概率复习题
概率与数理统计复习题及答案
★编号:重科院( )考字第( )号 第 1 页复习题一一、选择题1.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=( )。
A .1 B.12 C. -1 D. 322.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为( )。
A .12 B. 23 C. 16 D. 133.设)(~),(~22221221n n χχχχ,2221,χχ独立,则~2221χχ+( )。
A .)(~22221n χχχ+ B. ~2221χχ+)1(2-n χ C. 2212~()t n χχ+ D. ~2221χχ+)(212n n +χ4.若随机变量12Y X X =+,且12,X X 相互独立。
~(0,1)i X N (1,2i =),则( )。
A .~(0,1)Y N B. ~(0,2)Y N C. Y 不服从正态分布 D. ~(1,1)Y N5.设)4,1(~N X ,则{0 1.6}P X <<=( )。
A .0.3094 B. 0.1457 C. 0.3541 D. 0.2543 二、填空题1.设有5个元件,其中有2件次品,今从中任取出1件为次品的概率为 2.设,A B 为互不相容的随机事件,()0.1,()0.7,P A P B ==则()P A B =U 3.设()D X =5, ()D Y =8,,X Y 相互独立。
则()D X Y +=4.设随机变量X 的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 则{}0.2P X >=三、计算题1.设某种灯泡的寿命是随机变量X ,其概率密度函数为 5,0()0,0x Be x f x x -⎧>=⎨≤⎩(1)确定常数B (2)求{0.2}P X > (3)求分布函数()F x 。
2.甲、乙、丙三个工厂生产同一种产品,每个厂的产量分别占总产量的40%,35%,25%,这三个厂的次品率分别为0.02, 0.04,0.05。
中考数学复习专题《概率》专项训练-附带答案
中考数学复习专题《概率》专项训练-附带答案一、选择题1.下列事件为必然事件的是()A.三角形内角和是180°B.打开电视机,正在播放新闻C.明天下雨D.掷一枚质地均匀的硬币,正面朝上2.九年级一班有25名男生和20名女生,从中随机抽取一名作为代表参加校演讲比赛.下列说法正确的是()A.抽到男生和女生的可能性一样大B.抽到男生的可能性大C.抽到女生的可能性大D.抽到男生或女生的可能性大小不能确定3.将分别标有“大”、“美”、“明”、“德”四个汉字的小球装在一个不透明的口袋中,这些小球除汉字以外其它完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字可以组成“明德”的概率是()A.16B.18C.14D.5164.已知抛一枚均匀硬币正面朝上的概率为12,下列说法正确的是().A.连续抛一枚均匀硬币2次必有1次正面朝上B.连续抛一枚均匀硬币10次,不可能正面都朝上C.大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D.通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的5.某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开,则一位参观者从入口1进入并从出口A离开的概率是()A.12B.13C.14D.166.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计下一次操作获到红球的概率是()A.0.3 B.0.4 C.0.5 D.0.67.有三张正面分别写有数字-2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,洗匀后,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.498.甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率,绘出的统计图如图所示,则符合这一结果的实验可能是()A.掷一枚质地均匀的正六面体的骰子,向上的一面点数是1点的概率B.抛一枚质地均匀的硬币,出现正面朝上的概率C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率D.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率二、填空题9.从√2,0,π,3.14,17中随机抽取一个数,抽到有理数的概率是.10.甲、乙、丙三个人相互传一个球,由甲开始发球,并作为第一次传球,则经过两次传球后,球回到甲手中的概率是。
数学概率复习题
数学概率复习题一、选择题1. 设事件A、B独立,且P(A)=0.6,P(B)=0.4,则P(A交B)等于()。
A. 0.24B. 0.36C. 0.16D. 0.482. 一袋中有5个红球,3个蓝球,从袋中取出2个球,不放回,则两球颜色相同的概率是()。
A. 2/3B. 7/48C. 5/24D. 4/213. 已知事件A、B互不相容,且P(A)=0.3,P(B)=0.5,则P(A并B)等于()。
A. 0.15B. 0.35C. 0.8D. 0.7二、填空题1. 设事件A、B独立,且P(A)=0.4,P(B)=0.3,则P(A交B)等于_________。
2. 一副卡牌中,黑桃、红桃、梅花、方块各有13张,从中随机取出2张,则两张牌颜色不同的概率是_________。
3. 一次抛掷两枚骰子,两枚骰子点数和为奇数的概率是_________。
三、计算题1. 某班级有40人,其中有20人喜欢打篮球,30人喜欢踢足球,其中10人既喜欢打篮球又喜欢踢足球。
从这些学生中随机选择一个人,问他喜欢打篮球或踢足球的概率是多少?2. 某工厂生产的合格产品占总产量的80%,次品率为3%,现从产品中随机抽取一件,问它不合格的概率是多少?3. 一批电视机有100台,其中有5台有质量问题。
现从中随机挑选5台进行检验,问其中恰好有2台有质量问题的概率是多少?四、解答题1. 从26个字母中任意选取5个字母,问其中至少有一个元音字母的概率是多少?2. 设A、B为两个事件,且P(A)=0.3,P(B)=0.7,已知P(A并B)=0.2,求P(A交B的补集)。
