高中数学 曲线和方程

合集下载

高中数学考点-曲线与方程

高中数学考点-曲线与方程

9.5曲线与方程1.曲线与方程一般地,在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)______________________________________;(2)______________________________________.那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.2.求曲线方程的一般步骤(1)建立适当的__________,用有序实数对(x,y)表示曲线上____________M的坐标;(2)写出__________________的点M的集合:P={M | p(M)};(3)用__________表示条件p(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为____________形式;(5)说明以化简后的方程的________为坐标的________都在曲线上.注:步骤(5)可以省略不写,如有特殊情况,可以作适当说明,另外,也可以根据情况省略步骤(2).3.求曲线的轨迹方程的常用方法(1)直接法:直接利用条件建立x,y之间的关系f(x,y)=0.也就是:建系设点、列式、代换、化简、证明,最后的证明可以省略,必要时加以说明.(2)定义法:先根据条件得出动点的轨迹是某种已知的曲线,再由曲线的定义直接写出动点的轨迹方程.(3)待定系数法:已知所求的曲线类型,先根据条件设出曲线方程,再由条件确定其待定系数.(4)相关点法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,首先用x,y表示x0,y0,再将x0,y0代入已知曲线得到要求的轨迹方程.(5)交轨法:动点P(x,y)是两动直线(或曲线)的交点,解决此类问题通常是通过解方程组得到交点(含参数)的坐标,再消去参数求出所求的轨迹方程.(6)参数法:当动点P(x,y)的坐标之间的关系不易找到,可考虑将x,y均用一中间变量(参数)表示,得参数方程,再消去参数得方程f(x,y)=0.(4)、(5)两种方法本质上也是参数法,只不过是多参数的参数方程或是隐性式的参数方程.自查自纠1.(1)曲线上点的坐标都是这个方程的解(2)以这个方程的解为坐标的点都是曲线上的点2.(1)坐标系任意一点(2)适合条件p(3)坐标(4)最简(5)解点方程x2+xy+x=0表示的曲线是()A .一个点B .一条直线C .两条直线D .一个点和一条直线解:方程变为x (x +y +1)=0,所以x =0或x +y +1=0.故方程表示直线x =0或直线x +y +1=0.故选C. 方程(x 2-y 2-1)x -y -1=0表示的曲线的大致形状是(图中实线部分)( )解:原方程等价于⎩⎪⎨⎪⎧x 2-y 2-1=0,x -y -1≥0或x -y -1=0,前者表示等轴双曲线x 2-y 2=1位于直线x -y -1=0下方的部分,后者为直线x -y -1=0,这两部分合起来即为所求.故选B.若点P 到点F (0,2)的距离比它到直线y +4=0的距离小2,则点P 的轨迹方程为( ) A .y 2=8xB .y 2=-8xC .x 2=8yD .x 2=-8y解:由题意知P 到F (0,2)的距离比它到y +4=0的距离小2,因此P 到F (0,2)的距离与到直线y +2=0的距离相等,故P 的轨迹是以F 为焦点,y =-2为准线的抛物线,所以P 的轨迹方程为x 2=8y .故选C.由动点P 向圆x 2+y 2=1引两条切线P A 、PB ,切点分别为A 、B ,∠APB =60°,则动点P 的轨迹方程为________.解:设P (x ,y ),x 2+y 2=1的圆心为O ,因为∠APB =60°,OP 平分∠APB ,所以∠OPB =30°,因为|OB |=1,∠OBP 为直角,所以|OP |=2,所以x 2+y 2=4.故填x 2+y 2=4.(2016·贵州调研)在平面直角坐标系中,动点P 和点M (-2,0),N (2,0)满足|MN →||MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为____________.解:把已知等式|MN →||MP →|+MN →·NP →=0用坐标表示,得4(x +2)2+y 2+4(x -2)=0,化简变形得y 2=-8x .故填y 2=-8x .类型一 已知方程判断曲线|y |-1=1-(x -1)2表示的曲线是( ) A .抛物线B .一个圆C .两个圆D .两个半圆解:原方程|y |-1=1-(x -1)2等价于⎩⎪⎨⎪⎧|y |-1≥0,1-(x -1)2≥0,(|y |-1)2=1-(x -1)2,得⎩⎪⎨⎪⎧y ≥1,(x -1)2+(y -1)2=1或⎩⎪⎨⎪⎧y ≤-1,(x -1)2+(y +1)2=1. 所以原方程表示(x -1)2+(y -1)2=1(y ≥1)和(x -1)2+(y +1)2=1(y ≤-1)两个半圆.故选D.【点拨】化简曲线方程时要注意等价性,每一步都需等价转化,对含有绝对值的式子须进行分类讨论,且分类要彻底,最后再综合起来分析.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A .两条直线 B .两条射线C .两条线段D .一条直线和一条射线解:原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线.故选D.类型二 直接法求曲线的轨迹方程已知A 、B 为平面内两定点,过该平面内动点M 作直线AB 的垂线,垂足为N .若MN →2=λAN →·NB →,其中λ为常数,则动点M 的轨迹不可能是( ) A .圆B .椭圆C .抛物线D .双曲线解:以AB 所在直线为x 轴,AB 的中垂线为y 轴,建立坐标系, 设M (x ,y ),A (-a ,0),B (a ,0),则N (x ,0). 因为MN →2=λAN →·NB →,所以y 2=λ(x +a )(a -x ),即λx 2+y 2=λa 2, 当λ=1时,轨迹是圆; 当λ>0且λ≠1时,轨迹是椭圆; 当λ<0时,轨迹是双曲线; 当λ=0时,轨迹是直线.综上,动点M 的轨迹不可能是抛物线.故选C.【点拨】(1)直接法求曲线的轨迹方程时,建立适当的坐标系非常重要.建立适当的直角坐标系一般应遵循两原则:①对称性原则:坐标轴为曲线的对称轴,坐标原点为曲线的对称中心;②过原点原则:在优先满足①的情形下,尽量让曲线经过原点,这样方程可减少一个常数项.(2)直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.通常将步骤简记为建系设点、列式、代换、化简、证明这五个步骤,但最后的证明可以省略,如果给出了直角坐标系,则可省去建系这一步,求出曲线的方程后还需注意检验方程的纯粹性和完备性,即“去杂”.已知|AB |=2,动点P 满足|P A |=2|PB |,则动点P 的轨迹方程为____________.解:如图所示,以AB 的中点O 为原点,直线AB 为x 轴建立如图所示的平面直角坐标系,则A (-1,0),B (1,0).设P (x ,y ),因为|P A |=2|PB |,所以(x +1)2+y 2=2(x -1)2+y 2,整理得x 2+y 2-103x +1=0,即⎝⎛⎭⎫x -532+y 2=169. 所以动点P 的轨迹方程为⎝⎛⎭⎫x -532+y 2=169. 故填⎝⎛⎭⎫x -532+y 2=169. 类型三 几何法求曲线的轨迹方程(2016·长沙模拟)△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是____________.解:如图,令内切圆与三边的切点分别为D ,E ,F ,可知|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=|AE |-|BE |=8-2=6<|AB |=10.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,其方程为x 29-y 216=1(x >3).故填x 29-y 216=1(x >3).【点拨】利用平面几何或解析几何的知识分析图形性质,发现动点运动规律和动点满足的条件,从而得出动点的轨迹方程的方法叫几何法.几何法通过挖掘图形的几何属性,联想有关的定义和性质,建立适当的等量关系,开阔了思维视野,提高了解题的灵活性,简化了思维过程,减少了计算量.(2016·河南郑州一模)如图,△P AB 所在的平面α和四边形ABCD 所在的平面β互相垂直,且AD ⊥α,BC ⊥α,AD =4,BC =8,AB =6,若tan ∠ADP +2tan ∠BCP =10,则点P 在平面α内的轨迹是( )A .圆的一部分B .椭圆的一部分C .双曲线的一部分D .抛物线的一部分解:由题意知P A AD +2×PBBC =10,则P A +PB =40>AB =6,又因为P ,A ,B 三点不共线,故点P 的轨迹是以A ,B 为焦点的椭圆的一部分.故选B.类型四 定义法求曲线的轨迹方程已知两个定圆O 1和O 2,它们的半径分别是1和2,且|O 1O 2|=4.动圆M 与圆O 1内切,又与圆O 2外切,建立适当的坐标系,求动圆圆心M 的轨迹方程,并说明轨迹是何种曲线.解:如图所示,以O 1O 2的中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系.由|O 1O 2|=4,得O 1(-2,0)、O 2(2,0).设动圆M 的半径为r , 则由动圆M 与圆O 1内切,有|MO 1|=r -1;由动圆M 与圆O 2外切,有|MO 2|=r +2.所以|MO 2|-|MO 1|=3<|O 1O 2|. 所以点M 的轨迹是以O 1、O 2为焦点,实轴长为3的双曲线的左支.所以a =32,c =2,所以b 2=c 2-a 2=74.所以点M 的轨迹方程为4x 29-4y 27=1⎝⎛⎭⎫x ≤-32. 【点拨】本题是利用常见曲线的定义求其方程的典型例子,求解过程充分运用了平面几何的知识.一般来说,利用定义法求曲线的轨迹方程常伴有平面几何知识的应用.(1)已知点F ⎝⎛⎭⎫14,0,直线l :x =-14,点B 是l 上的动点,过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( ) A .双曲线B .椭圆C .抛物线D .圆解:由垂直平分线的性质可得|MF |=|BM |,又因BM 垂直于直线l :x =-14,所以点M 到直线l :x =-14的距离等于其到定点F ⎝⎛⎭⎫14,0的距离,且F ⎝⎛⎭⎫14,0不在l :x =-14上,故点M 的轨迹是抛物线.故选C.(2)设P 是圆x 2+y 2=100上的动点,点A (8,0),线段AP 的垂直平分线交半径OP 于M 点,则点M 的轨迹为( ) A .圆B .椭圆C .双曲线D .抛物线解:如图,设M (x ,y ),由于l 是AP 的垂直平分线,于是|AM |=|PM |,又由于10=|OP |=|OM |+|MP |=|OM |+|MA |,即|OM |+|MA |=10,也就是说,动点M 到O (0,0)及A (8,0)的距离之和是10,又|OA |=8<10,故动点M 的轨迹是以O (0,0)、A (8,0)为焦点,中心在(4,0),长半轴长是5的椭圆.故选B.1.求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过“坐标化”将其转化为寻求动点的横坐标与纵坐标之间的关系.在求与圆锥曲线有关的轨迹方程时,要特别重视圆锥曲线的定义在求轨迹方程中的应用,只要动点满足已知曲线的定义,就可直接得出方程.2.要注意一些轨迹问题中包含的某些隐含条件,也就是曲线上点的坐标的取值范围,有时还要补充特殊点的坐标或特殊曲线的方程.3.求轨迹方程与求轨迹是有区别的,若求轨迹,则不仅要求出方程,而且还需要说明所求轨迹是什么曲线,即曲线的形状、位置、大小都需说明.4.根据问题给出的条件不同,求轨迹的方法也不同,一般有如下规律: (1)单点的轨迹问题——直接法+待定系数法; (2)双动点的轨迹问题——相关点法; (3)多动点的轨迹问题——参数法+交轨法.5.利用参数法求动点轨迹时要注意:(1)参数的选择要合理;(2)消参的方法灵活多样;(3)对于所选的参数,要注意取值范围,并注意参数范围对x ,y 的取值范围的制约.6.曲线关于点中心对称、关于直线轴对称问题,通常是转化为点的中心对称或轴对称,一般结论如下: (1)曲线f (x ,y )=0关于已知点A (a ,b )的对称曲线的方程是f (2a -x ,2b -y )=0; (2)曲线f (x ,y )=0关于y =kx +b 的对称曲线的求法:设曲线f (x ,y )=0上任意一点为P (x 0,y 0),点P 关于直线y =kx +b 的对称点为P ′(x ,y ),则由轴对称的条件知,P 与P ′的坐标满足⎩⎪⎨⎪⎧y -y 0x -x 0·k =-1,y +y 02=k ·x +x 02+b ,从中解出x 0,y 0,将其代入已知曲线f (x ,y )=0,就可求出曲线f (x ,y )=0关于直线y =kx +b 对称的曲线方程.1.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A .椭圆 B .AB 所在的直线 C .线段AB D .无轨迹解:因为|AB |=5,所以到A 、B 两点距离之和为5的点的轨迹是线段A B.故选C.2.若方程x -2y -2k =0与2x -y -k =0所表示的两条曲线的交点在方程x 2+y 2=9的曲线上,则k 等于( ) A .±3 B .0 C .±2D .一切实数解:两曲线的交点为(0,-k ),由已知点(0,-k )在曲线x 2+y 2=9上,故可得k 2=9,所以k =±3.故选A.3.方程y =|x |x2表示的曲线形状大致为( )A BC D解法一:当x >0时,y =x x 2=1x ;当x <0时,y =-x x 2=-1x,即y =⎩⎨⎧1x,x >0,-1x ,x <0.解法二:因为y >0,所以排除A 、B 、D ,故选C.4.在△ABC 中,已知A (-1,0),C (1,0),且|BC |,|CA |,|AB |成等差数列,则顶点B 的轨迹方程是( ) A.x 23+y 24=1 B.x 23+y 24=1(x ≠±3) C.x 24+y 23=1 D.x 24+y 23=1(x ≠±2) 解:因为|BC |,|CA |,|AB |成等差数列,所以|BC |+|BA |=2|CA |=4.所以点B 的轨迹是以A ,C 为焦点,半焦距c =1,长轴长2a =4的椭圆.又B 是三角形的顶点,A ,B ,C 三点不能共线,故所求的轨迹方程为x 24+y 23=1,且x ≠±2.故选D.5.如图,正方体ABCD -A 1B 1C 1D 1中,点P 在侧面BCC 1B 1及其边界上运动,并且总保持AP ⊥BD 1,则动点P 的轨迹是( )A .线段B 1C B .线段BC 1C .BB 1中点与CC 1中点连成的线段D .BC 中点与B 1C 1中点连成的线段解:由AC ⊥BD ,AC ⊥DD 1知AC ⊥平面BDD 1,所以AC ⊥BD 1.同理AB 1⊥BD 1,故而平面AB 1C ⊥直线BD 1,所以P 点在线段B 1C 上, 故P 点的轨迹为线段B 1C.故选A.6.设圆O 1和圆O 2是两个定圆,动圆P 与这两个定圆都外切,则圆P 的圆心轨迹可能是( )① ② ③ ④ ⑤A .①②③⑤B .②③④⑤C .①②④⑤D .①②③④解:当两定圆相离时,圆P 的圆心轨迹可能为①;当两定圆外切时,圆P 的圆心轨迹可能为②;当两定圆相交时,圆P 的圆心轨迹可能为③;当两定圆内切时,圆P 的圆心轨迹可能为⑤.故选A.7.已知OP →=(2+2cos α,2+2sin α),α∈R ,O 为坐标原点,向量OQ →满足OP →+OQ →=0,则动点Q 的轨迹方程是________.解:设Q (x ,y ),因为OP →+OQ →=(2+2cos α+x ,2+2sin α+y )=(0,0),所以⎩⎪⎨⎪⎧x =-2-2cos α,y =-2-2sin α所以(x +2)2+(y +2)2=4.故填(x +2)2+(y +2)2=4.8.(2016·武汉模拟)如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.当P 在圆上运动时,点M 的轨迹C 的方程为__________.解:设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎪⎨⎪⎧x P =x ,y P =54y ,因为P 在圆上,所以x 2+⎝⎛⎭⎫54y 2=25,即轨迹C 的方程为x 225+y 216=1.故填x 225+y 216=1.9.若△ABC 的顶点B ,C 的坐标分别是(0,0)和(4,0),AB 边上中线的长为3,求顶点A 的轨迹方程.解:设AB 的中点为M (x 1,y 1),由||MC =3知M 点轨迹方程为(x 1-4)2+y 21=9(y 1≠0). 设A (x ,y ),则⎩⎨⎧x 1=x2,y 1=y 2,代入点M 的轨迹方程得顶点A 的轨迹方程为x 2+y 2-16x +28=0(y ≠0).10.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.求动点P 的轨迹方程.解:因为点B 与点A (-1,1)关于原点O 对称,所以点B 的坐标为(1,-1).设点P 的坐标为(x ,y ),由题意得y -1x +1·y +1x -1=-13,化简得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1).11.如图,直角三角形ABC 的顶点坐标A (-2,0),直角顶点B (0,-22),顶点C 在x 轴上,点P 为线段OA的中点.(1)求BC 边所在直线方程;(2)M 为直角三角形ABC 外接圆的圆心,求圆M 的方程;(3)若动圆N 过点P 且与圆M 内切,求动圆N 的圆心N 的轨迹方程. 解:(1)因为k AB =-2,AB ⊥BC , 所以k CB =22.所以BC :y =22x -2 2. (2)在上式中,令y =0,得C (4,0), 所以圆心M (1,0).又因为|AM |=3,所以外接圆的方程为(x -1)2+y 2=9. (3)因为圆N 过点P (-1,0),所以PN 是该圆的半径. 又因为动圆N 与圆M 内切,所以|MN |=3-|PN |,即 |MN |+|PN |=3>|PM |.所以点N 的轨迹是以M 、P 为焦点,长轴长为3的椭圆. 所以a =32,c =1,b =a 2-c 2=54. 所以轨迹方程为4x 29+4y 25=1.(2015·抚州模拟)在平面直角坐标系中,已知A 1(-2,0),A 2(2,0),P (x ,y ),M (x ,1),N (x ,-2),若实数λ使得λ2OM →·ON →=A 1P →·A 2P →(O 为坐标原点),求P 点的轨迹方程,并讨论P 点的轨迹类型. 解:OM →=(x ,1),ON →=(x ,-2), A 1P →=(x +2,y ),A 2P →=(x -2,y ). 因为λ2OM →·ON →=A 1P →·A 2P →, 所以λ2(x 2-2)=x 2-2+y 2, 整理得(1-λ2)x 2+y 2=2(1-λ2).①当λ=±1时,方程为y =0,轨迹为一条直线;②当λ=0时,方程为x 2+y 2=2,轨迹为圆;③当λ∈(-1,0)∪(0,1)时,方程为x 22+y 22(1-λ2)=1,轨迹为中心在原点,焦点在x 轴上的椭圆;④当λ∈(-∞,-1)∪(1,+∞)时,方程为x 22-y 22(λ2-1)=1,轨迹为中心在原点,焦点在x 轴上的双曲线.。

