数学中考模拟试卷(一)
2024年中考数学第一次模拟试卷(无锡卷)(全解全析)
2024年中考第一次模拟考试(无锡卷)数学·全解全析(考试时间:120分钟试卷满分:140分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.下列各组数中,互为相反数的组是()A .2023-和2023-B .2023和12023C .2023-和2023D .2023-和12023【答案】A【解析】解:A .20232023-=和2023-互为相反数,故A 选项符合题意;B .2023和12023互为倒数,故B 选项不符合题意;C .20232023-=和2023不互为相反数,故C 选项不符合题意;D .2023-和12023不互为相反数,故D 选项不符合题意;故选:A .2.已知114A a =-+,下列结论正确的是()A .当5a =-时,A 的值是0B .当4a >-时,A 的最小值为1C .若A 的值等于1,则4a =-D .若A 的值等于2,则5a =-【答案】D【解析】解:当5a =-时,1111254A =-=+=-+,A 选项错误;当4a >-时,40a +>,104a >+,104a -<+,1114a -<+,即A 的最小值小于1,B 选项错误;当1A =时,1114a =-+,解得4a =-,此时分式无意义,故不合题意,C 选项错误;当2A =时,1214a =-+,解得5a =-,D 选项正确,故选:D .3.光线在不同介质中的传播速度是不同的,因此当光线从水中射向空气时,要发生折射,由于折射率相同,所以在水中平行的光线,在空气中也是平行的.如图,1122,2∠=︒∠的度数为()A .32︒B .58︒C .68︒D .78︒【答案】B【解析】解:如图,根据题意得:a b ,c d ∥,∴13180∠+∠=︒,32∠=∠,∵1122∠=︒,∴258∠=︒.故选:B .4.下列计算错误的是()A .()21x x x x -=-B .325x x x ×=C .()236x x =D .()2224a a -=-【答案】D【解析】解:A 中()21x x x x -=-,正确,故不符合要求;B 中325x x x ×=,正确,故不符合要求;C 中()236x x =,正确,故不符合要求;D()2222444a a a a -=-+≠-,错误,故符合要求;故选:D .5.若点()()()112233A x y B x y C x y ,、,、,是反比例函数11y x=-图象上的点,且1230x x x <<<,则123y y y 、、的大小关系是()A .123y y y <<B .321y y y <<C .231y y y <<D .312y y y <<【答案】D【解析】解:根据题意画出函数图象得,可知,312y y y <<.故选:D .6.随着城际交通的快速发展,某次动车平均提速60km /h ,动车提速后行驶480km 与提速前行驶360km 所用的时间相同.设动车提速后的平均速度为x km /h ,则下列方程正确的是()A .36048060x x =+B .36048060x x =-C .36048060x x =-D .36048060x x=+【答案】B【解析】解:根据题意,得36048060x x=-.故选:B .7.将抛物线()215y x =-+通过平移后,得到抛物线的解析式为223y x x =++,则平移的方向和距离是()A .向右平移2个单位长度,再向上平移3个单位长度B .向右平移2个单位长度,再向下平移3个单位长度C .向左平移2个单位长度,再向上平移3个单位长度D .向左平移2个单位长度,再向下平移3个单位长度【答案】D【解析】解:抛物线()215y x =-+的顶点坐标为15(,),抛物线()222312y x x x =++=++的顶点坐标为()12-,,而点()15,向左平移2个,再向下平移3个单位可得到()12-,,所以抛物线()215y x =-+向左平移2个,再向下平移3个单位得到抛物线y=x 2+2x+3.故选:D .8.如图,正方形ABCD 和正方形AEFG ,当正方形AEFG 绕点A 逆时针旋转45︒时,如图,连接DG 、BE ,并延长BE 交DG 于点.H 若AE =228AB =,时,则线段BH 的长为()A 16105B 14105C .5210+D .610+【答案】A【解析】解:连结GE 交AD 于点N ,连结DE ,如图,正方形AEFG 绕点A 逆时针旋转45︒,AF ∴与EG 互相垂直平分,且AF 在AD 上,2AE = 22AN GN ∴==,826DN ∴=-=,在Rt DNG 中,DG =22DN GN +2=10;由题意可得:ABE 相当于逆时针旋转90°得到AGD ,2DG BE ∴==10,DEG S = 12GE ND ⋅=12DG HE ⋅,HE ∴=10=6105BH BE HE ∴=+=6101021055+=故选:A .9.如图,AB 是O 的一条弦,点C 是O 上一动点,且ACB θ∠=,点E ,F 分别是,AC BC 的中点,直线EF 与O 交于G ,H 两点,若O 的半径是r ,则GE FH +的最大值是()A .