带电粒子在磁场中运动临界问题汇总

合集下载

(完整版)带电粒子在有界磁场中运动的临界问题

(完整版)带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。

粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。

如何分析这类相关的问题是本文所讨论的内容。

一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。

2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。

②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。

3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。

4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。

a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。

②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

专题八 带电粒子在有界磁场中的临界极值问题讲解

专题八 带电粒子在有界磁场中的临界极值问题讲解
答案:ACD
方法二 旋转圆法
粒子速度大小不变,方向改变,则 r=mqBv大小不变,但轨迹 的圆心位置变化,相当于圆心在绕着入射点滚动(如图所示).
例 2 (2015·四川理综)(多选)如图所示,S 处有一电子源,可
向纸面内任意方向发射电子,平板 MN 垂直于纸面,在纸面内的 长度 L=9.1 cm,中点 O 与 S 间的距离 d=4.55 cm,MN 与直线 SO 的夹角为 θ,板所在平面有电子源的一侧区域有方向垂直于 纸面向外的匀强磁场,磁感应强度 B=2.0×10-4T.电子质量 m= 9.1×10-31 kg,电荷量 e=-1.6×10-19C,不计电子重力.电子 源发射速度 v=1.6×106 m/s 的一个电子,该电子打在板上可能 位置的区域的长度为 l,则( )
B.从 ac 边中点射出的粒子,在磁场中的运动时间为 2πm 3qB
C.从 ac 边射出的粒子的最大速度值为23qmBL D.bc 边界上只有长度为 L 的区域可能有粒 子射出
[解析] 带电粒子在磁场中运动的时间是看圆心角的大小, 而不是看弧的长短,A 项错误;作出带电粒子在磁场中偏转的示 意图,从 ac 边上射出的粒子,所对的圆心角都是 120°,所以在 磁场中运动的时间为 t=13T=23πqmB,B 项正确;从 ac 边射出的最 大速度粒子的弧线与 bc 相切,如图所示,半径为 L,由 R=mqBv⇒ v=qBmR=qmBL,C 项错误;如图所示,在 bc 边上只有 Db=L 长 度区域内有粒子射出,D 项正确,选 B、D 项.
例1 (多选)如图所示,在直角三角形 abc 中,有垂直纸面的匀强
磁场,磁感应强度为 B.在 a 点有一个粒子发射源,可以沿 ab 方向源 源不断地发出速率不同,电荷量为q(q>0)、质量为 m 的同种粒子.已 知∠a=60°,ab=L,不计粒子的重力,下列说法正确的是( )

10.5带电粒子在磁场中运动的临界问题

10.5带电粒子在磁场中运动的临界问题
4m
C、v qBL
m
4m qBL 5qBL v D、 4m 4m
3、如图所示,等腰直角三角形ABC的区域内有一 垂直于纸面向内的匀强磁场,磁感应强度为B,已 知AB=2a,现有一束质量为m,带电量为q的正粒 子在AB的中点O处沿着垂直与AB的方向以v0打入 磁场,在AC边上放置一块足够大的荧光屏,当v0= 3qaB/m时, (1)判断粒子能否打到荧光屏上. (2)求粒子在磁场中运动的时间.
3、如图所示,在屏MN的上方有磁感应强度为B的 匀强磁场,磁场方向垂直纸面向里。P为屏上的一 小孔,PC与MN垂直。一群质量为m、带电荷量为 -q的粒子(不计重力),以相同的速率v,从P处 沿垂直于磁场的方向射入磁场区域。粒子入射方向 在与磁场B垂直的平面内,且散开在与PC夹角为θ 的范围内,则在屏MN上被粒子打中的区域的长度 为( ) A. 2mv/qB B. 2mvcos θ /qB C. 2mv(1-sinθ ) /qB D. 2mv(1-cosθ ) /qB
1、(2012海南卷)空间存在方向垂直于纸面向里 的匀强磁场,图中的正方形为其边界。一细束由两 种粒子组成的粒子流沿垂直于磁场的方向从O点入 射。这两种粒子带同种电荷,它们的电荷量、质量 均不同,但其比荷相同,且都包含不同速率的粒子 。不计重力。下列说法正确的是( ) A.入射速度不同的粒子在磁场中运动时间一定不同 B. 入射速度相同的粒子在磁场 中的运动轨迹一定相同 C.在磁场中运动时间相同的粒 子,其运动轨迹一定相同 D.在磁场中运动时间越长的粒 子,其轨迹所对的圆心角一定越大
思考:若为-q的带电粒子呢?
2、长为L、间距也为L的两平行金属板间有垂直纸 面向里的匀强磁场,如图所示,磁感应强度为B。 今有质量为m、带电荷量为q的正离子从平行板左 端中点以平行于金属板的方向射入磁场。欲使离子 不打在极板上,入射离子的速度大小应满足的条件 是( ) qBL 5qBL A、 B、v v