高三数学复习(理):第8讲 曲线与方程

高三数学复习(理):第8讲 曲线与方程

第8讲 曲线与方程[学生用书P192]1.曲线与方程在平面直角坐标系中,如果某曲线C (看作满足某种条件的点的集合或轨迹)上的点与一个二元方程的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都在曲线上.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 2.曲线的交点设曲线C 1的方程为F 1(x ,y )=0,曲线C 2的方程为F 2(x ,y )=0,则C 1,C 2的交点坐标即为方程组⎩⎨⎧F 1(x ,y )=0,F 2(x ,y )=0的实数解,若此方程组无解,则两曲线无交点.3.求动点的轨迹方程的一般步骤 (1)建系——建立适当的坐标系. (2)设点——设轨迹上的任一点P (x ,y ). (3)列式——列出动点P 所满足的关系式.(4)代换——依条件式的特点,选用距离公式、斜率公式等将其转化为关于x ,y 的方程式,并化简.(5)证明——证明所求方程即为符合条件的动点轨迹方程. 常用结论1.“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f(x,y)=0的解”的充分不必要条件.2.曲线的交点与方程组的关系(1)两条曲线交点的坐标是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;(2)方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)“f(x0,y0)=0”是“点P(x0,y0)在曲线f(x,y)=0上”的充要条件.()(2)方程x2+xy=x的曲线是一个点和一条直线.()(3)动点的轨迹方程和动点的轨迹是一样的.()(4)方程y=x与x=y2表示同一曲线.()(5)y=kx与x=1k y表示同一直线.()答案:(1)√(2)×(3)×(4)×(5)×二、易错纠偏常见误区|K(1)混淆“轨迹”与“轨迹方程”出错;(2)忽视轨迹方程的“完备性”与“纯粹性”.1.(1)平面内与两定点A(2,2),B(0,0)距离的比值为2的点的轨迹是________.(2)设动圆M与y轴相切且与圆C:x2+y2-2x=0相外切,则动圆圆心M的轨迹方程为_________________________________________________.解析:(1)设动点坐标为(x,y),则(x-2)2+(y-2)2x2+y2=2,整理得3x2+3y2+4x+4y-8=0,所以满足条件的点的轨迹是圆.(2)若动圆在y轴右侧,则动圆圆心到定点C(1,0)与到定直线x=-1的距=1,所以其方程为y2=4x(x>0);若动圆在y轴离相等,其轨迹是抛物线,且p2左侧,则圆心轨迹是x轴负半轴,其方程为y=0(x<0).故动圆圆心M的轨迹方程为y2=4x(x>0)或y=0(x<0).答案:(1)圆(2)y2=4x(x>0)或y=0(x<0)2.已知A(-2,0),B(1,0)两点,动点P不在x轴上,且满足∠APO=∠BPO,其中O为原点,则P点的轨迹方程是________.解析:由角的平分线性质定理得|P A|=2|PB|,设P(x,y),则(x+2)2+y2=2(x-1)2+y2,整理得(x-2)2+y2=4(y≠0).答案:(x-2)2+y2=4(y≠0)3.已知⊙O的方程为x2+y2=4,过M(4,0)的直线与⊙O交于A,B两点,则弦AB的中点P的轨迹方程为________.解析:根据垂径定理知:OP⊥PM,所以P点的轨迹是以OM为直径的圆且在⊙O内的部分.以OM为直径的圆的方程为(x-2)2+y2=4,它与⊙O的交点为(1,±3).结合图形可知所求轨迹方程为(x-2)2+y2=4(0≤x<1).答案:(x-2)2+y2=4(0≤x<1)[学生用书P192]直接法求轨迹方程(师生共研)已知△ABC的三个顶点分别为A(-1,0),B(2,3),C(1,22),定点P (1,1).(1)求△ABC 外接圆的标准方程;(2)若过定点P 的直线与△ABC 的外接圆交于E ,F 两点,求弦EF 中点的轨迹方程.【解】 (1)由题意得AC 的中点坐标为(0,2),AB 的中点坐标为⎝ ⎛⎭⎪⎫12,32,k AC =2,k AB =1,故AC 中垂线的斜率为-22,AB 中垂线的斜率为-1,则AC的中垂线的方程为y -2=-22x ,AB 的中垂线的方程为y -32=-⎝ ⎛⎭⎪⎫x -12.由⎩⎪⎨⎪⎧y -32=-⎝ ⎛⎭⎪⎫x -12,y -2=-22x , 得⎩⎪⎨⎪⎧x =2,y =0.所以△ABC 的外接圆圆心为(2,0),半径r =2+1=3,故△ABC 外接圆的标准方程为(x -2)2+y 2=9.(2)设弦EF 的中点为M (x ,y ),△ABC 外接圆的圆心为N ,则N (2,0), 由MN ⊥MP ,得NM →·PM →=0, 所以(x -2,y )·(x -1,y -1)=0, 整理得x 2+y 2-3x -y +2=0,所以弦EF 中点的轨迹方程为⎝ ⎛⎭⎪⎫x -322+⎝ ⎛⎭⎪⎫y -122=12.(1)若曲线上的动点满足的条件是一些几何量的等量关系,则可用直接法,其一般步骤是:设点→列式→化简→检验.求动点的轨迹方程时要注意检验,即除去多余的点,补上遗漏的点.(2)若是只求轨迹方程,则把方程求出,把变量的限制条件附加上即可;若是求轨迹,则要说明轨迹是什么图形.已知坐标平面上动点M (x ,y )与两个定点P (26,1),Q (2,1),且|MP |=5|MQ |.(1)求点M 的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C ,若过点N (-2,3)的直线l 被C 所截得的线段长度为8,求直线l 的方程.解:(1)由|MP |=5|MQ |,得(x -26)2+(y -1)2=5(x -2)2+(y -1)2,化简得x 2+y 2-2x -2y -23=0,所以点M 的轨迹方程是(x -1)2+(y -1)2=25,轨迹是以(1,1)为圆心,5为半径的圆.(2)当直线l 的斜率不存在时,l :x =-2,此时所截得的线段长度为2×52-32=8,所以l :x =-2符合题意.当直线l 的斜率存在时,设l 的方程为y -3=k (x +2), 即kx -y +2k +3=0, 圆心(1,1)到l 的距离d =|3k +2|k 2+1,由题意,得⎝ ⎛⎭⎪⎪⎫|3k +2|k 2+12+42=52,解得k =512, 所以直线l 的方程为512x -y +236=0, 即5x -12y +46=0.综上,直线l 的方程为x =-2或5x -12y +46=0.定义法求轨迹方程(师生共研)已知圆C 与两圆x 2+(y +4)2=1,x 2+(y -2)2=1外切,圆C 的圆心轨迹为L ,设L 上的点与点M (x ,y )的距离的最小值为m ,点F (0,1)与点M (x ,y )的距离为n .(1)求圆C 的圆心轨迹L 的方程;(2)求满足条件m =n 的点M 的轨迹Q 的方程.【解】 (1)两圆半径都为1,两圆圆心分别为C 1(0,-4),C 2(0,2),由题意得|CC 1|=|CC 2|,可知圆心C 的轨迹是线段C 1C 2的垂直平分线,C 1C 2的中点为(0,-1),直线C 1C 2的斜率不存在,所以圆C 的圆心轨迹L 的方程为y =-1.(2)因为m =n ,所以M (x ,y )到直线y =-1的距离与到点F (0,1)的距离相等,故点M 的轨迹Q 是以y =-1为准线,点F (0,1)为焦点,顶点在原点的抛物线,而p2=1,即p =2,所以,轨迹Q 的方程是x 2=4y .定义法求轨迹方程(1)在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据曲线的方程,写出所求的轨迹方程.(2)利用定义法求轨迹方程时,还要看轨迹是否是完整的圆、椭圆、双曲线、抛物线,如果不是完整的曲线,则应对其中的变量x 或y 进行限制.1.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为__________________.解析:设A (x ,y ),由题意可知D ⎝ ⎛⎭⎪⎫x 2,y 2.又因为|CD |=3,所以⎝ ⎛⎭⎪⎫x 2-52+⎝ ⎛⎭⎪⎫y 22=9,即(x -10)2+y 2=36,由于A ,B ,C 三点不共线,所以点A 不能落在x 轴上,即y ≠0,所以点A 的轨迹方程为(x -10)2+y 2=36(y ≠0).答案:(x -10)2+y 2=36(y ≠0)2.如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点).设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝ ⎛⎭⎪⎫|AB |22=3,所以曲线M 的方程为x 24+y 23=1(y ≠0).相关点法(代入法)求轨迹方程(师生共研)如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.【解】 (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px (p >0),解得p =1. (2)由(1)知抛物线E :y 2=2x .设C ⎝ ⎛⎭⎪⎫y 212,y 1,D ⎝ ⎛⎭⎪⎫y 222,y 2,y 1≠0,y 2≠0,切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝ ⎛⎭⎪⎫x -y 212,代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0,由Δ=0,解得k =1y 1, 所以l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎪⎨⎪⎧y =1y 1x +y 12,y =1y 2x +y 22,解得⎩⎨⎧x =y 1·y 22,y =y 1+y 22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎪⎨⎪⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x 0,代入⎩⎨⎧x =y 1·y 22,y =y 1+y 22,可得M (x ,y )满足⎩⎪⎨⎪⎧x =-8x 0,y =-y 0x 0,可得⎩⎪⎨⎪⎧x 0=-8x ,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1,考虑到x 0∈[2,22],知x ∈[-4,-22],所以动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].1.如图,已知P 是椭圆x 24+y 2=1上一点,PM ⊥x 轴于点M .若PN →=λNM →. (1)求N 点的轨迹方程;(2)当N 点的轨迹为圆时,求λ的值.解:(1)设点P ,点N 的坐标分别为P (x 1,y 1),N (x ,y ), 则M 的坐标为(x 1,0),且x =x 1, 所以PN →=(x -x 1,y -y 1)=(0,y -y 1), NM →=(x 1-x ,-y )=(0,-y ), 由PN →=λNM →得(0,y -y 1)=λ(0,-y ). 所以y -y 1=-λy ,即y 1=(1+λ)y .因为P (x 1,y 1)在椭圆x 24+y 2=1上, 则x 214+y 21=1,所以x 24+(1+λ)2y 2=1, 故x 24+(1+λ)2y 2=1为所求的N 点的轨迹方程. (2)要使点N 的轨迹为圆,则(1+λ)2=14,解得λ=-12或λ=-32.故当λ=-12或λ=-32时,N 点的轨迹是圆.2.已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝ ⎛⎭⎪⎫33,0的直线l 与曲线E 交于点A ,B ,且MB →=-2MA →.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),因为B (0,2),M ⎝ ⎛⎭⎪⎫33,0,故MB →=⎝ ⎛⎭⎪⎫-33,2,MA →=⎝ ⎛⎭⎪⎫x 0-33,y 0.由于MB →=-2MA →,所以⎝ ⎛⎭⎪⎫-33,2=-2⎝ ⎛⎭⎪⎫x 0-33,y 0.所以x 0=32,y 0=-1,即A ⎝ ⎛⎭⎪⎫32,-1.因为A ,B 都在曲线E 上,所以⎩⎨⎧a ·02+b ·22=1,a ·⎝ ⎛⎭⎪⎫322+b ·(-1)2=1,解得⎩⎨⎧a =1,b =14. 所以曲线E 的方程为x 2+y24=1.[学生用书P407(单独成册)][A 级 基础练]1.方程(x -y )2+(xy -1)2=0表示的曲线是( ) A .一条直线和一条双曲线 B .两条双曲线 C .两个点D .以上答案都不对解析:选C.(x -y )2+(xy -1)2=0⇔⎩⎪⎨⎪⎧x -y =0,xy -1=0.故⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =-1,y =-1.2.(2020·新高考卷Ⅰ改编)已知曲线C :mx 2+ny 2=1.以下结论正确的个数是( )①若m >n >0,则C 是椭圆,其焦点在y 轴上;②若m =n >0,则C 是圆,其半径为n ;③若mn <0,则C 是双曲线,其渐近线方程为y =± -mn x ;④若m=0,n >0,则C 是两条直线.A .1B .2C .3D .4解析:选C.对于①,因为m >n >0,所以0<1m <1n ,方程mx 2+ny 2=1可变形为x 21m +y 21n =1,所以该方程表示焦点在y 轴上的椭圆,正确;对于②,因为m=n >0,所以方程mx 2+ny 2=1可变形为x 2+y 2=1n ,该方程表示半径为1n 的圆,错误;对于③,因为mn <0,所以该方程表示双曲线,令mx 2+ny 2=0⇒y =± -mn x ,正确;对于④,因为m =0,n >0,所以方程mx 2+ny 2=1变形为ny 2=1⇒y =±1n ,该方程表示两条直线,正确.3.