3. 一枪手在射击时,命中靶的概率为0.8。
如果进行5次射击,问他至少命中一次的概率是多少?以上为数学概率复习题,请根据题目要求进行计算和填空。
相信通过这些练习,你能更好地掌握概率知识,提高解题能力。
祝你成功!。
大学 概率复习题
第一章 概率论的基本概念 1. 若事件B A ,满足21)|(,31)|(,41)(===B A P A B P A P ,则)(B A P = .2. 若事件B A ,满足7.0)(,4.0)(==B A P A P ,且5.0)|(=B A P ,则)|(A B P = .3. 设有两个相互独立事件A 与B 发生的概率分别为1p 和2p ,则两个事件恰好有一个发生的概率为4.()0.3P A =,()0.5P B =,若A 与B 相互独立,则()P AB = _.5.设B A ,为两个互不相容的事件,且()()0,0>>B P A P ,则 正确. A . ()1=AB P ; B . ()0=B A P ; C . B A =; D . Φ=-B A .6. 设有10件产品,其中有3件次品,从中任取3件,则3件中有次品的概率为( ) A.1201 B.247 C.2417 D.40217、盒中放有红、白两种球各若干个,从中任取3个球,设事件A=“3个中至少有1个白球”,事件B=“3个中恰好有一个白球”,则事件B -A =A .“至少2个白球”B .“恰好2个白球”C .“至少3个白球”D .“无白球”8. A ,B 为两个事件,若B A ⊂,则下列关系式正确的是 . A . )()(B P A P >; B . ()()P A P B ≤; C . 1)()(=+B P A P ; D . ()()P B P A >.9. 设甲袋中装有n只白球,m只红球,乙袋中装有N只白球,M只红球,今从甲袋中任取一个球放入乙袋中,再从乙袋中任意取出一只球.求:(1)从乙袋中取到白球的概率是多少?(2)若从乙袋中取到的是白球,则先前从甲袋中取到白球的概率是多少?10. 发报台分别以概率0.6和0.4发出信号“0”和“1”.由于通讯系统受到干扰,当发出信号“0”时,收报台未必收到信号“0”,而是以概率0.8和0.2收到信号“0”和“1”;同样,当发出信号“1”时,收报台分别以概率0.9和0.1收到信号“1”和“0”.求:(1)收报台收到“0”的概率;(2)当收报台收到信号“0”的时候,发报台确是发出信号“0”的概率.11. 某射击小组有20名射手,其中一级射手4人,二级射手8人,三级射手7人,四级射手1人。
概率论复习题
第1章 随机事件及其概率一、填空题1、已知,5.0)(=A P ,6.0)(=B P ,2.0)(=B A P 则=)(AB P _______________.2、已知,25.0)()()(===C P B P A P ,15.0)()(==BC P AB P ,0)(=AC P 则A 、B 、C 至少有一个发生的概率为_______________.3、把9本书随意放在书架上,指定的3本放在一起的概率为_____________.4、包括甲、乙在内的n 个人排队,他们之间恰有r 个人的概率为____________.5、设A 、B 、C 为三个事件,则“至少有一个事件不发生”可表示为______________.6、设A 、B 、C 为三个事件,则“至多只有一个事件发生”可表示为______________.7、设31)(=A P ,41)(=B P ,61)(=AB P ,则=)(B A P ______________. 8、假设3.0)(=A P , 2.0)(=B P ,∅=AB ,则)(B A P ⋃=_________________. 9、设31)(=A P ,41)(=B P ,21)(=⋃B A P ,则=⋃)(B A P ______________. 10、假设5.0)(=A P , 4.0)(=B P ,3.0)(=B A P ,则)(B A P ⋃=_________________. 11、两封信随机的投入到四个邮筒中,则前两个邮筒内没有信的概率为________________.12、两封信随机的投入到四个邮筒中,则前两个邮筒内都有信的概率为________________. 13、袋中有5个白球,3个黑球,从中一次任取两球,则取到的两球中有黑球的概率为______________.14、袋中有5个白球,3个黑球,从中一次任取两球,则取到的两球都是黑球的概率为______________.15、袋中有4黑6白大小相同的10个小球,现在从中不放回地任取两球,两个全是黑球的概率________________.16、甲、乙两人独立的射击同一目标,他们击中目标的概率分别为0.9和0.8,则在一次射击中目标被击中的概率为______________.17、某城市发行A,B 两种报纸,在这两种报纸的订户中,订阅A 报的有45%,订阅B 报的有30%,同时订阅两种报纸的有15%,则只订一种报纸的概率为___________________. 18、从一批产品中抽取3件,以i A 表示第i 次抽到废品,则事件“第一次和第二次至少抽到一件废品”可表示为_______________.19、设n 个人围成圆圈,甲、乙是其中两人。
概率复习题-答案
<概率论>试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,。
则=3.若事件A和事件B相互独立, ,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7. 已知随机变量X的密度为,且,则________ ________8. 设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12.用()的联合分布函数F(x,y)表示13.用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知,则=16.设,且与相互独立,则17.设的概率密度为,则=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19.设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~或~。
特别是,当同为正态分布时,对于任意的,都精确有~或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于.22.设是来自正态总体的样本,令则当时~。