()2sin r θ-B .()2sin r θ+C .()2cos r θ-D .()2cos r θ+【答案】A【解析】解:作直径AP ,连接BP ,90ABP ∴∠=︒,,2P C PA r θ∠=∠== ,sin sin AB P APθ∴∠==,2sin AB r θ∴=⋅,∵E ,F 分别是,AC BC 的中点,EF ∴是ABC 的中位线,1sin 2EF AB r θ∴==⋅,GE FH GH EF +=- ,∴当GH 长最大时,GE FH +有最大值,∴当GH 是圆直径时,GH 最大.∴GE FH +最大值是()2sin 2sin r r r θθ-=-.故选:A .10.如图,在矩形ABCD 中,E 为AB 中点,以AE 为边向上作正方形AEFG ,边EF 交CD 于点H ,在边AE 上取点M 使AM AD =,作MN AG ∥交CD 于点L ,交FG 于点N ,记AE a =,EM b =,欧几里得在《几何原本》中利用该图解释了()()22a b a b a b +-=-.现以BM 为直径作半圆O ,恰好经过点H ,交CD 另一点于P ,记HPB △的面积为1S ,DLF △的面积为2S ,若1b =,则12S S -的值为()A .12B .22C .1D 2【答案】A【解析】解:依题意得:四边形AEFG AMLD ,均为为正方形,四边形AMNG MEFN MEHL MBCL EBCH ,,,,均为矩形,∵AE a EM b ==,,点E 为AB 的中点,∴EB AE CH a ===,AD AM DL EH BC a b =====-,DG LN HF ME HL b =====,ML EH BC ==,∴()211•22S DL HF a b b ==-,连接MH ,∵HC ME ∥,∴ MHBP =,∴MH BP =,在Rt MHL △和Rt BPC △中,ML BC MH BP=⎧⎨=⎩,∴()Rt Rt HL MHL BPC ≌△△,∴HL PC b ==,∴HP CH PC a b =-=-,∴()211122S HP BC a b =⨯=-,∵MB 为直径,∴90MHB ∠=︒,即90MHE BHE ∠+∠=︒,∵90MEH HEB ∠=∠=︒,∴90HME MHE ∠+∠=︒,∴HME BHE ∠=∠,∴HME BHE ∽,∴EH EB EM EH =::,∴2EH BE EM =⨯,即:()2a b ab -=,∴()211122S a b ab =-=,∴()212111222S S ab a b b b -=--=,∵1b =,∴1212S S -=.故选:A .二、填空题(本大题共8小题,每小题3分,共24分.)11.化学元素钉()Ru 是除铁()Fe 、钻()Co 和镍()NIi 以外,在室温下具有独特磁性的第四个元素.钉()Ru 的原子半径约0.000 000 000 189m .将0.000 000 000 189用科学记数法表示为.【答案】101.8910-⨯【解析】解:100.000 000 000 189 1.8910-=⨯,故答案为:101.8910-⨯12.若2a +与3b -互为相反数,则22a b =.2【解析】解:∵2a +与3b -互为相反数,∴230a b ++-=,即1a b +=,∴)2222a b a b =+=213.不等式组32122x x x x ≥-⎧⎪⎨+≥⎪⎩的解集是.【答案】113x -≤≤【解析】解:32122x x x x ≥-⎧⎪⎨+≥⎪⎩①②解不等式①得:1x ≥-解不等式②得:13x ≤,∴不等式组的解集为:113x -≤≤,故答案为:113x -≤≤.14.写出一个图象是曲线且过点()1,2的函数的解析式:.【答案】2y x=(答案不唯一)【解析】解:设反比例函数解析式为k y x=,依题意,2k =∴一个图象是曲线且过点()1,2的函数的解析式是:2y x=,故答案为:2y x=(答案不唯一).15.如图,某品牌扫地机器人的形状是“莱洛三角形”,它的三“边”分别是以等边三角形的三个顶点为圆心,边长为半径的三段圆弧.若该等边三角形的边长为3,则这个“莱洛三角形”的周长是.【答案】3π根据正三角形的有关计算求出弧的半径和圆心角,根据弧长的计算公式求解即可.【解析】解:如图:∵ABC 是正三角形,∴60BAC ∠=︒,∴ BC的长为:603180ππ⨯=,∴“莱洛三角形”的周长=33ππ⨯=.故答案为:3π.16.如图,已知平行四边形ABCD 中,E 为BC 边上一点,连接AE DE 、,若AD DE =,AE DC =,4BE =,tan 3B ∠=,则EC 的长为.【答案】6【解析】解:作,AF BE DG AE ⊥⊥,如图所示:∵,AE DC AB DC==∴,AB AE B AEB =∠=∠∵AD BC ∥∴AEB DAE ∠=∠∴B AEB DAE ∠=∠=∠∵4BE =∴2BF EF ==∵tan 3AFB BF∠==∴226,210AF AB AE AF BF ===+=∵AD DE =,DG AE ⊥∴10AG EG ==∵tan tan tan 3DAE AEB B ∠=∠=∠=∴22310,10DG AD DG AG ==+=∴10BC AD ==∵4BE =∴6EC BC BE =-=故答案为:617.