场,第Ⅳ象限内存在垂直纸面向外的匀强磁场,一质量为m、电荷量为q的带正电粒子,从y轴上的P点垂直进入匀强电场,经过x轴上的Q点以速度v进入磁场,方向与x轴正向成30°.若粒子在磁场中运动后恰好能再回到电场,已知OQ=3L,粒子的重力不计,求(1)磁感应强度B的大小;(2)粒子从P点运动至第3次到x轴的时间.3.示波器是研究交变电流变化规律的重要仪器,其主要结构可简化为:电子枪中的加速电场、两水平放置的平行金属板中的偏转电场和竖直放置的荧光屏组成,如图所示.若已经加速电场的电压为U1.两平行金属板的板长、板间距离均为d,荧光屏距两平行金属板右侧距离也为d,电子枪发射的质量为m、电荷量为﹣e 的电子,从两平行金属板的中央穿过,打在荧光屏的中点O,不计电子在进入加速电场时的速度及电子重力.若两金属板间只存在竖直方向的匀强电场,两板间的偏转电压为U2,电子会打在荧光屏上某点,该点距O点距离为d,求U1和U2的比值.4.如图所示,两根水平放置的平行金属导轨,其末端连接等宽的四分之一圆弧导轨,圆弧半径r=0.41m,导轨的间距为L=0.5m,导轨的电阻与摩擦均不计.在导轨的顶端接有阻值为R1=1.5Ω的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度B=0.2T,现有一根长度稍大于L、电阻R2=0.5Ω、质量m=1.0kg的金属棒,金属棒在水平拉力F作用下,从图中位置ef由静止开始匀加速运动,在t=0时刻,F0=1.5N,经2.0s运动到cd时撤去拉力,棒刚好能冲到最高点ab、(重力加速度g=10m/s2).求:(1)金属棒做匀加速直线运动的加速度;(2)金属棒运动到cd时电压表的读数;(3)金属棒从cd运动到ab过程中电阻R1上产生的焦耳热.5.法拉第电磁感应定律的发现,建立了电与磁联系,如图所示,一边长为r正方形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过倒下接一对水平放置的平行金属板1、2,两板间的距离为d,板长为l,t=0时,磁场的磁感应强度B从零开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m,带电量大小为q的液滴以初速度υ0水平向右射入两板间,该液滴(可视为质点)恰好从板1右端边缘射出.(重力不可忽略)(1)判断液滴所带电荷电性.(2)求磁感应强度B随时间t的变化关系.6.如图所示极板PK间为加速电场,极板AB间是偏转电场,A、B两极板长度为L,板间距离为d,.若已知P、K间所加电压为U1,AB板间所加电压为U2.电子经加速电场加速后平行AB板进入偏转电场,且电子能够穿过偏转电场.电子质量为m,电子的电荷量为e.设从P极板出来的电子初速度为0,整个装置处于真空状态.试求:(1)电子经加速电场加速后通过K板的速度υ0;(2)电子在偏转电场中的加速度a;(3)电子从偏转电极出来时的侧移量y.7.如图所示,在xOy坐标系原点O处有一点状的放射源,它向xOy平面内的x 轴上方各个方向发射α粒子,α粒子的速度大小均为v0,在0<y<d的区域内分布有指向y轴正方向的匀强电场,场强大小为E=,其中q与m分别为α粒子的电量和质量;在d<y<2d的区域内有垂直于xOy平面向里的匀强磁场,mn为电场和磁场的边界线,ab为一块很大的平面感光板垂直于xOy平面且平行于x轴,放置于y=2d处,如图所示,观察发现此时恰好无粒子打到ab板上.(不考虑α粒子的重力及粒子间的相互作用).求:(1)α粒子通过电场和磁场边界mn时距y轴的最大距离;(2)磁感应强度B的大小;(3)将ab板至少向下平移多大距离才能使所有的粒子均能打到板上?8.如图a所示,一对平行光滑导轨固定放置在水平面上,两轨道间距L=0.5m,电阻R=2Ω,有一质量为m=0.5kg的导体棒ab垂直放置在两轨道上,导体棒与导轨的电阻皆可忽略不计,整个装置处在匀强磁场中,磁场方向垂直导轨平面,开始用一个外力F沿轨道方向拉导体棒,使之做初速度为零的匀加速直线运动,外力F与时间t的关系如图b所示,经过一段时间后将外力F撤去,导体棒在导轨上滑行一端距离后停止.要使撤去外力F前导体棒运动时通过电阻R的电量等于撤去外力后导体棒运动时通过电阻R的电量,求:(1)导体棒匀加速直线运动的加速度?(2)匀强磁场的磁感应强度B?(3)外力F作用在导体棒上的时间?9.如图所示,A、B间相距L=6.25m的水平传送带在电机带动下始终以v=3m/s 的速度向左匀速运动,传送带B端正上方固定一挡板,挡板与传送带无限接近但未接触,传送带所在空间有水平向右的匀强电场,场强E=l×l06N/C.现将一质量m=2kg.电荷量q=l×10﹣5C的带正电绝缘小滑块轻放在传送带上A端.若滑块每次与挡板碰后都以原速率反方向弹回,已知滑块与传送带间的动摩擦因数为μ=0.3,且滑块所受最大静摩擦力等于滑动摩擦力,取g=10m/s2.求:(1)滑块放上传送带后瞬间的加速度;(2)滑块第一次反弹后能到达的距B端的最远距离;(3)滑块做稳定的周期性运动后,电机相对于空载时增加的机械功率.10.如图所示,ab、cd为间距l的光滑倾斜金属导轨,与水平面的夹角为θ,导轨电阻不计,ac间接有阻值为R的电阻,空间存在磁感应强度为B0、方向竖直向上的匀强磁场,将一根阻值为r、长度为l、质量为m的金属棒从轨道顶端由静止释放,金属棒沿导轨向下运动的过程中始终与导轨接触良好。