23.设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24.设X1,X2,…X n为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1. 设A,B为两随机事件,且,则下列式子正确的是(A)P (A+B) = P (A);(B)(C)(D)2. 以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件为(A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销”。
概率中考复习题及答案
概率中考复习题及答案一、选择题1. 随机变量X服从正态分布N(2, 4),那么P(X > 2)的概率是:A. 0.5B. 0.3C. 0.7D. 0.8答案:A2. 从10个产品中随机抽取3个,其中至少有1个次品的概率是:A. 0.6B. 0.4C. 0.7D. 0.3答案:B3. 抛一枚硬币三次,出现两次正面朝上的概率是:A. 0.25B. 0.375C. 0.5D. 0.75答案:B二、填空题1. 如果随机变量X服从二项分布B(5, 0.4),那么P(X=3)的概率是________。
答案:0.40962. 某工厂生产的零件合格率为95%,则该工厂生产的100个零件中,不合格零件的期望个数是________。
答案:53. 从52张扑克牌中随机抽取一张,抽到红桃的概率是________。
答案:0.25三、计算题1. 已知随机变量X服从泊松分布,其参数λ=3,求P(X=2)。
答案:P(X=2) = (e^-3 * 3^2) / 2! = 0.18942. 某次考试,学生A、B、C三人中至少有一人及格的概率是0.9,A、B、C三人都及格的概率是0.5,求A、B、C三人中恰好有两人及格的概率。
答案:P(恰好两人及格) = 0.9 - 0.5 - 2 * 0.5 * (1 - 0.5) = 0.43. 一袋中有10个红球和20个蓝球,随机抽取3个球,求至少抽到一个红球的概率。
答案:P(至少一个红球) = 1 - P(三个都是蓝球) = 1 - (20/30)* (19/29) * (18/28) = 0.8667四、解答题1. 某工厂生产一批零件,合格率为90%,从这批零件中随机抽取50个,求至少有45个合格的概率。
答案:设X为合格零件数,则X服从二项分布B(50, 0.9),P(X≥45) = Σ[C(50, k) * 0.9^k * 0.1^(50-k)],其中k从45到50。
通过计算可得P(X≥45) ≈ 0.9512。
概率统计复习题
第 1 页概率统计练习题一、选择题1. 设C B A ,,是三个随机事件,则事件“C B A ,,不多于一个发生”的对立事件是〔 B 〕A .CB A ,,至少有一个发生 B.C B A ,,至少有两个发生 C. C B A ,,都发生 D. C B A ,,不都发生2.如果〔 C 〕成立,则事件A 与B 互为对立事件。
(其中S 为样本空间)A .ABB. AB S C.AB A BSD. 0)(=-B A P3.设,A B 为两个随机事件,则()P A B ⋃=〔 D 〕 A .()()P A P B - B. ()()()P A P B P AB -+C. ()()P A P AB - D. ()()()P A P B P AB +-4.掷一枚质地均匀的骰子,则在出现偶数点的条件下出现4点的概率为〔D 〕。
A .12 B. 23 C. 16 D. 135.设~(1.5,4)X N ,则{24}P X -<<=〔 〕A .0.8543 B. C. D. 6.设)4,1(~N X ,则{0 1.6}P X <<=〔 〕。
A . B. C. D.7.设2~(,)X N μσ则随着2σ的增大,2{}P X μσ≤-=〔 〕A .增大 B. 减小 C. 不变 D. 无法确定8.设随机变量X 的概率密度21()01x x f x x θ-⎧>=⎨≤⎩,则θ=〔 〕。
A .1 B.12 C. -1 D. 329.设随机变量X 的概率密度为21()01tx x f x x -⎧>=⎨≤⎩,则t =〔 〕A .12 B. 1 C. -1 D. 3210.设连续型随机变量X 的分布函数和密度函数分别为()F x 、()f x ,则以下选项中正确的选项是〔 〕 A .0()1F x ≤≤ B.0()1f x ≤≤ C. {}()P X x F x == D. {}()P X x f x ==11.假设随机变量12Y X X =+,且12,X X 相互独立。
概率论复习题(3课时)
概率论复习题一 填空1、一批产品的废品率为0.1,每次抽取1个,观察后放回去,下次再取1个,共重复3次,则3次中恰有两次取到废品的概率是 .2、袋中有12个大小规格相同的球,其中含有2个红球,从中任取3个球,则取出的3个球中红球个数ξ的概率分布为 .3、设在10只晶体管中有两个次品,从中任取两次,每次取一个,作不放回抽样,设{=A 第一次取得正品第二取得次品},则=)(A P .4、一批产品中,一、二、三、等品率分别为0.8、0.16、0.04,若规定一、二等品为合格品,求产品的合格率: . 6、设)(x F 为ξ的分布函数,则对任意的b a ,)(b a <,有=-)()(a F b F .8、若ξ)2,5(~2N ,则{}32<-ξP= .10、设[][]⎩⎨⎧∉∈=c x c x xx ,00,02)(ϕ ,是一随机变量的概率密度函数,则c= 。
11、已知,1-=ξE 3=ξD ,则[])2(32-ξE = . 12、设有20个某种零件,其中16个一级品,4个二级品,今从中任取3个,则至少有一个一级品的概率 .13、 C B A ,,三人入学考试合格的概率分别是52,21,32,三人中恰有两人合格的概率是 。
14、加工一件产品需要经过三道工序,第一、二、三道工序不出废品的概率分别为0.95,0.85,0.9。
若三道工序是否出废品是相互独立的,则经过三道工序而不出废品的概率为 。
15、某批产品一等品率为8.0,进行重复抽样检验,共取出4件样品。
设ξ表示4件样品中的一等品数,则ξ的概率分布为 ;4件样品中至少有2件一等品的概率为 ;4件样品中一等数ξ的最可能值是 。