我国魏晋时期的数学家刘徽(263年左右)首创“割圆术”,所谓“割圆术”就是利用圆内接正多边形无限逼近圆来确定圆周率,刘徽计算出圆周率 3.14π≈.刘徽从正六边形开始分割圆,每次边数成倍增加,依次可得圆内接正十二边形,圆内接正二十四边形,⋯,割得越细,正多边形就越接近圆.设圆的半径为R ,圆内接正六边形的周长66P R =,计算632P πR ≈=;圆内接正十二边形的周长1224sin15P R =︒,计算12 3.102PπR≈=;那么分割到圆内接正二十四边形后,通过计算可以得到圆周率π≈.(参考数据:sin150.258︒≈,sin 7.50.130)︒≈【答案】3.12【解析】解:圆内接正二十四边形的周长2448sin 7.5P R =⋅⋅︒,则48sin 7.5480.130 3.1222R R π⋅︒⨯≈≈≈,故答案为3.1218.如图,点A 是双曲线y=8x在第一象限上的一动点,连接AO 并延长交另一分支于点B ,以AB 为斜边作等腰Rt △ABC ,点C 在第二象限,随着点A 的运动,点C 的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式为.【答案】y=﹣8x .【解析】解:如图,连结OC ,作CD ⊥x 轴于D ,AE ⊥x 轴于E ,∵A 点、B 点是正比例函数图象与双曲线y=8x 的交点,∴点A 与点B 关于原点对称,∴OA=OB ,∵△ABC 为等腰直角三角形,∴OC=OA ,OC ⊥OA ,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE ,∵在△COD 和△OAE 中,CDO OEA DCO EOA CO OA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△COD ≌△OAE (AAS ),设A 点坐标为(a ,8a ),则OD=AE=8a ,CD=OE=a ,∴C 点坐标为(﹣8a,a ),∵﹣8a a ∙=﹣8,∴点C 在反比例函数y=﹣8x图象上.故答案为:y=﹣8x .三、解答题(本大题共10小题,共86分.解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:()103127123π2-⎛⎫-+- ⎪⎝⎭;(2)用配方法解方程:24210x x --=.【解析】(1)解:原式()23211=--+23211=+-+52=(2)解:24210x x --=2421x x -=244214x x -+=+()2225x -=25x ∴-=±17x ∴=,23x =-20.计算:(1)()()22a b b a b -+-;(2)21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭【解析】(1)解:()()22a b b a b -+-22222a ab b ab b =-++-2a =;(2)解:21241121x x x x +⎛⎫+÷ ⎪+++⎝⎭()21212(2)x x x x ++=⨯++12x +=21.如图,在ABC 中,过A 点作AD BC ∥,交ABC ∠的平分线于点D ,点E 在BC 上,DE AB ∥.(1)求证:四边形ABED 是菱形;(2)当6BC =,4AB =时,求DF 的长.【解析】(1)证明:∵AD BC ∥,DE AB ∥,∴四边形ABED 是平行四边形,∵AD BC ∥,∴ADB CBD ∠=∠,∵BD 平分ABC ∠,∴ABD CBD ∠=∠,∴ADB ABD ∠=∠,∴AD AB =,∴四边形ABED 是菱形;(2)解:∵四边形ABED 是菱形,4AB =,∴4DE BE AD AB ====,AD BC ∥,∴ADF CEF ∠=∠,∵AFD CFE ∠=∠,∴CEF ADF ∽△△,∴ADDFCE EF =,∵6BC =,∴2CE BC BE =-=,∴42DF EF=,∴2DF EF =,∴23DF DE =,∴83DF =.22.现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片A ,B ,C ,卡片除正面图案不同外,其余均相同,(1)若将三类卡片各10张,共30张,正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.(2)现将三类卡片各一张,放入不透明箱子,小明随机抽取一张,看后,放回,再由小充随机抽取一张.请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到相同卡片的概率.【解析】(1)解;∵一共有30张卡片,其中琮琮的卡片有10张,且每张卡片被抽到的概率相同,∴从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是101303=,故答案为:13.