九年级物理电磁学基础练习题及答案

九年级物理电磁学基础练习题及答案

九年级物理电磁学基础练习题及答案一、选择题1. 下列说法中,不正确的是:A. 电流经过导线会产生磁场B. 磁场可以产生电流C. 磁场和电流无关D. 磁场可以产生磁力答案:C2. 电磁铁的工作原理是:A. 通过电磁铁导线中的电流产生磁场B. 电磁铁具有特殊的物质属性C. 电磁铁内部有永久磁铁D. 电磁铁是由磁铁和导线组成的答案:A3. 下列说法中,正确的是:A. 电磁波是一种横波B. 电磁波传播需要介质C. 电磁波在真空中不能传播D. 电磁波是一种纵波答案:A4. 当电流方向与磁场方向垂直时,磁力的最大值是:A. 0B. 1C. 无穷大D. 无法确定答案:C5. 电磁感应的实质是:A. 电流产生磁场B. 磁场产生电流C. 电流产生电场D. 电磁感应与电流无关答案:B二、填空题1. 静止在磁场中的导线没有电流通过时,导线中的电子受到的磁力为__________。

答案:02. 电磁感应中的法拉第电磁感应定律可以用公式表示为:__________。

答案:ε = -dΦ/dt3. 在电磁铁中,当电流增大时,磁场的方向是__________。

答案:不变4. 电磁波的传播速度一般情况下为__________。

答案:光速5. 根据右手定则,当电流方向与磁场方向垂直时,磁力的方向是__________。

答案:垂直于电流方向和磁场方向的平面内三、解答题1. 请解释什么是电磁感应。

答:电磁感应是指导体内的电荷在磁场作用下产生感应电流的现象。

当导体相对于磁场发生运动或磁场发生变化时,导体内的自由电子会受到磁力的作用,从而形成感应电流。

2. 简述电磁波的特点。

答:电磁波是一种横波,同时具有电场和磁场的振动。

电磁波可以在真空中传播,无需介质,传播速度为光速。

电磁波具有波长和频率之间的关系,符合电磁波谱的分布。

3. 阐述电磁铁的工作原理。

答:电磁铁的工作原理是通过导线中通过的电流产生磁场。

当电流通过导线时,导线周围形成一个磁场,这个磁场使得导线具有磁性。

电磁学的练习题集

电磁学的练习题集

电磁学的练习题集练习题一:两块平板之间的电场已知两块充电平行平板之间的距离为d,第一块平板上的电荷密度为σ,求第二块平板上的电荷密度。

解析:根据电场的定义,电场强度E为单位正电荷所受到的力F与正电荷之间的比值,即E=F/q。

对于第一块平板上的电荷密度σ,其电场强度为E1=σ/2ε0,其中ε0为真空介电常数。

由于平行平板之间的电场是均匀的,所以处于第二块平板上的电荷密度σ'所受到的电场强度E2也为E1。

即E2=E1=σ/2ε0,而根据电场的定义E=F/q,可以得到F=E2*q',其中q'为第二块平板的单位面积上的电荷量。

综上所述,第二块平板上的电荷密度σ'可以表示为:σ' = E2 * 2ε0 = σ/ε0练习题二:电势差和电场强度的关系已知带正电的导体A和B之间的电势差为V,导体A与B之间的距离为d,求导体A所受到的电场强度。