16、一批产品20件,其中有8件是次品,从这批产品中随机抽取5件,设ξ表示这5件中的次品数,则ξ的分布律是 (只要求写出分布律,不用计算具体数值)。
17、随机变量ξ的概率分布如下表则 =ξE ;=ξD 。
18、已知ξ服从)4,150(2N ,则140(P <=≤)160ξ ,=≤)150(ξP 。
初中数学概率复习题
初中数学概率复习题概率与事件事件分为:不可能事件、不确定事件、必然事件P(不能事件)=00<P(不确定事件) <1P(必然事件)=11.必然事件与随机事件[例1]下列事件中是必然事件的是()A. 打开电视机,正在播电视剧.B. 从一个只装有红球的缸里摸出一个球,摸出的球是红球.C. 从一定高度落下的图钉,落地后钉尖朝上.D. 今天是11月7号,今天一定是晴天2.可能性[例2]如图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等,四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形了乙:只要指针连续转六次,一定会有一次停在6号扇形丙:指针停在奇数号扇形的概率和停在偶数号扇形的概率相等丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。
其中你认为正确的见解有()A .1个 B.2个 C.3个 D.4个3.简单的概率计算[例3]某班有49位学生,其中有23位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀. 如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是 .4.列表或画树状图求概率[例4]随机掷一枚均匀的硬币两次,两次正面都朝上的概率是()A、1B、1C、3D、1 424[例5].图7所示的两个圆盘中, 指针落在每一个数上的机会均等, 则两个指针同时落在偶数上的概率是A .561019 B...[例6]如图,小明,小华用四张扑克牌玩游戏,他俩将扑克牌洗均匀后,背面朝上放置在桌面上,小明先抽,小华后抽,抽出的牌不放回。
(1)若小明恰好抽到的黑桃4。
①请在右边筐中绘制这种情况的树状图;②求小华抽出的牌的牌面数字比4大的概率。
(2)小明、小华约定:若小明抽到的牌的牌面数字比小华的大,则小明胜;反之,则小明负,你认为这个游戏是否公平?说明你的理由。
(完整)概率复习题及答案
〈概率论〉试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,,,.则=3.若事件A和事件B相互独立, ,则4。
将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词SCIENCE的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0。
5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量分布律为则A=______________7。
已知随机变量X的密度为,且,则________________8。
设~,且,则_________9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为,则该射手的命中率为_________ 10。
若随机变量在(1,6)上服从均匀分布,则方程x2+x+1=0有实根的概率是11.设,,则12。
用()的联合分布函数F(x,y)表示13。
用()的联合分布函数F(x,y)表示14.设平面区域D由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15。
已知,则=16.设,且与相互独立,则17。
设的概率密度为,则=18。
设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,22),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=19。
设,则20.设是独立同分布的随机变量序列,且均值为,方差为,那么当充分大时,近似有~ 或~。
特别是,当同为正态分布时,对于任意的,都精确有~ 或~.21.设是独立同分布的随机变量序列,且,那么依概率收敛于。
22.设是来自正态总体的样本,令则当时~。
23。
设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值= ,样本方差=24。
高考数学 概率专题复习题目
概率专题复习1.某临时车站,每天有3辆开往上海的分为上、中、下等级的客车,一天赵先生准备在该临时车站乘车前往上海办事,但他不知道客车的车况,也不知道发车顺序,为了尽可能乘上上等车,他采取如下策略:先放弃第一辆,如果第二辆比第一辆好则上第二辆,否则上第三辆,那么他乘上上等车的概率为多少?2.某种电路开关闭合后,会出现红灯或绿灯闪动,已知开关第一次闭合后,出现红灯和出现绿灯的概率都是21。
从开关第二次闭合起,若前次出现红灯,则下一次出现红灯的概率是31,出现绿灯的概率是32;若前次出现绿灯,则下一次出现红灯的概率是53,出现绿灯的概率是52。
问: (1) 第二次闭合后出现红灯的概率是多少?(2) 三次发光中,出现一次红灯,两次绿灯的概率是多少?3.有一批食品出厂前,要进行五项指标抽检,如果有两项指标不合格,则这批食品不能出厂。
已知每项指标抽检是相互独立的,且每项抽检出现不合格的概率都是0.2。
(1) 求这批食品不能出厂的概率;(保留三位有效数字)(2) 求直至五项指标全部检验完毕,才能确定这批食品是否出厂的概率。
(保留三位有效数字)4.甲乙两足球队苦战90分钟踢成平局,加时30分钟仍成平局,现决定各派5名队员,每人射一个点球决定胜负,设甲乙两足球队每个队员的点球命中率都为0.5。
(1) 不考虑乙队,求甲队仅有3名队员点球命中,且其中恰有2名队员连续命中的概率;(2) 求甲乙两队各射5个点球后,再次出现平局的概率。
5.高三(1)班、高三(2)班已各选出3名学生组成代表队,进行羽毛球比赛,比赛规则是:① 按“单打、双打、单打”顺序进行三局比赛;② 代表队中每名队员至少参加一局比赛,不得参加两局单打比赛; ③ 先胜两局的队获胜,比赛结束。
已知每局比赛双方胜出的概率均为21。
