初一下数学讲义 -《二元一次方程组》全章复习与巩固(基础)知识讲解
人教版初一数学下册 二元一次方程组应用题 商品利润问题 讲义
商品利润问题解题技巧:1、售价-进价=利润2、每件商品的利润×数量=总利润3、%100-%100⨯=⨯=进价进价售价进价利润利润率 例1、商场的一位老板购进甲、乙两件衣服后,在标价的基础上加价40%,然后又分别打八折、九折来出售。
一位女士给老公买了这两件衣服,共付款182元。
已知两件衣服标价之和为210元,求这两件衣服的进价是多少?例2、钟伯伯用60元从蔬菜批发市场买来了西红柿和豆角共40kg ,然后带去菜市场卖。
已知西红柿和豆角这天的批发价与零售价如表所示。
求钟伯伯当天卖完这些西红柿和豆角能赚多少钱?1、爸爸用2400元买进了甲、乙两种股票,现在甲股票升值15%,乙股票下跌10%时卖出,共获利1350元,问爸爸买的甲、乙股票各多少元?2、商场按标价销售某种工艺品时,每件可获利45元。
按标价的八五折销售工艺品8件时,与将标价降低35元销售该工艺品12件所获得的利润相等。
则该种工艺品的进价和标价分别是多少元?3、蔬菜经营户王叔叔花90元从蔬菜批发市场批发了黄瓜和茄子共40千克,到菜市场按零售价卖,黄瓜和茄子当天的批发价和零售价如表所示:他当天批发了黄瓜和茄子各多少千克?卖完这些黄瓜和茄子共赚了多少元?4、体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球、排球各多少个?例2、商店在一次买卖中同时卖出两件上衣,每件都是以135元卖出,若按成本计算,其中一件盈利25%,另一件亏损20%,则商店的盈亏情况如何?5、商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店的盈亏情况如何?6、一件商品如果按定价打九折出售可以盈利20%,如果打八折出售可以盈利10元,则这种商品的定价是多少?进价是多少?7、商场购进甲、乙两种商品共50件,甲商品每件进价为35元,利润率为20%,乙商品每件进价为20元,利润率为15%,共获利278元。
七年级数学下册培优辅导讲义(人教版)
1第12讲 与相交有关概念及平行线的判定考点·方法·破译1.了解在平面内,两条直线的两种位置关系:相交与平行.2.掌握对顶角、邻补角、垂直、平行、内错角、中旁内角的定义,并能用图形或几何符号表示它们.3.掌握直线平行的条件,并能根据直线平行的条件说明两条直线的位置关系.经典·考题·赏析【例1】如图,三条直线AB 、CD 、EF 相交于点O ,一共构成哪几对对顶角?一共构成哪几对邻补角? 【解法指导】⑴对顶角和邻补角是两条直线所形成的图角.⑵对顶角:有一个公共顶点,并且一个角的两边是另一个角的两边的反向延长线.⑶邻补角:两个角有一条公共边,另一边互为反向延长线. 有6对对顶角. 12对邻补角.【变式题组】01.如右图所示,直线AB 、CD 、EF 相交于P 、Q 、R ,则:⑴∠ARC 的对顶角是 . 邻补角是 .⑵中有几对对顶角,几对邻补角? 02.当两条直线相交于一点时,共有2对对顶角; 当三条直线相交于一点时,共有6对对顶角; 当四条直线相交于一点时,共有12对对顶角. 问:当有100条直线相交于一点时共有 对顶角.【例2】如图所示,点O 是直线AB 上一点,OE 、OF 分别平分∠BOC 、 ∠AOC .⑴求∠EOF 的度数;⑵写出∠BOE 的余角及补角.【解法指导】解这类求角大小的问题,要根据所涉及的角的定义,以及各角的数量关系,把它们转化为代数式从而求解;【解】⑴∵OE 、OF 平分∠BOC 、∠AOC ∴∠EOC =21∠BOC ,∠FOC =21∠AOC ∴∠EOF =∠EOC +∠FOC =21∠BOC +21∠AOC =()AOC BOC ∠+∠21又∵∠BOC +∠AOC =180° ∴∠EOF =21×180°=90° ⑵∠BOE 的余角是:∠COF 、∠AOF ;∠BOE 的补角是:∠AOE .【变式题组】01.如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC ,且∠EOC =100°,则∠BOD 的度数是( )A .20°B . 40°C .50°D .80°02.(杭州)已知∠1=∠2=∠3=62°,则∠4= .【例3】如图,直线l 1、l 2相交于点O ,A 、B 分别是l 1、l 2上的点,试用三角尺完成下列作图: ⑴经过点A 画直线l 2的垂线. ⑵画出表示点B 到直线l 1的垂线段.【解法指导】垂线是一条直线,垂线段是一条线段.【变式题组】 01.P 为直线l 外一点,A 、B 、C 是直线l 上三点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离为( ) A .4cm B . 5cm C .不大于4cm D .不小于6cmABC D EF AB C DEF PQ RABCEF E A ACD O (第1题图)1 4 32 (第2题图)l 2202 如图,一辆汽车在直线形的公路AB 上由A 向B 行驶,M 、N 为位于公路两侧的村庄; ⑴设汽车行驶到路AB 上点P 的位置时距离村庄M 最近.行驶到AB 上点Q 的位置时,距离村庄N 最近,请在图中的公路上分别画出点P 、Q 的位置. ⑵当汽车从A 出发向B 行驶的过程中,在 的路上距离M 村越来越近..在 的路上距离村庄N 越来越近,而距离村庄M越来越远. 【例4】如图,直线AB 、CD 相交于点O ,OE ⊥CD ,OF ⊥AB ,∠DOF =65°,求∠BOE 和∠AOC 的度数. 【解法指导】图形的定义现可以作为判定图形的依据,也可以作为该图形具备的性质,由图可得:∠AOF =90°,OF ⊥AB .【变式题组】 01.如图,若EO ⊥AB 于O ,直线CD 过点O ,∠EOD ︰∠EOB =1︰3,求∠AOC 、∠AOE 的度数. 02.如图,O 为直线AB 上一点,∠BOC =3∠AOC ,OC 平分∠AOD . ⑴求∠AOC 的度数; ⑵试说明OD 与AB 的位置关系.03.如图,已知AB ⊥BC 于B ,DB ⊥EB 于B ,并且∠CBE ︰∠ABD =1︰2,请作出∠CBE 的对顶角,并求其度数.【例5】如图,指出下列各组角是哪两条直线被哪一条直线所截而得到的,并说出它们的名称: ∠1和∠2:∠1和∠3:∠1和∠6:∠2和∠6: ∠2和∠4: ∠3和∠5:∠3和∠4:【解法指导】正确辩认同位角、内错角、同旁内角的思路是:首先弄清所判断的是哪两个角,其次是找到这两个角公共边所在的直线即截线,其余两条边所在的直线就是被截的两条直线,最后确定它们的名称.F B A O CD E C D B A EO B ACDO A BA E DC F E BAD 1 4 2 3 6 53【变式题组】01.如图,平行直线AB 、CD 与相交直线EF ,GH 相交,图中的同旁内角共有( )A .4对B . 8对C .12对D .16对02.如图,找出图中标出的各角的同位角、内错角和同旁内角.03.如图,按各组角的位置判断错误的是( )A .∠1和∠2是同旁内角B .∠3和∠4是内错角C .∠5和∠6是同旁内角D .∠5和∠7是同旁内角【例6】如图,根据下列条件,可推得哪两条直线平行?并说明理由•⑴∠CBD =∠ADB ; ⑵∠BCD +∠ADC =180°⑶∠ACD =∠BAC【解法指导】图中有即即有同旁内角,有“ ”即有内错角.【解法指导】⑴由∠CBD =∠ADB ,可推得AD ∥BC ;根据内错角相等,两直线平行. ⑵由∠BCD +∠ADC =180°,可推得AD ∥BC ;根据同旁内角互补,两直线平行.⑶由∠ACD =∠BAC 可推得AB ∥DC ;根据内错角相等,两直线平行.【变式题组】01.如图,推理填空.⑴∵∠A =∠ (已知) ∴AC ∥ED ( ) ⑵∵∠C =∠ (已知)∴AC ∥ED ( )⑶∵∠A =∠ (已知) ∴AB ∥DF ( ) 02.如图,AD 平分∠BAC ,EF 平分∠DEC ,且∠1=∠2,试说明DE 与AB 的位置关系. 解:∵AD 是∠BAC 的平分线(已知) ∴∠BAC =2∠1(角平分线定义) 又∵EF 平分∠DEC (已知) ∴ ( ) 又∵∠1=∠2(已知) ∴ ( ) ∴AB ∥DE ( ) 03.如图,已知AE 平分∠CAB ,CE 平分∠ACD .∠CAE +∠ACE =90°,求证:AB ∥CD . ABDCHG EF7 1 5 6 8 4 1 2 乙丙 3 2 3 4 56 1 2 3 4甲 1 A B C 2 3 4 56 7 A B C DOA B D E FCABCDE A B CD EF 1 204.如图,已知∠ABC=∠ACB,BE平分∠ABC,CD平分∠ACB,∠EBF=∠EFB,求证:CD∥EF.【例7】如图⑴,平面内有六条两两不平行的直线,试证:在所有的交角中,至少有一个角小于31°.【解法指导】如图⑵,我们可以将所有的直线移动后,使它们相交于同一点,此时的图形为图⑵.证明:假设图⑵中的12个角中的每一个角都不小于31°则12×31°=372°>360°这与一周角等于360°矛盾所以这12个角中至少有一个角小于31°【变式题组】01.平面内有18条两两不平行的直线,试证:在所有的交角中至少有一个角小于11°.02.在同一平面内有2010条直线a1,a2,…,a2010,如果a1⊥a2,a2∥a3,a3⊥a4,a4∥a5……那么a1与a2010的位置关系是 .03.已知n(n>2)个点P1,P2,P3…Pn.在同一平面内没有任何三点在同一直线上,设S n表示过这几个点中的任意两个点所作的所有直线的条数,显然:S2=1,S3=3,S4=6,∴S5=10…则Sn= .演练巩固·反馈提高01.如图,∠EAC=∠ADB=90°.下列说法正确的是()A.α的余角只有∠B B.α的邻补角是∠DACC.∠ACF是α的余角D.α与∠ACF互补02.如图,已知直线AB、CD被直线EF所截,则∠EMB的同位角为()A.∠AMF B.∠BMF C.∠ENC D.∠END03.下列语句中正确的是()A.在同一平面内,一条直线只有一条垂线B.过直线上一点的直线只有一条C.过直线上一点且垂直于这条直线的直线有且只有一条D.垂线段就是点到直线的距离04.如图,∠BAC=90°,AD⊥BC于D,则下列结论中,正确的个数有()①AB⊥AC②AD与AC互相垂直③点C到AB的垂线段是线段AB④线段AB的长度是点B到AC的距离⑤垂线段BA是点B到AC的距离⑥AD >BDA.0 B. 2 C.4 D.6ABCD El1l2l3l4l5l6图⑴l1l2l3l4l5l6图⑵AEB C FDABC DFEMNα第1题图第2题图AB D C第4题图4505.点A 、B 、C 是直线l 上的三点,点P 是直线l 外一点,且PA =4cm ,PB =5cm ,PC =6cm ,则点P 到直线l 的距离是( ) A .4cm B .5cm C .小于4cm D .不大于4cm 06.将一副直角三角板按图所示的方法旋转(直角顶点重合),则∠AOB +∠DOC= .07.如图,矩形ABCD 沿EF 对折,且∠DEF =72°,则∠AEG = . 08.在同一平面内,若直线a 1∥a 2,a 2⊥a 3,a 3∥a4,…则a 1 a 10.(a 1与a 10不重合)09.如图所示,直线a 、b 被直线c 所截,现给出下列四个条件:①∠1=∠5,②∠1=∠7,③∠2+∠3=180°,④∠4=∠7,其中能判断a ∥b 的条件的序号是 .10.在同一平面内两条直线的位置关系有 .11.如图,已知BE 平分∠ABD ,DE 平分∠CDB ,且∠E =∠ABE +∠EDC .试说明AB ∥CD ?12.如图,已知BE 平分∠ABC ,CF 平分∠BCD ,∠1=∠2,那么直线AB 与CD 的位置关系如何?13.如图,推理填空:⑴∵∠A = (已知) ∴AC ∥ED ( ) ⑵∵∠2= (已知) ∴AC ∥ED ( )⑶∵∠A + =180°(已知) ∴AB ∥FD .14.如图,请你填上一个适当的条件 使AD ∥BC .ABCDOABCDEFG H abc第6题图第7题图第9题图1 2 3 4 5 6 7 81A CDEB AB C DEF12AB CD EF第14题图6培优升级·奥赛检测 01.平面图上互不重合的三条直线的交点的个数是( ) A .1,3 B .0,1,3 C .0,2,3 D .0,1,2,3 02.平面上有10条直线,其中4条是互相平行的,那么这10条直线最多能把平面分成( )部分. A .60 B . 55 C .50 D .45 03.平面上有六个点,每两点都连成一条直线,问除了原来的6个点之外,这些直线最多还有( )个交点. A .35 B . 40 C .45 D .55 04.如图,图上有6个点,作两两连线时,圆内最多有__________________交点. 05.如图是某施工队一张破损的图纸,已知a 、b 是一个角的两边,现在要在图纸上画一条与这个角的平分线平行的直线,请你帮助这个施工队画出这条平行线,并证明你的正确性. 06.平面上三条直线相互间的交点的个数是( ) A .3 B .1或3 C .1或2或3 D .不一定是1,2,3 07.请你在平面上画出6条直线(没有三条共点)使得它们中的每条直线都恰好与另三条直线相交,并简单说明画法? 08.平面上有10条直线,无任何三条交于一点,要使它们出现31个交点,怎么安排才能办到?09.如图,在一个正方体的2个面上画了两条对角线AB 、AC ,那么两条对角线的夹角等于( ) A .60° B . 75° C .90°D .135° 10.在同一平面内有9条直线如何安排才能满足下面的两个条件? ⑴任意两条直线都有交点;⑵总共有29个交点.第13讲 平行线的性质及其应用 考点·方法·破译1.掌握平行线的性质,正确理解平行线的判定与性质定理之间的区别和联系; 2.初步了解命题,命题的构成,真假命题、定理; 3.灵活运用平行线的判定和性质解决角的计算与证明,确定两直线的位置关系,感受转化思想在解决数学问题中的灵活应用.经典·考题·赏析 【例1】如图,四边形ABCD 中,AB ∥CD , BC ∥AD 求∠C 的度数. 【解法指导】两条直线平行,同位角相等; 两条直线平行,内错角相等;两条直线平行,同旁内角互补. 平行线的性质是推导角关系的重要依据之一,必须正确识别图形的特征,看清截线,识别角的关系式关键.【解】:∵AB ∥CD BC ∥AD ∴∠A +∠B =180° ∠B +∠C =180°(两条直线平行,同旁内角互补) ∴∠A =∠C ∵∠A =38° ∴∠C =38°a b AB C7【变式题组】01.如图,已知AD ∥BC ,点E 在BD 的延长线上,若∠ADE =155°,则∠DBC的度数为( ) A .155° B .50° C .45° D .25°02.(安徽)如图,直线l 1 ∥ l 2,∠1=55°,∠2=65°,则∠3为( )A . 50°B . 55°C . 60° D .65°03.如图,已知FC ∥AB ∥DE ,∠α:∠D :∠B =2: 3: 4, 试求∠α、∠D 、∠B的度数.【例2】如图,已知AB ∥CD ∥EF ,GC ⊥CF ,∠B =60°,∠EFC =45°,求∠BCG 的度数.【解法指导】平行线的性质与对顶角、邻补角、垂直和角平分线相结合,可求各种位置的角的度数,但注意看清角的位置.【解】∵AB ∥CD ∥EF ∴∠B =∠BCD ∠F =∠FCD (两条直线平行,内错角相等)又∵∠B =60° ∠EFC =45° ∴∠BCD =60° ∠FCD =45° 又∵GC ⊥CF ∴∠GCF =90°(垂直定理) ∴∠GCD =90°-45°=45° ∴∠BCG =60°-45°=15°【变式题组】01.如图,已知AF ∥BC , 且AF 平分∠EAB ,∠B =48°,则∠C 的的度数=_______________02.如图,已知∠ABC +∠ACB =120°,BO 、CO 分别∠ABC 、∠ACB ,DE 过点O 与BC 平行,则∠BOC =___________03.如图,已知AB ∥ MP ∥CD , MN 平分∠AMD ,∠A =40°,∠D =50°,求∠NMP 的度数.【例3】如图,已知∠1=∠2,∠C =∠D . 求证:∠A =∠F . 【解法指导】因果转化,综合运用.逆向思维:要证明∠A =∠F ,即要证明DF ∥AC . 要证明DF ∥AC , 即要证明∠D +∠DBC =180°, 即:∠C +∠DBC =180°;要证明∠C +∠DBC=180°即要证明DB ∥EC . 要证明DB ∥EC 即要证明∠1=∠3.证明:∵∠1=∠2,∠2=∠3(对顶角相等)所以∠1=∠3 ∴DB ∥EC (同位角相等•两直线平行)∴∠DBC +∠C =180°(两直线平行,同旁内角互补)∵∠C =∠D ∴∠DBC +∠D =180° ∴DF ∥AC (同旁内角,互补两直线平行)∴∠A =∠F (两直线平行,内错角相等) AB CDOE FAEBC (第1题图) (第2题图) E A F GDC B BA MCD N P (第3题图)CDABE F 1 328DA2 E1 B C B F E AC D 【变式题组】01.如图,已知AC ∥FG ,∠1=∠2,求证:DE ∥FG02.如图,已知∠1+∠2=180°,∠3=∠B . 求证:∠AED =∠ACB03.如图,两平面镜α、β的夹角θ,入射光线AO 平行 于β入射到α上,经两次反射后的出射光线O′B 平行 于α,则角θ等于_________. 【例4】如图,已知EG ⊥BC ,AD ⊥BC ,∠1=∠3. 求证:AD 平分∠BAC . 【解法指导】抓住题中给出的条件的目的,仔细分析 条件给我们带来的结论,对于不能直接直接得出结论 的条件,要准确把握住这些条件的意图.(题目中的: ∠1=∠3) 证明:∵EG ⊥BC ,AD ⊥BC ∴∠EGC =∠ADC =90° (垂直定义)∴EG ∥AD (同位角相等,两条直线平行) ∵∠1=∠3 ∴∠3=∠BAD (两条直线平行,内错角相等) ∴AD 平分∠BAC (角平分线定义) 【变式题组】 01.如图,若AE ⊥BC 于E ,∠1=∠2,求证:DC ⊥BC .02.如图,在△ABC 中,CE ⊥AB 于E ,DF ⊥AB 于F , AC ∥ED ,CE 平分∠ACB . 求证:∠EDF =∠BDF .AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线. CM ⊥CN ,求:的度数.A D M C N EB GB 3C A 1D 2E F (第1题图) A2 C F3 E D1B(第2题图)3 1 AB G DC E9 α βP B C D A ∠P =α+β3 2 1 γ 4ψDα β E B CAFH F γ Dα β E B C AF D EBC A B C AA ′ lB ′C ′【例5】已知,如图,AB ∥EF ,求证:∠ABC +∠BCF +∠CFE =360° 【解法指导】从考虑360°这个特殊角入手展开联想,分析类比, 联想周角.构造两个“平角”或构造两组“互补”的角. 过点C 作CD ∥AB 即把已知条件AB ∥EF 联系起来,这是关键. 【证明】:过点C 作CD ∥AB ∵CD ∥AB ∴∠1+∠ABC =180° (两直线平行,同旁内角互补) 又∵AB ∥EF ,∴CD ∥EF (平行 于同一条直线的两直线平行) ∴∠2+∠CFE =180°(两直线平行, 同旁内角互补) ∴∠ABC +∠1+∠2+∠CFE =180°+180°=360° 即∠ABC +∠BCF +∠CFE =360° 【变式题组】 01.如图,已知,AB ∥CD ,分别探究下面四个图形中∠APC 和∠PAB 、∠PCD 的关系,请你从所得四个关系中选出任意一个,说明你探究的结论的正确性. 结论:⑴____________________________ ⑵____________________________ ⑶____________________________ ⑷____________________________ 【例6】如图,已知,AB ∥CD ,则∠α、∠β、∠γ、∠ψ之间的关系是 ∠α+∠γ+∠ψ-∠β=180° 【解法指导】基本图形 善于从复杂的图形中找到基本图形,运用基本图形的规律打开思路. 【解】过点E 作EH ∥AB . 过点F 作FG ∥AB . ∵AB ∥EH ∴∠α=∠1(两直线平行,内错角相等)又∵FG ∥AB ∴EH ∥FG (平行于同一条直线的两直线平行)∴∠2=∠3 又∵AB ∥CD ∴FG ∥CD (平行于同一条直线的两直线平行)∴∠ψ+∠4=180°(两直线平行,同旁内角互补)∴∠α+∠γ+∠ψ-∠β=∠1+∠3+∠4-ψ-∠1-∠2=∠4+ψ=180°【变式题组】 01.如图, AB ∥EF ,∠C =90°,则∠α、∠β、∠γ的关系是( )A . ∠β=∠α+∠γB .∠β+∠α+∠γ=180°C . ∠α+∠β-∠γ=90°D .∠β+∠γ-∠α=90° 02.如图,已知,AB ∥CD ,∠ABE 和∠CDE 的平分线相交于点F ,∠E =140°,求∠BFD 的度数.【例7】如图,平移三角形ABC ,设点A 移动到点A /,画出平移后的三角形A /B /C /.【解法指导】抓住平移作图的“四部曲”——定,找,移,连. ⑴定:确定平移的方向和距离. ⑵找:找出图形的关键点. ⑶移:过关键点作平行且相等的线段,得到关键点的对应点. ⑷连: 按原图形顺次连接对应点. 【解】①连接AA / ②过点B 作AA /的平行线l ③在l 截取BB /=AA /,则点B /就是的B 对应点,用同样的方法作出点C 的对应点C /.连接A /B /,B /C /,C /A /就得到平移后的三角形A /B /C /.B AP C A C C D A A P C B D PBPD B D ⑴ ⑵ ⑶ ⑷ FE D 2 1 AB C10西B 30° A北东 南【变式题组】01.如图,把四边形ABCD 按箭头所指的方向平移21cm ,作出平移后的图形.02.