带电粒子在磁场中的临界极值问题

带电粒子在磁场中的临界极值问题

带电粒子在磁场运动的临界与极值问题考点解读解决此类问题的关键是:找准临界点.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v变化时,圆周角越大,运动时间越长.典例剖析1.磁感应强度的极值问题例1 如图所示,一带正电的质子以速度v0从O点垂直射入,两个板间存在垂直纸面向里的匀强磁场.已知两板之间距离为d,板长为d,O点是板的正中间,为使质子能从两板间射出,试求磁感应强度应满足的条件(已知质子的带电荷量为e,质量为m).2.偏角的极值问题例2 在真空中,半径r=3×10-2 m的圆形区域内有匀强磁场,方向如图所示,磁感应强度B=0.2 T,一个带正电的粒子以初速度v0=1×106 m/s从磁场边界上直径ab的一端a射入磁场,已知该粒子的比荷qm=1×108 C/kg,不计粒子重力.(1)求粒子在磁场中做匀速圆周运动的半径;(2)若要使粒子飞离磁场时有最大偏转角,求入射时v0与ab的夹角θ及粒子的最大偏转角.3.时间的极值问题例3如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C 的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.4.面积的极值问题例4如图12所示,一带电质点,质量为m,电量为q,以平行于Ox轴的速度v从y轴上的a点射入图中第一象限所示的区域。

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。

(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。

解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。

由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。

粒子在磁场内运行轨迹对应圆心角为πα35=。

而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。

带电粒子在磁场中运动临界极值多解问题

带电粒子在磁场中运动临界极值多解问题

极值临界问题1、如图所示,宽h=2cm的有界匀强磁场,纵向范围足够大,磁感应强度的方向垂直纸面向内,现有一群正粒子从O点以相同的速率沿纸面不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为r=5cm,则()A.右边界:-4cm<y<4cm有粒子射出B.右边界:y>4cm和y<-4cm有粒子射出C.左边界:y>8cm有粒子射出D.左边界:0<y<8cm有粒子射出2、如图所示,磁感应强度大小B=0.15T、方向垂直纸面向里的匀强磁场分布在半径R=0.10m的圆形区域内,圆的左端跟y轴相切于直角坐标系原点O,右端跟荧光屏MN相切于x轴上的A点。

置于原点的粒子源可沿x轴正方向射出速度V0=3.0×106m/s的带正电的粒子流,粒子的重力不计,荷质比q/m=1.0×108C/kg。

现以过O点并垂直于纸面的直线为轴,将圆形磁场逆时针缓慢旋转90°,求此过程中粒子打在荧光屏上离A的最远距离?3、[2013·南昌二模]如图所示,有一垂直于纸面向外的磁感应强度为B的有界匀强磁场(边界上有磁场),其边界为一边长为L的正三角形,A、B、C为三角形的顶点.今有一质量为m、电荷量为+q的粒子(不计重力),以速度v=3qBL4m从AB边上某点P既垂直于AB边又垂直于磁场的方向射入磁场,然后从BC边上某点Q射出.则( )A.|PB|<2+34L B.|PB|<1+34LC.|QB|≤34L D.|QB|≤12LO4、如图所示,有一垂直于纸面向外的有界匀强磁场,磁场的磁感应强度为B ,其边界为一等腰直角三角形(边界上有磁场),ACD 为三角形的三个顶点,AC=AD=L 。

今有一质量为m 、电荷量为+q 的粒子(不计重力),以速度=v CD 边上的某点P 既垂直于CD 边又垂直于磁场的方向射入,然后从AD 边上某点Q 射出,则有: ( )A.DP B.DP C .2DQ 3L ≤ D.DQ ≤ 5、如图所示,中轴线PQ 将矩形区域MNDC 分成上、下两部分,上部分充满垂直纸面向外的匀强磁场,下部分充满垂直纸面向内的匀强磁场,磁感应强度皆为B 。

带电粒子在磁场运动的临界与极值问题(无答案)

带电粒子在磁场运动的临界与极值问题(无答案)