(2)解:画树状图如下:由树状图可知,一共有9种等可能性的结果数,其中恰好摸到相同卡片的结果数有3种,∴恰好摸到相同卡片的概率为3193=.23.某校初三物理组为激发学生学习物理的热情,组织初三500名学生进行“水火箭”制作和演示飞行活动.为了解该年级学生自制水火箭的飞行情况,现随机抽取40名学生进行水火箭飞行测试,并将测试成绩(百分制)作为样本数据进行整理、描述和分析,下面给出了部分信息.①将样本数据分成5组:5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<,并制作了如图所示的不完整的频数分布直方图;②在8090x ≤<这一组的成绩分别是:80,81,83,83,84,85,86,86,86,87,8.8,89,根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是____________;(3)如果测试成绩达到80分及以上为优秀,试估计该年级500名学生中水火箭飞行测试为优秀的学生约有多少人?【解析】(1)解:在7080x ≤<这组的人数为:404612108----=(人),补全频数分布直方图如下:(2)中位数应为40个数据由小到大排列中第20,21个数据的平均数,∵数据处于较小的三组中有46818++=(个)数据,∴中位数应是8090x ≤<这一组第2,3个数据的平均数,∴中位数为:8183822+=(分),故答案为:82分;(3)∵样本中优秀的百分比为:1210100%55%40+⨯=,∴可以估计该校500名学生中对安全知识掌握程度为优秀的学生约有:55%500275⨯=(人),答:估计该校500名学生中对安全知识掌握程度为优秀的学生约有275人.24.如图,在四边形ABCD 中,90A C ∠=∠=︒.(1)经过点A 、B 、D 三点作O ;(2)O 是否经过点C ?请说明理由.【解析】(1)解:如图所示,O 即为所求;(2)O 经过点C ,理由如下:连接OC ,∵90BCD ∠=︒,点O 为BD 的中点,∴12CO BC OD OB ===,∴点C 在O 上.25.最佳视点如图1,设墙壁上的展品最高处点P 距底面a 米,最低处的点Q 距底面b 米,站在何处观赏最理想?所谓观赏理想是指看展品的视角最大,问题转化为在水平视线EF 上求使视角最大的点.如图2,当过P Q E ,,三点的圆与过点E 的水平线相切于点E 时,视角PEQ ∠最大,站在此处观赏最理想,小明同学想这是为什么呢?他在过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,…任务一:请按照小明的思路,说明在点E 时视角最大;任务二:若3 1.8a b ==,,观察者的眼睛距地面的距离为1.5米,最大视角为30︒,求观察者应该站在距离多远的地方最理想(结果精确到0.013 1.73≈).【解析】任务一:过点E 的水平线HM 上任取异于点E 的点E ',连接PE '交O 于点F ,连接QF ,∵PFQ ∠是QFE ' 的外角,∴PFQ PE Q '∠>∠,又∵PFQ ∠与PEQ ∠都是弧PQ 所对的圆周角,∴PFQ PEQ ∠=∠,∴PEQ PE Q '∠>∠,∴在点E 时视角最大.任务二:∵30PEQ ∠=︒,∴60POQ ∠=︒,又∵OP OQ =,∴OPQ △是等边三角形,OP OQ PQ ==.如图2,连接OE ,∵HE 是O 的切线,∴90OEH ∠=︒,∵90PHE ∠=︒,∴180OEH PHE ∠+∠=︒,∴//PQ OE ,又∵PQ OP OE ==,∴四边形PQOE 是平行四边形,∴30OPE PEQ ∠=∠=︒,∴603030EPH OPQ OPE ∠=∠-∠=︒-︒=︒.由题意得,3 1.5 1.5PH =-=(米),在Rt PHE △中,3•tan 1.50.873HE PH EPH =∠=⨯(米).答:观察者应该站在距离0.87米的地方最理想.26.在2024年元旦即将到来之际,学校准备开展“冬日情暖,喜迎元旦”活动,小星同学对会场进行装饰.如图1所示,他在会场的两墙AB 、CD 之间悬挂一条近似抛物线2435y ax x =-+的彩带,如图2所示,已知墙AB 与CD 等高,且AB 、CD 之间的水平距离BD 为8米.(1)如图2,两墙AB ,CD 的高度是米,抛物线的顶点坐标为;(2)为了使彩带的造型美观,小星把彩带从点M 处用一根细线吊在天花板上,如图3所示,使得点M 到墙AB 距离为3米,使抛物线1F 的最低点距墙AB 的距离为2米,离地面2米,求点M 到地面的距离;(3)为了尽量避免人的头部接触到彩带,小星现将M 到地面的距离提升为3米,通过适当调整M 的位置,使抛物线2F 对应的二次函数的二次项系数始终为15,若设点M 距墙AB 的距离为m 米,抛物线2F 的最低点到地面的距离为n 米,探究n 与m 的关系式,当924n ≤≤时,求m 的取值范围.