解析:根据电势差与电场强度的关系,电势差V可以表示为电场强度E与距离d的乘积,即V=E*d。

所以,导体A所受到的电场强度E可以表示为:E=V/d练习题三:高斯定理计算电场已知一个均匀带电球体,其总电荷Q为正值,球体半径为R,求球体表面上的电场强度。

解析:根据高斯定理,球体表面上的电场强度E可以通过球体内部的电荷总量与真空介电常数ε0之比计算,即E=Q/(4πε0R^2)。

练习题四:电场的叠加原理已知两个点电荷的电量分别为q1和q2,距离点电荷1和点电荷2的距离分别为r1和r2,求这两个点电荷在某一点产生的电场强度E。

解析:根据电场的叠加原理,两个点电荷在某一点产生的电场强度E等于它们单独产生的电场强度的矢量和。

点电荷1产生的电场强度E1可由库伦定律计算得到,即E1=k*q1/r1^2,其中k为电磁力常量。

同理,点电荷2产生的电场强度E2可计算为E2=k*q2/r2^2。

所以,这两个点电荷在某一点产生的电场强度E可以表示为:E=E1+E2=k*q1/r1^2+k*q2/r2^2。

电磁学练习题(含答案)Word版

电磁学练习题(含答案)Word版

一、选择题1、在磁感强度为的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量与的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . . (B) 2r 2B . (C) -r 2B sin . (D) -r 2B cos . [ D ]2、电流由长直导线1沿半径方向经a 点流入一电阻均匀的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流为I ,.若载流长直导线1、2以及圆环中的电流在圆心O 点所产生的磁感强度分别用1B 、2B , 3B 表示,则O 点的磁感强度大小(A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为021=+B B ,B 3 = 0. (C) B ≠ 0,因为虽然021=+B B ,但B 3≠ 0.(D) B ≠ 0,因为虽然B 1 = B 3 = 0,但B 2≠ 0.(E) B ≠ 0,因为虽然B 2 = B 3 = 0,但B 1≠ 0. [ D ]3、边长为L 的一个导体方框上通有电流I ,则此框中心的磁感强度(A) 与L 无关. (B) 正比于L 2.(C) 与L 成正比. (D) 与L 成反比.(E) 与I 2有关. [ D ]4、无限长直圆柱体,半径为R ,沿轴向均匀流有电流.设圆柱体内( r < R )的磁感强度为B i ,圆柱体外( r > R )的磁感强度为B e ,则有(A) B i 、B e 均与r 成正比.(B) B i 、B e 均与r 成反比.(C) B i 与r 成反比,B e 与r 成正比.(D) B i 与r 成正比,B e 与r 成反比. [ D ]5、如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知 (A) ⎰=⋅0l d B ,且环路上任意一点B = 0.(B) ⎰=⋅0l d B ,且环路上任意一点B ≠0.(C) ⎰≠⋅0l d B ,且环路上任意一点B ≠0.(D) ⎰≠⋅0l d B ,且环路上任意一点B =常量. [ B ]6、按玻尔的氢原子理论,电子在以质子为中心、半径为r 的圆形轨道上运动.如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与垂直,如图所示,则在r 不变的情况下,电子轨道运动的角速度将:(A) 增加. (B) 减小.(C) 不变. (D) 改变方向. [ A ]7、如图所示,一根长为ab 的导线用软线悬挂在磁感强度为的匀强磁场中,电流由a 向b 流.此时悬线张力不为零(即安培力与重力不平衡).欲使ab 导线与软线连接处张力为零则必须:(A) 改变电流方向,并适当增大电流.(B) 不改变电流方向,而适当增大电流.(C) 改变磁场方向,并适当增大磁感强度的大小.(D) 不改变磁场方向,适当减小磁感强度的大小. [ B ]8、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的(A) 4倍和1/8. (B) 4倍和1/2.(C) 2倍和1/4. (D) 2倍和1/2. [ B ]9、如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0T ,则可求得铁环的相对磁导率r 为(真空磁导率0 =4×10-7 T ·m ·A -1)(A) 7.96×102 (B) 3.98×102(C) 1.99×102(D) 63.3 [ B ]10、半径为a 的圆线圈置于磁感强度为的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与的夹角=60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是(A) 与线圈面积成正比,与时间无关.(B) 与线圈面积成正比,与时间成正比.(C) 与线圈面积成反比,与时间成正比.(D) 与线圈面积成反比,与时间无关. [ A ]11、如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度转动时,abc 回路中的感应电动势和a 、c 两点间的电势差U a –U c 为 (A) =0,221l B U U b a ω=-. (B) =0,221l B U U b a ω-=-. (C) =2l B ω,221l B U U b a ω=- (D) =2l B ω,221l B U U b a ω-=-. [ B ]12、有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为1和2.设r 1∶r 2=1∶2,1∶2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为:(A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1.(B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1.(C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ C ]13、用导线围成的回路(两个以O 点为心半径不同的同心圆,在一处用导线沿半径方向相连),放在轴线通过O 点的圆柱形均匀磁场中,回路平面垂直于柱轴,如图所示.如磁场方向垂直图面向里,其大小随时间减小,则(A)→(D)各图中哪个图上正确表示了感应电流的流向?[ B ]二、填空题 14、如图,一个均匀磁场B 只存在于垂直于图面的P 平面右侧,B 的方向垂直于图面向里.一质量为m 、电荷为q 的粒子以速度射入磁场.在图面内与界面P成某一角度.那么粒子在从磁场中射出前是做半径为______________的圆周运动.如果q > 0时,粒子在磁场中的路径与边界围成的平面区域的面积为S ,那么q < 0时,其路径与边界围成的平面区域的面积是_________________.答案:)(qB mv15、若在磁感强度B =0.0200T 的均匀磁场中,一电子沿着半径R = 1.00 cm 的圆周运动,则该电子的动能E K =________________________eV .(e =1.6 ×10-19 C, m e = 9.11×10-31 kg)答案: 3.51×103参考解: m R B q mv E K 2212222== =5.62×10-16 J=3.51×103 eV16、氢原子中电子质量m ,电荷e ,它沿某一圆轨道绕原子核运动,其等效圆电流的磁矩大小p m 与电子轨道运动的动量矩大小L 之比=Lp m ________________. 答案:me 217、载有恒定电流I 的长直导线旁有一半圆环导线cd ,半圆环半径为b ,环面与直导线垂直,且半圆环两端点连线的延长线与直导线相交,如图.当半圆环以速度沿平行于直导线的方向平移时,半圆环上的感应电动势的大小是____________________.答案:ba b a Iv -+ln 20πμ 18、如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差=-N M U U ______________________.答案:al a Igt +-ln 20πμ 19、位于空气中的长为l ,横截面半径为a ,用N匝导线绕成的直螺线管,当符合________和____________________的条件时,其自感系数可表成V I N L 20)/(μ=,其中V 是螺线管的体积.20、一线圈中通过的电流I 随时间t 变化的曲线如图所示.试定性画出自感电动势L 随时间变化的曲线.(以I 的正向作为的正向)答案:21、真空中两条相距2a 的平行长直导线,通以方向相同,大小相等的电流I ,O 、P 两点与两导线在同一平面内,与导线的距离如图所示,则O 点的磁场能量密度w m o=___________,P 点的磁场能量密度w mr =__________________.答案: 022、一平行板空气电容器的两极板都是半径为R 的圆形导体片,在充电时,板间电场强度的变化率为d E /d t .若略去边缘效应,则两板间的位移电流为 ________________________.答案:dt dE R /20πε三、计算题23、如图所示,一无限长直导线通有电流I =10 A ,在一处折成夹角=60°的折线,求角平分线上与导线的垂直距离均为r =0.1 cm 的P 点处的磁感强度.(0 =4×10-7 H ·m -1)解:P 处的可以看作是两载流直导线所产生的,与的方向相同.)]60sin(90[sin 4)]90sin(60[sin 400 --+--=rI r I πμπμ ]90sin 60[sin 420 +=rI πμ=3.73×10-3 T 方向垂直纸面向上.24、一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量. (真空的磁导率0 =4×10-7 T ·m/A ,铜的相对磁导率r ≈1)解:在距离导线中心轴线为x 与dx x +处,作一个单位长窄条,其面积为dx dS ⋅=1.窄条处的磁感强度所以通过d S 的磁通量为 dx RIx BdS d r 202πμμ==Φ 通过1m 长的一段S 平面的磁通量为Wb I dx R Ix r R r 600201042-===Φ⎰πμμπμμ 25、 一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,线圈的中心与长直导线间的距离为a 23 (如图),在维持它们的电流不变和保证共面的条件下,将它们的距离从a 23变为a 25,求磁场对正方形线圈所做的功.解:如图示位置,线圈所受安培力的合力为方向向右,从x = a 到x = 2a 磁场所作的功为26、螺绕环中心周长l = 10 cm ,环上均匀密绕线圈N = 200匝,线圈中通有电流I = 0.1 A .管内充满相对磁导率r = 4200的磁介质.求管内磁场强度和磁感强度的大小.解: 200===l NI nI H A/mH H B r μμμ0===1.06 T27、如图所示,有一矩形回路,边长分别为a 和b ,它在xy 平面内以匀速沿x 轴方向移动,空间磁场的磁感强度与回路平面垂直,且为位置的x 坐标和时间t 的函数,即kx t B t x B sin sin ),(0ω =,其中0B ,,k 均为已知常数.设在t =0时,回路在x =0处.求回路中感应电动势对时间的关系.解:选沿回路顺时针方向为电动势正方向,电动势是由动生电动势1和感生电动势2组成的.设回路在x 位置:∴ k kx a x k tbB cos )(cos cos 02-+=ωωε 设总感应电动势为,且 x =vt ,则有∴(注:可编辑下载,若有不当之处,请指正,谢谢!)。