如图,三角形ABC 中,∠C =90°, BC =4,AC =4,现将△ABC 沿CB 方向平移到△A /B /C /的位置,若平移距离为3, 求△ABC与△A /B /C /的重叠部分的面积.03.原来是重叠的两个直角三角形,将其中一个三角形沿着BC 方向平移BE 的距离,就得到此图形,求阴影部分的面积.(单位:厘米)演练巩固 反馈提高01.如图,由A 测B 得方向是( )A .南偏东30°B .南偏东60°C .北偏西30°D .北偏西60°02.命题:①对顶角相等;②相等的角是对顶角;③垂直于同一条直线的两直线平行;④平行于同一条直线的两直线垂直.其中的真命题的有( ) A .1个 B .2个 C .3个 D .4个03.一个学员在广场上练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,两次拐弯的角度可能是( ) A .第一次向左拐30°,第二次向右拐30° B .第一次向右拐50°,第二次向左拐130°C .第一次向左拐50°,第二次向右拐130°D .第一次向左拐60°,第二次向左拐120°04.下列命题中,正确的是( )A .对顶角相等B . 同位角相等C .内错角相等D .同旁内角互补05.学习了平行线后,小敏想出过直线外一点画这条直线的平行线的新方法,是通过折一张半透明的纸得到的[如图⑴—⑷]从图中可知,小敏画平行线的依据有( )①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行. A .①② B .②③ C .③④ D .①④06.在A 、B 两座工厂之间要修建一条笔直的公路,从A 地测得B 地的走向是南偏东52°.现A 、B 两地要同时开工,若干天后,公路准确对接,则B 地所修公路的走向应该是( )A .北偏东52°B .南偏东52°C .西偏北52°D .北偏西38°B B /AA /C C /150°120°DBCE 湖07.下列几种运动中属于平移的有()①水平运输带上的砖的运动;②笔直的高诉公路上行驶的汽车的运动(忽略车轮的转动);③升降机上下做机械运动;④足球场上足球的运动.A.1种B.2种C.3种D.4种08.如图,网格中的房子图案正好处于网格右下角的位置.平移这个图案,使它正好位于左上角的位置(不能出格)09.观察图,哪个图是由图⑴平移而得到的()10.如图,AD∥BC,AB∥CD,AE⊥BC,现将△ABE进行平移. 平移方向为射线AD的方向. 平移距离为线段BC的长,则平移得到的三角形是图中()图的阴影部分.11.判断下列命题是真命题还是假命题,如果是假命题,举出一个反例.⑴对顶角是相等的角;⑵相等的角是对顶角;⑶两个锐角的和是钝角;⑷同旁内角互补,两直线平行.12.把下列命题改写成“如果……那么……”的形式,并指出命题的真假.⑴互补的角是邻补角;⑵两个锐角的和是锐角;⑶直角都相等.13.如图,在湖边修一条公路.如果第一个拐弯处∠A=120°,第二个拐弯处∠B =150°,第三个拐弯处∠C,这时道路CE恰好和道路AD平行,问∠C是多少度?并说明理由.DEAB CE DB CE D AB CED AB CEDA B C43 2 1ABE F CD 4 P 23 1A BEFC D 14.如图,一条河流两岸是平行的,当小船行驶到河中E 点时,与两岸码头B 、D 成64°角. 当小船行驶到河中F 点时,看B 点和D 点的视线FB 、FD 恰好有∠1=∠2,∠3=∠4的关系. 你能说出此时点F 与码头B 、D 所形成的角∠BFD 的度数吗?15.如图,AB ∥CD ,∠1=∠2,试说明∠E 和∠F 的关系.培优升级·奥赛检测01.如图,等边△ABC 各边都被分成五等分,这样在△ABC 内能与△DEF 完成重合的小三角形共有25个,那么在△ABC 内由△DEF 平移得到的三角形共有( )个02.如图,一足球运动员在球场上点A 处看到足球从B 点沿着BO 方向匀速滚来,运动员立即从A 处以匀速直线奔跑前去拦截足球.若足球滚动的速度与该运动员奔跑的速度相同,请标出运动员的平移方向及最快能截住足球的位置.(运动员奔跑于足球滚动视为点的平移) 03.如图,长方体的长AB =4cm ,宽BC =3cm ,高AA 1=2cm . 将AC 平移到A 1C 1的位置上时,平移的距离是___________,平移的方向是___________. 04.如图是图形的操作过程(五个矩形水平方向的边长均为a ,竖直方向的边长为b );将线段A 1A 2向右平移1个单位得到B 1B 2,得到封闭图形A 1A2B 2B 1 [即阴影部分如图⑴];将折现A 1A 2 A 3向右平移1个单位得到B 1B 2B 3,得到封闭图形A 1A 2 A 3B 3B 2B 1[即阴影部分如图⑵];⑴在图⑶中,请你类似地画出一条有两个折点的直线,同样的向右平移1个单位,从而得到1个封闭图形,并画出阴影.⑵请你分别写出上述三个阴影部分的面积S 1=________, S 2=________, S 3=________. ⑶联想与探究:如图⑷,在一矩形草地上,有一条弯曲的柏油小路(小路在任何地方的水平宽度都是1个单位),请你猜想空白部分草地面积是多少?⑶⑷CB 1AA 1C 1D 1BD. AF E B A CG D05.一位模型赛车手遥控一辆赛车,先前进一半,然后原地逆时针旋转α°(0°<α°<180°),被称为一次操作,若5次后发现赛车回到出发点,则α°角为( ) A .720° B .108°或144° C .144° D .720°或144°06.两条直线a 、b 互相平行,直线a 上顺次有10个点A 1、A 2、…、A 10,直线b上顺次有10个点B 1、B 2、…、B 9,将a 上每一点与b 上每一点相连可得线段.若没有三条线段相交于同一点,则这些选段的交点个数是( ) A .90 B .1620 C .6480 D .200607.如图,已知AB ∥CD ,∠B =100°,EF 平分∠BEC ,EG ⊥EF . 求∠BEG 和∠DEG .08.如图,AB ∥CD ,∠BAE =30°,∠DCE =60°,EF 、EG 三等分∠AEC . 问:EF 与EG 中有没有与AB 平行的直线?为什么? 09.如图,已知直线CB ∥OA ,∠C =∠OAB =100°,E 、F 在CB 上,且满足∠FOB =∠AOB ,OE 平分∠COF . ⑴求∠EOB 的度数;⑵若平行移动AB ,那么∠OBC :∠OFC 的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.⑶在平行移动AB 的过程中,是否存在某种情况,使∠OEC =∠OBA ?若存在,求出其度数;若不存在,说明理由.10.平面上有5条直线,其中任意两条都不平行,那么在这5条直线两两相交所成的角中,至少有一个角不超过36°,请说明理由.11.如图,正方形ABCD 的边长为5,把它的对角线AC 分成n 段,以每一小段为对角线作小正方形,这n 个小正方形的周长之和为多少?12.如图将面积为a 2的小正方形和面积为b 2的大正方形放在一起,用添补法如何求出阴影部分面积?FEB AC GD 100° FE BAC O A BCD第06讲 实 数考点·方法·破译 1.平方根与立方根:若2x =a (a ≥0)则x 叫做a 的平方根,记为:a 的平方根为x =a 的平方根为xa 的算术平方根.若x 3=a ,则x 叫做a 的立方根.记为:a 的立方根为x.2.无限不循环小数叫做无理数,有理数和无理数统称实数.实数与数轴上的点一一对应.任何有理数都可以表示为分数pq(p 、q 是两个互质的整数,且q≠0)的形式. 3非负数:实数的绝对值,实数的偶次幂,非负数的算术平方根(或偶次方根)都是非负数.即a >0,2na ≥0(n 为正整数)0(a ≥0) .经典·考题·赏析【例1】若2m -4与3m -1是同一个数的平方根,求m 的值. 【解法指导】一个正数的平方根有两个,并且这两个数互为相反数.∵2m −4与3m −l 是同一个数的平方根,∴2m −4 +3m −l =0,5m =5,m =l .【变式题组】01.一个数的立方根与它的算术平方根相等,则这个数是____. 02.已知m的最大整数,则m 的平方根是____. 03____.04.如图,有一个数值转化器,当输入的x 为64时,输出的y 是____.【例2】(全国竞赛)已知非零实数a 、b 满足24242a b a -+++=,则a +b 等于( ) A .-1 B . 0 C .1 D .2有意义,∵a 、b 为非零实数,∴b 2>0∴a -3≥0a ≥3∵24242a b a -+++=∴24242a b a -+++=,∴20b +=.∴()22030b a b +=⎧⎪⎨-=⎪⎩,∴32a b =⎧⎨=-⎩,故选C .【变式题组】0l3b +=0成立,则a b =____. 02()230b -=,则ab的平方根是____. 03.(天津)若x 、y 为实数,且20x +=,则2009x y ⎛⎫⎪⎝⎭的值为( )A .1B .-1C .2D .-204.已知x1x π-的值是( )A .11π-B .11π+C .11π- D .无法确定【例3】若a 、b都为有理效,且满足1a b -=+a +b 的平方根.【解法指导】任何两个有理数的和、差、积、商(除数不为0)还是有理数,但两个无理数的和、差、积、商(除数不为0)不一定是无理数.∵1a b -+=+∴1a b -=⎧⎪=1a b -=⎧⎪=,∴1312a b =⎧⎨=⎩,a +b =12 +13=25.∴a +b的平方根为:5==±. 【变式题组】01.(西安市竞赛题)已知m 、n2)m +(3-n +7=0求m 、n .02.(希望杯试题)设x 、y 都是有理数,且满足方程(123π+)x +(132π+)y −4−π=0,则x −y =____.【例4】若a−2的整数部分,b −1是9的平方根,且a b b a -=-,求a +b 的值.【解法指导】−2=整数部分+小数部分.整数部分估算可得2,则小数部分−2 −2−4.∵a =2,b −1=±3 ,∴b =-2或4∵a b b a -=-.∴a <b ,∴a =2, b =4,即a +b =6. 【变式题组】01.若3a ,b ,则a +b 的值为____. 02a ,小数部分为ba )·b =____. 演练巩固 反馈提高 0l .下列说法正确的是( )A .-2是(-2)2的算术平方根B .3是-9的算术平方根C . 16的平方根是±4D .27的立方根是±3 02.设a =b = -2,2c =-,则a 、b 、c 的大小关系是( ) A .a <b <c B .a <c <b C . b <a <c D .c <a <b 03.下列各组数中,互为相反数的是( )A .-9与81的平方根B .4与C .4D .304.在实数1.414,,0.1•5•,π,3.1•4•( ) A .2个 B .3个 C .4个 D . 5个05.实数a 、b 在数轴上表示的位置如图所示,则( )A .b >aB .a b >C . -a <bD .-b > a06.现有四个无理数5,6,7,8,其中在2+1与3+1之间的有( )A . 1个B .2个C . 3个D .4个 07.设m 是9的平方根,n =()23.则m ,n 的关系是( )A . m =±nB .m =nC .m =-nD .m n ≠08.(烟台)如图,数轴上 A 、B 两点表示的数分别为-1和3,点B 关于点A的对称点C ,则点C 所表示的数为( )A .-23-B .-13-C .-2 +3D .l +309.点A 在数轴上和原点相距5个单位,点B 在数轴上和原点相距3个单位,且点B 在点A 左边,则A 、B 之间的距离为____. 10.用计算器探索:已知按一定规律排列的一组数:1,12,13…,119,120.如果从中选出若干个数,使它的和大于3,那么至少要选____个数. 11.对于任意不相等的两个数a 、b ,定义一种运算※如下:a ※b =a ba b+-,如3※2=3232+-=5.那么12.※4=____. 12.(长沙中考题)已知a 、b 为两个连续整数,且a <7 <b ,则a +b =____.13.对实数a 、b ,定义运算“*”,如下a *b =()()22a ba b aba b ⎧⎪⎨⎪⎩≥<,已知3*m =36,则实数m =____.14.设a 是大于1的实数.若a ,23a +,213a +在数轴上对应的点分别是A 、B 、C ,则三点在数轴上从左自右的顺序是____.15.如图,直径为1的圆与数轴有唯一的公共点P .点P 表示的实数为-1.如果该圆沿数轴正方向滚动一周后与数轴的公共点为P ′,那么点P ′所表示的数是____.16.已知整数x 、y 满足x +2y =50,求x 、y .17.已知2a −1的平方根是±3,3a +b −1的算术平方根是4,求a +b +1的立方根.18.小颖同学在电脑上做扇形滚动的游戏,如图有一圆心角为60°,半径为1个单位长的扇形放置在数轴上,当扇形在数轴上做无滑动的滚动时,当B 点恰好落在数轴上时,(1)求此时B 点所对的数;(2)求圆心O 移动的路程.19.若b 315a - 153a - +3l ,且a +11的算术平方根为m ,4b +1的立方根为n ,求(mn −2)(3mn +4)的平方根与立方根.20.若x 、y 为实数,且(x −y +1)2533x y --22x y +值.培优升级 奥赛检测 01.(荆州市八年级数学联赛试题)一个正数x 的两个平方根分别是a +1与a −3,则a 值为( )A . 2B .-1C . 1D . 0 02.x 1x -2x -( )A .0B . 12C .1D . 2 0353x +−2的最小值为____.04.设a 、b 为有理数,且a 、b 满足等式a 2+3b +33,则a +b =____. 05.若a b -=1,且3a =4b ,则在数轴上表示a 、b 两数对应点的距离为____. 06.已知实数a 满足20092010a a a --=,则a − 20092=_______.m 满足关系式3523199199x y m x y m x y x y +--+-=-+--,试确定m 的值.08.(全国联赛)若a 、b满足5b =7,S=3b ,求S 的取值范围.09.(北京市初二年级竞赛试题)已知0<a <1,并且123303030a a a ⎡⎤⎡⎤⎡⎤+++++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2830a ⎡⎤+++⎢⎥⎣⎦2930a ⎡⎤++⎢⎥⎣⎦18=,求[10a ]的值[其中[x ]表示不超过x 的最大整数] .10.(北京竞赛试题)已知实数a 、b 、x 、y 满足y+21a =-,231x y b -=--,求22x y a b +++的值.第14讲平面直角坐标系(一)考点.方法.破译1.认识有序数对,认识平面直角坐标系.2.了解点与坐标的对应关系.3.会根据点的坐标特点,求图形的面积.经典.考题.赏析【例1】在坐标平面内描出下列各点的位置.A(2,1),B(1,2),C(-1,2),D(-2,-1),E(0,3),F(-3,0)【解法指导】从点的坐标的意义去思考,在描点时要注意点的坐标的有序性.【变式题组】01.第三象限的点P(x,y),满足|x|=5,2x+|y|=1,则点P得坐标是_____________.02.在平面直角坐标系中,如果m.n>0,那么(m, |n|)一定在____________象限.03.指出下列各点所在的象限或坐标轴.A(-3,0),B(-2,-13),C(2,12),D(0,3),E(π-3.14,3.14-π)【例2】若点P(a,b)在第四象限,则点Q(―a,b―1)在()A.第一象限B.第二象限C.第三象限D.第四象限【解法指导】∵P(a,b)在第四象限,∴a>0,b<0,∴-a<0,b-1<0,故选C.【变式题组】01.若点G(a,2-a)是第二象限的点,则a的取值范围是()A.a<0 B.a<2 C.0<a<2 B.a<0或a >202.如果点P(3x-2,2-x)在第四象限,则x的取值范围是____________.03.若点P(x,y)满足xy>0,则点P在第______________象限.04.已知点P(2a-8,2-a)是第三象限的整点,则该点的坐标为___________.【例3】已知A点与点B(-3,4)关于x轴对称,求点A关于y轴对称的点的坐标.【解法指导】关于x轴对称的点的坐标的特点:横坐标(x)相等,纵坐标(y)互为相反数,关于y轴对称的点的坐标特点:横坐标互为相反数,纵坐标(y)相等.【变式题组】01.P(-1,3)关于x轴对称的点的坐标为____________.02.P(3,-2)关于y轴对称的点的坐标为____________.03.P(a,b)关于原点对称的点的坐标为____________.04.点A(-3,2m-1) 关于原点对称的点在第四象限,则m的取值范围是____________.05.如果点M(a+b,ab)在第二象限内,那么点N(a,b) 关于y轴对称的点在第______象限.【例4】P(3,-4),则点P到x轴的距离是____________.【解法指导】P(x,y)到x轴的距离是| y|,到y轴的距离是|x|.则P到轴的距离是|-4|=4【变式题组】01.已知点P(3,5),Q(6,-5),则点P、Q到x轴的距离分别是_________,__________.P到y轴的距离是点Q到y轴的距离的________倍.02.若x轴上的点P到y轴的距离是3,则P点的坐标是__________.03.如果点B(m+1,3m-5) 到x轴的距离与它到y轴的距离相等,求m的值.04.若点(5-a,a-3)在一、三象限的角平分线上,求a的值.05.已知两点A(-3,m),B(n,4),AB∥x轴,求m的值,并确定n的取值范围.。
七年级数学正负数讲义、概念讲解、难点分析、典型例题人教版
正数、负数与有理数【基础知识精讲】一、正数与负数1.负数的产生生产和生活以及数学本身的需要-------在实际生活中表示相反意义的量已经学过自然数、分数、小数.但在实际生活中,这些数是不够用的。
例如:某地白天最高温度为6℃, 由于强冷空气经过,温度急剧下降了9℃,那么这时温度是多少呢?这一实际问题,可以用减法来解,即求出6-9的差,为了解决许多实际问题中出现的“不够减”的矛盾,在数学上引进了一种新数,即负数,如规定:6-9=-3.这里的“-3”是一个比零还小的数,数字3前面的“-”号读为“负”.回到实际问题中,-3℃就是我们熟悉的零下3℃,这样,引入了负数,就可以解决以往数学学习中的较小的数不能减较大的数的矛盾.2、正负数的概念:正数:大于0的数,叫做正数。
为了强调,正数前面有时也可加上“+”(读作正)号。
负数:小于0的数叫负数。
在数字前用“-”相当于减号做标记。
代表性质符号。
3、数00既不是正数,也不是负数,零的意义,过去表示“没有”,在引入负数后,就不能说“0”表示“没有”了,如温度是0℃,也表示一个特定的温度,不能说没有温度.正负数以0分界,0是一个非负、非正的中性数.4.相反意义的量与正负数举几个例子.(1)零上的温度与零下的温度.某一天,最高气温是零上5℃,最低气温是零下8℃,“零上”与“零下”其意义是相反的.(2)高于海平面和低于海平面的海拔高度.珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.现实世界中在数量关系上具有相反意义的客观事物是大量存在的,我们可以用正数和负数来表示具有相反以意义的事物的量.例如,①甲地高出海平面168米,乙地低于海平面52米,可以分别记作:+168米和-52米;②某冷库运出货物18吨,又运进货物25吨,可分别记作:-18吨和+25吨.③某家庭月收入1500元,支出950元,可分别记作:+1500元和-950元.如果正数表示某种意义的量,那么负数就表示其相反意义的量.如果正数表示向南走的距离,那么负数就表示向北走的距离.二.有理数概念小学数学中讲到的整数是指自然数与0,在自然数前面加上“-”号的数,叫做负整数,负整数也是整数.小学数学中讲到的分数(包括小数),实际上是正分数,在正分数的前面加上“-”号的数,叫做负分数.正分数和负分数统称分数.整数和分数统称为有理数.因此有理数可以作如下的分类:有理数有理数还可以根据正、负来分类,即:有理数⎪⎩⎪⎨⎧负有理数零正有理数三、【重点难点解析】1.本节重点是理解有理数的意义、分类和有理数的应用;难点是理解负数的意义.2.正数和负数是根据实际需要而产生的。
二元一次方程组的解法(教师版)2021-2022学年七年级数学下册同步精品讲义(人教版)
第17课二元一次方程组的解法目标导航课程标准1. 理解消元的思想;2. 会用代入法解二元一次方程组.3. 掌握加减消元法解二元一次方程组的方法;4. 能熟练、正确、灵活掌握代入法和加减法解二元一次方程组;5.会对一些特殊的方程组进行特殊的求解.知识精讲知识点01 消元法1.消元思想:二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再求出另一个未知数. 这种将未知数由多化少、逐一解决的思想,叫做消元思想.2.消元的基本思路:未知数由多变少.3.消元的基本方法:把二元一次方程组转化为一元一次方程.知识点02 代入消元法通过“代入”消去一个未知数,将方程组转化为一元一次方程,这种解法叫做代入消元法,简称代入法.注意:(1)代入消元法的关键是先把系数较简单的方程变形为用含一个未知数的式子表示另一个未知数的形式,再代入另一个方程中达到消元的目的.(2)代入消元法的技巧是:①当方程组中含有一个未知数表示另一个未知数的代数式时,可以直接利用代入法求解;②若方程组中有未知数的系数为1(或-1)的方程.则选择系数为1(或-1)的方程进行变形比较简便;(3)若方程组中所有方程里的未知数的系数都不是1或-1,选系数的绝对值较小的方程变形比较简便.代入消元法的一般步骤:(1)转化:从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)代入:把(1)中所得的方程代入另一个方程,消去一个未知数.(3)求解:解所得到的一元一次方程,求得一个未知数的值.(4)回代、写解:把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.(5)检验: 把方程组的解代回方程组检验,当满足每个方程时才是方程组的解。