(1) 根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容?(2) 高三(1)班代表队连胜两局的概率是多少?(3) 高三(1)班代表队至少胜一局的概率是多少?6.某省羽毛球队与市羽毛球队举行单打对抗比赛,省队获胜的概率为0.6,现在双方商量对抗赛的方式,提出了两种方案:①双方各出3人;②双方各出5人。
概率论复习题
一、选择题1.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( )A.0.12B.0.25C.0.375D.0.52.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤<-≤<.,0;2x 1,x 2;1x 0,x 其它 则P{0.2<X<1.2}的值是()A.0.5B.0.6C.0.66D.0.73.设X~B(10, 31), 则=)X (E )X (D ( ) A.31B.32C.1D.3104.设二维随机变量则F (0,1)=( )A.0.2B.0.6C.0.7D.0.85.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.0;0x e 1x 2其它则X 的均值和方差分别为( )A.E(X)=2, D(X)=4B.E(X)=4, D(x)=2C.E(X)=41,D(X)=21D.E(X)=21, D(X)=416.设随机变量X 的E (X )=μ,D(X)=2σ,用切比雪夫不等式估计≥σ≤-)3|)X (E X (|P ( )A.91 B.31C.98D.1 1. 事件A,B 是任意两个事件,与A B=B 不等价的是( ).(a)A B ⊂ (b) B A ⊂ (c) AB =Φ (d) AB =Φ2. 已知12(),()F x F x 是分布函数,为使12()()()F x aF x bF x =-是个分布函数,则应取( ).(a)32,55a b ==- (b)22,33a b == (c)13,22a b =-= (d)13,22a b ==-3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.4. 总体上讲,甲地的气温)(X 比乙地的气温)(Y 高,而甲地的温差比乙地的温差小, 则正确的是: (A) DY DX EY EX >>,; (B) DY DX EY EX <<,; (C) DY DX EY EX ><,; (D) DY DX EY EX <>,。
概率论复习题
概率论复习题1.甲、乙各射击一次,设事件A 表示甲击中目标,事件B 表示乙击中目标,用A ,B 表示下列事件:(1)甲、乙两人至少有一人击中目标;(2)甲、乙两人都击中目标;(3)甲、乙两人中恰好有一人击中目标.2. 同时掷两颗骰子,求出现点数之和为5的概率.3. 设A ,B 为两个事件,且已知概率()0.4,()0.3P A P B ==,分别在下列情况下求(),()P AB P A B +.(1)事件A 与B 互斥;(2)事件A 与B 独立.4. 设A ,B 为两个随机事件,且A 与B 相互独立,()0.3,()0.4P A P B ==,求P (A B )5. 袋中有5个白球和3个黑球,从中任取2个球,求取得两球颜色相同的概率.6. 设P (A )=0.4,P (B )=0.3,(|)0.6P B A =,求(),(),(|),(|)P AB P AB P A B P A B .7. 设,A B 是两个随机事件,已知()()0.4,()0.5P A P B P A B ==+= 求:(),(|),(),(|)P AB P A B P A B P A B -.8.()F x 为X 的分布函数,求(3)F9. 设随机变量X 的分布函数为F (x )=⎪⎩⎪⎨⎧≥-<,10,101;10,0x x x 求当x ≥10时,X 的概率密度f (x ).10. 某气象站天气预报的准确率为0.8,且各次预报之间相互独立.试求:(1)5次预报全部准确的概率p 1;(2)5次预报中至少有1次准确的概率p 2.11. 设随机变量~(10,4)X N ,计算:(1){1012}P X << ;(2){8}P X ≤;(3){102}P X -< 其中(0)0.5,(1)0.8413Φ=Φ=12. 设随机变量X 服从区间[1,2]上的均匀分布.(1)写出X 的概率密度函数;(2)求随机变量21Y X =-的概率密度函数()Y f y .13. 设随机变量X 的概率密度为,01()0,kx x f x ≤≤⎧=⎨⎩其他 求:(1)常数k (2)1{1}2P X -<≤ (3)EX (4)DX14. 设随机变量X 服从二项分布(,), 1.6, 1.28B n p EX DX ==,求,n p15. 某种产品中有80%是正品,用某种仪器检查时,正品被误认为次品的概率为5%,次品被误认为正品的概率为10%,从中任取1个产品。
概率统计总复习题
P( A B) 0.3
0 .6
。
2、设 P( A) 0.4, P( AB) 0.3 ,则 P( A B) 4.P(A)=0.5,P(B)=0.3,(1) B A, P ( A B) (2)A,B 独立,P(A-B)= 5.已知 P( A) 0.5,
2 1
B . P{ X 1 X 2 } 1
8 . X ~ N μ1 , σ ,Y ~ N μ2 , σ ,
2 2
D. 以上都不正确
那么 X 和 Y
C 的联合分布为_____. A.二维正态分布,且 ρ 0 B.二维正态分布,且 ρ 不定
A.0.16 ; B.0.18 ; C.0.21 ; D.0.23 2.设事件 A 和 B 满足 PB A 1,则 A. A 是必然事件 C. P( A B) 0
C
B、 A 包含事件 B D
PBA 0
3、F1 ( x ) , F2 ( x ) 都是分布函数,为使 C1F1 ( x ) C2 F2 ( x ) 是分布 函数, C1 , C2 应取下列哪组值(
1 1 (5 U , 5 U ) 3 2 3 2
。
2 21.设 X1 , X 2 ,, X n 是来自正态总体 N ( , ) 的样本,其中
2 未知。对假设检验 H0 : 1, H1 : 1,则当 H 0 成立时,常
X 1
选用的统计量是
S/ n
,它服从的分布为
(用 (·)表示) 。
X E( X ) N (0,1) D( X ) 服从
12.设服从正态分布的随机变量 X 的期望 E ( X ) ,方差 D( X ) 均存在, 且 D( X ) 0 ,则标准化随机变量
(完整word版)概率论复习题及答案