大学电磁学测试题及答案

大学电磁学测试题及答案

大学电磁学测试题及答案一、选择题(每题2分,共20分)1. 以下哪个选项是麦克斯韦方程组中描述磁场变化产生电场的方程?A. ∇·E = ρ/ε₀B. ∇×E = -∂B/∂tC. ∇·B = 0D. ∇×B = μ₀J + ε₀μ₀∂E/∂t答案:B2. 在真空中,电磁波的传播速度是多少?A. 2.998×10^8 m/sB. 3.0×10^8 m/sC. 3.3×10^8 m/sD. 3.0×10^5 km/s答案:B3. 以下哪个物理量是标量?A. 电场强度B. 磁场强度C. 电荷D. 电流答案:C4. 根据洛伦兹力公式,当一个带电粒子垂直于磁场方向运动时,它受到的力的方向是?A. 与磁场方向相同B. 与磁场方向相反C. 与磁场方向垂直D. 与带电粒子运动方向相同答案:C5. 以下哪种情况会导致电磁波的偏振?A. 电磁波在真空中传播B. 电磁波在介质中传播C. 电磁波通过偏振片D. 电磁波通过非均匀介质答案:C6. 电磁感应定律表明,当磁场变化时,会在导体中产生什么?A. 电流B. 电压C. 电阻D. 电场答案:B7. 根据法拉第电磁感应定律,感应电动势与以下哪个因素成正比?A. 磁场强度B. 磁通量的变化率C. 导体长度D. 导体电阻答案:B8. 以下哪个选项不是电磁波的特性?A. 传播速度B. 波长C. 频率D. 质量答案:D9. 电磁波的波速、波长和频率之间的关系是什么?A. v = λfB. v = 1/(λf)C. v = λ/fD. v = f/λ答案:A10. 以下哪种介质对电磁波的传播速度影响最大?A. 真空B. 空气C. 水D. 玻璃答案:D二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。

答案:介质2. 根据麦克斯韦方程组,电场的散度等于电荷密度除以______。

答案:真空电容率3. 电磁波的波长、频率和波速之间的关系可以用公式______表示。

电磁学题库(附答案)知识分享

电磁学题库(附答案)知识分享

《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E ϖ的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E ϖϖϖ300200+= .试求穿过各面的电通量.E ϖqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p ϖ的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRϖⅠⅡ Ⅲ dba 45︒cEϖσAσBA BOa θ0 q AR ∞∞ O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λ26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F ϖ和da F ϖ的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B ϖ方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F ϖ和da F ϖ的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B ϖ.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B ϖ的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B ϖ的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B ϖ.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B ϖ的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B ϖ的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p ϖ与电子轨道运动的动量矩L ϖ大小之比,并指出m p ϖ和L ϖ方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I ϖ对电流元22d l I ϖ的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。

高考物理电磁学知识点之电磁感应技巧及练习题附答案解析(5)