知识点03 加减消元法解二元一次方程组两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法. 注意: 用加减消元法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,那么就用适当的数乘方程的两边,使同一个未知数的系数互为相反数或相等;(2)把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;(3)解这个一元一次方程,求得一个未知数的值;(4)将这个求得的未知数的值代入原方程组中的任意一个方程中,求出另一个未知数的值,并把求得的两个未知数的值用“大括号”联立起来,就是方程组的解.知识点04 选择适当的方法解二元一次方程组解二元一次方程组的基本思想(一般思路)是消元,消元的方法有两种:代入消元和加减消元,通过适当练习做到巧妙选择,快速消元.考法01 用代入法解二元一次方程组【典例1】用代入法解方程组:【分析】比较两个方程未知数的系数,发现①中x 的系数较小,所以先把方程①中x 用y 表示出来,代入②,这样会使计算比较简便.【答案与解析】解:由①得 ③ 将③代入② ,解得. 237338x y x y +=⎧⎨-=⎩①②732y x -=733382y y -⨯-=13y =能力拓展将代入③,得x =3 所以原方程组的解为. 【点睛】代入法是解二元一次方程组的一种重要方法,也是同学们最先学习到的解二元一次方程组的方法,用代入法解二元一次方程组的步骤可概括为:一“变”、二“消”、三“解”、四“代”、五“写”.【即学即练】m 取什么数值时,方程组的解(1)是正数;(2)当m 取什么整数时,方程组的解是正整数?并求它的所有正整数解.【答案】(1)m 是大于-4 的数时,原方程组的解为正数;(2)m=-3,-2,0,.【典例2】对于某些数学问题,灵活运用整体思想,可以化难为易.在解二元一次方程组时,就可以运用整体代入法:如解方程组:解:把②代入①得,x+2×1=3,解得x=1.把x=1代入②得,y=0.所以方程组的解为 请用同样的方法解方程组:.【分析】仿照已知整体代入法求出方程组的解即可.【答案与解析】解:由①得,2x ﹣y=2③,把③代入②得,1+2y=9,解得:y=4,把y=4代入③得,x=3,则方程组的解为【点睛】本题体现了整体思想在解二元一次方程组时的优越性,利用整体思想可简化计算.【即学即练】解方程组(1)(2)【答案】 13y =313x y =⎧⎪⎨=⎪⎩2320,2352y 9.7x y x y --=⎧⎪-+⎨+=⎪⎩45:4:3x y x y -=⎧⎨=⎩①②解: 将①代入②:, 得 y=4,将y=4代入①:2x -12=2得 x=7,∴原方程组的解是. (2) 解:由②,设x=4,y=3代入①:4-4·3=54-12=5-8=5∴,, ∴原方程组的解为. 考法02 方程组解的应用【典例3】如果方程组359x y x y +=⎧⎨-=⎩的解是方程3x+my=8的一个解,则m=( ) A .1B .2C .3D .4 【分析】求出方程组的解得到x 与y 的值,代入已知方程即可求出m 的值. 【答案】B .【解析】解:, 由①得y=3-x ③将③代入②得:6x=12,解得:x=2,将x=2代入②得:10﹣y=9,解得:y=1,将x=2,y=1代入3x+my=8中得:6+m=8,解得:m=2. 232235297x y x y y -=⎧⎪⎨-++=⎪⎩①②25297y ++=74x y =⎧⎨=⎩45:4:3x y x y -=⎧⎨=⎩①②k k k k k k k 58k =-542x k ==-1538y k ==-52158x y ⎧=-⎪⎪⎨⎪=-⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.【典例4】已知和方程组的解相同,求的值.【分析】两个方程组有相同的解,这个解是2x+5y =-6和3x-5y =16的解.由于这两个方程的系数都已知,故可联立在一起,求出x 、y 的值.再将x 、y 的值代入ax-by =-4,bx+ay =-8中建立关于a 、b 的方程组即可求出a 、b 的值.【答案与解析】解:依题意联立方程组①+③得5x =10,解得x =2.把x =2代入①得:2×2+5y =-6,解得y =-2,所以, 又联立方程组,则有, 解得. 所以(2a+b)2011=-1.【点睛】求方程(组)中的系数,需建立关于系数的方程(组)来求解,本例中利用解相同,将方程组重新组合换位联立是解答本题的关键.【即学即练】小明和小文解一个二元一次组322cx y ax by -=-⎧⎨+=⎩小明正确解得11x y =⎧⎨=-⎩小文因抄错了c ,解得26x y =⎧⎨=-⎩已知小文除抄错了c 外没有发生其他错误,求a+b+c 的值.【答案】解:把代入cx ﹣3y=﹣2,得c+3=﹣2,解得:c=﹣5,把与分别代入ax+by=2,得,解得:, 2564x y ax by +=-⎧⎨-=-⎩①②35168x y bx ay -=⎧⎨+=-⎩③④2011(2)a b +2563516①x y x y +=-⎧⎨-=⎩③22x y =⎧⎨=-⎩48ax by bx ay -=-⎧⎨+=-⎩224228a b a b +=-⎧⎨-+=-⎩13a b =⎧⎨=-⎩则a+b+c=2+﹣5=3﹣5=﹣2.考法03 加减法解二元一次方程组【典例5】用加减消元法解方程组3465923x y x y ++== 【分析】先将原方程写成方程组的形式后,再求解.【答案与解析】 解:此式可化为:349(1)2659(2)3x y x y +⎧=⎪⎪⎨+⎪=⎪⎩ 由(1):3x+4y=18 (1)由(2):6x+5y=27 (2)(1)×2:6x+8y=36 (3)(3)-(2):3y=9y=3代入(1):3x+12=183x=6x=2∴23x y =⎧⎨=⎩【点睛】先将每个式子化至最简,即形如ax+by=c 的形式再消元.【即学即练】方程组201020092008200820072006x y x y -=⎧⎨-=⎩的解为: . 【答案】12x y =-⎧⎨=-⎩【典例6】若关于x 、y 的二元一次方程组1615ax my bx ny -=⎧⎨+=⎩的解为71x y =⎧⎨=-⎩,求关于x 、y 的方程组(2)()16(2)()15a x y m x yb x y n x y +--=⎧⎨++-=⎩的解. 【分析】如果用一般方法来解答此题,很难达到目标,观察发现,两方程的系数相同,只是未知数的呈现方式不同,如果我们把2x +y ,x -y 看作一个整体,则两个方程同解.【答案与解析】解:方程组的解仅仅与未知数的系数有关,与未知数选用什么字母无关,因此把(2x +y )与(x -y )分别看成一个整体当作未知数,可得27,1.x y x y +=⎧⎨-=-⎩ 解得:23x y =⎧⎨=⎩【点睛】本例采用了类比的方法,利用了消元的思想,消元的方法有:代入消元法与加减消元法.【即学即练】三个同学对问题“若方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是: .【答案】解:由方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,得1112223434a b c a b c +=⎧⎨+=⎩, 上式可写成111222352105352105a b c a b c ⨯+⨯=⎧⎨⨯+⨯=⎩,与111222325325a x b y c a x b y c +=⎧⎨+=⎩比较, 可得:510x y =⎧⎨=⎩. 考法04 用适当方法解二元一次方程组【典例7】解方程组36101610x y x y x y x y +-⎧+=⎪⎪⎨+-⎪-=-⎪⎩ 【分析】解决本题有多种方法:加减法或代入法,或整体代入法,整体代入法最简单.【答案与解析】 解:设,610x y x y m n +-==,则 原方程组可化为31m n m n +=⎧⎨-=-⎩①② 解得12m n =⎧⎨=⎩即16210x y x y +⎧=⎪⎪⎨-⎪=⎪⎩ ,所以620x y x y +=⎧⎨-=⎩ 解得137x y =⎧⎨=-⎩所以原方程组的解为137x y =⎧⎨=-⎩. 【点睛】解一个方程组的方法一般有多种方法,我们要根据方程组的特点选择最简便的求解方法.【即学即练】【答案】解:去分母,整理化简得,9112061925x y x y +=⎧⎨+=⎩①②, ②×3-①×2得,3535y =,即1y =,将1y =代入①得,99x =,即1x =,所以原方程组的解为11x y =⎧⎨=⎩.【典例8】试求方程组27526x y x y ⎧-=--⎪⎨-=-⎪⎩的解. 【答案与解析】 解:27526x y x y ⎧-=--⎪⎨-=-⎪⎩①② ①-②,整理得513y y -=- ③ ∵50y -≥,∴13-y ≥0,即y ≤13,当513y ≤≤时,③可化为513y y -=-,解得9y =;当5y ≤时,③可化为513y y -=-,无解.将9y =代入②,得23x -=,解得15x =-或.综上可得,原方程组的解为:19x y =-⎧⎨=⎩或59x y =⎧⎨=⎩.【点睛】解含有绝对值的方程组,一般先转化为含绝对值的一元一次方程,再分类讨论求出解.【即学即练】若二元一次方程组37231x y x y -=⎧⎨+=⎩和y=kx+9有相同解,求(k+1)2的值.【答案】解:方程组,①×3+②得:11x=22,解得:x=2,将x=2代入①得:6﹣y=7,解得:y=﹣1,∴方程组的解为, 将代入y=kx+9得:k=﹣5, 则当k=﹣5时,(k+1)2=16.题组A 基础过关练1.用加减法解方程组235327x y x y -=⎧⎨-=⎩①②下列解法错误的是( ) A .①×3-②×2,消去xB .①×2-②×3,消去yC .①×(-3)+②×2,消去xD .①×2-②×(-3),消去y 【答案】D【解析】【详解】本题考查了加减法解二元一次方程组用加减法解二元一次方程组时,必须使同一未知数的系数相等或者互为相反数.如果系数相等,那么相减消元;如果系数互为相反数,那么相加消元.A 、32⨯-⨯①②,可消去x ,故不合题意;B 、23⨯-⨯①②,可消去y ,故不合题意;C 、(3)2⨯-+⨯①②,可消去x ,故不合题意;D 、2(3)⨯-⨯-①②,得,不能消去y ,符合题意. 故选D . 分层提分2.用加减消元法解二元一次方程组3421x yx y+=⎧⎨-=⎩①②时,下列方法中无法消元的是()A.①×2﹣②B.②×(﹣3)﹣①C.①×(﹣2)+②D.①﹣②×3【答案】D【解析】【分析】根据各选项分别计算,即可解答.【详解】方程组利用加减消元法变形即可.解:A、①×2﹣②可以消元x,不符合题意;B、②×(﹣3)﹣①可以消元y,不符合题意;C、①×(﹣2)+②可以消元x,不符合题意;D、①﹣②×3无法消元,符合题意.故选:D.【点睛】本题考查了加减消元法解二元一次方程组,只有当两个二元一次方程未知数的系数相同或相反时才可以用加减法消元,系数相同相减消元,系数相反相加消元.3.解方程组231367x yx y+=⎧⎨-=⎩①②,用加减法消去y,需要()A.①×2﹣②B.①×3﹣②×2C.①×2+②D.①×3+②×2【答案】C【解析】【分析】先把的系数化成绝对值相等的方程,再相加即可.【详解】解:①×2得:4x+6y=2③,③+②得:7x=9,即用减法消去y,需要①×2+②,故选C.【点睛】本题考查了解二元一次方程组的应用,主要考查学生的理解能力和计算能力.4.用加减法将方程组2311255x yx y-=⎧⎨+=-⎩中的未知数x消去后,得到的方程是().A.26y= B.816y=C.26y-=D.816y-=【答案】D【解析】【分析】方程组两方程相减消去x即可得到结果.【详解】解:2311? 255?x yx y-=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16,故选D.【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.5.利用加减消元法解方程组2510{536x yx y+=-=,①②,下列做法正确的是()A.要消去y,可以将①×5+②×2B.要消去x,可以将①×3+②×(-5)C.要消去y,可以将①×5+②×3D.要消去x,可以将①×(-5)+②×2【答案】D【解析】【详解】由已知可得,消元的方法有两种,分别为:(1)要消去y,可以将①×3+②×5;(2)要消去x,可以将①×(-5)+②×2.故选D6.用代入消元法解方程组3+4=225x yx y⎧⎨-=⎩①②使得代入后化简比较容易的变形是()A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得y=2x-5【答案】D【解析】【分析】根据代入消元法解二元一次方程组的步骤可知变形②更简单.【详解】解:观察方程①②可知,②中的系数为-1,比其它未知数的系数更为简单,所只要将②变形为y=2x-5③,再把③代入①即可求出方程组的解.故应选D.【点睛】本题考查了用代入消元法解二元一次方程组,理解代入消元法解方程组时化简系数较简单的方程是解题的关键.7.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4B.4C.﹣2D.2【答案】B【解析】【详解】试题解析:512{34a ba b+=-=①②,①+②:4a+4b=16则a+b=4,故选B.考点:解二元一次方程组.8.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2B2C.2D.4【解析】【详解】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,∴2+=8{2=1m n n m -,解得=3{=2m n . 2=232=4=2m n -⨯-.即2m n -的算术平方根为2.故选C .9.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩【答案】D【解析】【详解】 分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可. 详解:∵32120x y x y --+-=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②, ①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.10.以方程组21x y x y +=⎧⎨-=⎩的解为坐标的点(x ,y )在平面直角坐标系中的位置是( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】A【分析】先求出方程组的解,然后即可判断点的位置.【详解】解:解方程组21x y x y +=⎧⎨-=⎩,得 1.50.5x y =⎧⎨=⎩, ∴点(1.5,0.5)在第一象限.故选:A .【点睛】本题考查了二元一次方程组的解法和坐标系中点的坐标特点,属于基本题型,熟练掌握上述基础知识是解题关键.11.若方程组31331x y a x y a+=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( ) A .﹣1B .1C .0D .无法确定 【答案】A【解析】【详解】试题解析:方程组两方程相加得:4(x+y )=2+2a ,即x+y=12(1+a ),由x+y=0,得到12(1+a )=0,解得:a=-1.故选A . 12.在解方程组2278ax by cx y +=⎧⎨+=⎩,时,甲同学正确解得32x y =⎧⎨=⎩,乙同学把c 看错了,而得到26x y =-⎧⎨=⎩,那么a ,b ,c 的值为( )A .2a =-,4b =,5c =B .4a =,5b =,2c =-C .5a =,4b =,2c =D .不能确定 【答案】B【解析】【分析】【详解】解:由甲同学的解正确,可知3c+2×7=8,解得2,c =-且3222a b +=①,由于乙看错c ,所以2622a b -+=②,解由①②构成的方程组可得:4,5a b =⎧⎨=⎩故选B .题组B 能力提升练13.已知23x y +=,用含x 的代数式表示y =________.【答案】y=3-2x【解析】【详解】23x y +=移项得:y=3-2x.故答案是:y=3-2x .14.已知x 、y 满足方程组2524x y x y +=⎧⎨+=⎩,则x y -的值为___. 【答案】1【解析】【分析】首先根据方程组的解的定义正确求出方程组的解,然后计算出x -y 或直接让两个方程相减求解.【详解】方法一:解方程组2524x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩, ∴x -y=1;方法二:两个方程相减,得.x -y=1,【点睛】本题考查了解二元一次方程组,熟练掌握解二元一次方程组的基本方法是解题的关键,同时注意此题中的整体思想.15.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. 【答案】1【解析】【分析】根据题意,把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.【详解】解:根据题意把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得 345432b a b a +⎧⎨+⎩=①=②, ①+②,得:7(a+b )=7,则a+b=1,故答案为:1.【点睛】此题主要考查了二元一次方程组的解的定义以及加减消元法解方程组.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意两个方程组有相同的解时,往往需要将两个方程组进行重组解题.16.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是_____. 【答案】24.【解析】【分析】把x y 3x 5y +-、分别看作一个整体,代入进行计算即可得解.解:∵x y 73x 5y 3+=⎧⎨-=-⎩, ∴()()()3x y 3x 5y 37324+--=⨯--=.故答案为:24.17.已知关于x 、y 的方程221255x y a x y a +=+⎧⎨+=-⎩的解满足3x y +=-,则a 的值为__________________. 【答案】5【解析】【分析】①+②可得x+y=2-a ,然后列出关于a 的方程求解即可.【详解】解:221255x y a x y a +=+⎧⎨+=-⎩①②, ①+②,得3x+3y=6-3a ,∴x+y=2-a ,∵3x y +=-,∴2-a=-3,∴a=5.故答案为:5.【点睛】本题考查了二元一次方程组的特殊解法,在求二元一次方程组中两个未知数的和或差的时候,有时可以采用把两个方程直接相加或相减的方法,而不必求出两个未知数的具体值.18.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为 . 【答案】2【解析】【详解】把x 2{y 1==代入方程组mx ny 7{nx my 1+=-=,得:2m n 7{2n m 1+=-=,解得13m 5{9n 5==, ∴139m 3n 3855+=+⨯=33m 3n 82+=, 故答案为2.19.若单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,则m -7n 的算术平方根是_________.【答案】4【解析】【详解】试题分析:根据同类项定义由单项式﹣5x 4y 2m+n 与2017x m ﹣n y 2是同类项,可以得到关于m 、n 的二元一次方程4=m ﹣n ,2m+n=2,解得:m=2,n=﹣2,因此可求得m ﹣7n=16,即m ﹣7n 的算术平方根==4,故答案为 4.考点:1、算术平方根;2、同类项;3、解二元一次方程组 20.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 【答案】3212a b ⎧=⎪⎪⎨⎪=-⎪⎩【解析】【分析】方法一:利用关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩可得m 、n 的数值,代入关于a 、b 的方程组即可求解;方法二:根据方程组的特点可得方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是12a b a b +=⎧⎨-=⎩,再利用加减消元法即可求出a,b .【详解】详解:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩可得m=﹣1,n=2∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩整理为:42546a ba+=⎧⎨=⎩解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩方法二:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩∴方程组3()()=52()()6a b m a ba b n a b+--⎧⎨++-=⎩的解是12a ba b+=⎧⎨-=⎩解12a ba b+=⎧⎨-=⎩得3212ab⎧=⎪⎪⎨⎪=-⎪⎩故答案为:3212ab⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.21.