微专题带电粒子在磁场运动的临界与极值问题一、一条思路:做轨迹找圆心求半径求时间二、两种动态圆:1、旋转动态圆:只改变入射速度方向---动态圆的圆心在以入射点为圆心的圆上2、膨胀动态圆:只改变入射速度大小----动态圆都相切,圆心在一条直线上三、三种常见轨迹(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)四、三类极值问题的求法:1.区域的长度的极值问题2.时间的极值问题3.面积的极值问题例1.如图,在一水平放置的平板MN 上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里,许多质量为m,带电量为+q 的粒子,以相同的速率v 沿位于纸面内的各个方向,由小孔O 射入磁场区域,不计重力,不计粒子间的相互影响.下列图中阴影部分表示带电粒子可能经过的区域,其中R=mv/qB.哪个图是正确的 ()变式1、若把上题的匀强磁场区域改为宽度为d 的双边界磁场,2R>d>R ,试通过作图求出AB 板上可能被粒子打中的区域的长度。

变式2、若把匀强磁场区域改为一个的圆形,且圆的半径r 与粒子运动的半径R相等,试通过作图证明各个粒子从区域射出时速度方向是平行的。

变式3、如图,若只有左半边有带电粒子射入,要让粒子最后平行射出区域,求磁场区域的最小面积。

M NBOOO C. D. A.B.变式4、若磁场区域改为一个的圆形,且圆的半径r 是粒子运动的半径R的一半,求粒子在磁场中运动的最长时间。

例2、如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里的、磁感应强度为B 的匀强磁场,在ad 边中点O 方向垂直磁场射入一速度方向跟ad 边夹角θ=300 、大小为v 0的带电粒子,已知粒子质量为m 、电量为q ,ab 边足够长,ad 边长为L ,粒子的重力不计。

求:⑴.粒子能从ab 边上射出磁场的v 0大小范围。

⑵.如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间。

带电粒子在有界磁场中的临界,极值,多解问题

带电粒子在有界磁场中的临界,极值,多解问题

带电粒子在匀强磁场中的运动---临界问题、极值问题与多解问题一、带电粒子在有界磁场中运动的临界和极值问题带电粒子在有界磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件,然后应用数学知识和相应物理规律分析求解.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下:(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切;(2)当速率v一定时,弧长越长,轨迹对应的圆心角越大,则带电粒子在有界磁场中运动的时间越长;(3)当速率v变化时,圆心角大的,运动时间越长。

【例1】如图所示真空中狭长区域的匀强磁场的磁感应强度为B,方向垂直纸面向里,宽度为d,速度为v的电子从边界CD外侧垂直射入磁场,入射方向与CD间夹角为θ.电子质量为m、电量为q.为使电子从磁场的另一侧边界EF射出,则电子的速度v应为多大?二、带电粒子在有界磁场中运动的多解问题1. 带电粒子电性不确定形成多解.受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度下,正负粒子在磁场中的运动轨迹不同,形成多解.2. 磁场方向不确定形成多解.3. 临界状态不唯一形成多解:带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧形的,它可能穿过去,也可能转过180°从磁场的入射边界边反向飞出,于是形成多解.4. 运动的重复性形成多解:带电粒子在部分是电场、部分是磁场的空间运动时,运动往往具有重复性,形成多解.【例2】 长为L ,间距也为L 的两平行金属板间有垂直向里的匀强磁场,如图所示,磁感应强度为B ,今有质量为m 、带电量为q 的正离子从平行板左端中点以平行于金属板的方向射入磁场。

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题

物理带电粒子在匀强磁场中运动的临界极值问题由于带电粒子在磁场中的运动通常都是在有界磁场中的运动,所以常常出现临界和极值问题。

1.临界问题的分析思路临界问题分析的是临界状态,临界状态存在不同于其他状态的特殊条件,此条件称为临界条件,临界条件是解决临界问题的突破口。

2.极值问题的分析思路所谓极值问题就是对题中所求的某个物理量最大值或最小值的分析或计算,求解的思路一般有以下两种:(1)根据题给条件列出函数关系式进行分析、讨论;(2)借助几何知识确定极值所对应的状态,然后进行直观分析3.四个结论(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。