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A -B -C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D.当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 项图象所示,故选D.4.已知两点M (-2,0),N (2,0),点P 为坐标平面内的动点,满足|MN →|·|MP →|+MN →·NP →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8xB .y 2=8xC .y 2=-4xD .y 2=4x解析:选A.设P (x ,y ).因为M (-2,0),N (2,0),所以MN →=(4,0),|MN →|=4,MP →=(x +2,y ),NP →=(x -2,y ),由|MN →|·|MP →|+MN →·NP →=0,得4(x +2)2+y 2+4(x -2)=0,化简整理得y 2=-8x .故选A.5.动点M 在圆x 2+y 2=25上移动,过点M 作x 轴的垂线段MD ,D 为垂足,则线段MD 中点的轨迹方程是( )A.4x 225+y 225=1 B .x 225+4y 225=1 C.4x 225-y 225=1D.x 225-4y 225=1解析:选B.如图,设线段MD 的中点为P (x ,y ),M (x 0,y 0),D (x 0,0),因为P 是MD 的中点,所以⎩⎪⎨⎪⎧x 0=x ,y 0=2y .又M 在圆x 2+y 2=25上,所以x 20+y 20=25,即x 2+4y 2=25,x 225+4y 225=1,所以线段MD 的中点P 的轨迹方程是x 225+4y 225=1.故选B.6.设D 为椭圆y 25+x 2=1上任意一点,A (0,-2),B (0,2),延长AD 至点P ,使得|PD |=|BD |,则点P 的轨迹方程为________.解析:设点P 坐标为(x ,y ).因为D 为椭圆y 25+x 2=1上任意一点,且A ,B 为椭圆的焦点,所以|DA |+|DB |=2 5.又|PD |=|BD |,所以|P A |=|PD |+|DA |=|DA |+|DB |=25,所以x 2+(y +2)2=25,所以x 2+(y +2)2=20,所以点P 的轨迹方程为x 2+(y +2)2=20.答案:x 2+(y +2)2=207.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC →=OA →+t (OB →-OA →),其中t ∈R ,则点C 的轨迹方程是________.解析:设C (x ,y ),则OC →=(x ,y ),OA →+t (OB →-OA →)=(1+t ,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t ,消去参数t ,得点C 的轨迹方程为y =2x -2.答案:y =2x -28.△ABC 的顶点A (-5,0),B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是________.解析:如图,△ABC 与内切圆的切点分别为G ,E ,F .则|AG |=|AE |=8,|BF |=|BG |=2,|CE |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A ,B 为焦点,实轴长为6的双曲线的右支,轨迹方程为x 29-y 216=1(x >3).答案:x 29-y 216=1(x >3)9.如图所示,已知圆A :(x +2)2+y 2=1与点B (2,0),分别求出满足下列条件的动点P 的轨迹方程.(1)△P AB 的周长为10;(2)圆P 与圆A 外切,且过B 点(P 为动圆圆心);(3)圆P 与圆A 外切,且与直线x =1相切(P 为动圆圆心).解:(1)根据题意,知|PA |+|PB |+|AB |=10,即|P A |+|PB |=6>4=|AB |,故P 点的轨迹是椭圆,且2a =6,2c =4,即a =3,c =2,b = 5.因此其轨迹方程为x 29+y 25=1(y ≠0).(2)设圆P 的半径为r ,则|P A |=r +1,|PB |=r , 因此|P A |-|PB |=1.由双曲线的定义知,P 点的轨迹为双曲线的右支,且2a =1,2c =4,即a =12,c =2,b =152,因此其轨迹方程为4x 2-415y 2=1⎝ ⎛⎭⎪⎫x ≥12. (3)依题意,知动点P 到定点A 的距离等于到定直线x =2的距离,故其轨迹为抛物线,且开口向左,p =4.因此其轨迹方程为y 2=-8x .10.已知动圆P 恒过定点⎝ ⎛⎭⎪⎫14,0,且与直线x =-14相切.(1)求动圆P 圆心的轨迹M 的方程;(2)在正方形ABCD 中,AB 边在直线y =x +4上,另外C ,D 两点在轨迹M 上,求该正方形的面积.解:(1)由题意得动圆P 的圆心到点⎝ ⎛⎭⎪⎫14,0的距离与它到直线x =-14的距离相等,所以圆心P 的轨迹是以⎝ ⎛⎭⎪⎫14,0为焦点,直线x =-14为准线的抛物线,且p =12,所以动圆P 圆心的轨迹M 的方程为y 2=x . (2)由题意设CD 边所在直线方程为y =x +t . 联立⎩⎪⎨⎪⎧y =x +t ,y 2=x ,消去y ,整理得x 2+(2t -1)x +t 2=0.因为直线CD 和抛物线交于两点,所以Δ=(2t -1)2-4t 2=1-4t >0,解得t <14. 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=1-2t ,x 1x 2=t 2. 所以|CD |=2[(x 1+x 2)2-4x 1x 2]=2[(1-2t )2-4t 2]=2(1-4t ).又直线AB 与直线CD 之间的距离为|AD |=|t -4|2,|AD |=|CD |,所以2(1-4t )=|t -4|2,解得t =-2或t =-6,经检验t =-2和t =-6都满足Δ>0. 所以正方形边长|AD |=32或|AD |=52, 所以正方形ABCD 的面积S =18或S =50.[B 级 综合练]11.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP →=2P A →,且OQ →·AB →=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0) D .3x 2+32y 2=1(x >0,y >0)解析:选A.设A (a ,0),B (0,b ),a >0,b >0.由BP →=2P A →,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q (-x ,y ),故由OQ →·AB →=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).12.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B .x 2+y 2=9 C.x 225+y 29=1D .x 2=16y解析:选B.因为M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,所以M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1.A 项,直线x +y =5过点(5,0),满足题意,为“好曲线”;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),满足题意,为“好曲线”;D 项,方程代入x 216-y 29=1,可得y -y 29=1,即y 2-9y +9=0,所以Δ>0,满足题意,为“好曲线”.13.(2021·四川成都石室中学模拟)已知两定点F 1(-1,0),F 2(1,0)和一动点P ,给出下列结论:①若|PF 1|+|PF 2|=2,则点P 的轨迹是椭圆; ②若|PF 1|-|PF 2|=1,则点P 的轨迹是双曲线; ③若|PF 1||PF 2|=λ(λ>0,且λ≠1),则点P 的轨迹是圆;④若|PF 1|·|PF 2|=a 2(a ≠0),则点P 的轨迹关于原点对称;⑤若直线PF 1与PF 2的斜率之积为m (m ≠0),则点P 的轨迹是椭圆(除长轴两端点).其中正确的是________.(填序号)解析:对于①,由于|PF 1|+|PF 2|=2=|F 1F 2|,所以点P 的轨迹是线段F 1F 2,故①不正确.对于②,由于|PF 1|-|PF 2|=1,故点P 的轨迹是以F 1,F 2为焦点的双曲线的右支,故②不正确.对于③,设P (x ,y ),由题意得(x +1)2+y 2(x -1)2+y 2=λ,整理得(1-λ2)x 2+(1-λ2)y 2+(2+2λ2)x +1-λ2=0.因为λ>0,且λ≠1,所以x 2+y 2+(2+2λ2)1-λ2x +1-λ21-λ2=0,所以点P 的轨迹是圆,故③正确.对于④,设P (x ,y ),则|PF 1|·|PF 2|=(x +1)2+y 2·(x -1)2+y 2=a 2.又点P (x ,y )关于原点的对称点为P ′(-x ,-y ),因为(-x +1)2+(-y )2·(-x -1)2+(-y )2=(x +1)2+y 2·(x -1)2+y 2=a 2,所以点P ′(-x ,-y )也在曲线(x +1)2+y 2·(x -1)2+y 2=a 2上,即点P 的轨迹关于原点对称,故④正确.对于⑤,设P (x ,y ),则k PF 1=y x +1,k PF 2=y x -1,由题意得k PF 1·k PF 2=y x +1·yx -1=y 2x 2-1=m (m ≠0),整理得x 2-y 2m =1,此方程不一定表示椭圆,故⑤不正确. 综上,正确结论的序号是③④. 答案:③④14.如图,已知椭圆C :x 218+y 29=1的短轴端点分别为B 1,B 2,点M 是椭圆C 上的动点,且不与B 1,B 2重合,点N 满足NB 1⊥MB 1,NB 2⊥MB 2.(1)求动点N 的轨迹方程;(2)求四边形MB 2NB 1面积的最大值.解:(1)方法一:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② ①×②得y 2-9=x 20y 20-9x 2.又因为x 2018+y 209=1,所以y 2-9=18⎝ ⎛⎭⎪⎫1-y 209y 20-9x 2=-2x 2,整理得动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法二:设N (x ,y ),M (x 0,y 0)(x 0≠0). 由题知B 1(0,-3),B 2(0,3), 所以k MB 1=y 0+3x 0,k MB 2=y 0-3x 0.因为MB 1⊥NB 1,MB 2⊥NB 2, 所以直线NB 1:y +3=-x 0y 0+3x ,①直线NB 2:y -3=-x 0y 0-3x ,② 联立①②,解得⎩⎪⎨⎪⎧x =y 20-9x 0,y =-y 0.又x 2018+y 209=1,所以x =-x 02,故⎩⎪⎨⎪⎧x 0=-2x ,y 0=-y ,代入x 2018+y 209=1,得y 29+x 292=1. 所以动点N 的轨迹方程为y 29+x 292=1(x ≠0).方法三:设直线MB 1:y =kx -3(k ≠0), 则直线NB 1:y =-1k x -3,①直线MB 1与椭圆C :x 218+y 29=1的交点M 的坐标为⎝ ⎛⎭⎪⎪⎫12k 2k 2+1,6k 2-32k 2+1. 则直线MB 2的斜率为k MB 2=6k 2-32k 2+1-312k 2k 2+1=-12k .所以直线NB 2:y =2kx +3.②由①②得点N 的轨迹方程为y 29+x 292=1(x ≠0).(2)由(1)方法三得直线NB 1:y =-1k x -3,① 直线NB 2:y =2kx +3,②联立①②解得x =-6k2k 2+1,即x N =-6k2k 2+1,故四边形MB 2NB 1的面积S =12|B 1B 2|(|x M |+|x N |)=3×⎝ ⎛⎭⎪⎫12|k |2k 2+1+6|k |2k 2+1=54|k |2k 2+1=542|k |+1|k |≤2722,当且仅当|k |=22时,S 取得最大值2722.[C 级 提升练]15.在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP →=λRQ →(λ>1),求证:NF →=λFQ →.解:(1)依题意知,直线A 1N 1的方程为y =m6(x +6),①直线A 2N 2的方程为y =-n6(x -6),②设M (x ,y )是直线A 1N 1与A 2N 2的交点,①×②得y 2=-mn6(x 2-6),又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q (x 2,y 2),则N (x 1,-y 1),由⎩⎨⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP →=λRQ →,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF →=λFQ →,即证(2-x 1,y 1)=λ(x 2-2,y 2), 只需证2-x 1=λ(x 2-2),只需证x 1-3x 2-3=-x 1-2x 2-2,即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6tt 2+3=0成立,得证.。