若方程组2313{3530.9a ba b-=+=的解是8.3{1.2,ab==则方程组的解为________【答案】6.32.2 xy==⎧⎨⎩【解析】【详解】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为:6.3{2.2xy==.题组C 培优拔尖练22.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩ 【答案】(1)55x y ⎧=⎨=⎩;(2)025x y ⎧=⎪⎨=⎪⎩【解析】【分析】本题需要把两个方程组化简后,根据方程的形式选用合适的方法求解.【详解】(1)257320x y x y -=⎧⎨-=⎩, 整理得63157320-=⎧⎨-=⎩x y x y , 两式相减得:5x =,把 5x =代入25x y -=中,得y 5=;所以原方程组的解为:55x y ⎧=⎨=⎩. (2)原方程组变式为51565104x y x y ⎧+=⎨-=-⎩, 两式相减得:25y =, 将25y =代入5156x y +=中,得251565x +⨯=, 解得:0x =. 所以原方程组的解为025x y ⎧=⎪⎨=⎪⎩. 【点睛】本题考查了我二元一次方程组的解法,通过变形选择合适的方法求解是快速解题的关键.23.(1)用代入法解方程组:3759x y x y -=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31x y x y ⎧+=⎪⎨⎪+-=⎩【答案】(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.【解析】【分析】(1)由x-y=3得x=3+y,再代入求出x,再求出y;(2)先对原方程组变形,再运用加减消元法解答.【详解】解:(1)3759 x yx y-=⎧⎨+=-⎩①②由①得x=3+y③将③代入②得:y=1 22 -将y=122-代入③得:x=12-所以原方程组的解为:1x=21 y=22⎧⎪⎪⎨⎪-⎪⎩(2)原方程组可化为:3x212 235yx y+=⎧⎨-=-⎩①②①×2得:6x+4y=24③②×3得:6x-9y=-15④③-④得:13y=39,解得:y=3将y=3代入①中得:x=2所以原方程组的解为:x=2 y=3⎧⎨⎩【点睛】本题考查了二元一次方程组得两种解法,其关键在于扎实的计算能力和严谨的思维.24.甲、乙两名同学在解方程组5{213mx yx ny+=-=时,甲解题时看错了m,解得7{22xy==-;乙解题时看错了n,解得3{7xy==-.请你以上两种结果,求出原方程组的正确解.【答案】n = 3, m = 4,2 {3 xy==-【解析】【详解】试题分析:由题意可知722xy⎧=⎪⎨⎪=-⎩是方程213x ny-=的解,由此即可求得n的值;37xy=⎧⎨=-⎩是方程5mx y+=的解,由此看求得m的值;这样即可得到正确的原方程组,再解方程组,即可求得原方程组的正确解;试题解析:由题意可知722xy⎧=⎪⎨⎪=-⎩是方程213x ny-=的解,∴72(2)132n⨯--=,解得n=3;37xy =⎧⎨=-⎩是方程5mx y+=的解,∴375m-=,解得m=4;∴原方程组为:452313x yx y+=⎧⎨-=⎩,解此方程组得23xy=⎧⎨=-⎩,∴m=4,n=3,原方程组的解为:23 xy=⎧⎨=-⎩.点睛:在本题中“甲、乙两名同学在解方程组5213mx yx ny+=⎧⎨-=⎩时,甲解题时看错了m,解得722xy⎧=⎪⎨⎪=-⎩”这句话的含义是:“722xy⎧=⎪⎨⎪=-⎩”是关于x y、的二元一次方程“213x ny-=”的解.25.阅读探索解方程组(1)2(2)6 2(1)(2)6 a ba b-++=⎧⎨-++=⎩解:设a&#ξΦ02∆;1&#ξΦ03∆;x,b&#ξΦ02B;2&#ξΦ03∆;y,原方程组可变为26 26 x yx y+=⎧⎨+=⎩解方程组得22xy=⎧⎨=⎩,即1222ab-=⎧⎨+=⎩,所以3ab=⎧⎨=⎩.此种解方程组的方法叫换元法.(1)拓展提高运用上述方法解下列方程组:(1)2(2)4352(1)(2)535a b a b ⎧-++=⎪⎪⎨⎪-++=⎪⎩ (2)能力运用已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩,直接写出关于m 、n 的方程组1112225(3)3(2)5(3)3(2)a m b n c a m b n c ++-=⎧⎨++-=⎩的解为_______.【答案】(1)95a b =⎧⎨=-⎩;(2)23m n =-⎧⎨=⎩. 【解析】【分析】(1)设13a -=x ,25b +=y ,可得出关于x 、y 的方程组,即可求出x 、y 的值,进而可求出a 、b 的值;(2)设5(m+3)=x ,3(n -2)=y ,根据已知方程组的解确定出m 、n 的值即可.【详解】(1)设13a -=x ,25b +=y , 原方程组可变形为2425x y x y +=⎧⎨+=⎩, 解得:21x y =⎧⎨=⎩,即123215a b ⎧-=⎪⎪⎨⎪+=⎪⎩, 解得:95a b =⎧⎨=-⎩. (2)设5(m+3)=x ,3(n -2)=y ,原方程组可变形为:111222a x b y c a x b y c +=⎧⎨+=⎩, ∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为53x y =⎧⎨=⎩, ∴5(3)53(2)3m n +=⎧⎨-=⎩,解得:23mn=-⎧⎨=⎩.故答案为23 mn=-⎧⎨=⎩【点睛】本题考查解二元一次方程组,正确理解并熟练掌握换元法是解题关键.。
七年级(下)数学 同步讲义 实数的概念及数的开方 (解析版)
知识点1:实数的概念1、无限不循环的小数叫做无理数.注意:1)整数和分数统称为有理数; 2)圆周率π是一个无理数. 2、无理数也有正、负之分.如2、π、0.101001000100001等这样的数叫做正无理数;2-、π-、0.101001000100001-这样的数叫做负无理数;只有符号不同的两个无理数,如2与2-,π与π-,称它们互为相反数.实数、数的开方知识结构模块一 实数的概念和分类知识精讲3、有理数和无理数统称为实数. (1)按定义分类⎧⎫⎧⎪⎪⎨⎬⎨⎪⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数(2)按性质符号分类0⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数【例1】 写出下列各数中的无理数:3.1415926,2π,16,.0.5,0,23-,0.1313313331…(两个1之间依次多一个3),0.2121121112.【答案】2π、0.1313313331….【解析】无限不循环小数都是无理数. 【总结】考查无理数的概念.【例2】 判断正误,在后面的括号里对的用“√”,错的记“×”表示.(1)无限小数都是无理数. ( ) (2)无理数都是无限小数.( ) (3)带根号的数都是无理数.( ) (4)不带根号的数一定不是无理数.()【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)无限不循环小数才是无理数;(2)无理数是无限不循环小数当然是无限小数; (3)开方开不尽的数是无理数;(4)π没带根号但是无理数. 【总结】考查无理数的概念及无理数与小数的关系.【例3】 a 是正无理数与a 是非负无理数这两种说法是否一样?为什么. 【答案】一样.例题解析【解析】a 是非负无理数实质上就是说a 是正无理数,因为0不是无理数. 【总结】考查无理数的分类及无理数的概念.【例4】 若a +bx =c +dx (其中a 、b 、c 、d 为有理数,x 为无理数),则a =c ,b =d ,反之, 亦成立,这种说法正确吗?说明你的理由. 【答案】略.【解析】移项得:()()a c d b x -=-, 因为非零有理数乘以无理数的结果还是无理数,而a c -是有理数(两个有理数的差仍是有理数),忧伤0d b -=,从而0a c -=, 于是有:a c b d ==,,当a c b d ==,时,等式a bx c dx +=+成立. 【总结】考查有理数、无理数的运算性质.【例5】 3为什么是无理数?请说明理由.【解析】假设3是有理数,则3能写成两个整数之比的形式:3p q=, 又因为p 、q 没有公因数可以约去,所以pq是最简分数. 把3p q=两边平方,得223p q =,即223q p =.由于23q 是3的倍数,则p 必定是3的倍数.设3p m =, 则2239q m =, 同理q 必然也是3的倍数,设3q n =,既然p 、q 都是3的倍数,它们必定有公因数3,与前面假设pq是最简分数矛盾, 故3是无理数.【总结】考查对无理数的理解及证明.模块二:数的开方知识精讲一、开平方:1、定义:求一个数a的平方根的运算叫做开平方.2、如果一个数的平方等于a,那么这个数叫做a的平方根.这个数a叫做被开方数.x=±,1的平方根是1±.如21x=,1说明:1)只有非负数才有平方根,负数没有平方根;2)平方和开平方互为逆运算.3、算术平方根:正数a的两个平方根可以用“a的正平方根(又叫算术平方根),读作“根号a”;a的负平方根,读作“负根号a”.★注意:1)一个正数有两个平方根,这两个平方根互为相反数;零的平方根是0;2=2是被开方数的根指数,平方根的根指数为2,书写上一般平方根的根指数2略写;3)一个数的平方根是它本身,则这个数是0.二、开立方:1、定义:求一个数a的立方根的运算叫做开立方.2、如果一个数的立方等于a,那么这个数叫做a的立方根号a a叫做被开方数,“3”叫做根指数.★注意:1)任意一个实数都有立方根,而且只有一个立方根;负数有立方根;2)零的立方根是0;3)一个数的立方根是它本身,则这个数是0,1和-1.三、开n次方:1、求一个数a的n次方根的运算叫做开n次方.a叫做被开方数,n叫做根指数.2、如果一个数的n次方(n是大于1的整数)等于a,那么这个数叫做a的n次方根.3、当n为奇数时,这个数为a的奇次方根;当n为偶数时,这个数为a的偶次方根.★注意:1)实数a a是任意一个数,根指数n是大于1的奇数;2)正数a”表示,负n次方根用“0n=时,在中省略n);a>,根指数n是正偶数(当23)负数的偶次方根不存在;4)零的n 次方根等于零,表示为00n =.【例6】 写出下列各数的平方根:(1)9121; (2)2(9)-.【答案】(1)311±; (2)3±. 【解析】注意要先把题中给的算式化简,再求它的平方根. 【总结】考查平方根的概念,注意平方根有两个.【例7】 写出下列各数的正平方根: (1)225;(2)9.【答案】(1)15;(2)3.【解析】(1)15; (2)93=,3的正平方根是3. 【总结】考查平方根的概念,注意对正平方根的准确理解.【例8】 下列各式是否正确,若不正确,请说明理由.(1)1的平方根是1;(2)9是2(9)-的算术平方根; (3)π-是2π-的平方根;(4)81的平方根是9±.【答案】(1)×; (2)√; (3)×; (4)×.【解析】(1)错误:1的平方根是1±;(2)正确;(3)错误:2π-是负数,没有平方根; (4)2π-错:819=,9的平方根是3±.例题解析【总结】考查平方根的基本概念,注意一定要先化简,再求平方根.【例9】写出下列各数的立方根:(1)216;(2)0;(3)1-;(4)3438-;(5)27.【解析】(1)6;(2)0;(3)1-;(4)72-;(5)3.【总结】本题主要考查立方根的概念.【例10】判断下列说法是否正确;若不正确,请说明理由:(1)一个数的偶次方根总有两个;()(2)1的奇次方根是1±;()(3)7=±;()(4)2±是16的四次方根;()(5)a的n次方根的个数只与a的正负有关.()【答案】(1)×;(2)×;(3)×;(4)√;(5)×.【解析】(1)错误:负数没有偶次方根;(2)错误:奇次方根只有一个,所以1的奇次方根是1;(37=;(4)正确;(5)错误:还与n的奇偶性有关.【总结】考查数的开方的基本概念,注意奇次方根与偶次方根的区别.【例11】写出下列各数的整数部分和小数部分:(1(2(3)9【解析】(1)因为89=,8,8;(2)因为78==77;(3)因为34=,所以596<<,所以95,小数部分为4-【总结】考查利用估算法求出无理数的整数部分和小数部分.【例12】 求值:(1 (2);(3)2; (4)2(.【解析】(1)12; (2)0.1- ; (3)4; (4)11. 【总结】考查对平方根的理解及运用.【例13】 求值:(1 (2 (3; (4【解析】(1)4; (2)35-; (3)原式54=-; (4)原式2-. 【总结】考查实数的立方根的运用.【例14】 求值:(1 (2 (3; (4【解析】(1)6 ; (2)3 ; (3)3- ; (4)2. 【总结】考查实数的奇次方根与偶次方根的计算.【例15】 求值:(1(2)(3.【解析】(1)0.5 ; (2)原式=95; (3)原式60=. 【总结】考查实数的立方根运算.【例16】 小明的房间面积为17.62m ,房间的地面恰好由110块大小相同的正方形地砖铺成,问:每块地砖的边长是多少? 【答案】0.4m .【解析】设每块地砖的边长是x 米,则有:211017.6x =,化简得20.16x =,解得:0.4x = 即每块地砖的边长是0.4m .【总结】考查实数的运算在实际问题中的运用.【例17】 已知2a -1的平方根是3±,3a +b -1的算术平方根是4 【答案】3.【解析】由题意知:219a -=,3116a b +-=,即210a =,173b a =-解得:5a =,2b =,所以2549a b +=+=3=. 【总结】本题主要考查实数的平方根与算术平方根的区别,以及代数式的值.【例18】 若a 的平方根恰好是方程3x +2y =2的一组解,求x y a a +的值.【答案】125716()1616或.【解析】由题意,因为a 的两个平方根是相反数,那么y x =-,则有:32322x y x x +=-=,即2x =,2y =-.那么由题意可得:4a =,所以22125744161616x y a a -+=+=+=. 【总结】本题主要考查实数的平方根与求代数式的值.【例19】 3,3(43)8x y +=-,求2()n x y +的值. 【答案】1.【解析】由题意可得:49432x y x y -=⎧⎨+=-⎩, 解得:12x y =⎧⎨=-⎩,所以222()(12)(1)1n n n x y +=-=-=.【总结】本题考查实数的开方以及二元一次方程组的解法,学生忘记解方程组的情况下,老师可以略微拓展复习一下二元一次方程组的解法哦.【例20】用“>”把下列各式连接起来:=,-12-23【总结】本题考查实数的大小比较,注意先化简,再比较大小.【例21】 1.732 5.477≈,利用以上结果,求下列各式的近似值.(1≈_______;(2____________;(3≈_________;(4≈______________;(5___________;(6≈_____________.【答案】略.【解析】(1 1.7321017.32⨯=;(2 5.4771054.77≈⨯=;(3 1.732100173.2⨯=;(4 5.4770.10.5477≈⨯=;(5 1.7320.10.1732⨯=;(6 5.4770.010.05477≈⨯=.【总结】本题考查实数的运算,注意每题之间的联系,类比推理.【例22】填写下表,并回答问题:a…0.000001 0.001 1 1000 1000000 …….3a……(1)数a与它的立方根3a的小数点的移动有何规律?(2)根据这个规律,若已知33,,求a的值.==a0.005250.1738 1.738【解析】(1)由题可知,被开方数a的小数点每向右或向左移动三位,立方根3a的小数点相应地向右或向左移动一位;(2)由(1)总结的规律可知: 5.25a=.【总结】本题考查实数的开方与被开方数之间的关系,注意引导学生仔细分析表格.【例23】阅读下面材料并完成填空:你能比较两个数20162017和20172016的大小吗?为了解决这个问题先把问题一般化,要比较n n+1和(n+1)n的大小(的整数),先从分析n=1,=2,=3,……这些简单的情况入手,从中发现规律,经过归纳,猜想出结论.(1)通过计算,比较下列①—⑦各组中两个数的大小(在横线上填“>、=、<”号①12______21;②23______32;③34______43;④45______54;⑤56______65;⑥67______76;⑦78______87.(2)对第(1)小题的结果进行归纳,猜想出n n+1和(n+1)n的大小关系: ______(3)根据上面的归纳结果猜想得到的一般结论是:20162017_____20172016.【答案】(1)①<;②<;③>;④>;⑤>;⑥>;⑦>:(2)当n =1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)>.【解析】(1)①12 <21;②23<32;③34>43;④45>54;⑤56>65;⑥67>76;⑦78>87;(2)当n=1或2时,n n+1<(n+1)n;当n>2的整数时,n n+1>(n+1)n;(3)根据第(2)小题的结论可知,20162017>20172016.【总结】本题考查实数的运算规律,注意观察计算后的结果,总结出规律。
第1讲 幂的运算-七年级下册数学同步精品讲义
第1讲 幂的运算1. 掌握正整数幂的运算性质(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法);2. 能用代数式和文字语言正确地表述这些性质,并能运用它们熟练地进行运算.知识点01同底数幂的乘法+⋅=m n m n a a a (其中,m n 都是正整数).即同底数幂相乘,底数不变,指数相加.要点诠释:(1)同底数幂是指底数相同的幂,底数可以是任意的实数,也可以是单项式、多项式. (2)三个或三个以上同底数幂相乘时,也具有这一性质, 即mnpm n pa a a a++⋅⋅=(,,m n p 都是正整数).(3)逆用公式:把一个幂分解成两个或多个同底数幂的积,其中它们的底数与原来的底数相同,它们的指数之和等于原来的幂的指数。
即m nm n a a a +=⋅(,m n 都是正整数).【知识拓展1】计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()nn m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.【即学即练1】计算:(1)5323(3)(3)⋅-⋅-; (2)221()()ppp x x x +⋅-⋅-(p 为正整数);知识精讲目标导航(3)232(2)(2)n⨯-⋅-(n 为正整数).【即学即练2】计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .【知识拓展2】已知2220x +=,求2x 的值.知识点02幂的乘方()=m nmna a(其中,m n 都是正整数).即幂的乘方,底数不变,指数相乘.要点诠释:(1)公式的推广:(())=m n pmnpa a (0≠a ,,,m n p 均为正整数)(2)逆用公式: ()()nmmnm n a aa ==,根据题目的需要常常逆用幂的乘方运算能将某些幂变形,从而解决问题.【知识拓展1】计算:(1)2()m a ; (2)34[()]m -; (3)32()m a-.【即学即练1】计算:(1)23[()]a b --; (2)32235()()2y y y y +-;(3)22412()()m m x x -+⋅; (4)3234()()x x ⋅.【知识拓展2】已知25mx =,求6155m x -的值.【即学即练1】已知2a x =,3b x =.求32a bx +的值.【即学即练2】已知84=m ,85=n ,求328+m n的值.【即学即练3】已知435,25ab m n ==,请用含m 、n 的代数式表示43625a b +.【即学即练4】已知2139324n n ++=,求n 的值;【即学即练5】已知322,3m m a b ==,则()()()36322mm m ma b a b b +-⋅= .知识点03积的乘方法则()=⋅n n n ab a b (其中n 是正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.要点诠释:(1)公式的推广:()=⋅⋅nnnnabc a b c (n 为正整数).(2)逆用公式:()nn na b ab =逆用公式适当的变形可简化运算过程,尤其是遇到底数互为倒数时,计算更简便.如:1010101122 1.22⎛⎫⎛⎫⨯=⨯= ⎪ ⎪⎝⎭⎝⎭【知识拓展1】指出下列各题计算是否正确,指出错误并说明原因:(1)22()ab ab =; (2)333(4)64ab a b =; (3)326(3)9x x -=-.【即学即练1】计算:(1)24(2)xy - (2)24333[()]a a b -⋅-【即学即练2】下列等式正确的个数是( ). ①()3236926x yx y -=- ②()326m m a a -= ③()36933a a =④()()57355107103510⨯⨯⨯=⨯ ⑤()()1001001010.520.522-⨯=-⨯⨯A. 1个B. 2个C. 3个D. 4个【知识拓展2】计算:1718191(3)(2)6⎛⎫-⨯-⨯- ⎪⎝⎭.知识点04 同底数幂的除法同底数幂的除法法则同底数幂相除,底数不变,指数相减,即mnm na a a-÷=(a ≠0,m n 、都是正整数,并且m n >)要点诠释:(1)同底数幂乘法与同底数幂的除法是互逆运算.