【解析】(1)解:由题意得,抛物线的对称轴为4x =,则45422b x a a==-=-,解得:0.1a =;∴抛物线的表达式为0.10.83y x x =-+,则点(0,3)A ,即3AB CD ==(米),当4x =时,0.10.83 1.4y x x =-+=,即顶点坐标为(4,1.4),故答案为:3,(4,1.4);(2)解:设抛物线的表达式为2(2)2y a x ='-+,将点A 的坐标代入上式得23(02)2a ='-+,解得14a '=,∴抛物线的表达式为21(2)24y x =-+,当3x =时,21(2)2 2.254y x =-+=(米),∴点M 到地面的距离为2.25米;(3)解:由题意知,点M 、C 纵坐标均为4,则右侧抛物线关于M 、C 对称,∴抛物线的顶点的横坐标为11(8)422m m +=+,则抛物线的表达式为211(4)52y x m n =--+,将点C 的坐标代入上式得2113(84)52m n =--+,整理得21412055n m m =-+-;当2n =时,即214122055m m =-+-,解得85m =-;当9n 4=时,同理可得86m =故m 的取值范围为:8685m ≤≤27.定义:对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的四边形,则这样的四边形称为镶嵌四边形.(1)如图1,将ABC 纸片沿中位线EH 折叠,使点A 落在BC 边上的D 处,再将纸片分别沿EF ,HG 折叠,使点B 和点C 都与点D 重合,得到双层四边形EFGH ,则双层四边形EFGH 为______形.(2)ABCD Y 纸片按图2的方式折叠,折成双层四边形EFGH 为矩形,若5EF =,12EH =,求AD 的长.(3)如图3,四边形ABCD 纸片满足AD BC ∥,AD BC <,AB BC ⊥,8AB =,10CD =.把该纸片折叠,得到双层四边形为正方形.请你画出一种折叠的示意图,并直接写出此时BC 的长.【解析】(1)双层四边形EFGH 为矩形,理由如下:由折叠的性质可得AEH HED ∠=∠,BEF DEF ∠=∠,180AEH HED BEF DEF ∠+∠+∠+∠=︒ ,90HED DEF ∴∠+∠=︒,90HEF ∴∠=︒,同理可得90EHG EFD ∠=∠=︒,∴四边形EFGH 是矩形,故答案为:矩;(2) 四边形EFGH 为矩形,90FEH ∴∠=︒,EH FG =,EH FG ∥,222251213FH EF EH ∴=+=+=,EHM GFN ∠=∠,又ABCD 为平行四边形,A C ∴∠=∠,AD BC =,由折叠得A EMH ∠=∠,C GNF ∠=∠,EMH GNF ∴∠=∠,在EHM 与GFN 中,EH FGEHM GFN EMH GNF=⎧⎪∠=∠⎨⎪∠=∠⎩,(AAS)EHM GFN ∴ ≌,MH NF ∴=,由折叠得AH MH =,CF FN =,AH CF ∴=,又AD BC = ,DH BF FM ∴==,又AD AH DH =+ ,HF MH MF =+,13AD HF ∴==.(3)有以下三种基本折法:折法1中,如图所示:由折叠的性质得:AD BG =,142AE BE AB ===,152CF DF CD ===,GM CM =,90FMC ∠=︒, 四边形EFMB 是叠合正方形,4BM FM ∴==,2225163GM CM CF FM ∴=-=-=,1AD BG BM GM ∴==-=,7BC BM CM =+=;折法2中,如图所示:由折叠的性质得:四边形EMHG 的面积12=梯形ABCD 的面积,142AE BE AB ===,DG NG =,NH CH =,BM FM =,MN MC =,125GH CD ∴==, 四边形EMHG 是叠合正方形,5EM GH ∴==,正方形EMHG 的面积2525==,90B ∠=︒ ,2225163FM BM EM BE ∴=-=-=,设AD x =,则3MN FM FN x =+=+,梯形ABCD 的面积1()82252AD BC =+⨯=⨯,252AD BC ∴+=,252BC x ∴=-,2532MC BC BM x ∴=-=--,MN MC = ,25332x x ∴+=--,解得:134x =,134AD ∴=,251337244BC =-=.折法3中,如图所示,作GM BC ⊥于M ,则E ,G 分别为AB ,CD 的中点,则4AH AE BE BF ====,152CG CD ==,正方形的边长42EF GF ==4GM FM ==,2225163CM CG GM --=,11BC BF FM CM ∴=++=.综上所述:7BC =或11或374.28.如图所示,抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且1OA =,4OB OC ==.(1)求抛物线的解析式;(2)若连接AC 、BC .动点D 从点A 出发,在线段AB 上以每秒1个单位长度向点B 做匀速运动;同时,动点E 从点B 出发,在线段BC 2个单位长度向点C 做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接DE ,设运动时间为t 秒.