高二数学曲线和方程

高二数学曲线和方程

曲线和方程 曲线和方程(1)一、知识小结1.曲线和方程的概念:在直角坐标系中,如果曲线C (看作适合某种条件的点的集合或轨迹)与方程(),0F x y =的实数解集之间具有以下两个关系:(1)曲线C 上的点的坐标都是方程(),0F x y =的解;(2)以方程(),0F x y =的解为坐标的点都是曲线C 上的点,那么曲线C 上的点与方程(),0F x y =的解是一一对应的,此时把方程(),0F x y =叫做曲线C 的方程,曲线C 叫做方程(),0F x y =的曲线.定义中条件(1)说明曲线上没有哪个点的坐标不满足方程,即曲线上所有点都适合这 个条件而毫无例外,即曲线具有纯粹性;条件(2)说明适合条件的点都有在这条曲线上而无一遗漏,也就是说曲线具有完备性.由曲线与方程的关系可以知道,曲线的方程实质就是这条曲线上的任意一点的横坐标x 与纵坐标y 之间的等量关系. 注意点:数形结合分析问题.2.点与曲线的关系的判断:若曲线C 的方程(),0F x y =,则点()()()0000000,,,0P x y C F x y C F x y ∈⇔∈⇔=,即要判断一个点是否在曲线上,只要把点的坐标代入曲线方程,如果满足方程,则点在曲线上;如果不满足方程,则点不在曲线上.注意点:用代入法来解决问题.3.求曲线的方程的一般步骤:(1)建立适当的直角坐标系(建系); (2)设曲线上任意一点的坐标为(),x y (设点);(3)根据曲线上点所适合的条件,写出等式(列式);(4)用坐标x ,y 表示这个等式,并化方程为最简形式(化简);(5)证明以化简后的方程的解为坐标的点都是曲线上的点(证明).注意点:要检验,防止出现增解或失解.4.求曲线的方程的一般方法:(1)直接法:根据题意与条件,设出动点坐标,直接列出相关等式,然后化简得结果;(2)代入法:设出动点坐标,然后找出相关点的了解,利用相关点的规律,从而得出动点之间关系的等式;注意点:过程中要保持等价变形,这样可省略检验环节.5.曲线的交点的求法:如果曲线1C 、2C 的方程分别为()1,0F x y =、()2,0F x y =,则点()00,0P x y =是曲线1C 、2C 交点的充要条件是()()100200,0,0F x y F x y ⎧=⎪⎨=⎪⎩. 由曲线上点的坐标和它的方程的实数解之间的对应关系可知,两条曲线交点的坐标应该是这两条曲线的方程所组成的方程组的实数解.方程组有几组实数解,两条曲线就有几个交点;方程组没有实数解,两条曲线就没有交点.因此,求曲线的交点坐标就是求曲线的方程所组成的方程组的解.注意点:代数与几何方法要结合.6.解析几何的本质:用代数的方法来研究几何问题,具体来说就是用方程的思想来解决曲线的问题.其中会涉及两个主要问题:(1)已知曲线,求相应的方程;(2)已知方程,画出相应的曲线,并研究其相关的性质.二、应用举例:例1、方程()()211y a x b x c =-+-+的曲线过原点的条件是 .例2、到两坐标轴距离的积为2的动点轨迹方程是 .例3、已知定点()4,0Q ,P 为曲线224x y +=上一个动点,那么线段PQ 中点的轨迹方程是_____________.曲线和方程 曲线和方程(2)一、应用举例例4、设P 为曲线2214x y -=上一动点,O 为坐标原点,M 为线段OP 中点,则点M 的轨迹方程是_____________.例5、直线53y x =-被曲线22y x =截得的线段长是___________.例6、已知直线y kx k =-+与曲线22y x x =-. (1程是________________;(2)直线与曲线相交而得交点的中点轨迹方程是____________.例7、长为a 的线段的两端点分别在直线y x =和y x =-上运动,则线段中点的轨迹为 .例8、若直线0mx y m -+=与抛物线243y x x =-+的取值范围为__________.例9、已知两点()()2,02,0M N -、,点P 0MN MP MN NP ⋅+⋅=,则动点P 的轨迹方程为例10、直线2y kx =-交曲线28y x =于A 、B 两点,若弦AB 中点的横坐标为2,则k =________.一、应用举例:1.选择题例11、直线210x y -+=关于直线1x =对称的直线方程是( ). (A )210x y +-= (B )210x y +-= (C )230x y +-= (D )230x y +-=例12、设有一组圆()()()224:1320k C x k y k k k -++-=≠,则下列四个命题中正确的是( ).(A )存在一条定直线与所有的圆均相切 (B )所有的圆均不经过原点(C )存在一条定直线与所有的圆均不相交 (D )存在一条定直线与所有的圆均相交例13、设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA =且1OQ AB ⋅=,则点P 的轨迹方程是( ). (A )()223310,02x y x y +=>> (B )()223310,02x y x y -=>> (C )()223310,02x y x y -=>>(D )()223310,02x y x y +=>>例14、直线2y k =与曲线2222918k x y k x +=(),0k k ∈≠R 且且0)k ≠的公共点的个数为( ). (A )1 (B )2(C )3(D )42.解答题例15、(1)求曲线(,)0C f x y =:关于点(),a b 对称的曲线的方程;(2)若直线1y kx =+与曲线220x y x ky ++-=的两个交点的横坐标之和为零,求k 的值.例16、已知动点P 到定点()1,0F 和直线3x =的距离之和等于4,求点P 的轨迹方程.一、应用举例:1.解答题例17、已知△ABC 的两个顶点()8,0B -,()0,0C ,顶点A 在曲线22160x y x +-=上运动,求△ABC 的重心的轨迹方程.例18、过原点作曲线21y x =+的割线12OPP ,求弦12P P 的中点P 的轨迹方程.例19、k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点?例20、(1)画出方程1x -(2)曲线)122y x =-≤≤与直线()24y k x =-+有两个交点时,试求出实数k 的取值范围.例21、若两条曲线的方程是()1,0F x y =和()2,0F x y =,交点为()000,P x y , (1)证明:方程()()12,,0F x y F x y λ+=的曲线也经过0P (λ为任意实数); (2)求经过曲线2230x y x y ++-=和22330x y y ++=的交点的直线方程.例22、已知曲线2:1C y x mx =-+-,点()3,0A ,()0,3B ,求曲线C 与线段AB 有两个不同交点的充要条件.曲线和方程(4)一、应用举例:1.解答题例17、已知△ABC 的两个顶点()8,0B -,()0,0C ,顶点A 在曲线22160x y x +-=上运动,求△ABC 的重心的轨迹方程.例18、过原点作曲线21y x =+的割线12OPP ,求弦12P P 的中点P 的轨迹方程.例19、k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点?例20、(1)画出方程1x -(2)曲线)122y x =-≤≤与直线()24y k x =-+有两个交点时,试求出实数k 的取值范围.例21、若两条曲线的方程是()1,0F x y =和()2,0F x y =,交点为()000,P x y , (1)证明:方程()()12,,0F x y F x y λ+=的曲线也经过0P (λ为任意实数); (2)求经过曲线2230x y x y ++-=和22330x y y ++=的交点的直线方程.例22、已知曲线2:1C y x mx =-+-,点()3,0A ,()0,3B ,求曲线C 与线段AB 有两个不同交点的充要条件.友情提示:部分文档来自网络整理,供您参考!文档可复制、编制,期待您的好评与关注!。

高中数学《曲线与方程》公开课优秀教学设计

高中数学《曲线与方程》公开课优秀教学设计

《曲线与方程》是高中数学的核 心内容之一,对于理解数学的本 质和解决实际问题具有重要意义

随着新课程改革的推进,高中数 学课程更加注重学生的主体性和
探究性学习。
《曲线与方程》课程目标
01
02
03
知识与技能
掌握曲线与方程的基本概 念、性质和应用,能够运 用所学知识解决相关问题 。
过程与方法
通过探究、合作、交流等 学习方式,培养学生的数 学思维和解决问题的能力 。
05
学生学情分析与应对策略
学生学情分析
知识基础
学生已掌握直线与方程的基本知识,对解析几何有初步认识。
认知能力
学生具备了一定的抽象思维和逻辑推理能力,但处理复杂问题的 能力有待提高。
学习态度
学生对数学的兴趣和重视程度参差不齐,需要激发其内在学习动 力。
针对不同层次学生的教学策略
针对基础薄弱的学生
资源分享
建立教学资源库,定期更新并分享优质课件 、教案、习题等教学资源。
经验交流
鼓励成员之间分享教学经验、教学方法和教 学心得,促进共同成长。
互助互学
建立互助互学机制,鼓励成员之间互相帮助 、互相学习、共同进步。
成果展示
定期举办教学成果展示活动,展示团队成员 的优秀教学成果和创新能力。
THANKS
公开课可以激发教师的创新意识,推 动教学改革的深入进行。
02
教学内容与方法
教学内容梳理
曲线的基本概念
包括曲线的定义、分类和性质,以及 曲线在坐标系中的表示方法。
方程的基本概念
包括方程的定义、分类和解法,以及 方程与曲线之间的关系。
曲线与方程的对应关系
详细阐述如何通过方程来表示曲线, 以及如何通过曲线来求解方程。

高考数学百大经典例题曲线和方程(新课标)

高考数学百大经典例题曲线和方程(新课标)