(2)被除式、除式的底数相同,被除式的指数大于除式指数,0不能作除式. (3)当三个或三个以上同底数幂相除时,也具有这一性质. (4)底数可以是一个数,也可以是单项式或多项式. 零指数幂任何不等于0的数的0次幂都等于1.即01a =(a ≠0)要点诠释:底数a 不能为0,00无意义.任何一个常数都可以看作与字母0次方的积.因此常数项也叫0次单项式.【知识拓展1】计算:(1)83x x ÷; (2)3()a a -÷; (3)52(2)(2)xy xy ÷; (4)531133⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭.【即学即练1】计算下列各题:(1)5()()x y x y -÷- (2)125(52)(25)a b b a -÷-(3)6462(310)(310)⨯÷⨯ (4)3324[(2)][(2)]x y y x -÷-【知识拓展2】已知32m =,34n =,求129m n+-的值.【即学即练1】已知2552m m⨯=⨯,求m 的值.1.已知(-x )a +2⋅ x 2a ⋅ (-x )3= x 32 , a 是正整数,求a 的值.2.已知n 为正整数,化简: (-x 2 )n+ (-x n )2.3.已知: 3x +1 ⋅ 2x - 3x ⋅ 2x +1 = 216 ,试求 x 的值.能力拓展4.已知35m =,45381m n -=,求201620151n n ⎛⎫-⋅ ⎪⎝⎭的值.5.如果整数x y z 、、满足151627168910xy z⎛⎫⎛⎫⎛⎫⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,求2x y z y +-的值.6.已知()231x x +-=,求整数x .题组A 基础过关练一、单选题1.(2022·全国·七年级)化简1x y +-()的结果是( )A .11x y --+B .1xy C .11x y+D .1x y+ 2.(2022·全国·七年级)计算52x x ÷结果正确的是( ). A .3B .3xC .10xD .25x3.(2021·甘肃白银·七年级期末)花粉的质量很小,一粒某种植物花粉的质量约为0.000036mg ,那么0.000036mg 用科学记数法表示为( ) A .53.610mg -⨯ B .63.610mg -⨯C .73.610mg -⨯D .83.610mg -⨯二、填空题4.(2022·黑龙江杜尔伯特·七年级期末)若am =10,an =6,则am +n =_____.分层提分5.(2022·全国·七年级)计算34x x x ⋅+的结果等于________. 6.(2022·黑龙江杜尔伯特·七年级期末)22013•(12)2012=_____. 7.(2021·上海虹口·七年级期末)计算:23(3)a =_______.8.(2022·全国·七年级)若0(3)1x -=,则x 的取值范围是________. 9.(2022·全国·七年级)计算:0113()22-⨯+-=______.三、解答题10.(2022·全国·七年级)计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- .11.(2018·全国·七年级课时练习)1千克镭完全蜕变后,放出的热量相当于3.75×105千克煤放出的热量,据估计地壳里含1×1010千克镭,试问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量?12.(2020·浙江杭州·模拟预测)计算题(结果用幂的形式表示):(1)2322⨯ (2)()32x (3)()()322533-⋅13.(2021·上海普陀·七年级期末)计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.题组B 能力提升练1.(2022·全国·七年级)计算:(1)234444⨯⨯; (2)3452622a a a a a a ⋅+⋅-⋅;(3)11211()()()()()n n m n m x y x y x y x y x y +-+-+⋅+⋅+++⋅+.2.(2021·上海市民办新竹园中学七年级期中)计算:121432413()()()922x z y z y x------÷-⋅-3.(2022·全国·七年级)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作23,读作“2的3次商”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)4,读作“﹣3的4次商”,一般地,把n aa a a a÷÷÷÷个(a ≠0)记作an ,读作“a 的n 次商”.【初步探究】(1)直接写出计算结果:23= ,(﹣3)4= ; (2)关于除方,下列说法错误的是 ;A .任何非零数的2次商都等于1;B .对于任何正整数n ,(﹣1)n =﹣1;C .34=43;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:2411112222222222⎛⎫=÷÷÷=⨯⨯⨯= ⎪⎝⎭.(3)试一试:仿照上面的算式,将下列运算结果直接写成乘方(幂)的形式.(﹣3)4= ;517⎛⎫⎪⎝⎭= .(4)想一想:将一个非零有理数a 的n 次方商an 写成幂的形式等于 . (5)算一算:2453111152344⎛⎫⎛⎫⎛⎫÷-⨯-+-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .4.(2021·江苏·苏州市工业园区第一中学七年级阶段练习)已知10×102=1000=103, 102×102=10000=104, 102×103=100000=105.(1)猜想106×104= ,10m ×10n = .(m ,n 均为正整数) (2)运用上述猜想计算下列式子:①(1.5×104)×(1.2×105); ②(﹣6.4×103)×(2×106).5.(2022·全国·七年级)阅读,学习和解题. (1)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题: 比较34040,43030,52020的大小. (2)阅读和学习下面的材料:学习以上解题思路和方法,然后完成下题:已知am =2,an =3,求a 2m +3n 的值.(3)计算:(-16)505×(-0.5)2021.题组C 培优拔尖练一、单选题1.(2021·江苏·宜兴市实验中学七年级期中)计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( ) A .25033333⋅⋅⋅个 B .26033333⋅⋅⋅个 C .27033333⋅⋅⋅个 D .28033333⋅⋅⋅个2.(2022·全国·七年级)观察等式:2+22=23﹣2;2+22+23=24﹣2;2+22+23+24=25﹣2;…已知按一定规律排列的一组数:2100,2101,2102,…,2199,2200,若2100=S ,用含S 的式子表示这组数据的和是( ) A .2S 2﹣SB .2S 2+SC .2S 2﹣2SD .2S 2﹣2S ﹣2二、填空题3.(2019·浙江·温州市第二十三中学七年级期中)已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.4.(2021·北京八十中七年级期中)已知一列数:-2,4,-8,16,-32,64,-128,……,将这列数按如右图所示的规律排成一个数阵,其中,4在第一个拐弯处,-8在第二个拐弯处,-32在第三个拐弯处,-128在第四个拐弯处,……,则第六个拐弯处的数是________,第一百个拐弯处的数是___________.三、解答题5.(2019·甘肃·甘州中学七年级阶段练习)已知(﹣13xyz )2M =13x 2n+2y n+3z 4÷5x 2n ﹣1y n+1z ,自然数x ,z 满足123x z -⋅=72,且x =z ,求M 的值.6.(2021·全国·七年级专题练习)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Napier ,1550年-1617年),纳皮尔发明对数是在指数概念建立之前,直到18世纪瑞士数学家欧拉(Euler ,1707年-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若(0,1)x a N a a =≠>,则x 叫做以a 为底N 的对数,记作log a x N =.比如指数式4216=可以转化为24log 16=,对数式52log 25=可以转化为2525=.我们根据对数的定义可得到对数的一个性质:a log(?)log M N M =+log (0,a 1,0,N 0)a N a M ≠>>>.理由如下:设a log M m =,a log N n =,所以m M a =,n N a =,所以m n m n MN a a a +==,由对数的定义得a log ()m n M N +=+,又因为a log log a m n M N +=+,所以log ()log log a a a MN M N =+.解决以下问题: (1)将指数35125=转化为对数式: .(2)仿照上面的材料,试证明:log log -log (0,1,0,0)a a a M M N a a M N N=≠>>> (3)拓展运用:计算333log 2log 18-log 4+= .7.(2019·江苏·汇文实验初中七年级阶段练习)(1)填空:21﹣20=______=2(_____)22﹣21=_____=2(______)23﹣22=______=2(______)…(2)探索(1)中式子的规律,试写出第n 个等式,并说明第n 个等式成立; (3)计算20+21+22+ (22019)8.(2021·全国·七年级专题练习)观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______; (3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.9.(2021·全国·七年级课时练习)探究:22﹣21=2×21﹣1×21=2( )23﹣22= =2( ),24﹣23= =2( ),……(1)请仔细观察,写出第4个等式;(2)请你找规律,写出第n 个等式;(3)计算:21+22+23+…+22019﹣22020.10.(2021·江苏连云港·七年级期中)阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______; (3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)。
七下数学第8章完整讲义.docx
第八章二元一次方程 二元一次方程组(1)1、 如果2/讪讥3严曲心10是一个二元一次方程,那么数d ・Z? = _______2、 己知x,y,z 满足方程组£一¥ + :° 求x:y:z 的值是 _________ 。
3、 已知方程12(兀+1)=7©・1),写出用Y 表示的x 的式子的 ___4 .方程x=3y=9的解是 ________ ・ 5.己知方程组却"不解方程组则x =, y =I3x = 2 y = 156 若(2x — 3y + 5尸 + |x + y — 2| =()则 x= __ Y= ____x+红97.己知二元一•次方程组< 4的解为x=a y 二b 则| a-b |的值二 _________-x + y = 17〔5二.解答题8.解下列二元一次方程组:x + y = 7 3(x + y)_7y = 79. 若(3x-y+l)2与|2x+3y —25|互为相反数,求(x-y)2的值.10. 已知a 、b 满足『d + 3b = 3a + 2b = ii •甲、乙两任同求方程,竜i”的整数解,甲正确的求出一个解为和n ,乙把:唸診一看成ax-by = l,求得另一个解为\X = l,试求出a, b 的值. y = 212. 根据下列语句,分别设适当的未知数,列出二元一次方程或方程组(不解答) (1)小明、小芳两人的年龄之和为27岁,且小明比小芳大1岁;(1)1213的值.(2)现有而额为100元和20元的人民币共40张,共计2000元;13•养猴场里的饲养员提了一筐桃来喂喉,如果他给每个猴子14个桃,还剩48个;如果每个猴子18个桃,就还差64个,请问:这个猴场养了多少只猴?饲养员提了多少个桃?4x_2・15•如图5所示,在课间活动屮,小英、小丽和小敏在操场上画出A 、〃两个区域,一起玩投沙包游戏.沙包落在A 区域所得分值与落在〃区域所得分值不同.当毎人各投沙包四次时,其落点和四次总分如图所示.请求出 小敏的四次总分.14•让我们來规定一种运算:=ad 一 be o 例如:3=2x5-3x4 = 10-12 = -2 5x 2再如:1 4按照这种运算的规定解题: 若X 、 y 同时满足x(-6)(-)9=13,3 (一 y)4=4, x 的值。
初一数学基础知识讲义
第一讲 和绝对值有关的问题一、 知识结构框图:二、 绝对值的意义:(1)几何意义:一般地,数轴上表示数a 的点到原点的距离叫做数a 的绝对值,记作|a|。
(2)代数意义:①正数的绝对值是它的本身;②负数的绝对值是它的相反数;③零的绝对值是零。
也可以写成: ()()()||0a a a a a a ⎧⎪⎪=⎨⎪-⎪⎩当为正数当为0当为负数三、 典型例题例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( ) A .-3a B . 2c -a C .2a -2b D . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号例3.(分类讨论思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.(整体思想)方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个 例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++说明:(Ⅰ)|a|≥0即|a|是一个非负数;(Ⅱ)|a|概念中蕴含分类讨论思想。
例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ . (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________. (3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___. (4) 满足341>+++x x 的x 的取值范围为 ______ .第二讲:代数式的化简求值问题一、知识链接1.“代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
初中数学讲义--第10讲 二元一次方程组
全方位教学辅导教案学 科: 数学 任课教师: 授课时间: 2020 年 月 日 (星期 ) 【针对性训练】一、 课前检测1、下列方程组中是二元一次方程组的是( ) A .⎩⎨⎧=-=+232y x y x B .⎩⎨⎧=+=31y x xy C .⎩⎨⎧=+=523y x D .⎩⎨⎧=-=+63832z x y x 2、方程ax -4y=x -1是二元一次方程,则a 的取值为( )A . a≠0B .a≠-1C .a≠1D .a≠23、下列说法正确的是( )A .二元一次方程只有一个解B .二元一次方程组有无数个解C .二元一次方程组的解必是它所含的二元一次方程的解D . .三元一次方程组一定由三个三元一次方程组成 4、一个二元一次方程的解集,是指这个方程的( )A . 一个解B .两个解C .三个解D .所有解组成的集合5、关于x 的方程()()()512422+=++++-m y m x m x m ,当m = 时,是一元一次方程;当m =时,它是二元一次方程. 6、若方程3y )2a (x1a =-+-是二元一次方程,则a 的取值范围是( )A .a >2B .a=2C .a=﹣2D .a <﹣2二、知识点讲解➢ 一、二元一次方程的概念含有两个未知数(一般设为x 、y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.如x +y =24,y 32x =+都是二元一次方程. 二元一次方程的一般式:0ax by c ++=(a 、b 、c 均为系数,a≠0,b≠0) ➢ 二、二元一次方程的解使二元一次方程左右两边的值相等的两个未知数的值,叫做二元一次方程的解. 注意:1. 二元一次方程的解是一对数值,如⎩⎨⎧==0y 2x 是二元一次方程x +y =2的解;2. 每个二元一次方程都有无数组解;3. 在二元一次方程的无数组解中,每组解的一对数值是一一对应的. ➢ 三、二元一次方程组的概念把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组.例如,都是二元一次方程组.注意:如果两个一次方程合起来共有两个未知数,这样的方程组也是二元一次方程组.例如,也是二元一次方程组.➢ 四、二元一次方程组的解一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 注意:1. 方程组的解是一对数值.2. 一般地,二元一次方程组的解只有一组,但也有特殊情况,如方程组无解,而方程组的解有无数个.3. 二元一次方程组的解满足方程组的每一个方程.4. 二元一次方程组解的讨论:⎩⎨⎧=++=++0222111c y b x a c y b x a (系数均不为0)①当2121b b a a ≠时,方程组有唯一一组解(可用加减消元法求解) ②当212121c c b b a a ≠=时,方程组无解(两个方程是矛盾的) ③当212121c c b b a a ==时,方程组有无穷多个解(两个方程等效)三、题型训练【题型一】二元一次方程组的概念【例1】 下列方程中,是二元一次方程的是( )A .3x -2y=4zB .6xy+9=0C .1x+4y=6 D .4x=24y - 【例2】 下列各式,属于二元一次方程的个数有( )①xy+2x -y=7; ②4x+1=x -y ; ③1x+y=5; ④x=y ; ⑤x 2-y 2=2 ⑥6x -2y ⑦x+y+z=1 ⑧y (y -1)=2y 2-y 2+x A .1 B .2 C .3 D .4【例3】 下列方程组中,是二元一次方程组的是( )A .228423119 (237)54624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 【例4】 方程3x m +1-2y n +2=4是二元一次方程,则m =____,n =____.变式练习1、下列方程组中,属于二元一次方程组的是( )A . ⎪⎩⎪⎨⎧=+=+725y x y x B .⎪⎩⎪⎨⎧=-=+043512y x x y xC .⎪⎩⎪⎨⎧=+=y y x y x 343453D .⎩⎨⎧=+=-yy x y x 123822、 若x 3m −3﹣2y n −1=5是二元一次方程,则m=_________,n=_________.3、 已知关于x 、y 的方程2x m −3+3y n −1=8是二元一次方程,则m+n 的值为 .【题型二】二元一次方程组的解【例4】 若3270x y --=,则696y x --的值为 .【例5】 二元一次方程4x-3y=12,当x=0,1,2,3时,y= . 【例6】 若(4x-3)2+|2y+1|=0,则x+2= .【例7】 在式子3m+5n -k 中,当m=-2,n=1时,它的值为1;当m=2,n=-3时,它的值是 . 【例8】 在x+3y=3中,若用x 表示y ,则y=________,用y 表示x ,则x=__________. 【例9】 写出一个解为⎩⎨⎧-==13y x 的二元一次方程___________________.变式练习1、已知332=-y x ,则代数式596+-y x 的值为2、 对二元一次方程2(5-x)-3(y -2)=10,当x=0时,则y=__________;当y=0时,则x=__________.3、若x、y为非负数,则方程y x 512-=的解是( )A . 无解B .无数个解C .唯一一个解D .不能确定 4、二元一次方程7x+y=15有几组正整数解 ( )A . 1组B .2组C .3组D .4组 5、方程2x+y=5的正整数解是 .. 6、 方程2x+y=9在正整数范围内的解有 .7、对于任何a 值,关于x ,y 的方程ax+(a-1)y=a+1都有一个与a 无关的解,这个解是( )A.⎩⎨⎧-==12y x B .⎩⎨⎧==12y x C .⎩⎨⎧=-=12y x D .⎩⎨⎧-=-=12y x8、4x+1=m (x -2)+n (x -5),则m 、n 的值是( )A . A . ⎩⎨⎧-=-=14n mB .⎩⎨⎧==14n mC .⎩⎨⎧-==37n nD .⎩⎨⎧=-=37n m9、关于y x 、的方程3623-=+k y kx ,对于任何k 的值都有相同的解,试求它的解.【课堂检测】1.下列方程中,属于二元一次方程的是( )A .3x-2y=5 B.x ²+y=1 C .x-3=2x D.651=+y x2.已知关于x ,y 的方程81||56-++m n y x是二元一次方程,则m=____,n=____.3.下列方程组中,不是二元一次方程组的是________,①⎩⎨⎧=-=+;254,10y x y x ②⎩⎨⎧==;5,3y x ③⎪⎩⎪⎨⎧=+=+;21,42y x y x ④⎪⎩⎪⎨⎧=-=+;52,32y x y x4.下列三组数值:①⎩⎨⎧==;2,1y x ②⎩⎨⎧==;2,3y x ③⎩⎨⎧=-=;3,2y x 其中是方程2x-y=4的解的是( )A. ① B .