概率论与数理统计复习题一.事件及其概率1. 设,,A B C 为三个事件,试写出下列事件的表达式:(1) ,,A B C 都不发生;(2),,A B C 不都发生;(3),,A B C 至少有一个发生;(4),,A B C 至多有一个发生。
解:(1) ABC A B C =⋃⋃(2) ABC A B C =⋃⋃ (3) A B C ⋃⋃ (4) BC AC AB ⋃⋃2. 设B A ,为两相互独立的随机事件,4.0)(=A P ,6.0)(=B P ,求(),(),(|)P A B P A B P A B ⋃-。
解:()()()()()()()()0.76P A B P A P B P AB P A P B P A P B ⋃=+-=+-=; ()()()()0.16,(|)()0.4P A B P AB P A P B P A B P A -=====。
3. 设,A B 互斥,()0.5P A =,()0.9P A B ⋃=,求(),()P B P A B -。
解:()()()0.4,()()0.5P B P A B P A P A B P A =⋃-=-==。
4. 设()0.5,()0.6,(|)0.5P A P B P A B ===,求(),()P A B P AB ⋃。
解:()()(|)0.3,()()()()0.8,P AB P B P A B P A B P A P B P AB ==⋃=+-= ()()()()0.2P AB P A B P A P AB =-=-=。
5. 设,,A B C 独立且()0.9,()0.8,()0.7,P A P B P C ===求()P A B C ⋃⋃。
解:()1()1()1()()()0.994P A B C P A B C P ABC P A P B P C ⋃⋃=-⋃⋃=-=-=。
6. 袋中有4个黄球,6个白球,在袋中任取两球,求 (1) 取到两个黄球的概率;(2) 取到一个黄球、一个白球的概率。
概率论复习题
概率论简明教程 一.选择题1.设事件A 表示“甲种产品畅销,乙种产品滞销”,其对立事件为 D .(A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C ) “甲种产品滞销”; (D ) “甲种产品滞销或乙种产品畅销” .2.设A B ⊂,则下面正确的等式是 B .(A ))(1)(A P AB P -=; (B ))()()(A P B P A B P -=-; (C ))()|(B P A B P =; (D ))()|(A P B A P =3.设随机变量X 的分布律为 5,4,3,2,1,15/)(===k k k X P 。
则)5.25.0(<<X P 的值是 B .(A ) 6.0 ; (B ) 2.0 ;C ) 4.0 ; (D ) 8.0 .4.设随机变量,X Y 相互独立,)1,0(~N X ,)1,1(~N Y ,则 B .)(A 2/1)0(=≤+Y X P ; )(B 2/1)1(=≤+Y X P ; )(C 2/1)0(=≤-Y X P ; )(D 2/1)1(=≤-Y X P .5. 设随机变量X 的密度函数为)(x f ,如果 A ,则恒有1)(0≤≤x f .(A ))1,0(~N X ; (B )),0(~2σN X ;(C )),1(~2σ-N X ; (D )),(~2σμN X .6. 设),(Y X 的联合概率密度为⎩⎨⎧<+=,)(0,)1(/1),(22他其y x y x f π则X 与Y 为 C 的随机变量.(A ) 独立同分布; (B ) 独立不同分布; (C ) 不独立同分布; (D ) 不独立不同分布.7. 设X 为随机变量,若1.1)(2=X E ,1.0)(=X D ,则一定有 B .(A )9.0)11(≥<<-X P ; (B )9.0)20(≥<<X P ; (C )9.0)11(<≥+X P ; (D )1.0)1(≤≥X P .8. 设A B ⊂,则下面正确的等式是 B 。
概率论复习题库
第一章一、填空题1、已知34.0)(=A P ,52.0)(=B P ,26.0)(=AB P ,则()P A B ⋃= ,)(B A P = ,=)(B A P ,()P A B -= 。
2、设事件A 、B 相互独立,且()0.2P A =,()0.3P B =,则()P A B ⋃= ,)(B A P = ,=)(B A P ,()P A B -= 。
3、设事件A 、B 互不相容,且()0.4P A =,()0.3P B =,则()P A B ⋃= ,)(B A P = ,()P AB = 。
3、设,,A B C 表示随机事件,则事件“C B A 、、都不发生”表示为 ,“A B 、至少有一个发生”表示为 。
4、甲,乙两人进行射击,甲击中目标的概率是0.8,乙击中目标的概率是0.85,则(1)至少一人击中目标的概率是 ,(2)两人同时命中的概率是 。
5、甲乙丙三人独立地同时破译密码,若各人能译出密码的概率为1/5,1/4,1/3,则此密码能被他们同时译出的概率为 ,此秘密能被破译出的概率为 。
6、某工厂中有甲、乙、丙3台机器生产同样的产品,它们的产量各占25%、35%、40%,这三台机器的不合格品率依次为5%、4%、2%,现从总产品中任取一件,求恰好抽到不合格品的概率是 .二、选择题:1、设A,B 为两事件,则ABAB 为( ) ()()()()A B AC D A B ΦΩ⋃2、设A ,B 为两事件,则AB 表示事件( )(A )B 发生且A 不发生 (B )A 与B 恰有一个发生 (C )A 发生且B 不发生 (D )A 与B 不同时发生 3、若()()()P AB P A P B =,则( ). (A) A ,B 相互独立 (B)A ,B 构成样本空间的一个划分(C)AB φ= (D)()()P B A P A =4、设袋中有5个白球3个黑球,不放回地依次从袋中随机取一球。
则第一次和第二次都取到白球的概率是( ). (A) 514 (B) 2564 (C) 58 (D) 38第二章 一、填空题 1、设..(4,9)r v XN ,则{0}P X == , {10}P X <= , (31)E X --= ,(2)D X -= ,21Y X =+ 。
概率统计复习题
.
27. 在假设检验中, 把符合 H0 的总体判为不符合 H0 加以拒绝,
这类错误称为
错误, 把不符合 H0 的总体当做 H0 而
接受, 这类错误称为
错误. 显著性水平 是用来控
制犯第
错误的概率.