典型例题一例 1 假如命题“坐标知足方程 f x, y 0 的点都在曲线 C 上”不正确,那么以下正确的命题是( A)曲线C上的点的坐标都知足方程 f x, y0 .( B)坐标知足方程 f x, y 0 的点有些在C上,有些不在 C 上.( C)坐标知足方程 f x, y 0 的点都不在曲线 C 上.( D)必定有不在曲线 C 上的点,其坐标知足方程 f x, y0 .剖析:原命题是错误的,即坐标知足方程 f x, y0 的点不必定都在曲线 C 上,易知答案为 D.典型例题二例 2 说明过点P(5 ,1) 且平行于 x 轴的直线l和方程y 1所代表的曲线之间的关系.剖析:“曲线和方程”的定义中所列的两个条件正好构成两个会合相等的充要条件,二者缺一不行.此中“曲线上的点的坐标都是方程 f ( x , y)0的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点” ,即齐备性.这是我们判断方程是否是指定曲线的方程,曲线是否是所给方程的曲线的准则.解:以下列图所示,过点 P 且平行于x轴的直线 l 的方程为y 1 ,因此在直线l上的点的坐标都知足y 1 ,所以直线 l 上的点都在方程y 1 表示的曲线上.可是以y 1这个方程的解为坐标的点不会都在直线l 上,所以方程y 1 不是直线 l 的方程,直线 l 不过方程y 1 所表示曲线的一部分.说明:本题中曲线上的每一点都知足方程,即知足纯粹性,但以方程的解为坐标的点不都在曲线上,即不知足齐备性.典型例题三例 3说明到坐标轴距离相等的点的轨迹与方程y x 所表示的直线之间的关系.剖析:该题应当抓住“纯粹性”和“齐备性”来进行剖析.解:方程 y x 所表示的曲线上每一个点都知足到坐标轴距离相等.可是“到坐标轴距离相等的点的轨迹”上的点不都知足方程y x ,比如点( 3 , 3)到两坐标轴的距离均为3,但它不知足方程y x .所以不可以说方程y x 就是全部到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不可以说是方程y x 所表示的轨迹.说明:本题中“以方程的解为坐标点都在曲线上” ,即知足齐备性,而“轨迹上的点的坐标不都知足方程” ,即不知足纯粹性.只有二者全切合,方程才能叫曲线的方程,曲线才能叫方程的曲线.典型例题四例 4 曲线x2( y 1) 2 4 与直线 y k (x2)4 有两个不一样的交点,求k 的取值范围.有一个交点呢?无交点呢?剖析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程构成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的对于x 的一元二次方程的判别式分别知足0、0 、0 .解:由y k( x 2) 4,x2( y1) 2 4.得 (1k 2 )x22k(3 2)x(3 2)2 4 0k k∴4k 2 (32k )24(1 k 2 )[( 3 2k)24] 4(4k 212k5)4(2k 1)(2k 5)∴当0 即( 2k1)( 2k5)0,即1k5时,直线与曲线有两个不一样的交点.22当0即 (2k1)( 2k5)0 ,即k 1或 k52时,直线与曲线有一个交点.2当0即 (2k1)( 2k5)0 ,即k 1或 k52时,直线与曲线没有公共点.2说明:在判断直线与曲线的交点个数时,因为直线与曲线的方程构成的方程组解的个数与由双方程联立所整理出的对于x (或y)的一元方程解的个数相同,所以假如上述一元方程是二次的,即可经过鉴别式来判断直线与曲线的交点个数,但假如是两个二次曲线相遇,两曲线的方程构成的方程组解的个数与由方程组所整理出的一元方程解的个数不必定相同,所以碰到此类问题时,不要盲目套用上例方法,必定要做到详细问题详细剖析.典型例题五例 5 若曲线y a x 与y x a(a 0) 有两个公共点,务实数 a 的取值范围.剖析:将“曲线有两个公共点”转变为“方程有两个不一样的解” ,从而研究一元二次方程的解的个数问题.若将两条曲线的大概形状现出来,或允许能获得一些启迪.y a x 解法一:由y 得: y a y ax a∵ y 0 ,∴y2a2 ( y a) 2,即 (a21) y22a3 y a40 .要使上述方程有两个相异的非负实根.4a64a4 (a21)02a3则有:0a21a4a210又∵ a0∴解之得: a 1 .∴所务实数 a 的范围是 (1,) .解法二:y a x 的曲线是对于y 轴对称且极点在原点的折线,而y x a 表示斜率为 1 且过点(0 , a)的直线,由下列图可知,当a 1时,折线的右支与直线不订交.所以两曲线只有一个交点,当 a 1 时,直线与折线的两支都订交,所以两条直线有两个相异的交点.说明:这种题较好的解法是解法二,即利用数形联合的方法来探究.若题设条件中“ a 0”改为 a R 呢,请自己探究.典型例题六例 6 已知AOB ,此中A(6 , 0),O(0 , 0),B(0 , 3),则角 AOB均分线的方程是y x (以下列图),对吗?剖析:本题主要观察曲线方程看法掌握和理解的程度,重点是理解三角形内角均分线是一条线段.解:不对,因为AOB 内角均分线是一条线段OC ,而方程y x 的图形是一条直线.如点 P(8,8)坐标合适方程y x ,但点P 不在AOB 内角AOB 的均分线上.综合上述内角AOB 均分线为:y x(0x2) .说明:判断曲线的方程或方程的曲线,重要扣定义,两个条件缺一不行,重点是要搞清楚曲线的范围.典型例题七例 7判断方程y x22x 1 所表示的曲线.剖析:依据方程的表面形式,很难判断方程的曲线的形状,所以必需先将方程进行等价变形.解:由原方程22 1 可得:y x xy x 1 ,即 yx 1 ( x1), x 1 ( x1),∴方程 y x22x1的曲线是两条射线,以下图:说明:判断方程表示的曲线,在化简变形方程时要注意等价变形.如方程 x 1y 2等价于 ( x 1)2y 2 且x 1,即 y ( x 1)22( x 1) ,原方程的曲线是抛物线一部分.典型例题八例 8 以下图,已知 A 、 B 是两个定点,且 AB 2 ,动点 M 到定点 A 的距离是4,线段 MB 的垂直均分线 l交线段 MA 于点 P ,求动点 P 的轨迹方程.剖析:本题第一要成立合适直角坐标系,动点P知足的条件(等量关系)题设中没有明显给出,要从题意中剖析找出等量关系.连接PB,则 PM PB ,由此PA PB PA PM AM 4 ,即动点 P 到两定点 A , B 距离之和为常数.解:过 A , B 两点的直线为x 轴,A,B两点的中点O为坐标原点,成立直角坐标系∵ AB 2,∴ A, B 两点坐标分别为( 1, 0), (1, 0).连接 PB .∵ l 垂直均分线段BM ,∴PM PB,PA PB PA PM AM 4.设点 P( x , y) ,由两点距离公式得(x 1) 2y2( x 1)2y2 4 ,化简方程,移项两边平方得(移项 )2 ( x 1) 2y2 4 x .两边再平方移项得:x2y21 ,即为所求点P 轨迹方程.43说明:经过剖析题意利用几何图形的相关性质,找出P 点与两定点 A , B 距离之和为常数 4 ,是解本题的重点.方程化简过程也是很重要的,且化简过程也保证了等价性.典型例题九例9 过P2,4点作两条相互垂直的直线l1, l 2,若 l1交 l1轴于A, l2交 y 轴于 B ,求线段 AB 中点 M 的轨迹方程.解:连接 PM ,设M x,y,则 A 2x,0,yB 0,2 y .BP ∵l1l 2∴PAB为直角三角形.M由直角三角形性质知O A x1ABPM2图2即x 2 2y 4 214x2 4 y 2化简得 M 的轨迹方程为2x 2 y 5 0说明:本题也能够用勾股定理求解,还能够用斜率关系求解,所以本题可有三种解法.用斜率求解的过程要麻烦一些.典型例题十例 10222( k 是常数)的动点P 的轨迹方程.求与两定点 A 、 B 知足 PA PB k剖析:按求曲线方程的方法步骤求解.解法一:如图甲,取两定点 A 和 B 的连线为x轴,过 AB 的中点且与 AB 垂直的直线为 y 轴成立坐标系.2( x a)2y22a)2y2设 A( a , 0) , B(a , 0) , P( x , y) ,则:PA, PB ( x.据题意,222,有 ( x a)2y2( x a) 2y2k 2得 4ax k 2.PA PB k因为 k 是常数,且 a0 ,所以x k2P 的轨迹是一条平为动点的轨迹方程,即动点4a行于y 轴的直线.解法二:如图乙,取 A 与B 两点连线为x 轴,过 A 点且与AB 垂直的直线为y 轴成立坐标系.设 A(0,0) , B( a , 0), P(x , y) ,则:2x22(x a)2y 2.PA y 2, PB据题意,22k 2,有x2y 2( x a) 2y2k2,PA PBa2k 2a2k2,它是平行于y 轴的一条直线.得 x2a,即动点 P 的轨迹方程为x2a解法三:如图丙成立坐标系,设 A(x1, y1 ) , B( x2 , y2 ) , P( x , y) ,则2(x x1 ) 22( x x2 )( y y2 ) 2.PA( y y1 )2, PB2据题意, PA 2PB2k 2,有( x x1) 2( y y1 ) 2(x x2 ) 2( y y2 ) 2k2,整理后获得点P 的轨迹方程为:2( x2x1 ) x2( y2y1) y x12y12x22y22k20 ,它是一条直线.说明:由上边介绍的三种解法,能够看到对于同一条直线,在不一样的坐标系中,方程不同,合适成立坐标系如解法一、解法二,获得的方程形式简单、特征明显,一看便知是直线.而解法三获得的方程烦杂、冗长,若以此为基础研究其余问题,会惹起不用要的麻烦.所以,在求曲线方程时,依据详细状况适入选用坐标系十分重要.此外,也要注意到本题所求的是轨迹的方程,在作解答表述时应重申曲线的方程,而不是曲线.典型例题十一例 11 两直线分别绕着定点 A 和 B ( AB2a )在平面内转动,且转动时保持相互垂直,求两直线的交点P 的轨迹方程.剖析:成立合适的直角坐标系,利用直角三角形的性质,列出动点所知足的等式.解:取直线 AB 为x轴,取线段AB 的中点 O 为原点成立直角坐标系,则:A( a , 0) , B(a , 0) ,P属于会合 C P22AB2PA PB.设 P(x , y) ,则 ( x a)2y2( x a) 2y2( 2a) 2,化简得 x2y2a2.这就是两直线的交点P 的轨迹方程.说明:本题易出现以下解答错误:取直线 AB 为x轴,取线段 AB 的中点 O 为原点成立直角坐标系,则:A( a , 0), B(a , 0) ,交点P属于会合C P PA PB P k PA k PB1 .设 P(x , y) ,则k PAy( x a) ,k PBy( x a) ,x a x ay y 故a 1,即x2y2 a 2(x a ).x a x要知道,当 PA x 轴且另向来线与x 轴重合时,仍有两直线相互垂直,此时两直线交点为 A .相同 PB x 轴重合时,且另向来线与x 轴仍有两直线相互垂直,此时两直线交点为 B .因此,A( a , 0) 与 B(a , 0) 应为所求方程的解.纠正的方法是:当PA 或 PB 的斜率不存在时,即x a 时,A(a , 0)和 B( a , 0) 也在曲线上,故所求的点P 的轨迹方程是x2y2 a 2.求出曲线上的点所合适的方程后,不过形式上的曲线方程,还一定对以方程的解为坐标的点作观察,既要剔除不合适的部分,也不要遗漏知足条件的部分.典型例题十二例12如图, Rt ABC 的两条直角边长分别为 a 和b( a b) ,A与B 两点分别在x 轴的正半轴和y 轴的正半轴上滑动,求直角极点 C 的轨迹方程.剖析: 由已知ACB 是直角, A 和 B 两点在座标轴上滑动时, AOB 也是直角,由平面几何知识, A 、 C 、 B 、 O 四点共圆,则有 ABC AOC ,这就是点 C 知足的几 何条件.由此列出极点 C 的坐标合适的方程.解:设点 C 的坐标为 ( x , y) ,连接 CO ,由ACB AOB 90 ,所以 A 、O 、B 、C 四点共圆.b,tan AOCy ,有 y b ,即 ybx .从而 AOCABC .由 tan ABCax x aa注意到方程表示的是过原点、斜率为b的一条直线,而题目中的A 与B 均在两坐标轴bC a点的轨迹不会是一条直线, 而是直线的一部分. 我的正半轴上滑动, 因为 a 、 为常数, 故们可观察 A 与 B 两点在座标轴上的极端地点,确立C 点坐标的范围.以下列图,当点A 与原点重合时,SABC1AB x1 a2 b 2 x ,所以 xab .22a 2b 2以下列图,当点B 与原点重合时,C 点的横坐标 x BD .由射影定理, BC2BD AB ,即 a 2xa 2b 2 ,有 xa 2 .由已知 ab ,ab a2.所以b2a2a2b2故 C 点的轨迹方程为:y bx (ab x a 2).a a2b2 a 2b2说明:求出曲线上的点所合适的方程后,不过形式上的曲线方程,还一定对以方程的解为坐标的点作观察,剔除不合适的部分.典型例题十三例 13 过点P(3 , 2)作两条相互垂直的直线l1、l2,若 l1交 x 轴于A, l2交y轴于B,M 在线段 AB 上,且 AM : BM1: 3,求 M 点的轨迹方程.剖析:如图,设 M ( x , y) ,题中几何条件是 l1l 2,在分析几何中要表示垂直关系的代数关系式就是斜率乘积为-1,所以要求M的轨迹方程即x 、y之间的关系,第一要把 l 1、l 2的斜率用 x 、y表示出来,而表示斜率的重点是用x 、y表示A、B两点的坐标,由题可知 M 是 A 、 B 的定比分点,由定比分点坐标公式即可找出 A 、 B 、 M 坐标之间的关系,从而表示出 A 、 B 两点的坐标,并求出 M 点的轨迹方程.解:设 M (x , y) , A(a , 0) , B(0 , b)∵ M 在线段 AB 上,且 AM : BM 1:3.∴ M 分AB所成的比是 1 ,3xa1143a x ,由1,得3bb4y y3113∴ A(4x , 0) 、 B(0 , 4 y) 3又∵ P(3 , 2) , ∴ l 1 的斜率 k 12, l 2 的斜率 k 24 y2 4 .3 x3324 y 2∵ l 11.l 2 ,∴34x33化简得: 4x 8y 130 .说明: 本题的上述解题过程其实不严实,因为 k 1 需在 x9x9时才能成立,而当时,44 A(3 , 0) , l 1 的方程为 x 3 .所以 l 2 的方程是 y2.故 B(0, 2),可求得 M (9 1 , ) ,而( 9 , 1) 也知足方程 4x4 28 y 13 0 .故所求轨迹的方程是4x 8 y 13 0 .这种题在解4 2答时应注意考虑齐备性和纯粹性.典型例题十四例14如图,已知两点 P( 2 , 2) ,Q(0 , 2)以及向来线l :yx,设长为2 的线段AB在直线l 上挪动.求直线PA 和 QB 的交点M 的轨迹方程.剖析 1:设 M ( x , y) ,题中的几何条件是 AB2 ,所以只要用 ( x , y) 表示出 A 、 B两点的坐标,即可求出曲线的方程,而要表示A 点坐标可先找出 A 、 M 两点坐标的关系,明显 P 、 A 、 M 三点共线. 这样即可找出 A 、 M 坐标之间的关系,从而表示出 A 的坐标, 同理即可表示出 B 的坐标,问题便能够水到渠成.解法一: 设 M ( x , y) 、 A( a , a) 、 B(b , b) (b a) .由 P 、 A 、M 三点共线可得:a2 y2(利用 PA 与 MP 斜率相等获得)a2 x 22x 2 y∴ a.x y 4由 Q 、B、M三点共线可得b2 y 2 .b x2x∴ b.x y 2又由 AB 2 得2(a b)2 2 .∴ b a 1,∴2x2x 2 y 1 .y2x y4x化简和所求轨迹方程为:x2y2 2 x 2 y 8 0 .剖析 2:本题也能够先用P 、 A 、 M 三点共线表示出 A 点坐标,再依据 AB 2 表示出 B 点坐标,而后利用Q 、B、M三点共线也可求得轨迹方程.解法二:设 M ( x , y) , A( a , a)由 AB 2 且 B 在直线 y x 上且 B 在 A 的上方可得:B( a 1 , a 1)由解法一知2x 2 y ay,x4∴B(3x y 4 , 3x y 4 )x y 4 x y 4又由 Q 、B、M三点共线可得:3x y4 x y 2y 24.3x y4xx y4化简得所求轨迹方程为:x2y2 2 x 2 y 8 0 .解法三:因为 AB 2 且 AB 在直线 y x 上所以可设 A(a , a), B(a 1 , a1) .则直线 AP 的方程为:(a2)( y 2) (a 2)( x 2)直线 BQ 的方程为: (a 1)( y 2) (a 1)xx21 a由上述两式解得a( a0)2y1aa( x1) 2a244∴a 2422( y1)a a24∴ ( x 1)2( y 1)28 ,即 x 2y 22x 2 y8 0 .而当 a0 时,直线 AP 与BQ平行,没有交点.∴所求轨迹方程为x2y 22x 2 y 8 0 .说明:本题的前两种方法属于直接法,相对较繁,尔后一种方法,事实上它波及到参数的思想 ( a为参数 ),利用交点求轨迹方程.一般先把交点表示为对于参数的坐标,而后消去参数,这也反应出运动的看法.。