(2)当速率v一定时,弧长越长,圆心角越大,则带电粒子在有界磁场中运动的时间越长。

(3)当速率v变化时,圆心角大的,运动时间长,解题时一般要根据受力情况和运动情况画出运动轨迹的草图,找出圆心,根据几何关系求出半径及圆心角等。

(4)在圆形匀强磁场中,当运动轨迹圆半径大于区域圆半径时,则入射点和出射点为磁场直径的两个端点时,轨迹对应的偏转角最大(所有的弦长中直径最长)。

【典例】平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。

一带电粒子的质量为m,电荷量为q(q>0)。

粒子沿纸面以大小为v的速度从OM 的某点向左上方射入磁场,速度与OM 成30°角。

已知该粒子在磁场中的运动轨迹与ON 只有一个交点,并从OM 上另一点射出磁场。

不计重力。

粒子离开磁场的出射点到两平面交线O的距离为()【应用练习】1、如图所示,半径为r的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度大小为B,磁场边界上A点有一粒子源,源源不断地向磁场发射各种方向(均平行于纸面)且速度大小相等的带正电的粒子(重力不计),已知粒子的比荷为k,速度大小为2kBr。

则粒子在磁场中运动的最长时间为()3.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行于y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )4、如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B。

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题

解决带电粒子在有界磁场中运动的临界问题的两种方法此类问题的解题关键是寻找临界点,寻找临界点的有效方法是: ① 轨迹圆的缩放:当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R )不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”.4. 一磁场宽度为L ,磁感应强度为B ,如图4所示,一电荷质量为m 、带电荷量为-q ,不计重力,以某一速度(方向如图)射入磁场.若不使其从右边界飞出,则电荷的速度应为多大?图4答案 v ≤BqLm (1+cos θ)解析 若要粒子不从右边界飞出,当达最大速度时运动轨迹如图,由几何知识可求得半径r ,即r +rcos θ=L ,r =L1+cos θ,又Bq v =m v 2r ,所以v =Bqr m =BqLm (1+cos θ).5. 长为l 的水平极板间有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为l ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是( )A .使粒子的速度v <Bql4mB .使粒子的速度v >5Bql4mC .使粒子的速度v >BqlmD .使粒子的速度Bql 4m <v <5Bql4m答案 AB 解析如右图所示,带电粒子刚好打在极板右边缘时,有r 21=(r 1-l 2)2+l 2又r 1=m v 1Bq ,所以v 1=5Bql4m粒子刚好打在极板左边缘时,有r 2=l 4=m v 2Bq,v 2=Bql 4m综合上述分析可知,选项A 、B 正确.(多选)如图1所示,垂直于纸面向里的匀强磁场分布在正方形abcd 区域内,O 点是cd 边的中点。

一个带正电的粒子仅在磁场力的作用下,从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0后刚好从c 点射出磁场。

带电粒子在边界磁场中运动的问题

带电粒子在边界磁场中运动的问题

带电粒子在有界磁场中运动的临界极值问题和多解问题、复合场问题一、带电粒子在有界磁场中运动的临界极值问题★★★规律方法1.解决此类问题关键是找准临界点,审题应抓住题目中的“恰好”“最大”“最高”“至少”等词语作为突破口,挖掘隐含条件,分析可能的情况,如有必要则画出几个不同半径相应的轨迹图,从而分析出临界条件.寻找临界点的两种有效方法:(1)轨迹圆的缩放:当粒子的入射方向不变而速度大小可变时,粒子做圆周运动的轨迹圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹圆,从圆的动态变化中即可发现“临界点”.(2)轨迹圆的旋转:当粒子的入射速度大小确定而方向不确定时,所有不同方向入射的粒子的轨迹圆是一样大的,只是位置绕入射点发生了旋转,从定圆的动态旋转(作图)中,也容易发现“临界点”.2.要重视分析时的尺规作图,规范而准确的作图可突出几何关系,使抽象的物理问题更形象、直观.★★★规律总结1.解决此类问题的关键是:找准临界点.2.找临界点的方法是:以题目中的“恰好”“最大”“最高”“至少”等词语为突破口,借助半径R和速度v(或磁场B)之间的约束关系进行动态运动轨迹分析,确定轨迹圆和边界的关系,找出临界点,然后利用数学方法求解极值,常用结论如下: (1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切.(2)当速度v一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长.(3)当速率v变化时,圆周角大的,运动时间越长.(一).带电粒子在平行直线边界磁场中的运动例题:如图所示,S为一个电子源,它可以在纸面内360°范围内发射速率相同的质量为m、电量为e的电子,MN是一块足够大的挡板,与S的距离OS=L,挡板在靠近电子源一侧有垂直纸面向里的匀强磁场,磁感应强度为B,问:(1)若使电子源发射的电子能到达挡板,则发射速度最小为多大?(2)如果电子源S发射电子的速度为第(1)问中的2倍,则挡扳上被电子击中的区域范围有多大?(二).带电粒子在矩形边界磁场中的运动①速度较小时粒子作半圆运动后从原边界飞出;①速度较小时粒子做部分圆周运动后从原边界飞出;②速度在某一范围内时从侧面边界飞出;②速度在某一范围内从上侧面边界飞;③速度较大时粒子作部分圆周运动从对面边界飞出。