② C .③ D.①③5.解为⎩⎨⎧==;2,1y x 的方程组是( )A.⎩⎨⎧=+=-;53,1y x y xB.⎩⎨⎧=--=-;53,1y x y xC.⎩⎨⎧=-=-;13,3y x y xD.⎩⎨⎧=+-=-;53,32y x y x 6.在①⎩⎨⎧==,0,0y x ②⎩⎨⎧=-=,1,2y x ③⎩⎨⎧==,2,2y x ④⎪⎩⎪⎨⎧=-=,21,1y x 这四对数值中,____是x-y=0的解,____是x+2y=0的解,因此______是方程组⎩⎨⎧=+=-,02,0y x y x 的解.7.已知关于x ,y 的二元一次方程组⎩⎨⎧-=-=+37,24by x y ax 的解是⎩⎨⎧==,2,1y x 求(a+b)³的值.8.如果方程组⎩⎨⎧=+=+162,★y x y x 的解为⎩⎨⎧==■6y x .那么被“★”“■”遮住的两个数分别是( )A.10,4B.4,10C.3,10D.10,39.已知⎩⎨⎧-=-=2,3y x 是方程组⎩⎨⎧=-=+2,1by cx cy ax 的解,则a 、b 间的关系是( )A .4b-9a=1B .3a+2b=1C .4b-9a= -1D .9a+4b=110.请写出一个以x ,y 为未知数的二元一次方程组,且同时满足下列两个条件:①由两个二元一次方程组成,②方程组的解为⎩⎨⎧==,3,2y x这样的方程组可以是________________. 11. 若()22320x y x -++=,则xy的值是_________ . 12.2x 与8y 的和的2倍是10,则可用方程表示为______________.13.算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹记数法中,以“立”“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推,《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图①,从左向右的符号中,前两个符号分别代表未知数x ,y 的系数,且根据此图可以列出方程:x+10y= 26.请你根据图②列出方程组:________.二、解答题20.已知两个二元一次方程:①3x -y=0, ②7x -2y=2.(1)对于给出x 的值,在下表中分别写出对应的y 的值;(2)请你写出方程组的解.能力提升如图.小红和小明两人共同解方程组:⎩⎨⎧-=-=+②.24①,155byxyax根据以上他们的对话内容,请你求出a,b的正确值,并计算20171012018⎪⎭⎫⎝⎛-+ba的值.【课后作业】一、选择题1.下列各对x,y的值不是二元一次方程3x+2y=7的解的是( )A.⎩⎨⎧==21yxB.⎩⎨⎧-==13yxC.⎩⎨⎧-==45yxD.⎩⎨⎧-=-=51yx2.如果⎩⎨⎧=-=1,2yx是二元一次方程mx+y=3的一个解,则m的值是( )A.-2B.2C.-1 D.13.下列各组数中,是二元一次方程组⎩⎨⎧=-=+42,2yxyx的解的是( )A.⎩⎨⎧==2,0yxB.⎩⎨⎧==,2yxC.⎩⎨⎧-==1,3yxD.⎩⎨⎧==11yx4.已知⎩⎨⎧=-=2,1yx是二元一次方程组⎩⎨⎧=-=+1,23ynxmyx的解,则m-n的值是( ) A.1 B.2 C.3 D.45.如果x=3,y=2是方程6x+by=32的解,则b= .6.已知2,3x y =-⎧⎨=⎩是方程x -ky=1的解,那么k= .7.若是关于x 、y 的二元一次方程ax ﹣3y=1的解,则a 的值为( )A . ﹣5B .﹣1C .2D .78.为了丰富学生课外活动,培养学生动手操作能力,王老师让学生把5 m 长的彩绳截成2m 或 1m 的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( ) A.1 B.2 C .3 D .4二、填空题3.已知关于x 、y 的方程112433=++-n y m x 是二元一次方程,则m+n 的值为______.4.下面三组数据:①⎩⎨⎧-==;5,1y x ②⎩⎨⎧-==;3,2y x ③⎩⎨⎧-=-=;1,2y x ; 满足方程2x-y=7的是____,满足方程x+2y= -4的是_______,同时满足这两个方程的是_______,故二元一次方程组⎩⎨⎧-=+=-42,72y x y x 的解是_______.(填序号)4.若关于x 、y 的二元一次方程3x-ay=1有一个解是⎩⎨⎧==,2,3y x .则a=_________.课堂检测答案1.A 2.9;0 3.③④ 4.B 5.D 6.①③;①②④;①7.解析 把⎩⎨⎧==2,1y x 代入原方程组,得⎩⎨⎧-=-=+②,327①,28b a由①得a= -6,由②得b=5,所以(a+b)³=(- 6+5)³=-1.8.A 9.D 10.答案⎩⎨⎧-=-=+.1,5y x y x (答案不唯一) 11.32-12. 4x+16y=10 13.答案⎩⎨⎧=+=+18222y x y x 能力提升解析 因为小明看错了①中的a ,所以⎩⎨⎧-=-=1,3y x 满足方程②,即4×(-3)-b ×(-1)=-2,解得b=10;因为小红看错了②中的b ,所以⎩⎨⎧==4,5y x 满足方程①,即5a+5×4= 15,解得a=-1.所以20171012018⎪⎭⎫ ⎝⎛-+b a =20172018)10101()1(⨯-+-=1+(-1)=0.课后作业答案一、选择题 D C B DC 二、填空题 3.34. ①②;②③;②;② 4. 4。
免费版 2014年七年级数学下册同步讲义--二元一次方程组
例 10.若 x y 2 y z 2 z x 1 ,求 x、y、z 的值。
3 4 5
例 11.已知 y=3xy+x,求代数式
2 x 3 xy 2 y 的值。 x 2 xy y
2 x ay 16 有正整数解。 例 12.当 a 为何整数值时,方程组 x 2 y 0
9.二元一次方程 4x-3y+5=0 时,用含 x 的代数式表示 y,则 用含 y 的代数式表示 x,则 x=
x 1 10.若 是方程 3x+ay=1 的一个解,则 a 的值是_________ y 2
;
11.若 (5 x 2 y 12) 2 3x 2 y 6 0 ,则 2x+4y= 12.当 k=
3 x ay 16 的解 是 x 7 ,那 么关于 x、y 的二 元一次方 程组 例 9.如果 关于 x、 y 二元 一次方程 组 y 1 2 x by 15
3( x y ) a ( x y ) 16 的解是多少? 2( x y ) b( x y ) 15
3( x y ) a ( x y ) 16 的解是什么? 2( x y ) b( x y ) 15
16.已知:
3x 2 y 2 x y x y 1 ,求 x、y 的值。 4 5 6
2 x 3 y 5 17.已知 m 是整数,且-60<m<-30,关于 x、y 的二元一次方程组 有整数解,求 m 的值. 3 x 7 y m
1
七年级数学
ax 2y 1 a 例 7.关于 x,y 的方程组 分别求出当 a 为何值时,方程组:(1)有唯一解;(2)无解; (3)有无 2x 2(a 1) y 3
初一数学第二课时讲义
初一数学第二课时讲义一.上节知识要点:1.认识点、线、面、体,感受点、线、面、体的关系。
2.知道什么是线段、直线和射线,能正确区分线段、直线和射线。
3.两点确定一条直线。
二.本节知识概述:1、两点之间的所有连线中,线段最短.简单说成两点之间线段最短.2、两点之间线段的长度,叫做这两点间的距离.线段的长度可用有刻度的直尺测量.3、线段大小的比较方法(1)叠合法.如比较线段AB、CD的大小,可将线段AB、CD 移到同一条射线上,使它们的端点A、C都与射线的端点重合,再由点B与点D的位置关系,就可得出线段AB和CD的三种大小关系.(2)度量法.先用刻度尺量每条线段的长度,再按照长度比较它们的大小.线段的大小关系和它们长度的大小关系是一致的.表示方法:用几何语言表述两线段比较可能出现的三种结果.若两线段为线段AB、线段CD,如上图,则分别有如下结论:AB<CD、AB=CD、AB>CD4、线段的中点如果点M把线段AB分成相等的两条线段AM与BM,那么点M 叫做线段AB的中点,类似地,线段有三等分点、四等分点等.如图所示,若点M是线段AB的中点,则AM=BM=AB或AB=2AM=2BM.三、典例讲解例1、如图,A、B是河流l两旁的两个村庄,若在河流l上建一个水厂,使它到两个村庄铺设的供水管道最短,请你在l上标出点C 的位置,并说明理由.解:连接AB交l于C,则点C就是所求作的点.理由是:两点之间,线段最短.例2、(1)C是线段AB的中点,D是线段BC上一点,则下列说法不正确的是()A.CD=AC-BD B.C.CD=AD-BC D.解析:(1)由线段的中点性质知A、B、C都是正确的,D不正确.例3、如图所示,C是线段AB的中点,D是线段CB的中点,BD =2cm,求AD的长.分析:因为AD=AC+CD,而AC=BC,CD=DB,BC=CD+DB,所以AD=BC+DB=2DB+DB=6cm.另外也可以用AD=AB-DB来解,AB=2BC,BC=2DB,所以AD=4DB-DB=6cm.解:因为D是CB的中点,所以CB=2BD.又因为BD=2cm,所以CB=4cm.又C是AB的中点,所以AB=2CB=8cm.所以AD=AB-BD=8-2=6(cm).答:AD的长是6cm.例4、已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M 是线段AC的中点,求线段AM的长.分析:本题是一道无附图问题,由题意知道 A、 B、 C 三点共线,但未明确C点是在线段 AB 上,还是在 AB 的延长线上,所以要分两种情况来讨论,运用这种方法时,要考虑到有可能出现的情形,不能漏掉任何一种,通过画出正确的图形得到正确的答案.本题关键是求出 AM 的长 .解:(1)当点C在线段AB上时,如图(1)∵ M是AC的中点,∴ AM=AC.又∵ AC=AB-BC ,AB=8cm,BC=4cm∴ AM=(AB-BC)=(8-4)=2cm(2)当点 C 在线段 AB 的延长线上时,如图(2)∵ M是AC 的中点,∴ AM=AC.又∵ AC=AB+BC ,AB=8cm,BC=4cm∴ AM=(AB+BC)=(8+4)=6cm.即线段AM 的长度为2cm或6cm.三、巩固练习1、画一条线段AB,使它的长度等于已知线段a。
新初一数学预科班讲义
第一章 有理数及其运算 §1.1 数怎么不够用了【知识梳理】一、有理数的分类有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数 或有理数⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数 二、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴.三、求一个相反数的方法要求一个数的相反数,只要在这个数前面添上“-”,新的数就表示原数的相反数。
四、相反数的性质1、互为相反数的两个数的和为零,即如果b a 、互为相反数,则有0=+b a ;反之,如果两个数的和等于0,那么这两个数互为相反数,即若0=+b a ,则b a 、互为相反数2、相反数是本身的数只有一个,是03、1和-1互为相反数,也是互为负倒数。
4、互为相反数的两个数绝对值相等,但绝对值相等的两个数并不一定互为相反数 〖经典例题〗 例1.将下列具有相反意义的量用线连接起来向南走6米 失球2个 进球5个 亏损500元高于海平面960米 运出200吨粮食 盈利1000元 向北走30米运进500吨粮食 低于海平面300米 例2.把下列各数分别填在相应的大括号内.2.4,413,8.0,0,722,6,2,13,21-+-- 正数{ }负数{ } 正整数{ } 正分数{ } 负分数{ }例3.三峡大坝从6月1日开始下闸蓄水,下表是工作人员连续5天的水位记录(如果规定蓄水位为135米)情况,记录如下:(单位:米)6月1日6月2日6月3日6月4日6月5日-5 +2 -1 +3 +2 问:(1)这5天中每天的水位各是多少米?(2)总的来说,水位是高了,还是低了?若高,高了多少?若低,低了多少?例4.如图,数轴上点A 、B 、C 、D 、E 各表示什么数? 例5.下列说法中正确的是( )2332和互为相反数 B.125.0-81和互为相反数 C.a -的相反数是正数 D.两个表示相反意义的量互为相反数例6.比较大小 (1)0 -3 (2) 21--2 (3)7 -10 〖变式练习〗1.指出下列语句的实际意义(1)温度下降了-9℃; (2)收入了-4000元2.将下列各数分别填入相应的集合里 431,01.14,0,07.0,7.5,2,21,1---正数集合{ }负分数集合{ } 整数集合{ }3.体育课上老师对九年级男生进行了引体向上的测试,以能做7个为标准,超过的个数用正数来表示,不足的个数用负数来表示,其中8名男生的成绩如下: 2,-1, 0, 3,-2,-3, 1, 0 这8男生有百分之几达到标准? 他们共做了多少个引体向上?4.在数轴上画出表示下列各数的点 3, -1, 0,-221,3.5,-55.说出下列各数的相反数:5,-10,-3.9,.0,20042003,53-6.如图,数轴上的点A 、B 、C 、D 表示的数分别为-1.5,-3,2,3.5.回答下列问题:将A 、B 、C 、D 表示的数按从小到大的顺序用“<”连接。
初一数学下册春季班培优讲义.教师版.8.2 消元——解二元一次方程组-测试题(含答案)【精品】
第八章二元一次方程组【精品】8.2 消元——解二元一次方程组1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K知识参考答案:1.消元2.加减法K—重点代入法或加减法解二元一次方程组K—难点用适当的方法解二元一次方程组K—易错解二元一次方程组时看错系数一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y=ax+b(或x=ay+b),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y xx y=-⎧⎨-=⎩时,代入正确的是A.x-2-x=4 B.x-2-2x=4C.x-2+2x=4 D.x-2+x=4【答案】C【解析】124y xx y=-⎧⎨-=⎩①②,把①代入②得:x-2(1-x)=4,整理得:x-2+2x=4.故选C.二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:693 6416 x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.1.方程组1325y xx y+=⎧⎨+=⎩的解是A.32xy=⎧⎨=-⎩B.34xy=-⎧⎨=⎩C .32x y =⎧⎨=⎩D .32x y =-⎧⎨=-⎩2.用加减消元法解方程组231354y x x y +=⎧⎨-=-⎩①②,①-②得A .2y =1B .5y =4C .7y =5D .-3y =-33.用加减消元法解方程组358752x y x y -=⎧⎨+=⎩将两个方程相加,得A .3x =8B .7x =2C .10x =8D .10x =104.解关于x y ,的方程组239x y mx y m+=⎧⎨-=⎩,得2x y +的值为A .12mB .0C .2m -D .7m5.解方程组:(1)4273210x y x y -=⎧⎨+=⎩;(2)2359x y x y =⎧⎨-=⎩;(3)459237x y x y +=⎧⎨-=⎩;(4)7341x y x y +=⎧⎨-=⎩,比较适宜的方法是A .(1)(2)用代入法,(3)(4)用加减法B .(1)(3)用代入法,(2)(4)用加减法C .(2)(3)用代入法,(1)(4)用加减法D .(2)(4)用代入法,(1)(3)用加减法 6.若2425y x a b -与352x y a b +是同类项,则x 、y 的值为A .21x y =⎧⎨=⎩B .31x y =⎧⎨=⎩C .12x y =⎧⎨=⎩D .21x y =⎧⎨=-⎩7.由方程组63x m y m +=⎧⎨-=⎩①②可得出x 与y 的关系式是A .9x y +=B .3x y +=C .3x y +=-D .9x y +=-8.小亮解方程组2212x y x y +=∆⎧⎨-=⎩的解为5x y =⎧⎨=∑⎩,由于不小心,滴上了两滴墨水,刚好遮住了两个数∆和∑,则两个数∆和∑的值为A .82∆=⎧⎨∑=⎩B .82∆=⎧⎨∑=-⎩C .82∆=-⎧⎨∑=⎩D .82∆=-⎧⎨∑=-⎩9.若二元一次方程组2143221x y x y +=⎧⎨-+=⎩的解为x ay b =⎧⎨=⎩,则a +b 值为A .19B .212C .7D .1310.用代入法解方程组2503510x y x y -=⎧⎨+-=⎩①②时,最简单的方法是A .先将①变形为x =52y ,再代入② B .先将①变形为y =25x ,再代入②C .先将②变形为xD .先将①变形为5y =2x ,再代入② 11.不解方程组,下列与237328x y x y +=+=⎧⎨⎩的解相同的方程组是A .2836921y x x y =-+=⎧⎨⎩B .283237y xx y =+=+⎧⎨⎩CD12.方程组221x yx y+=-=⎧⎨⎩的解是__________.13.已知23523x yx y+=⎧⎨+=-⎩,则3x+3y的值为__________.14.若方程组35ax byax by-=-⎧⎨+=⎩与23144516x yx y+=⎧⎨-=-⎩的解相同,则a=__________,b=__________.15.解方程组:学科=网(1)23328y xx y=-⎧⎨+=⎩(代入法);(2)223210x yx y+=⎧⎨-=⎩(加减法);(3)357 425 x yx y-=⎧⎨+=⎩;(4)2()1343()2(2)8x y x yx y x y-+⎧=-⎪⎨⎪+=-+⎩.16.数学课上老师要求学生解方程组:213 3113a bb a=-+⎧⎨=-⎩.同学甲的做法是:213 3113a bb a=-+⎧⎨=-⎩①②,由①,得a=-12+32b.③把③代入②,得3b=11-3(-12+32b),解得b=53,把b=53代入③,解得a=2,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.老师看了同学甲的做法说:“做法正确,但是方法复杂,要是能根据题目特点,采用更加灵活简便的方法解此题就更好了.”请你根据老师提供的思路解此方程组.17.3()2()5 4(2)3x y x yx y x y-++=⎧⎨-+-=-⎩.18.已知23x yx y-=⎧⎨+=⎩,则xy的值是A.2 B.1 C.-1 D.219.用加减消元法解方程组23537x yx y-=⎧⎨=+⎩①②正确的方法是A.①+②得2x=5 B.①+②得3x=12C.①+②得3x+7=5 D.先将②变为x-3y=7③,再①-③得x=-220.用加减法解方程组326231x yx y+=⎧⎨+=⎩时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是(1)966462x yx y+=⎧⎨+=⎩(2)9618462x yx y+=⎧⎨-=⎩(3)9618462x yx y+=⎧⎨+=⎩(4)6412693x yx y+=⎧⎨+=⎩A.(1)(2)B.(2)(3)C.(3)(4)D.(4)(1)21.已知方程组323()11x yy x y-=⎧⎨+-=⎩,那么代数式3x-4y的值为A.1 B.8 C.-1 D.-822.已知关于x,y的方程组343x y ax y a+=-⎧⎨-=⎩,给出下列结论:①51xy=⎧⎨=-⎩是方程组的一个解;②当2a=时,x,y的值互为相反数;③当a=1时,方程组的解也是方程x-2y=3的解;④x,y间的数量关系是x+y=4-a,其中正确的是A.②③B.①②③C.①③D.①③④23.若方程组(31)2y kx by k x =+=-+⎧⎨⎩有无穷多组解,则2k +b 2的值为A .4B .5C .8D .1024.已知甲、乙两人的收入比为32∶,支出之比为74∶,一年后,两人各余400元,若设甲的收入为x元,支出为y 元,可列出的方程组为ABCD25.若关于x 、y 的二元一次方程组59x y kx y k +=-=⎧⎨⎩的解也是二元一次方程2x +3y =6的解,则k 的值为__________.26.若方程组7353x y x y +=⎧⎨-=-⎩,则3()(35)x y x y +--的值是__________.27.用合适的方法解下列方程组:(1)4023222y x x y =-⎧⎨+=⎩①②;(2)235421x y x y +=⎧⎨-=⎩①②;(3)651533x y x y +=⎧⎨-=-⎩①②.28.已知方程组82x y x y +∆=⎧⎨∆-=⎩WW 中,y x 、的系数部已经模糊不清,但知道其中W 表示同一个数,∆也表示同一个数,⎩⎨⎧-==11y x 是这个方程组的解,你能求出原方程组吗?29.解方程组:6323()2()28x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩.30.请你根据萌萌所给的如图所示的内容,完成下列各小题.(1)若m ※n =1,m ※2n =-2,分别求m 和n 的值;(2)若m 满足m ※2≤0,且3m ※(-8)>0,求m 的取值范围.31.(2018·怀化)二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=-⎩B .02x y =⎧⎨=⎩C .20x y =⎧⎨=⎩D .20x y =-⎧⎨=⎩32.