在D 、E 运动的过程中,当t 为何值时,四边形ADEC 的面积最小,最小值为多少?(3)点M 是抛物线上位于x 轴上方的一点,点N 在x 轴上,是否存在以点M 为直角顶点的等腰直角三角形CMN ?若存在,求出点M 的坐标,若不存在,请说明理由.【解析】(1)解:∵4OB OC ==,1OA =,则()0,4C ,()4,0B ,()0,1A -∴抛物线解析式为2(1)(4)34y x x x x =-+-=-++;(2)解:∵4OB OC ==,∴OBC △是等腰直角三角形,由点的运动可知:2BE t =,过点E 作EF x ⊥轴,垂足为F ,∴22tBE BF t t ==,又∵()0,1A -,则5AB =,∴ADEC ABC BDES S S =- 1145(5)22t t=⨯⨯-⨯-⨯21555(228t =-+,∵当其中一点到达终点时,另一点随之停止运动,∴224442AC =+=5AB =,∴04t ≤≤,当52t =时,四边形ADEC 的面积最小,即为558;(3)解:存在,(15,15)M +或(222,222)M -,当点M 在CN 的右侧时,如图所示,过点M 作y 轴的平行线PQ ,交x 轴于点Q ,过点C 作CP PQ ⊥,∵CMN 是以M 为直角为直角顶点的等腰直角三角形,∴CM MN =,90CMN ∠=︒,∴90PCM PMC NMQ ∠=︒-∠=∠,又90CPM MQN ∠=∠=︒∴CPM MQN ≌,∴CP MQ =,设2(,34)M m m m -++,∴234m m m -++=,解得:51m =或15m =∴(15,15)M ;当点M 在CN 的右侧时,同理可得234m m m -++=-,解得:222m =-22m =(舍去)∴(222,222)M -,综上所述,(15,15)M 或(22,22)M -.。
【九年级】中考数学第一次模拟考试题(附答案)
【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。
中招考试数学模拟试卷(附有答案)
中招考试数学模拟试卷(附有答案)(满分:120分考试时间:120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分.211.|−16|的相反数是()A. 16B. −16C. 6D. −62.下列运算正确的是()A. x6+x6=2x12B. a2⋅a4−(−a3)2=0C. (x−y)2=x2−2xy−y2D. (a+b)(b−a)=a2+b23.在计算器上按键:显示的结果为()A. −5B. 5C. −25D. 254.把Rt△ABC与Rt△CDE放在同一水平桌面上摆放成如图所示的形状使两个直角顶点重合两条斜边平行若∠B=25°∠D=58°则∠BCE的度数是()A. 83°B. 57°C. 54°D. 33°5.下列由左到右的变形属于因式分解的是()A. (x+2)(x−2)=x2−4B. x2+4x−2=x(x+4)−2C. x2−4=(x+2)(x−2)D. x2−4+3x=(x+2)(x−2)+3x6.如图抛物线y=ax2+bx+c的对称轴是x=1下列结论:7.①abc>0②b2−4ac>0③8a+c<0④5a+b+2c>8.正确的有()A. 4个B. 3个C. 2个D. 1个9.如图从一张腰长为90cm顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗)则该圆锥的底面半径为()A. 15cmB. 12cmC. 10cmD. 20cm10.夏季来临某超市试销A B两种型号的风扇两周内共销售30台销售收入5300元A型风扇每台200元B型风扇每台150元问A B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台B型风扇销售了y台则根据题意列出方程组为()A. {x+y=5300200x+150y=30 B. {x+y=5300150x+200y=30C. {x+y=30200x+150y=5300 D. {x+y=30150x+200y=530011.若甲乙两弹簧的长度ycm与所挂物体质量xkg之间的函数表达式分别为y=k1x+b1和y=k2x+b2如图所示所挂物体质量均为2kg时甲弹簧长为y1乙弹簧长为y2则y1与y2的大小关系为()A. y1>y2B. y1=y2C. y1<y2D. 不能确定12.如图正方形ABCD的边长为4点E在边AB上BE=1∠DAM=45°点F在射线AM上且AF=√2过点F作AD的平行线交BA的延长线于点H CF与AD相交于点G连接EC EG EF.下列结论:①△ECF的面积为17②△AEG的周长为8③EG2=2DG2+BE2.其中正确的是()A. ①②③B. ①③C. ①②D. ②③二填空题:本大题共8小题其中11-14题每小题3分15-18题每小题3分共28分.只要求填写最后结果.(本大题共8小题共24.0分)13.