带电粒子在磁场中的临界问题

带电粒子在磁场中的临界问题

eBd v 3eBd
2m
m
矩形边界磁场区域 ----------临界问题
vB
o
◆带电粒子在矩形磁场区域中的运动
圆心
在过
入射
vB
点跟
d
c
速度 方向
o
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
【例题1】如图所示,一束电子(电量为e)以速度 V垂直射入磁感应强度为B、宽度为d的匀强磁
场,穿透磁场时的速度与电子原来的入射方向
的夹角为300.求: (1)电子的质量 m
B ev
(2)电子在磁场中的运动时间t
θ
v
m qBd 2v
t 30 T d
360 12v
θ
d
平行直线边界磁场区域 ----------临界问题
垂直
θv
B
的直
线上
①a 速度较小时粒子作部分b 圆周
运动后从原边界飞出;②速度
在某一范围内从侧面边界飞;
③速度较大量变积累到一定程度发生质变,出现临界状态(轨迹与边界相切)
三角形边界磁场区域 ----------临界问题
v1
◆带电粒子在三角形磁场区域中的运动
匀强磁场,磁感强度为B,板间距离也为L,板不带电,
现有质量为m,电量为q的带正电粒子(不计重力),从左
边极板间中点处垂直磁感线以速度v水平射入磁场,欲使
粒子不打在极板上,可采用的办法是: A B
A.使粒子的速度v<BqL/4m;
B.使粒子的速度v>5BqL/4m; C.使粒子的速度v>BqL/m; D.使粒子速度BqL/4m<v<5BqL/4m。

高中物理 磁场(三)带电粒子在匀强磁场中运动的临界极值问题与多解问题

高中物理 磁场(三)带电粒子在匀强磁场中运动的临界极值问题与多解问题

带电粒子在匀强磁场中运动的临界极值问题与多解问题一、带电粒子在磁场中运动的临界极值思维方法物理系统由于某些原因而要发生突变时所处的状态,叫做临界状态.突变过程是从量变到质变的过程,在临界状态的前后,系统服从不同的物理规律,按不同的规律变化。

在高考试题中涉及的物理过程中常常出现隐含着一个或几个临界状态,需要通过分析思考,运用所学的知识和已有的能力去分析临界条件,挖掘出临界值,那么如何确定它们的临界条件?下面介绍三种寻找临界点的两种有效方法:1.对称思想带电粒子垂直射入磁场后,将做匀速圆周运动。

分析粒子运动,会发现它们具有对称的特点,即:粒子的运动轨迹关于入射点P与出射点Q的中垂线对称,轨迹圆心O位于对称线上,入射速度、出射速度与PQ 线间的夹角(也称为弦切角)相等,并有==2=t,如图所示。

应用这一粒子运动中的“对称性”不仅可以轻松地画出粒子在磁场中的运动轨迹,对于某些临界问题的求解也非常便捷。

【典例】如图所示,半径r=10cm的圆形区域内有匀强磁场,其边界跟y轴在坐标原点O处相切;磁场B=0.33T垂直于纸面向内,在O处有一放射源S可沿纸面向各个方向射出速率均为v=3.2×106m/s的α粒子;已知α粒子质量为m=6.6×10-27kg,电量q=3.2×10-19c,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t各多少?【审题指导】本题α粒子速率一定,所以在磁场中圆周运动半径一定,由于α粒子从点O进入磁场的方向不同故其相应的轨迹与出场位置均不同,则粒子通过磁场的速度偏向角θ不同,要使α粒子在运动中通过磁场区域的偏转角θ最大,则必使粒子在磁场中运动经过的弦长最大,因而圆形磁场区域的直径即为粒子在磁场中运动所经过的最大弦,依此作出α粒子的运动轨迹进行求解。

【名师点睛】当速度一定时,弧长(或弦长)越长,圆周角越大,则带电粒子在有界磁场中运动的时间越长。

2.放缩法带电粒子以任意速度沿特定方向射入匀强磁场时,它们将在磁场中做匀速圆周运动,其轨迹半径随速度的变化而变化,如图所示(图中只画出粒子带正电的情景),速度v0越大,运动半径也越大。