28. 设X1, X2 ,L , Xn是来自总体N (, 2 )的样本, 2已知, 要检验
H0 : 0 应用
6. 已知X
~
a bx2 , f (x)
0,
(1)a, b的值;
(2)P(0.5 X 1.5);
(3)E(2X 1), DX .
0 x 其他
1,且EX
3 5
,求:
7. 已知X ~ E(2), 求Y 3X 2的密度函数.
8. 设X ~ E(5),求EX , DX .
ˆ 2
1 5
5 i 1
Xi,
ˆ 3
1 10
10 i 1
Xi中, 最有效的
是
.
23. 某批产品的次品率为未知参数p(0 p 1),从整批产品中
中抽取n件样本,用最大似然法估计p, 似然函数为
,
p的最大似然估计为
.
24. 设总体X ~ N(,1),根据容量为100的样本测得x 5,则
X 1 2 3
4. 设X的分布列为:
1 1 1 ,求:
P
4 24
(1)P
X
1 2
,P
1 2
X
5 2
,P(2
X
3);
(2)EX , DX .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章复习题解答1. 某科技馆在某一星期里(7天)曾接待过3位专家来访.求这3位专家在同一天来访的概率.解:A=“三位专家同一天来访”,则173()0.02047C P A ==。
2.设B A ,是两随机事件,且()0.3,P A B -=(1)若B A ,互不相容,求()P A ; (2)若B A ,独立,1.0)(=B P ,求()P A ; (3)若(|)0.4P B A =,求()P A ; (4)若()0.7P A B ⋃=,求)(B P .解:(1)()()()P A B P A P AB -=-;因为B A 、互不相容,所以()0P AB =,()()0.3P A P A B =-=(2)因为B A ,独立,所以)()()(B P A P AB P =.)(9.01.0)()()()()()()()(3.0A P A P A P B P A P A P AB P A P B A P =⨯-=-=-=-=所以,.31)(=A P (3)()()0.4(|)()()P AB P A B P B A P A P A -===()0.3()0.750.40.4P A B P A -===(4)0.7()()()()()P A B P B P AB P B P A B =+=+=+-()0.7()0.70.30.4P B P A B =--=-=3.设某地区成年居民中肥胖者占10%, 不胖不瘦者占82%, 瘦者占8%, 又知肥胖者患高血压的概率为20%, 不胖不瘦者患高血压病的概率为10%, 瘦者患高血压病的概率为5%. (1)求该地区居民患高血压病的概率;"(2)现知该地区某一成年居民患有高血压病,求其是肥胖者的概率.解:(1)设321,,A A A 分别表示该地区居民为肥胖者、不胖不瘦者、瘦者,B 表示该地区居民患高血压病. 据全概率公式知:106.008.005.082.01.01.02.0)()|()()|()()|()(332211=⨯+⨯+⨯=++=A P A B P A P A B P A P A B P B P(2)据贝叶斯公式知:53/10106.0/]1.02.0[)(/)]()|([)(/)()|(1111=⨯===B P A P A B P B P B A P B A P第二章 复习题解答1.随机变量X ~⎪⎪⎩⎪⎪⎨⎧≤<≤≤--=他其,020,sin 01,)(πx x A x x x f ,求:(1)A (2) X 的分布函数)(x F (3))40(π≤≤X P$解:(1)dx x A dx x ⎰⎰+=201-sin )(-1π,求得21=A . (2) X 的分布函数)(x F解:当1-<x 时,0)()()(==≤=⎰∞-xdt t f x X P x F当01≤≤-x 时,221)()()()(21x dt t dt t f x X P x F xx-=-==≤=⎰⎰-∞-当20π≤<x 时,2cos 12sin )()()()(001xdt t dt t dt t f x X P x F xx-=+-==≤=⎰⎰⎰-∞- 当x <2π时,12sin )()()()(2/001=+-==≤=⎰⎰⎰-∞-πdt tdt t dt t f x X P x F x因此:⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤<-≤≤---<=2,120,2cos 101,2211,0)(2ππx x x x x x x F(3))40(π≤≤X P 4221)0()4(-=-=F F π. 2. 某地考生高考总成绩X ~2(400,100),N 现在要从20000名考生中择优录取1000人.当地考生若能被录取其成绩至少为多少分 ((1.64)0.95Φ=)。
解:设当地考生若能被录取其成绩至少为a 分,则-200001000)(=≥a X P ,由于X ~2(400,100),N 则200001000)100400(1)(1)(=-Φ-=<-=≥a a X P a X P ,95.0)100400(=-Φa又因为(1.64)0.95Φ=,所以64.1100400=-a ,564=a .3. 在某公共汽车站甲、乙、丙三人分别独立的等1,2,3路汽车。
设每个人等车时间X (单位:分钟)均服从[0,5]上的均匀分布。
求三人中至少有两人等车时间不超过两分钟的概率。