高考物理电磁学知识点之电磁感应技巧及练习题附答案解析(5)

高考物理电磁学知识点之电磁感应技巧及练习题附答案解析(5)一、选择题1.如图所示,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N极朝下.当磁铁向下运动时(但未插入线圈内部)()A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引B.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥C.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引D.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥2.如图所示,电源的电动势为E,内阻为r不可忽略.A、B是两个相同的小灯泡,L是一个自感系数较大的线圈.关于这个电路的说法中正确的是A.闭合开关,A灯立刻亮,而后逐渐变暗,最后亮度稳定B.闭合开关,B灯立刻亮,而后逐渐变暗,最后亮度稳定C.开关由闭合至断开,在断开瞬间,A灯闪亮一下再熄灭D.开关由闭合至断开,在断开瞬间,电流自左向右通过A灯3.如图所示,L是自感系数很大的线圈,但其自身的电阻几乎为零。

A和B是两个完全相同的小灯泡。

下列说法正确的是()A.接通开关S瞬间,A灯先亮,B灯不亮B.接通开关S后,B灯慢慢变亮C.开关闭合稳定后,突然断开开关瞬间,A灯立即熄灭、B灯闪亮一下D.开关闭合稳定后,突然断开开关瞬间,A灯、B灯都闪亮一下4.如图所示为地磁场磁感线的示意图,在北半球地磁场的竖直分量向下。

一飞机在北半球的上空以速度v水平飞行,飞机机身长为a,翼展为b;该空间地磁场磁感应强度的水平分量为B1,竖直分量为B2;驾驶员左侧机翼的端点用A表示,右侧机翼的端点用B表示,用E表示飞机产生的感应电动势,则A.E=B2vb,且A点电势高于B点电势B.E=B1vb,且A点电势高于B点电势C.E=B2vb,且A点电势低于B点电势D.E=B1vb,且A点电势低于B点电势5.如图所示,铁芯P上绕着两个线圈A和B, B与水平光滑导轨相连,导体棒放在水平导轨上。

A中通入电流i(俯视线圈A,顺时针电流为正),观察到导体棒向右加速运动,则A中通入的电流可能是()A.B.C.D.6.在倾角为θ的两平行光滑长直金属导轨的下端,接有一电阻R,导轨自身的电阻可忽略不计,有一匀强磁场与两金属导轨平面垂直,方向垂直于导轨面向上。

(完整版)电磁学试题库试题及答案

(完整版)电磁学试题库试题及答案

(完整版)电磁学试题库试题及答案电磁学试题库试题3⼀、填空题(每⼩题2分,共20分)1、带电粒⼦受到加速电压作⽤后速度增⼤,把静⽌状态下的电⼦加速到光速需要电压是()。

2、⼀⽆限长均匀带电直线(线电荷密度为λ)与另⼀长为L ,线电荷密度为η的均匀带电直线AB 共⾯,且互相垂直,设A 端到⽆限长均匀带电线的距离为a ,带电线AB 所受的静电⼒为()。

3、如图所⽰,⾦属球壳内外半径分别为a 和b ,带电量为Q ,球壳腔内距球⼼O 为r 处置⼀电量为q 的点电荷,球⼼O 点的电势(4、两个同⼼的导体薄球壳,半径分别为b a r r 和,其间充满电阻率为ρ的均匀介质(1)两球壳之间的电阻()。

(2)若两球壳之间的电压是U ,其电流密度()。

5、载流导线形状如图所⽰,(虚线表⽰通向⽆穷远的直导线)O 处的磁感应强度的⼤⼩为()6、⼀矩形闭合导线回路放在均匀磁场中,磁场⽅向与回路平⾯垂直,如图所⽰,回路的⼀条边ab 可以在另外的两条边上滑动,在滑动过程中,保持良好的电接触,若可动边的长度为L ,滑动速度为V ,则回路中的感应电动势⼤⼩(),⽅向()。

7、⼀个同轴圆柱形电容器,半径为a 和b ,长度为L ,假定两板间的电压t U u m ω=sin ,且电场随半径的变化与静电的情况相同,则通过半径为r (a⼀圆柱⾯的总位移电流是()。

8、如图,有⼀均匀极化的介质球,半径为R ,极化强度为P ,则极化电荷在球⼼处产⽣的场强是()。

9、对铁磁性介质MB H ρρρ、、三者的关系是())。

10、有⼀理想变压器,12N N =15,若输出端接⼀个4Ω的电阻,则输出端的阻抗为()。

⼀、选择题(每⼩题2分,共20分) 1、关于场强线有以下⼏种说法()(A )电场线是闭合曲线(B )任意两条电场线可以相交(C )电场线的疏密程度代表场强的⼤⼩(D )电场线代表点电荷在电场中的运动轨迹R I O a b v ρPzRLI2、对某⼀⾼斯⾯S ,如果有0=??S S d E ρρ则有()(A )⾼斯⾯上各点的场强⼀定为零(B )⾼斯⾯内必⽆电荷(C )⾼斯⾯内必⽆净电荷(D )⾼斯⾯外必⽆电荷3、将⼀接地的导体B 移近⼀带正电的孤⽴导体A 时,A 的电势。

高考物理电磁学知识点之电磁感应真题汇编附答案解析(5)

高考物理电磁学知识点之电磁感应真题汇编附答案解析(5)