(2018·天津)方程组10216x y x y +=⎧⎨+=⎩的解是A .64x y =⎧⎨=⎩B .56x y =⎧⎨=⎩C .36x y =⎧⎨=⎩D .28x y =⎧⎨=⎩33.(2018·台湾)若二元一次联立方程式73838x y x y -=⎧⎨-=⎩的解为x =a ,y =b ,则a +b 之值为何?A .24B .0C .-4D .-834.(2018·桂林)若|321|20x y x y --+-=,则x ,y 的值为A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩35.(2018·常德)阅读理解:a ,b ,c ,d 是实数,我们把符号a b c d称为22⨯阶行列式,并且规定:a b a d b c c d=⨯-⨯,例如:323(2)2(1)62412=⨯--⨯-=-+=---.二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解可以利用22⨯阶行列式表示为:xy D x DD y D⎧=⎪⎪⎨⎪=⎪⎩;其中1122a b D a b =,1122x c b D c b =,1122y a c D a c =.问题:对于用上面的方法解二元一次方程组213212x y x y +=⎧⎨-=⎩时,下面说法错误的是 A .21732D ==--B .14x D =-C .27yD =D .方程组的解为23x y =⎧⎨=-⎩36.(2018·无锡)方程组225x y x y -=⎧⎨+=⎩的解是__________.37.(2018·福建)解方程组:1410x y x y +=⎧⎨+=⎩.38.(2018·湘西州)解方程组:335x y x y +=⎧⎨-=⎩.39.(2018·武汉)解方程组:10216x y x y +=⎧⎨+=⎩.40.(2018·宿迁)解方程组:20 346 x yx y+=⎧⎨+=⎩.41.(2018·舟山)用消元法解方程组35432x yx y-=⎧⎨-=⎩①②时,两位同学的解法如下:(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“×”.(2)请选择一种你喜欢的方法,完成解答.1.【答案】A【解析】1325y xx y+=⎧⎨+=⎩22233+252x y xx y y⎧+==⎧⇒⇒⎨==⎨-⎩⎩,故选A.2.【答案】C【解析】两式相减得,7y=5.故选C.3.【答案】D【解析】将两个方程相加,得:10x=10,故选D.4.【答案】A【解析】将方程组中的两个方程相加得(x+2y)+(x-y)=3m+9m,合并同类项得2x+y=12m.故选A.6.【答案】D【解析】由同类项的定义可得24325y x x y-=⎧⎨=+⎩,整理得34225x yy x+=⎧⎨=-⎩①②,将②代入①得3x+4(2x-5)=2,解得x=2,将x=2代入②得y=-1,所以21xy=⎧⎨=-⎩.故选D.7.【答案】A【解析】由①得:m=6-x,∴6-x=y-3,∴x+y=9.故选A.8.【答案】B【解析】把5 xy=⎧⎨=∑⎩代入方程组可得,101012+∑=∆⎧⎨-∑=⎩,解得82∆=⎧⎨∑=-⎩,故选B.10.【答案】D【解析】由①得:5y=2x,把5y=2x代入②即可.故选D.11.【答案】A【解析】∵在A选项中,方程283y x=-可化为:238x y+=;方程6921x y+=可化为:237x y+=,∴A选项中的方程组和原方程组的解相同,故选A.12.【答案】11xy==⎧⎨⎩【解析】221x yx y+=⎧⎨-=⎩①②,①+②,得:3x=3,解得:x=1.把x=1代入①得,y=1,故方程组的解为:11xy==⎧⎨⎩.故答案为:11xy==⎧⎨⎩.13.【答案】32【解析】23523x yx y+=⎧⎨+=-⎩①②,14.【答案】1;1【解析】解方程组23144516x yx y+=⎧⎨-=-⎩,得14xy=⎧⎨=⎩.把它代入方程组35ax byax by-=-⎧⎨+=⎩,得4345a ba b-=-⎧⎨+=⎩,解之,得a=1,b=1.故答案为1;1.15.【解析】(1)23328y xx y=-⎧⎨+=⎩①②,将①代入②得:3x+4x-6=8,解得x=2,将x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩.(2)223210x yx y+=⎧⎨-=⎩①②,①×2+②得:7x=14,解得x=2,将x=2代入①得:y=-2,则方程组的解为22 xy=⎧⎨=-⎩.(3)357 425x yx y-=⎧⎨+=⎩①②,①×2+②×5得:26x=39,即x=32,将x=32代入②得:y=-12,则方程组的解为3212xy⎧=⎪⎪⎨⎪=-⎪⎩.(4)方程组化简,得51112058x yx y-+=⎧⎨=-⎩①②,把②代入①,得14y-28=0,解得y=2,把y=2代入②,得x=2,方程组的解为22 xy=⎧⎨=⎩.16.【解析】213 3113a bb a=-+⎧⎨=-⎩①②,把②代入①,得2a=-1+(11-3a),解得a=2,把a=2代入①,解得b=53,所以原方程组的解是253ab=⎧⎪⎨=⎪⎩.17.【解析】原方程整理为55593x yx y-=⎧⎨-=-⎩①②,①-②,得8y=8,解得,y=1.把y=1代入①得,5x-1=5,解得,x=65,所以,方程组的解为651xy⎧=⎪⎨⎪=⎩.18.【答案】B【解析】23x yx y-=⎧⎨+=⎩①②,②-①得,y=1③,将③代入①,得x=1,则xy=1,故选B.19.【答案】D【解析】先将②变为x-3y=7③,再①-③得x=-2,故选D.20.【答案】C【解析】①3⨯和②2⨯转化为(3);或者①2⨯和②3⨯转化为(4).故选C . 21.【答案】B【解析】将x -y =3代入方程2y +3(x -y )=11得2y +9=11,解得y =1, 将y =1代入x -y =3得x =4, 所以3x -4y =3×4-4×1=8.故选B .23.【答案】B【解析】根据方程组有无穷多组解,可知方程组中的两个方程相同, 所以b =2,3k -1=k , 解得:k =12,b =2, ∴2k +b 2=1+4=5.故选B . 24.【答案】C【解析】根据甲的收入-甲的支出400=元,得方程400=-y x , 根据乙的收入-乙的支出400=元,得方程4007432=-y x , 则可列方程组为4002440037x y x y -=⎧⎪⎨-=⎪⎩,故选C . 25.【答案】34【解析】59x y k x y k +=⎧⎨-=⎩①②,①+②得:2x =14k ,即x =7k ,将x =7k 代入①得:7k +y =5k ,即y =-2k , 将x =7k ,y =-2k 代入2x +3y =6得:14k -6k =6, 解得:k =34,故答案为:34. 26.【答案】24【解析】将方程组中的两个方程看作整体代入得:3(x +y )-(3x -5y )=3×7-(-3)=24. 故答案为:24.27.【解析】(1)将①代入②得,32(402)22x x +-=,解得x =58,将x =58代入①,得:y =-76,故原方程组的解为:5876x y =⎧⎨=-⎩.(2)①×2得,4x +6y =10③,③-②得:8y =9,y =98, 将y =98代入①,得:1316x =, 故原方程组的解为:131698x y ⎧=⎪⎪⎨⎪=⎪⎩.(3)②×5得:15x -5y =-15③,①+③得:21x =0,解得:x =0, 将x =0代入②得:y =3,故原方程组的解为:03x y =⎧⎨=⎩.28.【解析】由题意得82x y x y +∆=⎧⎨∆-=⎩W W ,解得53=⎧⎨∆=-⎩W,则原方程组为538352x y x y -=⎧⎨--=⎩.29.【解析】原方程组整理得536528x y x y -=⎧⎨+=⎩①②,由②得y x 528-=③,把③代入①得36)528(5=--y y ,解得4=y , 把4=y ③代入③得,8=x ,∴方程组的解为84x y =⎧⎨=⎩.30.【解析】(1)∵m ※n =1,m ※2n =-2,∴431462m n m n -=⎧⎨-=-⎩,解得11n m =⎧⎨=⎩.(2)∵m ※2≤0,3m ※(-8)>0,∴46012240m m -≤⎧⎨+>⎩,解得-2<m ≤32. 31.【答案】B【解析】22x y x y +=⎧⎨-=-⎩①②,①+②得:2x =0, 解得:x =0,把x =0代入①得:y =2,则方程组的解为02x y =⎧⎨=⎩,故选B . 32.【答案】A【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得x =6,把x =6代入①,得y =4,原方程组的解为64x y =⎧⎨=⎩.故选A .33.【答案】A【解析】73838x y x y -=⎧⎨-=⎩①②,①-②×3,得:-2x =-16, 解得:x =8,将x =8代入②,得:24-y =8,解得:y =16,即a =8,b =16,则a +b =24,故选A .34.【答案】D【解析】∵|321|0x y --=,∴321020x y x y --=⎧⎨+-=⎩, 将方程组变形为3212x y x y -=⎧⎨+=⎩①②, ①+②×2得,5x =5,解得x =1, 把x =1代入①得,3-2y =1,解得y =1,∴方程组的解为11x y =⎧⎨=⎩.故选D . 35.【答案】C【解析】A 、D =2132-=2×(-2)-3×1=-7,故A 选项正确,不符合题意; B 、D x =11122-=-2-1×12=-14,故B 选项正确,不符合题意;C、D y=21312=2×12-1×3=21,故C选项不正确,符合题意;D、方程组的解:x=147xDD-=-=2,y=217yDD=-=-3,故D选项正确,不符合题意,故选C.36.【答案】31 xy=⎧⎨=⎩【解析】225 x yx y-=⎧⎨+=⎩,②-①,得:3y=3,解得:y=1,将y=1代入①,得:x-1=2,解得:x=3,所以方程组的解为31 xy=⎧⎨=⎩,故答案为:31 xy=⎧⎨=⎩.37.【解析】1410x yx y+=⎧⎨+=⎩①②,②-①得:3x=9,解得:x=3,把x=3代入①得:y=-2,则方程组的解为32 xy=⎧⎨=-⎩.38.【解析】①+②得:4x=8,解得:x=2,把x=2代入①得:2+y=3,解得:y=1,所以原方程组的解为21x y =⎧⎨=⎩. 39.【解析】10216x y x y +=⎧⎨+=⎩①②,②-①得:x =6,把x =6代入①得:y =4,则方程组的解为64x y =⎧⎨=⎩.41.【解析】(1)解法一中的计算有误(标记略).(2)用消元法解方程组35432x y x y -=⎧⎨-=⎩①②时,两位同学的解法如下: 由①-②,得33x -=,解得1x =-,把1x =-代入①,得135y --=,解得2y =-,所以原方程组的解是12x y =-⎧⎨=-⎩.。
初中数学《一元二次方程》全章讲义
初中数学《一元二次方程》全章讲义一元二次方程的解法包括四种:因式分解法、配方法、公式法和图像法。
1、因式分解法:将一元二次方程化为两个一次因式的乘积,使每个一次因式等于0,从而求出方程的解。
2、配方法:通过加减平方完成方程的配方,将一元二次方程化为一个完全平方式的形式,从而求出方程的解。
3、公式法:利用求根公式求出一元二次方程的解,其中求根公式为x=(-b±√(b²-4ac))/2a。
4、图像法:通过绘制一元二次方程的图像,找出方程在x轴上的根,从而求出方程的解。
例1、用因式分解法解方程x²-3x-10=0.解:将方程化为(x-5)(x+2)=0,得到x=5或x=-2.例2、用配方法解方程2x²+5x-3=0.解:将方程改写为2(x+5/4)²-121/16=0,得到x=-3/2或x=1/2.例3、用公式法解方程3x²+4x-1=0.解:根据求根公式,得到x=(-4±√52)/6,化简后得到x=-1/3或x=1/2.例4、用图像法解方程x²-2x-3=0.解:绘制出方程的图像,找到x轴上的两个根,得到x=-1和x=3.一元二次方程的常用解法包括直接开平方法、配方法、求根公式法和因式分解法。
选择合适的解法可以按以下方法进行:当方程一边为完全平方式,另一边为非负数时,可用直接开平方法;当方程的一边为一次因式的乘积,而另一边可以分解为两个一次因式的乘积的形式时,运用因式分解法求解;当方程的一边较易配成含未知数的完全平方式,另一边为非负数时,常用配方法;当不便用上面三种方法时,就用求根公式法。
例如,对于方程$2x-8=\sqrt{x+2}$,可以使用直接开平方法求解;对于方程$(1-x)^2-9=0$,可以使用因式分解法求解;对于方程$2x(x-3)=5(x-3)$,可以使用配方法求解;对于方程$(4x+y)^2+3(4x+y)-4=0$,可以使用求根公式法求解。
初中数学讲义
基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理SAS 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理 ASA有两角和它们的夹边对应相等的两个三角形全等24、推论AAS 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理SSS 有三边对应相等的两个三角形全等26、斜边、直角边公理HL 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等即等边对等角31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边35、推论1 三个角都相等的三角形是等边三角形36、推论 2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、48、定理四边形的内角和等于360°49、49、四边形的外角和等于360°50、50、多边形内角和定理 n边形的内角的和等于n-2×180°51、51、推论任意多边的外角和等于360°52、52、平行四边形性质定理1 平行四边形的对角相等53、53、平行四边形性质定理2 平行四边形的对边相等54、54、推论夹在两条平行线间的平行线段相等55、55、平行四边形性质定理3 平行四边形的对角线互相平分56、56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、60、矩形性质定理1 矩形的四个角都是直角61、61、矩形性质定理2 矩形的对角线相等62、62、矩形判定定理1 有三个角是直角的四边形是矩形63、63、矩形判定定理2 对角线相等的平行四边形是矩形64、64、菱形性质定理1 菱形的四条边都相等65、65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、66、菱形面积=对角线乘积的一半,即S=a×b÷267、67、菱形判定定理1 四边都相等的四边形是菱形68、68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、71、定理1 关于中心对称的两个图形是全等的72、72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、75、等腰梯形的两条对角线相等76、76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、77、对角线相等的梯形是等腰梯形78、78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 L=a+b ÷2 S=L×h83、83、1比例的基本性质:如果a:b=c:d,那么ad=bc 如果 ad=bc ,那么a:b=c:d84、84、2合比性质:如果a/b=c/d,那么a±b/b=c±d/d85、85、3等比性质:如果a/b=c/d=…=m/nb+d+…+n≠0,86、那么a+c+…+m/b+d+…+n=a/b87、86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例88、87、推论平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例89、88、定理如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边90、89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例91、90、定理平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似92、91、相似三角形判定定理1 两角对应相等,两三角形相似ASA93、92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似94、93、判定定理2 两边对应成比例且夹角相等,两三角形相似SAS95、94、判定定理3 三边对应成比例,两三角形相似SSS96、95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似97、96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比98、97、性质定理2 相似三角形周长的比等于相似比99、98、性质定理3 相似三角形面积的比等于相似比的平方100、99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值101、100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值102、101、圆是定点的距离等于定长的点的集合103、102、圆的内部可以看作是圆心的距离小于半径的点的集合104、103、圆的外部可以看作是圆心的距离大于半径的点的集合105、104、同圆或等圆的半径相等106、105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆107、106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线108、107、到已知角的两边距离相等的点的轨迹,是这个角的平分线109、108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线110、109、定理不在同一直线上的三点确定一个圆;111、110、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧112、111、推论1113、①平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧114、②弦的垂直平分线经过圆心,并且平分弦所对的两条弧115、③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧116、112、推论2 圆的两条平行弦所夹的弧相等117、113、圆是以圆心为对称中心的中心对称图形118、114、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等119、115、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等120、116、定理一条弧所对的圆周角等于它所对的圆心角的一半121、117、推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等122、118、推论2 半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径123、119、推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形124、120、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角125、121、①直线L和⊙O相交 d<r126、②直线L和⊙O相切 d=r127、③直线L和⊙O相离 d>r128、122、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线129、123、切线的性质定理圆的切线垂直于经过切点的半径130、124、推论1 经过圆心且垂直于切线的直线必经过切点131、125、推论2 经过切点且垂直于切线的直线必经过圆心132、126、切线长定理从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角133、127、圆的外切四边形的两组对边的和相等134、128、弦切角定理弦切角等于它所夹的弧对的圆周角135、129、推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等136、130、相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等137、131、推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项138、132、切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项139、133、推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等140、134、如果两个圆相切,那么切点一定在连心线上141、142、135、①两圆外离 d>R+r ②两圆外切 d=R+r③两圆相交 R-r<d<R+rR>r 143、④两圆内切 d=R-rR>r ⑤两圆内含 