解:设Y 表示甲、乙、丙三人中等车时间不超过2分钟的人数,则Y ~),3(p B .其中p 表示每个人等车时间不超过2分钟的概率,则4.051}2{20==≤=⎰dx X P p 所求概率352.04.06.04.0}2{333223=⨯+⨯⨯=≥C C Y P4. 随机变量 X ~)1,0(N ,Xe Y =,求随机变量Y 的概率密度函数)(yf Y . 解:随机变量Y 的分布函数dx ey X P y e P y Y P y F y yx X Y ⎰∞-=≤=≤=≤=>ln -2221)ln (}{}{)(0π时,当:0)(0=≤y F y Y 时,当对上两式两端对y 求导,可得⎪⎩⎪⎨⎧>≤=-0,210,0)(2)(ln 2y e y y y f y Y π第3章 复习题解答1.已知随机变量X ,Y 的联合概率分布如下表(1)写出X 与Y 的边缘概率分布. (2)Y X ,是否相互独立为什么 (3) 写出XY , Y X -的分布 解:(1)X 与Y 的边缘概率分布为:(2)Y X ,不相互独立.因为04.0)01(==-=Y X P ,,0459.009.051.0)0()1(=⨯==-=Y P X P;所以,≠=-=)01(Y X P ,)0()1(=-=Y P X P 根据随机变量的独立的定义. Y X ,不独立. (3)的分布为:2. 已知随机变量X ,Y 的联合概率密度函数为⎩⎨⎧>>=+-其它,0,0,6),()32(y x e y x f y x(1)求X 与Y 的边缘密度)(x f X 及)(y f Y (2)判断X 与Y 是否相互独立,为什么 解:(1)求X 与Y 的边缘密度)(x f X 及)(y f Y(当0≤x 时,00),()(===⎰⎰+∞∞-+∞∞-dy dy y x f x f X当0>x 时,x y x X e dy e dy y x f x f 20)32(26),()(-+∞+-+∞∞-===⎰⎰因此 ⎩⎨⎧≤>=-0,00,2)(2x x e x f xX当0≤y 时,00),()(===⎰⎰+∞∞-+∞∞-dx dx y x f y f Y当0>y 时,y y x Y e dx e dy y x f y f 30)32(36),()(-+∞+-+∞∞-===⎰⎰因此 ⎩⎨⎧≤>=-0,0,3)(3y y e y f yY .(2)因为⨯)(x f X ),()(y x f y f Y =,因此X 与Y 相互独立.3. 设随机变量X 服从[1,2]上的均匀分布,Y 服从(5,4)N ,且X 与Y 相互独立。
!(1)写出随机变量X 的密度函数)(x f X 与Y 的密度函数)(y f Y (2)写出随机向量()Y X ,的联合密度函数(,)f x y ; (3) ()1,5P X Y >>解:(1)2(5)81,12()()0,y X Y x f x f y --≤≤⎧==⎨⎩,其他(2)由X Y 、独立,(,)X Y 的联合概率密度为8,12(,)()()0,X Y x f x y f x f y -⎧≤≤⎪=⋅=⎨⎪⎩2(y-5)其他(3)5511(1,5)(1)(5)1[1()]1222P X Y P X P Y ->>=>>=⨯-Φ=⨯= 4. 设随机变量],2,2[~-U Z 随机变量⎩⎨⎧->-≤=1,11,0Z Z X ,⎩⎨⎧>≤=1,11,0Z Z Y .(1)求),(Y X 的联合分布列; (2)说明Y X ,是否相互独立》解:(1)4)1()11()00(=-≤=≤-≤===Z P Z Z P Y X P ,, 0)()11()10(=Φ=≥-≤===P Z Z P Y X P ,,21)11()11()01(=≤≤-=≤-≥===Z P Z Z P Y X P ,, …41)1()11()11(=≥=≥-≥===Z P Z Z P Y X P ,, (2)(0,0)0.253/16(0)(0)P X Y P X P Y ===≠===,所以不独立;5. 假设随机变量Y 服从参数为1=λ的指数分布,令随机变量⎩⎨⎧>≤=kY 1k Y 0若若k X (2),1k =。
求1X 和2X 的联合概率分布 解:⎰---==≤=≤≤===11211)1()21()00(e dy e Y P Y Y P X X P y ,,)21()10(21=>≤===Y Y P X X P ,,⎰----==≤<=≤>===212121)21()21()01(e e dy e Y P Y Y P X X P y ,,⎰+∞--==>=>>===2221)2()21()11(e dy e Y P Y Y P X X P y ,,第四章 复习题解答1. 随机向量),(Y X 的联合分布如下表所示,求:{(1)关于X 、Y 的边缘分布; ?(2))2(Y X D -..31.052.044.032.021.01)2(=⨯+⨯+⨯+⨯+⨯=-Y X E 2.101.0252.0164.092.041.01)2(2=⨯+⨯+⨯+⨯+⨯=-Y X E)2(Y X D -=2)2(Y X E -2))2((Y X E --==.2. 某餐厅每天接待400名顾客,每位顾客的消费额(单位:元)是一个随机变量:期望值是60元、标准差是25元,且顾客的消费额是相互独立的。
利用中心极限定理计算该餐厅每天的营业额不少于23000元的概率.解:设该餐厅每天的营业额为X 元,一天接待400名顾客中第i 名顾客的消费额为i X 元,则60=i EX 元,25=i DX 元(400,...,2,1=i )且∑==4001i iXX因此有 2400060400400=⨯==i EX EX 元,5002520400=⨯==i DX DX 元9772.0)2(2)(23000)()23000(=Φ≈⎪⎭⎫⎝⎛-≥-=⎪⎭⎫ ⎝⎛-≥-=≥DX X E X P DX EX DX X E X P X P 3.某电路中有10000盏灯,晚上每盏灯开着的概率为,且各灯开、关相互独立,用中心极限定理求晚上开着的灯的数目在4900至5100之间的概率.解:设晚上开着的灯的数目为X ,则)5.0,10000(~B X 且2500,5000==DX EX .因此,9546.01)2(2)2()2(2)(25100)(4900)51004900(=-Φ=-Φ-Φ≈⎪⎭⎫⎝⎛≤-≤-=⎪⎭⎫ ⎝⎛-≤-≤-=≤≤DX X E X P DX EX DX X E X DX EX P X P 即晚上开着的灯的数目在4900至5100之间的概率约为。