高考物理复习 (超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题

高考物理复习 (超全)带电粒子在有界磁场中运动的临界问题、极值问题和多解问题

第八章 第4节
高考调研
高三物理(新课标版)
一、带电粒子在有界磁场中运动的临界极值问题 规律方法 1.解决此类问题关键是找准临界点,审题应抓住题 目中的“恰好”“最大”“最高”“至少”等词语作为 突破口,挖掘隐含条件,分析可能的情况,如有必要则 画出几个不同半径相应的轨迹图,从而分析出临界条 件.寻找临界点的两种有效方法:
第八章 第4节
高考调研
高三物理(新课标版)
3.临界状态不唯一形成多解 带电粒子在洛伦兹力作用下飞越有界磁场时,由于 粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可 能转过 180°从入射界面这边反向飞出,如图所示,于是 形成了多解.
第八章 第4节
高考调研
高三物理(新课标版)
4.运动的往复性形成多解 (1)带电粒子在部分是电场、部分是磁场的空间运动 时,运动往往具有往复性,从而形成多解.如图所示.
第八章 第4节
高考调研
高三物理(新课标版)
(2)带电粒子在磁场中运动时,由于磁场方向突然反 向等,使得运动具有往复性而形成多解.
第八章 第4节
高考调研
高三物理(新课标版)
例 2 如图所示,在 x<0 与 x>0 的区域中,存在磁感 应强度大小分别为 B1 与 B2 的匀强磁场,磁场方向均垂直 于纸面向里,且 B1>B2.一个带负电荷的粒子从坐标原点 O 以速度 v 沿 x 轴负方向射出,要使该粒子经过一段时间 后又经过 O 点,B1 与 B2 的比值应满足什么条件?
可能
第八章 第4节
高考调研
高三物理(新课标版)
3.临界状态⑥_不__同_____形成多解:带电粒子在洛伦 兹力作用下飞越有界磁场时,由于粒子运动速度不同, 因此,它可能穿过去了,可能转过 180°从入射界面这边 反向飞出,如图所示,于是形成多解.

带电粒子在磁场中的运动归纳总结临界

带电粒子在磁场中的运动归纳总结临界

一.带电粒子在有界磁场中运动规律总结1在半无界磁场区域从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等。

例1、如图所示,在垂直纸面向里的匀强磁场的边界上,有两个质量和电量均相同的正、负离子,从O 点以相同的速度射入磁场中,射入方向均与边界成θ角。

若不计重力,关于正、负离子在磁场中的运动,下列说法正确的是( )A 、运动的轨道半径不相同B 、重新回到边界的速度大小和方向都相同C 、重新回到边界的位置与O 点距离不相同D 、运动的时间相同2在圆形磁场区域内,沿径向射入的粒子,必沿径向射出例2、图中圆形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B ,现有一电荷量为q ,质量为m 的正离子从a 点沿圆形区域的直径射入,设正离子射出磁场区域的方向与入射方向的夹角为60°求此离子在磁场区域内飞行的时间及射出磁场时的位置.3 穿过矩形磁场区。

一定要先画好辅助线(半径、速度及延长线)。

偏转角由sin θ=L /R 求出。

侧移由R 2=L 2-(R-y )2解出。

经历时间由Bqm t θ=得出。

例3:长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是:A .使粒子的速度v <BqL /4m ;B .使粒子的速度v >5BqL /4m ;C .使粒子的速度v >BqL /m ;D .使粒子速度BqL /4m <v <5BqL /4m 。

4 在环状磁场中的运动例4核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。

如图7所示,环状匀强磁场围成中空区域,中空区域中的带电粒子只要速度不是很大,都不会穿出磁场的外边缘而被约束在该区域内。

带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题

专题一带电粒子在磁场中运动的临界问题郝靖林提示:当一群带电粒子由同一位置以相同的速率沿不同方向射入磁场后,我们如何能够找出粒子可能经过的范围呢?现在以正电荷为例来了解上述问题。

假设粒子的轨道半径为R。

上图中实线为粒子的运动轨迹,如果粒子射入磁场的速度方向发生变化时,其轨迹圆的位置也相应发生变化,形成一个动态圆(可以由硬币演示),我们可以看到粒子在磁场中经过的范围就是大圆所围的内侧空间,而大圆是粒子射入磁场位置为圆心,2R为半径的圆。

本专题的所有问题均可由上述方法得以解决。

专题练习1.如图1甲所示,在y>0的区域内存在匀速强磁场,磁场垂直于图中的Oxy平面,方向指向纸外,原点O处有一离子源,沿各个方向射出速率相等的同价负离子,对于进入磁场区域的离子,它们在磁场中做圆弧运动的圆心所在的轨迹,可用图乙给出的四个半圆中的一个来表示,其中正确的是( )图乙2. 如图2甲所示,在一水平放置的平板MN的上方有匀强磁场,磁感应强度的大小为B,磁场方向垂直于纸面向里,许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔O射入磁场区域,不计重力,不计粒子间的相互影响。