高中数学 2.1.1曲线与方程

高中数学 2.1.1曲线与方程

曲线与方程(30分钟 50分)一、选择题(每题3分,共18分)(x 0,y 0)=0是点P(x 0,y 0)在曲线f(x,y)=0上的 ( )A.充分没必要要条件B.必要不充分条件C.充要条件D.既不充分也没必要要条件【解析】选C.由曲线与方程的概念可知,假设点P(x 0,y 0)在曲线f(x,y)=0上,那么必有f(x 0,y 0)=0;又当f(x 0,y 0)=0时,点P(x 0,y 0)也必然在方程f(x,y)=0对应的曲线上,应选C.2.下面四组方程表示同一条曲线的一组是 ( )=x 与y=√x =lgx 2与y=2lgxC.y +1x −2=1与lg(y+1)=lg(x-2) +y 2=1与|y|=√1−x 2【解析】选D.要紧考虑x,y 的取值范围,A 中y 2=x 中y ∈R,而y=√x 中y ≥0,B 中y=lgx 2中x ≠0,而y=2lgx 中x>0;C 中y +1x −2=1中y ∈R,x ≠2,而lg(y+1)=lg(x-2)中y>-1,x>2,故只有D 正确. 3.(2021·石家庄高二检测)方程x 2+y 2=1(xy<0)的曲线形状是 ( )【解析】选C.方程x 2+y 2=1(xy<0)表示以原点为圆心,1为半径的圆在第二、四象限的部份.4.(2021·安阳高二检测)曲线y=√1−x 2和y=-x+√2公共点的个数为 ( )B.2 【解析】选C.由{y =√1−x 2,y =−x +√2,得-x+√2=√1−x 2,两边平方并整理得(√2x-1)2=0,因此x=√22,这时y=√22,故公共点只有一个(√22,√22). 【误区警示】解题中易忽略y=√1−x 2中x 的取值范围,而写成x 2+y 2=1,从而解出两组解而致使出错.5.如果曲线C 上点的坐标知足方程F(x,y)=0,那么有( )A.方程F(x,y)=0表示的曲线是CB.曲线C 的方程是F(x,y)=0C.点集{P|P ∈C}⊆{(x,y)|F(x,y)=0}D.点集{P|P ∈C}{(x,y)|F(x,y)=0}【解析】选,B 错,因为以方程F(x,y)=0的解为坐标的点不必然在曲线C 上,假设以方程F(x,y)=0的解为坐标的点都在曲线C 上,那么点集{P|P ∈C}={(x,y)|F(x,y)=0},故D 错,选C.6.(2021·青岛高二检测)方程(x-y)2+(xy-1)2=0表示的是 ( )A.两条直线B.一条直线和一双曲线C.两个点D.圆【解析】选C.由题意,{x −y =0,xy =1,因此x=1,y=1或x=-1,y=-1,因此方程(x-y)2+(xy-1)2=0表示的是两个点(1,1)或(-1,-1).二、填空题(每题4分,共12分)7.(2021·天津高二检测)点P(2,-3)在曲线x 2-ay 2=1上,那么a= .【解析】将(2,-3)代入x 2-ay 2=1,得a=13. 答案:13【变式训练】已知点A(a,2)既是曲线y=mx 2上的点,也是直线x-y=0上的一点,那么m= .【解析】因为点A(a,2)在直线x-y=0上,得a=2,即A(2,2).又点A 在曲线y=mx 2上,因此2=m ·22,得m=12. 答案:12 8.(2021·重庆高二检测)若是直线l :x+y-b=0与曲线C:y=√1−x 2有公共点,那么b 的取值范围是 .【解题指南】此题考查曲线的交点问题,能够先作出曲线y=√1−x 2的图象,利用数形结合解题. 【解析】曲线C:y=√1−x 2表示以原点为圆心,以1为半径的单位圆的上半部份(包括(±1,0)),如图,当l 与l 1重合时,b=-1,当l 与l 2重合时,b=√2,因此直线l 与曲线C 有公共点时,-1≤b ≤√2.答案:[-1,√2]9.方程y=√x 2−4x +4所表示的曲线是 .【解析】原方程可化为:y=|x-2|={x −2,x ≥2,−x +2,x <2.因此方程表示的是射线x-y-2=0(x ≥2)及x+y-2=0(x<2).答案:两条射线【误区警示】此题易轻忽方程自身的条件对y 的约束,即y ≥0,而将方程变形为(x+y-2)(x-y-2)=0,从而得出方程表示的曲线是两条直线.三、解答题(每题10分,共20分)10.方程√1−|x |=√1−y 表示的曲线是什么图形?【解析】原方程可化为{1−y =1−|x |,1−|x |≥0,即{y =|x |,|x |≤1, 因此它表示的图形是两条线段y=-x(-1≤x ≤0)和y=x(0≤x ≤1).如图:11.曲线x 2+(y-1)2=4与直线y=k(x-2)+4有两个不同的交点,求k 的范围,假设有一个交点、无交点呢?【解析】由{y =k (x −2)+4,x 2+(y −1)2=4,得(1+k2)x2+2k(3-2k)x+(3-2k)2-4=0,Δ=4k 2(3-2k)2-4(1+k 2)[(3-2k)2-4]=48k-20.因此Δ>0,即k>512时,直线与曲线有两个不同的交点; Δ=0,即k=512时,直线与曲线有一个交点; Δ<0,即k<512时,直线与曲线没有交点. 【拓展延伸】曲线与直线交点个数的判别方式曲线与直线交点的个数确实是曲线方程与直线方程联立方程组解的组数,而方程组解的组数可利用根的判别式进行判定.此题是判定直线和圆的交点问题,用的是代数法.也可用几何法,即通过圆心到直线的距离与半径的关系求出k 的范围.有些题目,在判定交点个数时,也可用数形结合法.(30分钟 50分)一、选择题(每题4分,共16分)1.已知曲线ax 2+by 2=2通过点A(0,2)和B(1,1),那么a,b 的值别离为 ( )A.12,32B.32,12 32,32 D.12,-32【解析】选B.因为点A(0,2)和B(1,1)都在曲线ax 2+by 2=2上,因此{a ·0+4b =2,a +b =2,解得{a =32,b =12. 2.(2021·临沂高二检测)方程x 2|x |+y 2|y |=1表示的图形是 ( ) A.一条直线B.两条平行线段C.一个正方形D.一个正方形(除去四个极点)【解析】选D.由方程可知,方程表示的图形关于坐标轴和原点对称,且x ≠0,y ≠0,当x>0,y>0时,方程可化为x+y=1,表示第一象限内的一条线段(去掉两头点),因此原方程表示的图形是一个正方形(除去四个极点).3.已知圆C:(x-2)2+(y+1)2=4及直线l:x+2y-2=0,那么点M(4,-1) ( )A.不在圆C上,但在直线l上B.在圆C上,但不在直线l上C.既在圆C上,也在直线l上D.既不在圆C上,也不在直线l上【解析】选C.将点M(4,-1)的坐标别离代入圆C及直线l的方程,均知足.4.(2021·成都高二检测)已知方程y=a|x|和y=x+a(a>0)所确信的两条曲线有两个交点,那么a的取值范围是( )>1 <a<1<a<1或a>1 ∈【解题指南】别离作出y=a|x|和y=x+a所表示的曲线.再依照图象求a的取值范围.【解析】选A.因为a>0,因此方程y=a|x|和y=x+a(a>0)的图象大致如图,要使方程y=a|x|和y=x+a(a>0)所确信的两条曲线有两个交点,那么要求y=a|x|在y轴右边的斜率足够大,因此a>1.【变式训练】如下图,定圆半径为a,圆心为(b,c),那么直线ax+by+c=0与直线x-y+1=0的交点在( ) A.第一象限 B.第二象限C.第三象限D.第四象限【解析】选C.由{ax+by+c=0,x−y+1=0,因此{x=−b+ca+b,y=a−ca+b.因为a+b<0,a-c>0,b+c<0,因此x<0,y<0,因此交点在第三象限,选C.二、填空题(每题5分,共10分)5.(2021·济宁高二检测)曲线y=|x-2|-2的图象与x轴所围成的三角形的面积是.【解析】当x-2<0时,原方程可化为y=-x;当x-2≥0时,原方程可化为y=x-4.故原方程表示两条共极点的射线,易患极点为B(2,-2),与x 轴的交点为O(0,0),A(4,0),因此曲线y=|x-2|-2与x 轴围成的三角形面积为S △AOB = 12|OA|·|y B |=4. 答案:46.(2021·石家庄高二检测)曲线y=-√1−x 2与曲线y+|ax|=0(a ∈R)的交点个数为 .【解析】由{y =−√1−x 2,y +|ax |=0,得-|ax|=-√1−x 2,即a 2x 2=1-x 2,因此(a 2+1)x 2=1,解得x=√1a 2+1和x=-√1a 2+1, 代入y=-|ax|,得y=-√a 21+a 2,因此它们有2个交点.答案:2【一题多解】由y=-√1−x 2,得x 2+y 2=1(y ≤0)表示半圆如图:由y+|ax|=0,得y=-|a||x|,表示过原点的两条射线,如图.因此由图象可知,它们有两个交点.答案:2三、解答题(每题12分,共24分)7.已知点P(x 0,y 0)是曲线f(x,y)=0和曲线g(x,y)=0的交点,求证:点P 在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【证明】因为P 是曲线f(x,y)=0和曲线g(x,y)=0的交点,因此P 在曲线f(x,y)=0上,即f(x 0,y 0)=0,P 在曲线g(x,y)=0上,即g(x 0,y 0)=0,因此f(x 0,y 0)+λg(x 0,y 0)=0+λ0=0,故点P 在曲线f(x,y)+λg(x,y)=0(λ∈R)上.【拓展延伸】证明曲线与方程关系的技术 解答本类问题的关键是正确明白得并运用曲线的方程与方程的曲线的概念,明确两条原那么,即假设点的坐标适合方程,那么该点必在方程的曲线上;假设点在曲线上,那么该点的坐标必适合曲线的方程.另外,要证明方程是曲线的方程,依照概念需完成两步:①曲线上任意一点的坐标都是方程的解;②以方程的解为坐标的点都在曲线上.二者缺一不可.8.当曲线y=1+√4−x 2与直线y=k(x-2)+4有两个相异交点时,求实数k 的取值范围.【解析】曲线y=1+√4−x 2是以(0,1)为圆心,2为半径的半圆,如图. 直线y=k(x-2)+4是过定点(2,4)的直线.设切线PC 的斜率为k 0,切线PC 的方程为y=k 0(x-2)+4.圆心(0,1)到直线PC 的距离等于半径2,即0√1+k 0=2, 因此k 0=512,直线PA 的斜率k 1=34, 因此实数k 的取值范围是512<k ≤34.。

高中高二数学教案曲线和方程

高中高二数学教案曲线和方程

高中高二数学教案:曲线和方程曲线和方程教学目标(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题.(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念.(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点.(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法.(5)进一步理解数形结合的思想方法.教学建议教材分析(1)知识结构曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质.曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序.前者回答什么是曲线方程,后者解决如何求出曲线方程.至于用曲线方程研究曲线性质则更在其后,本节不予研究.因此,本节涉及曲线方程概念和求曲线方程两大基本问题.(2)重点、难点分析①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想.②本节的难点是曲线方程的概念和求曲线方程的方法.教法建议(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系.曲线与方程对应关系的基础是点与坐标的对应关系.注意强调曲线方程的完备性和纯粹性.(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备.(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则.(4)从集合与对应的观点可以看得更清楚:设表示曲线上适合某种条件的点的集合;表示二元方程的解对应的点的坐标的集合.可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做.同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得.教学中对课本例2的解法分析很重要.这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即文字语言中的几何条件数学符号语言中的等式数学符号语言中含动点坐标,的代数方程简化了的,的代数方程由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程.”(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”.教学设计示例课题:求曲线的方程(第一课时)教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步掌握求曲线方程的方法.(4)通过本节内容的教学,培养学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线.学生思考并回答.教师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.【问题】如何根据已知条件,求出曲线的方程.【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所适合的条件可表示为将上式两边平方,整理得果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.求解过程略.【概括总结】通过学生讨论,师生共同总结:分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出适合条件的点的集合;(3)用坐标表示条件,列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合由距离公式,点适合的条件可表示为①将①式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.【练习巩固】题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.根据条件,代入坐标可得化简得①由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为【小结】师生共同总结:(1)解析几何研究研究问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?【作业】课本第72页练习1,2,3;。

高中高二数学教案曲线和方程

高中高二数学教案曲线和方程

高中高二数学教案:曲线和方程1. 引言高中数学中,曲线和方程是一门重要的基础课程,需要在高二阶段进行系统学习。

学生在学习过程中,需要掌握如何利用各种不同的方程式,来求解数学问题。

本文将介绍高中高二数学教案中,曲线和方程的相关知识。

2. 曲线的概念在高中数学中,曲线是一个非常重要的概念。

它是指在平面直角坐标系中的图形,可以是由数学函数表达的折线或曲线,也可以是由多个点的连线形成的图形。

曲线在数学中有着广泛的应用,例如用于工程计算、物理学、统计学等领域。

3. 方程的概念方程是在数学中非常常见的概念,它是包含了一个或多个变量的等式。

我们可以利用方程来求解各种数学问题,例如在平面直角坐标系中,可以利用方程来表示一个图形的几何特征。

在高中数学中,方程的学习是非常重要的一环,学生需要掌握各种不同类型的方程式,并且清楚它们的求解方法。

4. 曲线和方程的关系在数学中,对于同一个曲线来说,可以有多种不同的方程式来表示。

例如对于直线 y = 3x + 5 来说,它可以看作是关于 x 和 y 的一次方程,而当我们观察这条直线的斜率和截距时,它们又可以转化为更简单的表达形式。

因此,学生需要掌握如何通过曲线的特征,来构造出对应的方程式。

5. 一元二次方程在高中数学中,我们需要学习一元二次方程。

它是被广泛利用的一个方程式,可以应用在多个领域中,例如物理、工程、经济等。

学生需要掌握一元二次方程的求解方法,并且理解它产生的原因和应用。

6. 一元二次方程根的求法在学习一元二次方程时,学生需要掌握如何求解方程的两个根。

有多种不同的求解方法,例如公式法、配方法、图像法等,学生需要理解它们的原理和优缺点。

对于不同类型的二次方程,可能需要采用不同的求解方法,因此学生需要进行分类讨论和实践练习。

7. 一元二次方程的应用在高中数学教学中,很多问题可以利用一元二次方程进行求解。

例如在物理学中,我们可以利用抛物线运动的轨迹,来求解各种物理问题。

高中数学曲线和方程教案

高中数学曲线和方程教案

主题:曲线和方程目标:学生能够理解和应用曲线和方程的概念,能够绘制和分析各种曲线图形。

教学内容:1. 方程的基本概念2. 一元一次方程3. 一元二次方程4. 曲线的基本概念5. 直线的方程和性质6. 圆的方程和性质7. 椭圆、抛物线、双曲线的方程和性质8. 曲线的应用教学步骤:第一课:方程的基本概念1. 引入方程概念,让学生认识到方程在现实生活中的重要性2. 教授方程的定义和基本术语3. 讲解方程的解的概念和思维方式第二课:一元一次方程1. 讲解一元一次方程的定义和性质2. 演示如何求解一元一次方程3. 练习一元一次方程的相关题目第三课:一元二次方程1. 讲解一元二次方程的定义和性质2. 演示如何求解一元二次方程3. 练习一元二次方程的相关题目1. 引入曲线的概念,让学生认识到曲线在数学中的重要性2. 讲解曲线的定义和基本分类3. 演示如何绘制各种曲线图形第五课:直线的方程和性质1. 讲解直线的方程和性质2. 演示如何通过方程求解直线的相关问题3. 练习直线方程的相关题目第六课:圆的方程和性质1. 讲解圆的方程和性质2. 演示如何通过方程求解圆的相关问题3. 练习圆的方程的相关题目第七课:椭圆、抛物线、双曲线的方程和性质1. 讲解椭圆、抛物线、双曲线的方程和性质2. 演示如何通过方程求解这些曲线的相关问题3. 练习椭圆、抛物线、双曲线的方程的相关题目第八课:曲线的应用1. 讲解曲线在现实生活中的应用2. 演示如何通过曲线方程解决实际问题3. 练习应用题目课堂互动:1. 学生提出问题,老师解答并引导学生思考2. 老师布置课后作业和练习题,及时纠正学生的错误3. 小组合作解题,促进学生之间的交流和合作评估方式:1.2. 课后练习题和考试成绩3. 口头回答问题和解题思路的清晰度教学资源:1. 教科书及相关参考书籍2. 多媒体教学设备3. 课堂板书和示范绘图教学反思与改进:1. 结合学生实际情况,及时调整教学内容和方式2. 引导学生自主学习和解决问题的能力3. 关注学生的学习动态和进度,及时纠正错误和强化重点知识总结:通过本课程的学习,学生将掌握曲线和方程的基本概念和应用技能,从而提高数学素养和解决实际问题的能力。

高二数学曲线和方程通用版知识精讲

高二数学曲线和方程通用版知识精讲

高二数学曲线和方程通用版【本讲主要内容】曲线和方程曲线的方程、方程的曲线的概念,求解曲线方程的一般步骤。

【知识掌握】 【知识点精析】1. 曲线的方程、方程的曲线的概念:一般地,在直角坐标系中如果某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(纯粹性) (2)以这个方程的解为坐标的点都是曲线上的点。

(完备性)那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线(图形)。

2. 坐标法、解析几何的概念:借助坐标系研究几何图形的方法叫做坐标法,在数学中,用坐标法研究几何图形的知识形成了一门叫做解析几何的学科。

解析几何是用代数方法研究几何问题的数学学科。

解析几何研究的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程。

(2)通过方程,研究平面曲线的性质。

3. 求解曲线方程的一般步骤:(1)建立适当的坐标系,用有序实数对例如(x ,y )表示曲线上任意一点 的坐标;(2)写出适合条件p 的点M 的集合P ={M|P(M)}; (3)用坐标表示条件p(M),列出方程f(x,y)=0; (4)化方程f(x,y)=0为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点。

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;证明。

【解题方法指导】例1. 如果曲线C 上的点满足方程F (x ,y )=0,则以下说法正确的是( ) A. 曲线C 的方程是F (x ,y )=0 B. 方程F (x ,y )=0的曲线是CC. 坐标满足方程F (x ,y )=0的点在曲线C 上D. 坐标不满足方程F (x ,y )=0的点不在曲线C 上 分析:判定曲线和方程的对应关系,必须注意两点:(1)曲线上的点的坐标都是这个方程的解,即直观地说“点不比解多”称为纯粹性;(2)以这个方程的解为坐标的点都在曲线上,即直观地说“解不比点多”,称为完备性,只有点和解一一对应,才能说曲线的方程,方程的曲线。

高中数学《曲线和方程》说课稿

高中数学《曲线和方程》说课稿

高中数学《曲线和方程》说课稿以上是第一我为大家整理的高中数学《曲线和方程》说课稿,盼望对大家有所关心。

各位领导、专家、同仁:你们好!我是广安市乐善中学的数学老师蒋永华。

我说课的内容是"曲线和方程'。

下面我从教材分析、教学方法、学法指导、教学程序、板书设计以及评价六个方面来汇报对教材的钻研状况和本节课的教学设想。

恳请在座的专家、同仁批判指正。

一、关于教材分析1、教材的地位和作用"曲线和方程'是高中数学其次册(上)第七章《直线和圆的方程》的重点内容之一,是在介绍了"直线的方程'之后,对一般曲线(也包括直线)与二元方程的关系作进一步的讨论。