高考物理电磁学知识点之电磁感应真题汇编附答案解析(5)一、选择题1.如图所示,在光滑绝缘水平面上,有一铝质金属球以一定的初速度通过有界匀强磁场,则从球开始进入磁场到完全穿出磁场过程中(磁场宽度大于金属球的直径),小球( )A .整个过程都做匀速运动B .进入磁场过程中球做减速运动,穿出过程中球做加速运动C .整个过程都做匀减速运动D .穿出时的速度一定小于初速度2.如图所示,用粗细均匀的同种金属导线制成的两个正方形单匝线圈a 、b ,垂直放置在磁感应强度为B 的匀强磁场中,a 的边长为L ,b 的边长为2L 。

当磁感应强度均匀增加时,不考虑线圈a 、b 之间的影响,下列说法正确的是( )A .线圈a 、b 中感应电动势之比为E 1∶E 2=1∶2B .线圈a 、b 中的感应电流之比为I 1∶I 2=1∶2C .相同时间内,线圈a 、b 中产生的焦耳热之比Q 1∶Q 2=1∶4D .相同时间内,通过线圈a 、b 某截面的电荷量之比q 1∶q 2=1∶43.如图所示两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路。

将一小磁针用一弹性细丝悬挂在直导线正上方,开关断开时小磁针处于静止状态。

下列说法正确的是( )A .闭合开关小磁针N 极朝垂直纸面向里转动,接着回到原位B .闭合开关,小磁针N 极朝垂直纸面向里转动,并保持在转动后的位置C .开关从闭合状态断开,小磁针N 极不发生偏转D .开关从闭合状态断开,小磁针N 极朝垂直纸面向里转动,接着回到原位4.如图所示,A 、B 两闭合圆形线圈用同样导线且均绕成100匝。

半径A B 2R R ,内有以B 线圈作为理想边界的匀强磁场。

若磁场均匀减小,则A 、B 环中感应电动势A B :E E 与产生的感应电流A B :I I 分别是( )A .AB :2:1E E =;A B :1:2I I =B .A B :2:1E E =;A B :1:1I I =C .A B :1:1E E =;A B :2:1I I =D .A B :1:1E E =;A B :1:2I I =5.如图所示,abcd 是边长为L ,每边电阻均相同的正方形导体框,今维持线框以恒定的速度v 沿x 轴运动,并穿过倾角为45°的三角形匀强磁场区域,磁场的磁感应强度为B ,方向垂直纸面向里。

高考物理电磁学知识点之磁场知识点训练含答案(5)

高考物理电磁学知识点之磁场知识点训练含答案(5)

高考物理电磁学知识点之磁场知识点训练含答案(5)一、选择题1.如图,等边三角形线框LMN由三根相同的导体棒连接而成,固定于匀强磁场中,线框平面与磁感应强度方向垂直,线框顶点M、N与直流电源两端相接,已如导体棒MN受到的安培力大小为F,则线框LMN受到的安培力的大小为A.2F B.1.5F C.0.5F D.02.科学实验证明,足够长通电直导线周围某点的磁感应强度大小IB kl,式中常量k>0,I为电流强度,l为该点与导线的距离。

如图所示,两根足够长平行直导线分别通有电流3I和I(方向已在图中标出),其中a、b为两根足够长直导线连线的三等分点,O为两根足够长直导线连线的中点,下列说法正确的是( )A.a点和b点的磁感应强度方向相同B.a点的磁感应强度比O点的磁感应强度小C.b点的磁感应强度比O点的磁感应强度大D.a点和b点的磁感应强度大小之比为5:73.2019年我国研制出了世界上最大的紧凑型强流质子回旋加速器,该回旋加速器是我国目前自主研制的能量最高的质子回旋加速器。

如图所示为回旋加速器原理示意图,现将两个相同的回旋加速器置于相同的匀强磁场中,接入高频电源。

分别加速氘核和氦核,下列说法正确的是()A.它们在磁场中运动的周期相同B.它们的最大速度不相等C.两次所接高频电源的频率不相同D.仅增大高频电源的频率可增大粒子的最大动能4.回旋加速器是加速带电粒子的装置.其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成的周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示,要增大带电粒子射出时的动能,则下列说法中正确的是( )A.减小磁场的磁感应强度B.增大匀强电场间的加速电压C.增大D形金属盒的半径D.减小狭缝间的距离5.电磁血流量计是基于法拉第电磁感应定律,运用在心血管手术和有创外科手术的精密监控仪器。

工作原理如图所示,将患者血管置于磁感应强度为B的匀强磁场中,测出管壁上MN两点间的电势差为U,已知血管的直径为d,则血管中的血液流量Q为()A.πdUBB.π4dUBC.πUBdD.π4UBd6.有关洛伦兹力和安培力的描述,正确的是()A.通电直导线在匀强磁场中一定受到安培力的作用B.安培力是大量运动电荷所受洛伦兹力的宏观表现C.带电粒子在匀强磁场中运动受到的洛伦兹力做正功D.通电直导线在磁场中受到的安培力方向与磁场方向平行7.如图所示,一束粒子射入质谱仪,经狭缝S后分成甲、乙两束,分别打到胶片的A、C两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章 恒定磁场与磁介质一、 选择题1、关于稳恒磁场的磁场强度H的下列几种说法中哪个是正确的()A 、H仅与传导电流有关。