若关于x的二次三项式x2+(m+1)x+16可以用完全平方公式进行因式分解则m=_______.14.纳米是一种长度单位1纳米=10−9米.已知某种植物花粉的直径约为20800纳米则用科学记数法表示该种花粉的直径约为______米15.已知x1x2…x10的平均数是a x11x12…x30的平均数是b则x1x2…x30的平均数是____________.16.函数y=(3−m)x+n(m,n为常数m≠3)若2m+n=1当−1≤x≤3时函数有最大值2则n=______.17.如图矩形ABCD中AB=2BC=√2E为CD的中点连接AE BD交于点P过点P作PQ⊥BC于点Q则PQ=______.18.19.21. 如图 长方体的底面边长均为3cm 高为5cm 如果用一根细线从点A开始经过4个侧面缠绕一圈达到点B 那么所用细线最短需要______cm .22.23.24. 如图 在平面直角坐标系中 点A 1 A 2 A 3 … A n 在x 轴上 点B 1 B 2 B 3 …B n 在直线y =√33x 上.若A 1(1,0) 且△A 1B 1A 2 △A 2B 2A 3 … △A n B n A n +1都是等边三角形 从左到右的小三角形(阴影部分)的面积分别记为S 1 S 2 S 3 … S n 则S 2021可表示为______________.三 解答题:本大题共7小题 共62分.解答要写出必要的文字说明 证明过程或演算步骤.25. (8分)(1)先化简(1+2x−3)÷x 2−1x 2−6x+9 再从不等式组{−2x <43x <2x +4的整数解中选一个合适的x 的值代入求值.26.27.28.29.30.31.32.(2)计算:|−4|−2cos60°+(√3−√2)0−(−3)2.33.(8分)如图AB是⊙O的直径点C是⊙O上一点(与点A B不重合)过点C作直线PQ使得∠ACQ=∠ABC.34.(1)求证:直线PQ是⊙O的切线.35.(2)过点A作AD⊥PQ于点D交⊙O于点E若⊙O的半径为2sin∠DAC=1求图中阴影部分的面积.236.37.38.39.40.41.42.43.(8分)某校为了了解全校学生线上学习情况随机选取该校部分学生调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:44.频数分布表45.学习时间分组46.频数47.频率48.A组(0≤x<1)49.950.m51.B组(1≤x<2)52.1853.0.354.C组(2≤x<3)55.1856.0.357.D组(3≤x<4)58.n59.0.260.E组(4≤x<5)61.362.0.05(1)频数分布表中m=______ n=______ 并将频数分布直方图补充完整(2)若该校有学生1000名现要对每天学习时间低于2小时的学生进行提醒根据调查结果估计全校需要提醒的学生有多少名?(3)已知调查的E组学生中有2名男生1名女生老师随机从中选取2名学生进一步了解学生居家学习情况.请用树状图或列表求所选2名学生恰为一男生一女生的概率.22.(8分)数学兴趣小组到黄河风景名胜区测量炎帝塑像的高度.如图所示炎帝塑像DE在高55m的小山EC上在A处测得塑像底部E的仰角为34°再沿AC方向前进21m到达B处测得塑像顶部D的仰角为60°求炎帝塑像DE的高度.(精确到1m参考数据:sin34°≈0.56 cos34°=0.83tan34°≈0.6723(8分)天水市某商店准备购进A B两种商品A种商品每件的进价比B种商品每件的进价多20元用2000元购进A种商品和用1200元购进B种商品的数量相同.商店将A种商品每件的售价定为80元B种商品每件的售价定为45元.(1)A种商品每件的进价和B种商品每件的进价各是多少元?(2)商店计划用不超过1560元的资金购进A B两种商品共40件其中A种商品的数量不低于B 种商品数量的一半该商店有几种进货方案?(3)“五一”期间商店开展优惠促销活动决定对每件A种商品售价优惠m(10<m<20)元B种商品售价不变在(2)的条件下请设计出m的不同取值范围内销售这40件商品获得总利润最大的进货方案.24(10分)如图抛物线y=x2+bx+c经过点(3,12)和(−2,−3)与两坐标轴的交点分别为AB C它的对称轴为直线l.(1)求该抛物线的表达式(2)P是该抛物线上的点过点P作l的垂线垂足为D E是l上的点.要使以P D E为顶点的三角形与△AOC全等求满足条件的点P点E的坐标.25.(12分)如图在矩形ABCD中AB=20点E是BC边上的一点将△ABE沿着AE折叠点B刚好落在CD边上点G处点F在DG上将△ADF沿着AF折叠点D刚好落在AG上点H处此时S△GFH:S△AFH=2:3(1)求证:△EGC∽△GFH(2)求AD的长(3)求tan∠GFH的值.参考答案1..【答案】B【解析】解:|−16|的相反数即16的相反数是−16.故选:B.根据只有符号不同的两个数互为相反数可得一个数的相反数.本题考查了相反数绝对值在一个是数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:A原式=2x6不符合题意B原式=a6−a6=0符合题意C原式=x2−2xy+y2不符合题意D原式=b2−a2不符合题意故选:B.