图2乙中阴影部分表示带电粒子可能经过的区域,其中R=mv/qB哪个图是正确的()图乙3. 如图3所示,宽h=2cm的有界匀强磁场,纵向范围足够大,磁感应强度的方向垂直纸面向内,现在一群正粒子从O点以相同的速率沿不同方向进入磁场,若粒子在磁场中做匀速圆周运动的轨道半径均为r=5cm,则()A.右边界:-4cm≤y≤4cm的范围内有粒子射出B.右边界:y>4cm和y<-4cm的范围内有粒子射出C.左边界:r>8cm的范围内有粒子射出D.左边界:0<y≤8cm的范围内有粒子射出4. 如图4所示,一足够长的矩形区域abcd内充满磁感应强度为B、方向垂直纸面向里的匀强磁场,现从矩形区域ad边的中点O处,垂直于磁场射入一速度方向与ad边夹角为30°、大小为v0的带电粒子,已知粒子质量为m,电荷量为q,ad边长为l,重力忽略不计。

带电粒子在磁场中运动之临界与极值问题

带电粒子在磁场中运动之临界与极值问题

精心整理考点4.6临界与极值问题考点4.6.1“放缩圆”方法解决极值问题1、圆的“放缩”当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的强弱B变化时,粒子做圆周运动的轨道半径r随之变化.在确定粒子运动的临界情景时,可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件.如图所示,粒子进入长方形边界OABC形成的临界情景为②和④.1.(多选)如图所示,左、右边界分别为PP′、QQ′的匀强磁场的宽度为d,磁感应强度大小为B,方向垂直纸面向里.一个质量为m、电荷量为q的微观粒子,沿图示方向以速度v0垂直射入磁场.欲使粒子不能从边界QQ′射出,粒子入射速度v0的最大值可能是()A.B.C.D.2.(2016·全国卷Ⅲ,18)平面OM和平面ON之间的夹角为30°,其横截面(纸面)如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外。

一带电粒子的质量为m,电荷量为q(q>0)。

粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成30°角。

已知该粒子在磁场中的运动轨迹与ON只有一个交点,并从OM 上另一点射出磁场。

不计重力。

粒子离开磁场的出射点到两平面交线O的距离为()A. B. C. D.3.(多选)长为L的水平极板间,有垂直纸面向内的匀强磁场,如下图所示,磁感应强度为B,板间距离也为L,板不带电,现有质量为m,电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水平射入磁场,欲使粒子不打在极板上,可采用的办法是()A、使粒子的速度v<B、使粒子的速度v>C、使粒子的速度v>D、使粒子速度<v<4.如图所示,边长为L的正方形ABCD区域内存在磁感应强度方向垂直于纸面向里、大小为B的匀强磁场,一质量为m、带电荷量为-q的粒子从AB边的中点处垂直于磁感应强度方向射入磁场,速度方向与AB边的夹角为30°.若要求该粒子不从AD边射出磁场,则其速度大小应满足()A.v≤B.v≥C.v≤D.v≥5.如图所示,条形区域AA′、BB′中存在方向垂直于纸面向外的匀强磁场,磁感应强度为B,AA′、BB′为磁场边界,它们相互平行,条形区域的长度足够长,宽度为d.一束带正电的某种粒子从AA′上的O点以大小不同的速度沿着AA′成60°角方向射入磁场,当粒子的速度小于某一值v0时,粒子在磁场区域内的运动时间为定值t0;当粒子速度为v1时,刚好垂直边界BB′射出磁场.不计粒子所受重力.求:(1)粒子的比荷;(2)带电粒子的速度v0和v1.6.如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m,带电荷量为q,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A点,则初速度的大小是多少?(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?7.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值.静止的带电粒子带电荷量为+q,质量为m(不计重力),从点P经电场加速后,从小孔Q进入N板右侧的匀强磁场区域,磁感应强度大小为B,方向垂直于纸面向外,CD为磁场边界上的一绝缘板,它与N板的夹角为θ=45°,孔Q到板的下端C的距离为L,当M、N两板间电压取最大值时,粒子恰垂直打在CD板上,求:(1)两板间电压的最大值U m;(2)CD板上可能被粒子打中的区域的长度x;(3)粒子在磁场中运动的最长时间t m.8.如图所示,OP曲线的方程为:y=1-0.4(x,y单位均为m),在OPM区域存在水平向右的匀强电场,场强大小E1=200N/C(设为I区),PQ右边存在范围足够大的垂直纸面向内的匀强磁场,磁感应强度为B=0.1T(设为Ⅱ区),与x轴平行的刚上方(包括PN存在竖直向上的匀强电场,场强大小E2=100N/C(设为Ⅲ区),PN的上方h=3.125m处有一足够长的紧靠y轴水平放置的荧光屏AB,OM 的长度为a=6.25m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