B 、若闭合曲线内没有包围传导电流,则曲线上各点的H为零C 、若闭合曲线上各点的H均为零,则该曲线所包围传导电流的代数和为零D 、以闭合曲线L 为边缘的任意曲面的H通量均相等 答案:C2、磁介质有三种,用相对磁导率r μ表征它们各自的特性时()A 、顺磁质r μ>0,抗磁质r μ<0,铁磁质r μ》1B 、顺磁质r μ>1,抗磁质r μ=1,铁磁质r μ》1C 、顺磁质r μ>1,抗磁质r μ<1,铁磁质r μ》1D 、顺磁质r μ>0,抗磁质r μ<0,铁磁质r μ>1 答案:C3、用细导线均匀密绕成的长为l ,半径为a(l 》a),总匝数为N 的螺线管通以稳恒电流I ,当管内充满磁导率为r μ的均匀磁介质后,管中任意一点()A 、磁感应强度大小为B=r μμ0NIB 、磁感应强度大小为B=r μNI /lC 、磁场强度大小为H=0μNI/lD 、磁场强度大小为H=NI/l 答案:D4、顺磁物质的磁导率()A 、比真空的磁导率略小B 、比真空的磁导率略大C 、远小于真空的磁导率D 、远大于真空中的磁导率 答案:B5、通电直长螺线管内的一半空间充满磁介r u ,在螺线管中,介质中与空气中相等的物理量是()A 、B 1=B 2 B 、H 1=H 2C 、M 1=M 2D 、21ψψ= 答案:B6、 图中所示的三条线分别表示三种不同磁介质的B-H 关系,表示顺磁质的是()A 、第一条B 、第二条C 、第三条D 、无法判断答案:B7、磁铁能吸引铁钉之类的小物体是由于()A 、小物体是铁磁性的,被磁铁磁化,受到吸引力B 、小物体是顺磁性的,被磁铁磁化,受到吸引力C 、小物体是抗磁性的,被磁铁磁化,受到吸引力D 、磁铁和小物体都是顺磁性物质,相互吸引 答案:A 8、如图所示,一永磁环,环开一很窄的空隙,环内磁化强度矢量为M ,则空隙中P 点处的H的大小为()A 、0μMB 、MC 、r μμ0MD 、0 答案:B9、如图所示,一根沿轴向均匀磁化的细长永磁棒,磁化强度为M,图中所标各点的磁感应强度是()A 、0,3021===B M B B μ B 、M B B M B 0320121,μμ===C 、0,,2130201===B M B M B μμ D 、0,21,30201===B M B M B μμ 答案:D10、在磁介质存在的情况下对安培环路定理=⋅⎰Ll d H()∑内L I 中,下述说法正确的是() A 、∑I 是空间所有传导电流 B 、∑I 是穿过环路L 的传导电流和磁化电流C 、∑I 是穿过环路L 的传导电流 D 、H只与传导电流有关 答案:C11、若已知铁磁质中某处的MB,,则该点处的磁场强度H必须满足的关系是()A 、MB H-=μB 、HB0μ= C 、)(0M H B+=μ D 、HBμ= 答案:C12、在均匀各向同性的线性磁介质中()A 、不论顺磁质或抗磁质B 总是与H 同向 B 、在顺磁质中,B 与H 同向,在抗磁质中B 与H反向C 、以闭合曲线为边界的同一曲面的B 通量与H 通量相等D 、通过任一闭合面的B 的通量与H通量不相等 答案:A 13、在稳恒磁场中,有磁介质存在时的安培环路定理的积分形式是()A 、=⋅⎰Ll d B ()∑内L I B 、=⋅⎰Ll d H()∑内L I C 、=⋅⎰Ll d H()∑内L I0μ D 、⎰⎰⎰⋅∂∂+=⋅SL S d t D I l d H答案:B 14、一均匀磁化的介质棒,、横截面半径为米,长为1米,其总磁矩为3140安·米2,则棒中的磁化强度矢量M的大小为()A 、105安/米 B 、104安/米 C 、⨯安/米 D 、103安/米 答案:A二、 填空题1、一个绕有500匝导线的平均周长50cm 的细环,载有电流时,铁芯的相对磁导率为600,(1)铁芯中的磁感应强度B 为 ;(2)铁芯中的磁场强度H 为 。

答案:;300A/m(170104--⋅⋅⨯=A m T πμ)2、长直电缆由一个圆柱导体和一共轴圆筒状导体组成,两导体中有等值反向均匀电流I 通过,其间充满磁导率为u 的均匀磁介质,介质中离中心轴距离为r 的某点处的磁场强度的大小H= ;磁感应强度的大小B= 。

答案:r IH rIπμμπ2,2=3、铜的相对磁导率r μ=,其磁化率m χ= ;它是 磁性磁介质 答案:⨯,抗4、一无限长直导线,通有I=lA 的电流,直导线外紧包一层相对磁导率r μ=2的圆筒形磁介质,直导线半径R 1=,磁介质的内半径为R 1,外半径为R 2=,则距直导线轴线为r 1=处的磁感应强度为 ;距轴线为r 2=处的磁场强度为 。

答案:⨯;m(真空的磁导率170104--⋅⋅⨯=A m T πμ)5、硬磁材料的特点是 ;适于制造 。

答案:矫顽力大,剩磁也大;永久磁铁6、软磁材料的特点是 ;适于制造 等。

答案:磁导率大,矫顽力小,磁滞损耗低;变压器,交流电机的铁芯7、在国际单位制中,磁场强度H 的单位是 ; 磁导率0μ的单位是 。

答案:A/m,A m T /⋅8、在各向同性非铁磁质中同一点的H B ,之间的关系为B= ;B与M的关系为M= 。

答案:B H ⎪⎪⎭⎫ ⎝⎛-μμμ11;09、一个单位长上密绕有n 匝线圈的长直螺线管,每匝线圈中通有强度为I 的电流,管内充满相对磁导率为r u 的磁介质,则管内中部附近磁感强度B= ,磁场强度H= 。