这部分内容从理论上揭示了几何中的"形'与代数中的"数'相统一的关系,为"形'与"数'的相互转化开拓了途径,同时也体现了解析几何的基本思想,为解析几何的教学奠定了一个理论基础。

2、教学内容的选择和处理本节教材主要讲解曲线的方程和方程的曲线、坐标法、解析几何等概念,争论怎样求曲线的方程以及曲线的交点等问题。

共分四课时完成,这是第一课时。

此课时的主要内容是建立"曲线的方程'和"方程的曲线'这两个概念,并对概念进行初步运用。

我在处理教材时,不拘泥于教材,敢于大胆进行调整。

主要体现在对曲线的方程和方程的曲线的定义进行归纳上,通过构造反例,引导同学进行观看、争论、分析、正反对比,逐步揭示其内涵,然后在此基础上归纳定义;再一点就是在得出定义之后,引导同学用集合观点来理解概念。

3、教学目标的确定依据教学大纲的要求以及本节教材的地位和作用,结合高二同学的认知特点,我认为,通过本节课的教学,应使同学理解曲线和方程的概念;会用定义来推断点是否在方程的曲线上、证明曲线的方程;培育同学分析、推断、归纳的规律思维力量,渗透数形结合的数学思想;并借用曲线与方程的关系进行辩证唯物主义观点的教育;通过对问题的不断探讨,培育同学勇于探究的精神。

高中数学知识点总结(第九章 平面解析几何 第九节 曲线与方程)

高中数学知识点总结(第九章 平面解析几何 第九节 曲线与方程)

第九节 曲线与方程一、基础知识1.曲线与方程一般地,在平面直角坐标系中,如果某曲线C 上的点与一个二元方程f (x ,y )=0的实数解建立了如下关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线2.求动点轨迹方程的一般步骤(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合P ={M |p (M )}; (3)用坐标表示条件p (M ),列出方程f (x ,y )=0; (4)化方程f (x ,y )=0为最简形式;(5)说明化简后的方程的解为坐标的点都在曲线上.(1)如果曲线C 的方程是f (x ,y )=0, 那么点P 0(x 0,y 0)在曲线C 上的充要条件是f (x 0,y 0)=0.(2)“曲线C 是方程f (x ,y )=0的曲线”是“曲线C 上的点的坐标都是方程f (x ,y )=0的解”的充分不必要条件.坐标系建立的不同,同一曲线在不同坐标系中的方程也不同,但它们始终表示同一曲线. 有时此过程可根据实际情况省略,直接列出曲线方程.考点一 直接法求轨迹方程1.已知点F (0,1),直线l :y =-1,P 为平面上的动点,过点P 作直线l 的垂线,垂足为Q ,且Q P ―→·Q F ―→=FP ―→·F Q ―→,则动点P 的轨迹C 的方程为( )A .x 2=4yB .y 2=3xC .x 2=2yD .y 2=4x解析:选A 设点P (x ,y ),则Q(x ,-1). ∵Q P ―→·Q F ―→=FP ―→·F Q ―→,∴(0,y +1)·(-x,2)=(x ,y -1)·(x ,-2), 即2(y +1)=x 2-2(y -1),整理得x 2=4y ,∴动点P 的轨迹C 的方程为x 2=4y .2.在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于-13.则动点P 的轨迹方程为________________.解析:因为点B 与点A (-1,1)关于原点O 对称, 所以点B 的坐标为(1,-1).设点P 的坐标为(x ,y ),由题意得y -1x +1·y +1x -1=-13,化简得x 2+3y 2=4(x ≠±1).故动点P 的轨迹方程为x 2+3y 2=4(x ≠±1). 答案:x 2+3y 2=4(x ≠±1)3.已知△ABC 的顶点B (0,0),C (5,0),AB 边上的中线长|CD |=3,则顶点A 的轨迹方程为____________________.解析:设A (x ,y ),由题意可知D ⎝⎛⎭⎫x 2,y 2. ∵|CD |=3,∴⎝⎛⎭⎫x 2-52+⎝⎛⎭⎫y22=9, 即(x -10)2+y 2=36, 由于A ,B ,C 三点不共线, ∴点A 不能落在x 轴上,即y ≠0,∴点A 的轨迹方程为(x -10)2+y 2=36(y ≠0). 答案:(x -10)2+y 2=36(y ≠0)考点二 定义法求轨迹方程[典例精析]已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .求C 的方程.[解] 由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3.设圆P 的圆心为P (x ,y ),半径为R .因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4>|MN |=2.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为x 24+y 23=1(x ≠-2).[解题技法]定义法求曲线方程的2种策略(1)运用圆锥曲线的定义求轨迹方程,可从曲线定义出发直接写出方程,或从曲线定义出发建立关系式,从而求出方程.(2)定义法和待定系数法适用于已知曲线的轨迹类型,利用条件把待定系数求出来,使问题得解.[题组训练]如图,已知△ABC 的两顶点坐标A (-1,0),B (1,0),圆E 是△ABC 的内切圆,在边AC ,BC ,AB 上的切点分别为P ,Q ,R ,|CP |=1(从圆外一点到圆的两条切线段长相等),动点C 的轨迹为曲线M ,求曲线M 的方程.解:由题知|CA |+|CB |=|CP |+|C Q|+|AP |+|B Q|=2|CP |+|AB |=4>|AB |, 所以曲线M 是以A ,B 为焦点,长轴长为4的椭圆(挖去与x 轴的交点). 设曲线M :x 2a 2+y 2b 2=1(a >b >0,y ≠0),则a 2=4,b 2=a 2-⎝⎛⎭⎫|AB |22=3, 所以曲线M 的方程为x 24+y 23=1(y ≠0).考点三 代入法(相关点)求轨迹方程[典例精析]如图所示,抛物线E :y 2=2px (p >0)与圆O :x 2+y 2=8相交于A ,B 两点,且点A 的横坐标为2.过劣弧AB 上动点P (x 0,y 0)作圆O 的切线交抛物线E 于C ,D 两点,分别以C ,D 为切点作抛物线E 的切线l 1,l 2,l 1与l 2相交于点M .(1)求p 的值;(2)求动点M 的轨迹方程.[解] (1)由点A 的横坐标为2,可得点A 的坐标为(2,2),代入y 2=2px ,解得p =1. (2)由(1)知抛物线E :y 2=2x ,设C ⎝⎛⎭⎫y 212,y 1,D ⎝⎛⎭⎫y 222,y 2,y 1≠0,y 2≠0.切线l 1的斜率为k ,则切线l 1:y -y 1=k ⎝⎛⎭⎫x -y 212, 代入y 2=2x ,得ky 2-2y +2y 1-ky 21=0, 由Δ=0,解得k =1y 1,∴l 1的方程为y =1y 1x +y 12,同理l 2的方程为y =1y 2x +y 22.联立⎩⎨⎧y =1y 1x +y 12,y =1y 2x +y22,解得⎩⎨⎧x =y 1y 22,y =y 1+y22.易知CD 的方程为x 0x +y 0y =8,其中x 0,y 0满足x 20+y 20=8,x 0∈[2,2 2 ], 由⎩⎪⎨⎪⎧y 2=2x ,x 0x +y 0y =8,得x 0y 2+2y 0y -16=0, 则⎩⎨⎧y 1+y 2=-2y 0x 0,y 1·y 2=-16x.代入⎩⎨⎧x =y 1y 22,y =y 1+y22,可得M (x ,y )满足⎩⎨⎧x =-8x 0,y =-y0x 0,可得⎩⎨⎧x 0=-8x,y 0=8yx ,代入x 20+y 20=8,并化简,得x 28-y 2=1. 考虑到x 0∈[2,22],知x ∈[-4,-22],∴动点M 的轨迹方程为x 28-y 2=1,x ∈[-4,-22].[解题技法]“相关点法”求轨迹方程的基本步骤(1)设点:设被动点坐标为(x ,y ),主动点坐标为(x 1,y 1);(2)求关系式:求出两个动点坐标之间的关系式⎩⎪⎨⎪⎧x 1=f x ,y ,y 1=g x ,y ;(3)代换:将上述关系式代入已知曲线方程,便可得到所求动点的轨迹方程.[题组训练]已知曲线E :ax 2+by 2=1(a >0,b >0),经过点M ⎝⎛⎭⎫33,0的直线l 与曲线E 交于点A ,B ,且MB ―→=-2MA ―→.若点B 的坐标为(0,2),求曲线E 的方程.解:设A (x 0,y 0),∵B (0,2),M ⎝⎛⎭⎫33,0,故MB ―→=⎝⎛⎭⎫-33,2,MA ―→=⎝⎛⎭⎫x 0-33,y 0.由于MB ―→=-2MA ―→,∴⎝⎛⎭⎫-33,2=-2⎝⎛⎭⎫x 0-33,y 0.∴x 0=32,y 0=-1,即A ⎝⎛⎭⎫32,-1. ∵A ,B 都在曲线E 上, ∴⎩⎪⎨⎪⎧ a ·02+b ·22=1,a ·⎝⎛⎭⎫322+b ·-12=1,解得⎩⎪⎨⎪⎧a =1,b =14. ∴曲线E 的方程为x 2+y 24=1. [课时跟踪检测]A 级1.平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC ―→=λ1OA ―→+λ2OB ―→(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是( )A .直线B .椭圆C .圆D .双曲线解析:选A 设C (x ,y ),因为OC ―→=λ1OA ―→+λ2OB ―→, 所以(x ,y )=λ1(3,1)+λ2(-1,3),即⎩⎪⎨⎪⎧x =3λ1-λ2,y =λ1+3λ2,解得⎩⎨⎧λ1=y +3x10,λ2=3y -x10,又λ1+λ2=1,所以y +3x 10+3y -x10=1,即x +2y =5,所以点C 的轨迹是直线,故选A.2.如图所示,在平面直角坐标系xOy 中,A (1,0),B (1,1),C (0,1),映射f 将xOy 平面上的点P (x ,y )对应到另一个平面直角坐标系uO ′v 上的点P ′(2xy ,x 2-y 2),则当点P 沿着折线A ­B ­C 运动时,在映射f 的作用下,动点P ′的轨迹是( )解析:选D 当P 沿AB 运动时,x =1,设P ′(x ′,y ′),则⎩⎪⎨⎪⎧x ′=2y ,y ′=1-y 2(0≤y ≤1),故y ′=1-x ′24(0≤x ′≤2,0≤y ′≤1).当P 沿BC 运动时,y =1,则⎩⎪⎨⎪⎧x ′=2x ,y ′=x 2-1(0≤x ≤1),所以y ′=x ′24-1(0≤x ′≤2,-1≤y ′≤0),由此可知P ′的轨迹如D 所示,故选D.3.设点A 为圆(x -1)2+y 2=1上的动点,P A 是圆的切线,且|P A |=1,则P 点的轨迹方程为( )A .y 2=2x B.(x -1)2+y 2=4 C .y 2=-2xD .(x -1)2+y 2=2解析:选D 如图,设P (x ,y ), 圆心为M (1,0).连接MA ,PM , 则MA ⊥P A ,且|MA |=1, 又因为|P A |=1,所以|PM |=|MA |2+|P A |2=2, 即|PM |2=2,所以(x -1)2+y 2=2.4.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP ―→=2P A ―→,且O Q ―→·AB ―→=1,则点P 的轨迹方程是( )A.32x 2+3y 2=1(x >0,y >0) B.32x 2-3y 2=1(x >0,y >0) C .3x 2-32y 2=1(x >0,y >0)D .3x 2+32y 2=1(x >0,y >0)解析:选A 设A (a,0),B (0,b ),a >0,b >0.由BP ―→=2P A ―→,得(x ,y -b )=2(a -x ,-y ),即a =32x >0,b =3y >0.点Q(-x ,y ),故由O Q ―→·AB ―→=1,得(-x ,y )·(-a ,b )=1,即ax +by =1.将a =32x ,b =3y 代入ax +by =1,得所求的轨迹方程为32x 2+3y 2=1(x >0,y >0).5.如图所示,已知F 1,F 2是椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,P 是椭圆Γ上任意一点,过F 2作∠F 1PF 2的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为( )A .直线 B.圆 C .椭圆D .双曲线解析:选B 延长F 2Q ,与F 1P 的延长线交于点M ,连接O Q.因为P Q 是∠F 1PF 2的外角的角平分线,且P Q ⊥F 2M ,所以在△PF 2M 中,|PF 2|=|PM |,且Q 为线段F 2M 的中点.又O 为线段F 1F 2的中点,由三角形的中位线定理,得|O Q|=12|F 1M |=12(|PF 1|+|PF 2|).根据椭圆的定义,得|PF 1|+|PF 2|=2a ,所以|O Q|=a ,所以点Q 的轨迹为以原点为圆心,半径为a 的圆,故选B.6.在平面直角坐标系中,O 为坐标原点,A (1,0),B (2,2),若点C 满足OC ―→=OA ―→+t (OB ―→-OA ―→),其中t ∈R ,则点C 的轨迹方程是____________________.解析:设C (x ,y ),则OC ―→=(x ,y ),OA ―→+t (OB ―→-OA ―→)=(1+t,2t ),所以⎩⎪⎨⎪⎧x =t +1,y =2t 消去参数t 得点C 的轨迹方程为y =2x -2.答案:y =2x -27.设F 1,F 2为椭圆x 24+y 23=1的左、右焦点,A 为椭圆上任意一点,过焦点F 1向∠F 1AF 2的外角平分线作垂线,垂足为D ,则点D 的轨迹方程是________________.解析:由题意,延长F 1D ,F 2A 并交于点B ,易证Rt △ABD ≌Rt △AF 1D ,则|F 1D |=|BD |,|F 1A |=|AB |,又O 为F 1F 2的中点,连接OD ,则OD ∥F 2B ,从而可知|DO |=12|F 2B |=12(|AF 1|+|AF 2|)=2,设点D 的坐标为(x ,y ),则x 2+y 2=4.答案:x 2+y 2=48.(2019·福州质检)已知A (-2,0),B (2,0),斜率为k 的直线l 上存在不同的两点M ,N 满足|MA |-|MB |=23,|NA |-|NB |=23,且线段MN 的中点为(6,1),则k 的值为________.解析:因为|MA |-|MB |=23,|NA |-|NB |=23,由双曲线的定义知,点M ,N 在以A ,B 为焦点的双曲线的右支上,且c =2,a =3,所以b =1,所以该双曲线的方程为x 23-y 2=1.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=12,y 1+y 2=2.设直线l 的方程为y =kx +m ,代入双曲线的方程,消去y ,得(1-3k 2)x 2-6mkx -3m 2-3=0,所以x 1+x 2=6mk1-3k 2=12,①y 1+y 2=k (x 1+x 2)+2m =12k +2m =2,② 由①②解得k =2. 答案:29.如图,动圆C 1:x 2+y 2=t 2(1<t <3)与椭圆C 2:x 29+y 2=1相交于A ,B ,C ,D 四点.点A 1,A 2分别为C 2的左、右顶点,求直线AA 1与直线A 2B 交点M 的轨迹方程.解:由椭圆C 2:x 29+y 2=1,知A 1(-3,0),A 2(3,0).设点A 的坐标为(x 0,y 0), 由曲线的对称性,得B (x 0,-y 0), 设点M 的坐标为(x ,y ),直线AA 1的方程为y =y 0x 0+3(x +3).①直线A 2B 的方程为y =-y 0x 0-3(x -3).②由①②相乘得y 2=-y 20x 20-9(x 2-9).③ 又点A (x 0,y 0)在椭圆C 2上,故y 20=1-x 209.④将④代入③得x 29-y 2=1(x <-3,y <0).因此点M 的轨迹方程为x 29-y 2=1(x <-3,y <0).10.(2019·武汉模拟)在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP ―→=λR Q ―→ (λ>1),求证:NF ―→=λF Q ―→.解:(1)依题意知,直线A 1N 1的方程为y =m6(x +6),① 直线A 2N 2的方程为y =-n6(x -6),② 设M (x ,y )是直线A 1N 1与A 2N 2的交点, ①×②得y 2=-mn6(x 2-6),又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q(x 2,y 2),则N (x 1,-y 1), 由⎩⎪⎨⎪⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*)所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP ―→=λR Q ―→,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF ―→=λF Q ―→, 即证(2-x 1,y 1)=λ(x 2-2,y 2),只需证2-x 1=λ(x 2-2),只需x 1-3x 2-3=-x 1-2x 2-2,即证2x 1x 2-5(x 1+x 2)+12=0,又x 1x 2=(ty 1+3)(ty 2+3)=t 2y 1y 2+3t (y 1+y 2)+9,x 1+x 2=ty 1+3+ty 2+3=t (y 1+y 2)+6,所以2t 2y 1y 2+6t (y 1+y 2)+18-5t (y 1+y 2)-30+12=0,即2t 2y 1y 2+t (y 1+y 2)=0,而2t 2y 1y 2+t (y 1+y 2)=2t 2·3t 2+3-t ·6t t 2+3=0成立,即NF ―→=λF Q ―→成立.B 级1.方程(2x +3y -1)(x -3-1)=0表示的曲线是( ) A .两条直线 B.两条射线C .两条线段D .一条直线和一条射线解析:选D 原方程可化为⎩⎪⎨⎪⎧2x +3y -1=0,x -3≥0,或x -3-1=0,即2x +3y -1=0(x ≥3)或x =4,故原方程表示的曲线是一条直线和一条射线.2.动点P 为椭圆x 2a 2+y 2b 2=1(a >b >0)上异于椭圆顶点A (a,0),B (-a,0)的一点,F 1,F 2为椭圆的两个焦点,动圆M 与线段F 1P ,F 1F 2的延长线及线段PF 2相切,则圆心M 的轨迹为除去坐标轴上的点的( )A .抛物线 B.椭圆 C .双曲线的右支D .一条直线解析:选D 如图,设切点分别为E ,D ,G ,由切线长相等可得|F 1E |=|F 1G |,|F 2D |=|F 2G |,|PD |=|PE |.由椭圆的定义可得|F 1P |+|PF 2|=|F 1P |+|PD |+|DF 2|=|F 1E |+|DF 2|=2a ,即|F 1E |+|GF 2|=2a ,也即|F 1G |+|GF 2|=2a ,故点G 与点A 重合,所以点M 的横坐标是x =a ,即点M 的轨迹是一条直线(除去A 点),故选D.3.已知圆的方程为x 2+y 2=4,若抛物线过点A (-1,0),B (1,0)且以圆的切线为准线,则抛物线的焦点轨迹方程是________________.解析:设抛物线焦点为F ,过A ,B ,O 作准线的垂线AA 1,BB 1,OO 1,则|AA 1|+|BB 1|=2|OO 1|=4,由抛物线定义得|AA 1|+|BB 1|=|F A |+|FB |,所以|F A |+|FB |=4,故F 点的轨迹是以A ,B 为焦点,长轴长为4的椭圆(去掉长轴两端点).所以抛物线的焦点轨迹方程为x 24+y 23=1(y ≠0).答案:x 24+y 23=1(y ≠0)4.如图,P 是圆x 2+y 2=4上的动点,P 点在x 轴上的射影是D ,点M 满足DM ―→=12DP ―→.(1)求动点M 的轨迹C 的方程,并说明轨迹是什么图形;(2)过点N (3,0)的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.解:(1)设M (x ,y ),则D (x,0), 由DM ―→=12DP ―→,知P (x,2y ),∵点P 在圆x 2+y 2=4上, ∴x 2+4y 2=4,故动点M 的轨迹C 的方程为x 24+y 2=1,且轨迹C 是以(-3,0),(3,0)为焦点,长轴长为4的椭圆.(2)设E (x ,y ),由题意知l 的斜率存在, 设l :y =k (x -3),代入x 24+y 2=1,得(1+4k 2)x 2-24k 2x +36k 2-4=0,Δ=(-24k 2)2-4(1+4k 2)(36k 2-4)>0,得k 2<15,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=24k 21+4k 2,∴y 1+y 2=k (x 1-3)+k (x 2-3)=k (x 1+x 2)-6k =24k 31+4k 2-6k =-6k 1+4k 2. ∵四边形OAEB 为平行四边形,∴OE ―→=OA ―→+OB ―→=(x 1+x 2,y 1+y 2)=⎝ ⎛⎭⎪⎫24k 21+4k 2,-6k 1+4k 2, 又OE ―→=(x ,y ),∴⎩⎪⎨⎪⎧x =24k 21+4k 2,y =-6k1+4k 2,消去k 得,x 2+4y 2-6x =0, ∵k 2<15,∴0<x <83.11∴顶点E 的轨迹方程为x 2+4y 2-6x =0⎝⎛⎭⎫0<x <83. 5.如图,斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠P AB =30°,则点P 的轨迹是( )A .直线B.抛物线 C .椭圆 D .双曲线的一支解析:选C 母线与中轴线夹角为30°,然后用平面α去截,使直线AB与平面α的夹角为60°,则截口为P 的轨迹图形,由圆锥曲线的定义可知,P的轨迹为椭圆.故选C.6.若曲线C 上存在点M ,使M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,则称曲线C 为“好曲线”.以下曲线不是“好曲线”的是( )A .x +y =5B.x 2+y 2=9C.x 225+y 29=1 D .x 2=16y解析:选B ∵M 到平面内两点A (-5,0),B (5,0)距离之差的绝对值为8,∴M 的轨迹是以A (-5,0),B (5,0)为焦点的双曲线,方程为x 216-y 29=1. A 项,直线x +y =5过点(5,0),故直线与M 的轨迹有交点,满足题意;B 项,x 2+y 2=9的圆心为(0,0),半径为3,与M 的轨迹没有交点,不满足题意;C 项,x 225+y 29=1的右顶点为(5,0),故椭圆x 225+y 29=1与M 的轨迹有交点,满足题意; D 项,把x 2=16y 代入x 216-y 29=1,可得y -y 29=1, 即y 2-9y +9=0,∴Δ>0,满足题意.7.已知△ABC 中,A ,B ,C 的对边分别为a ,b ,c ,且顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足sin B +sin A =54sin C ,则C 点的轨迹方程为________________. 解析:由sin B +sin A =54sin C 可知b +a =54c =10, 则|AC |+|BC |=10>8=|AB |,∴满足椭圆定义.令椭圆方程为x 2a ′2+y 2b ′2=1,则a ′=5,c ′=4,b ′=3, 则轨迹方程为x 225+y 29=1(x ≠±5). 答案:x 225+y 29=1(x ≠±5)。