d<R-rR>r144、136、定理相交两圆的连心线垂直平分两圆的公共弦145、137、定理把圆分成nn≥3:146、⑴依次连结各分点所得的多边形是这个圆的内接正n边形147、⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形148、138、定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆149、139、正n边形的每个内角都等于n-2×180°/n150、140、定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形151、141、正n边形的面积Sn=pnrn/2 p表示正n边形的周长152、142、正三角形面积√3a/4 a表示边长153、143、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×n-2180°/n=360°化为n-2k-2=4154、144、弧长计算公式:L=n兀R/180155、145、扇形面积公式:S扇形=n兀R2/360=LR/2146、内公切线长= d-R-r 外公切线长= d-R+r147完全平方公式:a+b2=a2+2ab+b2a-b2=a2-2ab+b2148平方差公式:a+ba-b=a2-b2常用数学公式乘法与因式分 a2-b2=a+ba-b a3+b3=a+ba2-ab+b2 a3-b3=a-ba2+ab+b2三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√b2-4ac/2a -b-√b2-4ac/2a根与系数的关系 X1+X2=-b/a X1X2=c/a 注:韦达定理判别式b2-4ac=0 注:方程有两个相等的实根b2-4ac>0 注:方程有两个不等的实根b2-4ac<0 注:方程没有实根,有共轭复数根三角函数公式两角和公式sinA+B=sinAcosB+cosAsinB sinA-B=sinAcosB-sinBcosAcosA+B=cosAcosB-sinAsinB cosA-B=cosAcosB+sinAsinBtanA+B=tanA+tanB/1-tanAtanB tanA-B=tanA-tanB/1+tanAtanB ctgA+B=ctgActgB-1/ctgB+ctgA ctgA-B=ctgActgB+1/ctgB-ctgA倍角公式tan2A=2tanA/1-tan2A ctg2A=ctg2A-1/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sinA/2=√1-cosA/2 sinA/2=-√1-cosA/2cosA/2=√1+cosA/2 cosA/2=-√1+cosA/2tanA/2=√1-cosA/1+cosA tanA/2=-√1-cosA/1+cosActgA/2=√1+cosA/1-cosA ctgA/2=-√1+cosA/1-cosA和差化积2sinAcosB=sinA+B+sinA-B 2cosAsinB=sinA+B-sinA-B2cosAcosB=cosA+B-sinA-B -2sinAsinB=cosA+B-cosA-BsinA+sinB=2sinA+B/2cosA-B/2 cosA+cosB=2cosA+B/2sinA-B/2tanA+tanB=sinA+B/cosAcosB tanA-tanB=sinA-B/cosAcosBctgA+ctgBsinA+B/sinAsinB -ctgA+ctgBsinA+B/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=nn+1/2 1+3+5+7+9+11+13+15+…+2n-1=n22+4+6+8+10+12+14+…+2n=nn+1 12+22+32+42+52+62+72+82+…+n2=nn+12n+1/6 13+23+33+43+53+63+…n3=n2n+12/4 12+23+34+45+56+67+…+nn+1=nn+1n+2/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角圆的标准方程x-a2+y-b2=r2注:a,b是圆心坐标圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=ch 斜棱柱侧面积 S=c'h正棱锥侧面积 S=1/2ch' 正棱台侧面积 S=1/2c+c'h'圆台侧面积 S=1/2c+c'l=πR+rl 球的表面积 S=4πr2圆柱侧面积 S=ch=2πh 圆锥侧面积 S=1/2cl=πrl弧长公式 l=ar a是圆心角的弧度数r >0 扇形面积公式 s=1/2lr锥体体积公式 V=1/3SH 圆锥体体积公式 V=1/3πr2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=sh 圆柱体 V=πr2h。
人教版初一数学下册 二元一次方程组应用题 相遇问题和追及问题 讲义
相遇问题和追及问题解题技巧:1、画图分析2、速度×时间=路程3、根据路程列出方程例1、甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?例2、小明、小华两人在同一地点练习跑步,如果小华先跑10米,则小明跑6秒就可以追上乙。
如果小华先跑2秒,则小明跑4秒可以追上乙。
求小明和小华的速度1、甲、乙相距12km,两人同向而行,甲3小时可追上乙。
相向而行,2小时相遇。
二人的平均速度各是多少?2、甲、乙两人相距6千米,若两人同时相向而行,则出发1小时相遇。
若两人同时同向出发,则甲3小时可追上乙。
求两人的平均速度各是多少?3、甲、乙两人从A、B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶,出发后经3小时两人相遇。
已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米4、甲骑摩托车每小时行40千米,乙骑机动脚踏车每小时行20千米,上午7时他们相距140千米的A、B同时出发。
(1)相向而行,在什么时候相距20千米?(2)同向而行,什么时候他们相距20千米?5、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分钟相遇,相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机。
这时,汽车、拖拉机各自行驶了多少千米?6、学校组织学生去春游,小徐因赖床而没有赶上旅游车,于是他乘坐一辆出租车进行追赶。
小徐打电话给老师道歉。
老师对小徐说,你要是能答对我的问题,我就原谅你:“如果出租车每小时走80千米,则需要1.5小时追上旅游车。
如果每小时走90千米,则需要40分钟追上。
你知道旅游车的速度是多少吗?”请帮小徐回答这个问题。
人教版初一数学下册 二元一次方程组应用题 分段收费问题 讲义
分段收费问题解题技巧:未超额的费用+超额的费用=总费用例1、某市出租车的起步价所含路程为3千米,超过3千米的部分按每千米另外收费。
已知乘这种出租车行11千米,则要付17元,行23千米则要付35元。
出租车的起步价是多少?超过3千米后,每千米的车费是多少元?例2、公园的门票价格规定如表。
我校七年(1)班、七年(2)班共102人去游览该景点,其中七年(1)班不足50人,七年(2)班多于50人,如果两班都以班为单位分别购票,则一共付款1118元。
(1)两班各有多少名学生(2)如果你是学校负责人,你将如何购票?你的购票方法可以节省多少钱?1、某市为鼓励居民节约用水,规定:若每月用水不超过10m3,按每立方米a元收费,如每月超过10m3,则超过部分按每立方米b元收费。
如果小何家五月用水15吨,缴费30元,六月用水17吨,缴费36元。
求a、b的值2、公园门票价格如表所示。
我校七年(3)班和七年(4)班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人。
如果以班为单位分别买票,两个班一共应付920元。
如果两个班联合起来作为一团体购票,一共只要付515元。
问:甲、乙两班分别有多少人?3、我国很多城市水资源缺乏。
为了加强居民的节水意识,合理利用水资源,很多城市制定了用水收费标准。
A市规定了每户每月的标准用水量,不超过标准用水量的部分按每立方米1.2元收费,超过标准用水量的部分按每立方米3元收费。
已知A市的钟伯伯用水9立方米,需交费16.2元,则A市每户每月标准用水量是多少立方米?阶梯式计费价格表的部分信息:(提示:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)已知小王家今年4月用水15吨,交水费45元。
5月用水25吨,交水费91元。
(1)求a、b(2)如果小王家6月交水费150元,则小王家这个月用水多少吨?梯式计费价格表的一部分:已知小张家今年4月用水20吨,交水费41元;5月用水25吨,交水费53.5元。
七年级下册数学期中复习专练教案讲义
1A B FD C E2【七年级下册数学期中复习专练】【课前热身】1、给出下列说法:(1) 两条直线被第三条直线所截,同位角相等;(2) 平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交; (3) 相等的两个角是对顶角;(4) 从直线外一点到这条直线的垂线段,叫做这点到直线的距离; 其中正确的有( )A 0个B 1个C 2个D 3个2、如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠13、方程1232=+y x 的非负整数解有( )A 、1个B 、2个C 、3个D 、4个4、方程032233=+--+-n m n y x 是二元一次方程,则,m =n = ;5、若⎩⎨⎧=-=.3,2y x 是方程1=-ky x 的解,则=k .6. 已知1)12(2-++b a =0,则-20042b a +=_______.【知识点一.实数】1.(-0.7)2的平方根是( )。
A 、-0.7B 、±0.7C 、0.7D 、0.492.下列说法错误的是( )A .3-是9的平方根B .5的平方等于5C .1-的平方根是1±D .9的算术平方根是33.一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( )A. 4cm~5cm 之间B. 5cm~6cm 之间C. 6cm~7cm 之间D. 7cm~8cm 之间4.若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥375.下列命题中,正确的是( )。
A 、无理数包括正无理数、0和负无理数B 、无理数不是实数C 、无理数是带根号的数D 、无理数是无限不循环小数6.在实数,,,,中,无理数有( )A .1个B .2个C .3个D .4个7.若3387=-a ,则a 的值是( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《二元一次方程组》全章复习与巩固(基础)知识讲解【学习目标】1.了解二元一次方程组及其解的有关概念;2.掌握消元法(代入或加减消元法)解二元一次方程组的方法;3.理解和掌握方程组与实际问题的联系以及方程组的解;4.掌握二元一次方程组在解决实际问题中的简单应用;5.通过对二元一次方程组的应用,培养应用数学的理念.【知识网络】【要点梳理】要点一、二元一次方程组的相关概念1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程.要点诠释:(1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数.(2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1.(3)二元一次方程的左边和右边都必须是整式.2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.要点诠释:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧b a ==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩. 要点诠释:(1)它的一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组.(3)符号“{”表示同时满足,相当于“且”的意思.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.要点诠释:(1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解.(2)方程组的解要用大括号联立;(3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组⎩⎨⎧=+=+6252y x y x 无解,而方程组⎩⎨⎧-=+-=+2221y x y x 的解有无数个. 要点二、二元一次方程组的解法1.解二元一次方程组的思想转化消元一元一次方程二元一次方程组2.解二元一次方程组的基本方法:代入消元法和加减消元法(1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值;⑤用“{”联立两个未知数的值,就是方程组的解.要点诠释:(1)用代入法解二元一次方程组时,应先观察各项系数的特点,尽可能选择变形后比较简单或代入后化简比较容易的方程变形;(2)变形后的方程不能再代入原方程,只能代入原方程组中的另一个方程;(3)要善于分析方程的特点,寻找简便的解法.如将某个未知数连同它的系数作为一个整体用含另一个未知数的代数式来表示,代入另一个方程,或直接将某一方程代入另一个方程,这种方法叫做整体代入法.整体代入法是解二元一次方程组常用的方法之一,它的运用可使运算简便,提高运算速度及准确率.(2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.要点诠释:当方程组中有一个未知数的系数的绝对值相等或同一个未知数的系数成整数倍时,用加减消元法较简单.要点三、实际问题与二元一次方程组要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.要点四、三元一次方程组1.定义:含有三个未知数,并且含有未知数的项的次数都是1的方程叫做三元一次方程;含有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.412,325,51,x y z x y z x y z +-=⎧⎪++=-⎨⎪-+=⎩273,31,34a b a c b c +=⎧⎪-=⎨⎪-+=⎩等都是三元一次方程组. 要点诠释:理解三元一次方程组的定义时,要注意以下几点:(1)方程组中的每一个方程都是一次方程;(2)如果三个一元一次方程合起来共有三个未知数,它们就能组成一个三元一次方程组.2.三元一次方程组的解法解三元一次方程组的基本思想仍是消元,一般的,应利用代入法或加减法消去一个未知数,从而化三元为二元,然后解这个二元一次方程组,求出两个未知数,最后再求出另一个未知数.解三元一次方程组的一般步骤是:(1)利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组;(2)解这个二元一次方程组,求出两个未知数的值;(3)将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一元一次方程;(4)解这个一元一次方程,求出最后一个未知数的值;(5)将求得的三个未知数的值用“{”合写在一起.要点诠释:(1)有些特殊的方程组可用特殊的消元法,解题时要根据各方程特点寻求比较简单的解法.(2)要检验求得的未知数的值是不是原方程组的解,将所求得的一组未知数的值分别代入原方程组里的每一个方程中,看每个方程的左右两边是否相等,若相等,则是原方程组的解,只要有一个方程的左、右两边不相等就不是原方程组的解.3. 三元一次方程组的应用列三元一次方程组解应用题的一般步骤:(1)弄清题意和题目中的数量关系,用字母(如x ,y ,z )表示题目中的两个(或三个)未知数;(2)找出能够表达应用题全部含义的相等关系;(3)根据这些相等关系列出需要的代数式,从而列出方程并组成方程组;(4)解这个方程组,求出未知数的值;(5)写出答案(包括单位名称).要点诠释:(1)解实际应用题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的应该舍去.(2)“设”、“答”两步,都要写清单位名称,应注意单位是否统一.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.【典型例题】类型一、二元一次方程组的相关概念1.下列方程组中,不是二元一次方程组的是( ).A.⎩⎨⎧+==-13032x y y xB.⎩⎨⎧=-=+211z y xC.⎩⎨⎧=+-=+63222y x y x x x D.⎩⎨⎧-=+=6352x x y【思路点拨】利用二元一次方程组的定义一一进行判断.【答案】B.【解析】二元一次方程组中只含有两个未知数,并且含有未知数的次数都是1,方程组⎩⎨⎧=+-=+63222y x y x x x 中,y x x x 3222-=+可以整理为y x 32-=.【总结升华】准确理解二元一次方程组和二元一次方程的定义是解本题的关键. 举一反三:【高清课堂:二元一次方程组章节复习409413 例1(2)】【变式】若32225a b a b x y --+-=是二元一次方程,则a = ,b = .【答案】1, 0.2.以⎩⎨⎧-==11y x 为解的二元一次方程组是( ). A.⎩⎨⎧=-=+10y x y x B.⎩⎨⎧-=-=+10y x y x C.⎩⎨⎧=-=+20y x y x D.⎩⎨⎧-=-=+20y x y x【答案】C.【解析】通过观察四个选项可知,每个选项的第一个二元一次方程都是0=+y x ,第二个方程的左边都是y x -,而右边不同,根据二元一次方程的解的意义可知,当⎩⎨⎧-==11y x 时,211)1(1=+=--=-y x .【总结升华】不满足或不全部满足方程组中的各方程的选项都不是方程组的解. 举一反三:【变式】若⎩⎨⎧==12y x 是关于y x 、的方程032=+-k y x 的解,则=k .【答案】 -1.类型二、二元一次方程组的解法3.(2015•荆州)解方程组:32137①②x y x y -=-⎧⎨+=⎩.【思路点拨】方程组利用加减消元法求出解即可.【答案与解析】解:②×3﹣①得:11y=22,即y=2,把y=2代入②得:x=1,则方程组的解为.【总结升华】消元法是解方程组的基本方法,消元的目的是把多元一次方程组逐步转化为一元一次方程,从而使问题获解.举一反三:【高清课堂:二元一次方程组章节复习409413 例2(2)】【变式】已知方程组35x y x y +=⎧⎨-=⎩的解是二元一次方程m (x +1)=3(x -y )的一个解,则m = . 【答案】3.4. (台湾)若二元一次方程组23343x y x y -=⎧⎨-=⎩的解为x a y b =⎧⎨=⎩,则a+b 等于( ). A .1 B .6 C .35 D .125【思路点拨】将解代入方程组,得到关于,a b 的方程组,解之,代入要求的代数式即得答案.【答案】D【解析】解:把x a y b =⎧⎨=⎩代入原方程组中,得, 23343a b a b -=⎧⎨-=⎩, 解得9535a b ⎧=⎪⎪⎨⎪=⎪⎩. 所以9312555a b +=+=. 【总结升华】根据已知条件构造出方程组,再选择恰当方法求得方程组的解,然后再代入求出最后答案.类型三、实际问题与二元一次方程组5. 2001年以来,我国曾五次实施药品降价,累计降价的总金额为269亿元,五次药品降价的年份与相应降价金额如下表所示,表中缺失了2003、2007年相关数据. 已知2007年药品降价金额是2003年药品降价金额的6倍,结合表中的信息,求2003年和2007年的药品降价金额.年份2002 2003 2004 2005 2007 降价金额(亿元) 54 35 40【思路点拨】本题的两个相等关系为:(1)五年的降价金额一共是269亿元;(2)2007年药品降价金额=6×2003年的药品降价金额.【答案与解析】解:设2003年和2007年药品降价金额分别为x 亿元、y 亿元.根据题意,得⎩⎨⎧=++++=2694035546y x x y ,解方程组得⎩⎨⎧==12020y x .答:2003年和2007年的药品降价金额分别为20亿元和120亿元.【总结升华】列方程(组)解实际问题的关键就是准确地找出等量关系,列方程(组)求解. 举一反三:【变式】(山东济南)如图所示,教师节来临之际,群群所在的班级准备向每位辛勤工作的教师献一束鲜花,每束由4支鲜花包装而成,其中有象征母爱的康乃馨和象征尊敬的水仙花两种鲜花,同一种鲜花每支的价格相同,请你根据第一、二束鲜花提供的信息,求出第三束鲜花的价格.【答案】解:设康乃馨每支x 元,水仙花每支y 元.根据题意,可列方程组3192218x y x y +=⎧⎨+=⎩,解得54x y =⎧⎨=⎩. 所以第三束鲜花的价格是x+3y =5+3×4=17(元).答:第三束鲜花的价格是17元.类型四、三元一次方程组6. (2015春•繁昌县期末)解方程组:31026217①②③x y z x y z x y z -+=⎧⎪+-=⎨⎪++=⎩.【思路点拨】先用加减法消去z ,变为x 、y 的二元一次方程组.【答案与解析】解:①+②得:4x+y=16④,②×2+③得:3x+5y=29⑤,④⑤组成方程组解得 将x=3,y=4代入③得:z=5, 则方程组的解为.【总结升华】此题考查了三元一次方程组的解法,利用了消元的思想,消元的方法有两种:加减消元法;代入消元法,熟练掌握两种方法是解本题的关键.。