答案:nI nI r ,0μμ三.计算题1、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2,外半径为R 3的同轴导体圆筒组成,中间充满磁导率μ的各向同性均匀非铁磁绝缘材料,如图。

传导电流I 沿导线向上流去,由圆筒向下 流回,在它们的截面上电流都是均匀分布的,求同轴线内外的磁感强度大小B 的的分布。

(10分)解:由安培环路定理:∑⎰=⋅I l d H,0<r<R 1区域:210212122,2,2R Ir B R Ir H R IrrHπμππ===(3分)R 1<r<R 2区域:rI B r I H I rH πμππ2,2,2===(3分);R 2<r<R 3区域:()()()()()分分分112,112,122223222222322222232222⎪⎪⎭⎫⎝⎛---==⎪⎪⎭⎫ ⎝⎛---=---=R R R r r uI H B R R R r r I H R R R r I I rH πμππππ r>R 3区域:H=0,B=0(1分)2、在均匀磁化的无限大介质中挖去一半径为r ,高度为h 的圆柱形空穴,其轴平行于磁化强度矢量M,试证明:(1)对于细长空穴(h ) r ),空穴中点的H 与磁介质中的H 相等;(2)对于扁平空穴(h 《r 》,空穴中的B 与磁介质中的B相等。

解:设介质中没有挖出空腔时,观察点上的磁感应强度为B ' ,它也就是介质中的B,现挖一个圆柱形空腔,使原观察点位于此空腔轴线中心,而轴线平行于M ,则空腔表面的束缚分子电流n M i ⨯='(2分),n 是介质表面的外法线,现在n逆半径方向指向轴线(见附图)故i ' 与M成左旋关系, i '在空腔中产生附加场B ' (2分);(1)当r 《h 时,相当于细长螺细管故:MB i B 00,μμ-=''='(2分)腔内轴线中点:H M B B B B 00μμ=-='+=腔(2分),H是介质中的磁场强度,而空腔内轴线中点的磁场强度为:H B H==腔腔01μ(2分);(2)当r>>h,则B '=0, B B B B ='+=腔(2分) 3、有一圆柱形无限长导体,其磁导率为u ,半径为R ,今有电流I 沿轴线方向均匀分布,求:(1)导体内任一点的B ;(2)导体外任一点B ;(3)通过长为L 的圆柱体的纵截面的一半的磁感应通量解:在导体内过距轴线为r 的任一点P(见附图)作一个与轴垂直,圆心在轴线上,半径为r 的圆周做为积分路径,此圆周与磁力线重合,而且沿圆周H 是常数⎰=⋅∴rH l d H π2 (1分);根据安培环路定理: ⎰∑=⋅I l d H(1分),因导体内电流均匀分布,电流密度是2R I j π=(2分),在半径为r 截面中,22222,2R Ir H I R r rH I R r j r I πππ=⎪⎭⎫⎝⎛=∴⎪⎭⎫ ⎝⎛=⋅=∑(2分)2002RIrH Bπμμμμ==(2分) (2)在导线外一点以过点这一点而圆心在轴线上的圆周做为积分路线,同样是: ⎰==⋅I rH l d H π2(2分),现在r>R,故II =∑;rI B r H πμμπ2,210==(2分)(3)πμμπμμφ4200200ILrdr RIL BLdr S d B R R ===⋅=⎰⎰⎰ (2分) 4、一铁环中心线周长为30cm ,横截面积为,在环上紧密地绕有300匝表面绝缘的导线,当导线中通有电流32毫安时,通过环的横截面的磁感应通时为⨯韦伯。

求:(1)铁环内部磁场强度的大小B ;(2)铁环内部磁场强度的大小H ;(3)铁的磁化率m χ和(相对)磁导率u ;(4)铁环的磁化强度的大小M 。

(10分) 解:(1)T SB2100.2-⨯==φ(2分);(2)现磁力线是同心圆周,故以环的中心线为积分路径:RH L d H π2=⋅⎰(2分),根据安培环路定理()()m A R NI H NI I l d H 3230.010323002;23=⨯⨯==∴==⋅-∑⎰π分 (2分)(3)22720100.51,100.532104100.2⨯=≈-=⨯=⨯⨯⨯==--μμχπμμm H B (1分);(4)m A H Mm /106.14⨯==χ(1分)5、一同轴线由很长的两个同轴的圆筒构成,内筒半径为,外筒半径为,有100A 的电流由外筒流去内筒流回,两筒的厚度可忽略。

两筒之间的介质无磁性(μ=1)求:(1)介质中的磁能密度m W 分布;(2)单位长度(1米)同轴线所储藏的磁能m W解: (1)根据安培环路定理,两导体之间r i B πμ20=(2分); 22200282r i B W m πμμ==∴(2分)(2)对于由半径r 和r+dr 长为l 的圆柱壳状,体元rLdr d πτ2=,其中磁能为:a bL i r dr L i dW W r dr L i rLdr ri d W dW b a m m m m ln 44,4282020202220πμπμπμππμτ===⋅=⋅=⋅=⎰⎰(2分)a 和b 是同轴线内筒外半径及内外筒内半径,单位长度同轴线所储磁能:()())1(109.1)1(0.10.7ln 4100/104)2(ln 43227200分分分j A m N a b i L W W mm --⨯=⨯===πππμ。

相关文档
最新文档