均为v=3.0×106m/s的α粒子.已知α粒子的比荷
q m
=5.0×107C/kg.现只考虑在纸面内运动的α粒子,
求ab板上被α粒子打中的区域的长度L.
结论:
a
若粒子运动的半径
已经确定,方向未确定,
圆在旋转。
8cm 12cm b
L
B
S
总结
练习1、如图所示,圆形区域内有垂直圆所在平面向 内的匀强磁场,大小为B,其中AB为直径,在A点有一 个离子源,可以在平面内向各个方向发射出速率均为 v的离子,已知:离子的质量为m,电量为+q,圆形区 域半径,试求:离子在磁场中运动的最长时间是多少?
C
E
θ
解得:v eBd
m(1 cos )
结论:
若粒子运动的入射方向已经
确定,大小未确定,圆在放缩。
D
F
练习1:长为L的水平极板间,有垂直纸面向内的匀 强磁场,如图所示,磁场强度为B,板间距离也为L, 板不带电,现有质量为m,电量为q的带正电粒子 (不计重力),从左边极板间中点处垂直磁场以速 度v平行极板射入磁场,欲使粒子不打在极板上, 则粒子入射速度v应满足什么条件?
解得:t 1 T m
A
B
6 3qB
课堂小结:
带电粒子在匀强磁场中的两种类型问题
1、若粒子运动的半径已经确定,方向未确 定,圆在旋转。
2、若粒子运动的入射方向已经确定,大小 未确定,圆在放缩。
作业:完成学案中的课后作业
课后作业: 作业1:如图足够长的矩形区域abcd内充满磁感应强 度为B,方向垂直纸面向里的匀强磁场。现从矩形区 域ad的中点O处,垂直磁场射入一速度方向与ad边夹 角为30°,大小为v0的带电粒子。已知粒子质量为m, 电荷量为q,ad边长为L,重力影响不计。 (1)试求粒子能从ab边上射出磁场的v0的大小范围. (2)问粒子在磁场中运动的最长时间.
则在屏MN上被粒子打中的区域的长度L
B
v 300
作业2:如图所示,在边长为a的正三角形区域内有垂 直于纸面向外、大小为B的匀强磁场。一个质量为m、 电量为+q的粒子(重力不计)从AB边中点O以速度v进 入磁场,速度与AB的夹角为600.若粒子能从AB边射出, 试求粒子在磁场运动过程中,粒子到达AB边的最大距 离L。
C
v
A
600
O
B
作业3:如图所示,在屏MN的上方有磁感应强度为B的匀强磁场, 磁场方向垂直纸面向里.P为屏上的一小孔,PC与MN垂直.一 群质量为m、带电荷量为-q的粒子(不计重力)以相同的速率v 从P处沿垂直于磁场的方向射入磁场区域.粒子入射方向在与 磁场B垂直的平面内,且散开在与PC夹角为θ的范围内,
知识回顾: 解决带电粒子在有界磁场中运动问题的思路:
1、画轨迹,定圆心。 任意两点速度的垂线交点
速度垂线和弦的中垂线交点
2、定角度,求运动时间。
t
2
T
注意:θ用弧度表示。
几何法求半径
3、求半径:
向心力公式求半径
例1:如图所示,真空中狭长形的区域内分布有磁感 应强度为B的匀强磁场,方向垂直纸面向内,区域的 宽度为d,CD、EF为区域的边界.现有一束电子(质 量为m,电量为e)以速率v从CD侧垂直于磁场与CD成 θ角射入,为使电子能从另一侧EF射出,则电子的 速率v应满足的条件
vB
vB
v qBL 4m
vB
v qBL 4m
vB
v qBL 4m

v 5qBL 4m
例2:如图所示,真空室内存在方向垂直于纸面向里、
大小B=0.60T的匀强磁场,磁场内有一块L=16cm处有
一个点状的α粒子放射源S,它向各个方向发射速度
相关文档
最新文档