高等数学18种曲线

高等数学18种曲线

高等数学18种曲线以下是高等数学中18种曲线的详细介绍:1.星形线:星形线是一种特殊的曲线,其极坐标方程为ρ=sinθ,直角坐标方程为x2+y2−x=0。

星形线是围绕原点对称的,并且在直角坐标系中呈现出类似于星形的形状。

2.心形线:心形线也是一种特殊的曲线,其极坐标方程为ρ=1+cosθ,直角坐标方程为x2+y2−2x=0。

心形线也是围绕原点对称的,并且在直角坐标系中呈现出类似于心形的形状。

3.摆线:摆线是一种在圆上运动的质点在直线上的轨迹曲线。

其极坐标方程为ρ=a+bθ,直角坐标方程为x=a(1−cos t)和y=b(1+sin t)。

摆线有许多有趣的性质,例如它的长度和圆的半径相等。

4.对数螺线:对数螺线是一种以原点为中心,向四周无限延伸的曲线。

其极坐标方程为ρ=eθ,直角坐标方程为x=et cos t和y=et sin t。

对数螺线的形状类似于螺壳,并且它的曲率随着半径的增长而逐渐减小。

5.双曲螺线:双曲螺线是一种在双曲线上运动的点在直线上的轨迹曲线。

其极坐标方程为ρ=a2−b2sinθ,直角坐标方程为x=a cosh t cosθ和y=b sinh t sinθ。

双曲螺线的形状类似于螺线,但是它的曲率是负的。

6.阿基米德螺线:阿基米德螺线是一种在平面内无限延伸的曲线,其极坐标方程为ρ=aθ,直角坐标方程为x=a(1−os t)和y=a(1+sin t)。

阿基米德螺线的形状类似于螺线,并且它的曲率随着半径的增长而逐渐减小。

7.伯努利双纽线:伯努利双纽线是一种特殊的曲线,其极坐标方程为ρ=±2a sin2θ,直角坐标方程为(x2+y2)2=4a2y2。

伯努利双纽线的形状类似于两个交叉的圆环,并且在不同的参数条件下表现出不同的性质。

8.三叶玫瑰线:三叶玫瑰线是一种具有三个叶子的特殊曲线,其极坐标方程为ρ=3a cosθ,直角坐标方程为x=3a cos3t和y=3a sin3t。

三叶玫瑰线的形状类似于三片叶子连接在一起,并且它的曲率随着半径的变化而变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②以这个方程的解为坐标的点都是曲线上的点。
研究作业:
1.证明曲线曲线y=x2关于y =x的对称图形
的方程是y2=x
2.证明曲线y=x3x关于点(1,2)的对称曲线
的方程是4 y=(2x)3 (2x)
数学教育之窗:
Email: cqwzyzy@
(1) x y 0
y
(2)x2y2=0 (3)|x|y=0
y y
O
x
O
?
x
O
x
A
B
C
①曲线上的点的坐标都是这个方程的解;
②以这个方程的解为坐标的点都是曲线上的点。 练习:请标出下列方程所对应的曲线
(1) x y 0
y
(2)x2y2=0 (3)|x|y=0
y y
O
x
O
x
O
x
A
B
C
①曲线上的点的坐标都是这个方程的解;
②以这个方程的解为坐标的点都是曲线上的点。 练习:解答下列各题时,说出依据是什么? 如果曲线 C的方程是 (x ,y)=0,那么P( y2 )在 2+ 0,y 0=25 ①点 M1(5,0) 、M2(1,f 5) 是否在方程为 xx 曲线C上的充要条件是 f(x0,y0)=0 的曲线上? ②已知方程为x2+y2=25的曲线过点M3(m,3), 求m的值。
①曲线上的点的坐标都是这个方程的解;
②以这个方程的解为坐标的点都是曲线上的点。 例3.举三个例子,每个例子画一条曲线,
写一个方程。
第一个例子同时满足定义中的两个条件。
第二个例子满足定义中的条件①不满足条
件②。 第三个例子满足定义中的条件② 不满足 条件①。
①曲线上的点的坐标都是这个方程的解;
②以这个方程的解为坐标的点都是曲线上的点。
例1.(1)画出两坐标轴所成的角在第一、三象
限的平分线 l ,并写出其方程.
(2)画出函数y=2x2(1 x 2)的图象C
曲线 点
y
?
l
方程 (x,y)
y 8
C
y=2x2(1 x 2)
1 O1
x-y=0 x -1 2 O
2
x
M(x0,y0)是l上的点
(x0,y0)是方程xy=0的解
①曲线上的点的坐标都是这个方程的解;
②以这个方程的解为坐标的点都是曲线上的点。
例2.证明圆心为坐标原点,半径等于5的圆的
方程是x2+y2=25。 (2)设(x0,y0)是方程x2+y2=25的解,
y
M(x0,y0)
那0 2 y0 2 5
O x 即点M(x0,y0)到原点的距离等于5,
直线l叫方程x-y=0的直线,方程x-y=0叫直线l的方程
M(x0,y0)是C上的点 (x0,y0)是方程y=2x2 (1 x 2) 的解
y
l
1 O1 x-y=0 x -1
8
C
y=2x2(1 x 2)
2 O 2
x
定义:在直角坐标系中,如果某曲线
C(看作适合某种条件的点的集合或轨迹)上的
点与一个二元方程f(x,y)=0的实数解建立了如
下的关系: ①曲线上的点的坐标都是这个方程的解; ②以这个方程的解为坐标的点都是曲线上 的点。
那么,这个方程叫做曲线的方程,这条曲
线叫做方程的曲线。
①曲线上的点的坐标都是这个方程的解;
②以这个方程的解为坐标的点都是曲线上的点。 练习:请标出下列方程所对应的曲线
∴点M(x0,y0)是这个圆上的点。
由(1)、(2)可知,圆心为坐标原点,半径等于5 的圆的方程是x2+y2=25。
①曲线上的点的坐标都是这个方程的解;
②以这个方程的解为坐标的点都是曲线上的点。
证明已知曲线的方程的方法和步骤:
1.设M(x0,y0)是曲线C上任一点,证明(x0,y0) 是方程f(x0,y0)=0的解 2.设(x0,y0)是方程f(x0,y0)=0的解,证明点 M(x0,y0)在曲线C上
再 见
回顾:
1.曲线的方程、方程的曲线
2.点在曲线上的充要条件
3.证明已知曲线的方程的方法和步骤
①曲线上的点的坐标都是这个方程的解;
②以这个方程的解为坐标的点都是曲线上的点。
书面作业:
1.习题7.6第1、2题
2.证明以C(a,b)为圆心,R为半径的圆的方程 为(xa)2+(yb)2=R2.
①曲线上的点的坐标都是这个方程的解;
①曲线上的点的坐标都是这个方程的解;
②以这个方程的解为坐标的点都是曲线上的点。 例1.证明圆心为坐标原点,半径等于5的圆的 方程是x2+y2=25。
y
M(x0,y0)
(1)设M(x0,y0)是圆上任意 证明: 一点
x
O
∵点M到原点的距离等于5, ∴ x 0 2 y0 2 5 即:x02+y02=25 ∴(x0,y0)是方程x2+y2=25的解
相关文档
最新文档