各项计算得到结果即可作出判断.此题考查了整式的混合运算熟练掌握运算法则是解本题的关键.3.【答案】A【解析】【分析】本题考查了计算器−数的开方解决本题的关键是认识计算器.根据计算器的功能键即可得结论.【解答】解:根据计算器上按键−√1253=−5所以显示结果为−5.故选:A.4.【答案】B【解析】解:过点C作CF//AB∴∠BCF=∠B=25°.又AB//DE∴CF//DE.∴∠FCE=∠E=90°−∠D=90°−58°=32°.∴∠BCE=∠BCF+∠FCE=25°+32°=57°.故选:B.过点C作CF//AB易知CF//DE所以可得∠BCF=∠B∠FCE=∠E根据∠BCE=∠BCF+∠FCE即可求解.本题主要考查了平行线的判定和性质解决角度问题一般借助平行线转化角此题属于“拐点”问题过拐点处作平行线是此类问题常见辅助线.5.【答案】C【解析】解:A(x+2)(x−2)=x2−4是整式的乘法运算故此选项错误B x2+4x−2=x(x+4)−2不符合因式分解的定义故此选项错误C x2−4=(x+2)(x−2)是因式分解符合题意.D x2−4+3x=(x+2)(x−2)+3x不符合因式分解的定义故此选项错误故选:C.直接利用因式分解的定义分别分析得出答案.此题主要考查了因式分解的意义正确把握分解因式的定义是解题关键.6.【答案】B【解析】【分析】本题考查的是二次函数图象与系数的关系掌握二次函数的性质灵活运用数形结合思想是解题的关键.根据抛物线的开口方向对称轴与坐标轴的交点判定系数符号及运用一些特殊点解答问题.【解答】解:由抛物线的开口向下可得:a<0根据抛物线的对称轴在y轴右边可得:a b异号所以b>0根据抛物线与y轴的交点在正半轴可得:c>0∴abc<0故①错误∵抛物线与x轴有两个交点∴b2−4ac>0故②正确∵直线x=1是抛物线y=ax2+bx+c(a≠0)的对称轴所以−b2a=1可得b=−2a由图象可知当x=−2时y<0即4a−2b+c<0∴4a−2×(−2a)+c<0即8a+c<0故③正确由图象可知当x=2时y=4a+2b+c>0当x=−1时y=a−b+c>0两式相加得5a+b+2c>0故④正确∴结论正确的是②③④3个故选:B.7.【答案】A【解析】解:过O作OE⊥AB于E∵OA=OB=90cm∠AOB=120°∴∠A=∠B=30°∴OE=12OA=45cm∴弧CD的长=120π×45180=30π设圆锥的底面圆的半径为r则2πr=30π解得r=15.故选:A.根据等腰三角形的性质得到OE的长再利用弧长公式计算出弧CD的长设圆锥的底面圆的半径为r根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长得到r然后利用勾股定理计算出圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长扇形的半径等于圆锥的母线长.8.【答案】C【解析】 【分析】本题直接利用两周内共销售30台 销售收入5300元 分别得出等式进而得出答案. 此题主要考查了由实际问题抽象出二元一次方程组 正确得出等量关系是解题关键. 【解答】解:设A 型风扇销售了x 台 B 型风扇销售了y 台 则根据题意列出方程组为:{x +y =30200x +150y =5300故选C .9.【答案】A【解析】解:∵点(0,4)和点(1,12)在y 1=k 1x +b 1上 ∴得到方程组:{4=b 112=k 1+b 1解得:{k 1=8b 1=4∴y 1=8x +4.∵点(0,8)和点(1,12)代入y 2=k 2x +b 2上 ∴得到方程组为{8=b 212=k 2+b 2解得:{k 2=4b 2=8.∴y 2=4x +8.当x =2时 y 1=8×2+4=20 y 2=4×2+8=16 ∴y 1>y 2. 故选:A .将点(0,4)和点(1,12)代入y 1=k 1x +b 1中求出k 1和b 1 将点(0,8)和点(1,12)代入y 2=k 2x +b 2中求出k 2和b 2 再将x =2代入两式比较y 1和y 2大小.本题考查了一次函数的应用 待定系数法求一次函数关系式 比较函数值的大小 熟练掌握待定系数法求一次函数关系式是解题的关键.10.【答案】C【解析】解:如图在正方形ABCD中AD//BC AB=BC=AD=4∠B=∠BAD=90°∴∠HAD=90°∵HF//AD∴∠H=90°∵∠HAF=90°−∠DAM=45°∴∠AFH=∠HAF.∵AF=√2∴AH=HF=1=BE.∴EH=AE+AH=AB−BE+AH=4=BC ∴△EHF≌△CBE(SAS)∴EF=EC∠HEF=∠BCE∵∠BCE+∠BEC=90°∴∠HEF+∠BEC=90°∴∠FEC=90°∴△CEF是等腰直角三角形在Rt△CBE中BE=1BC=4∴EC2=BE2+BC2=17∴S△ECF=12EF⋅EC=12EC2=172故①正确过点F作FQ⊥BC于Q交AD于P∴∠APF=90°=∠H=∠HAD∴四边形APFH是矩形∵AH=HF∴矩形AHFP是正方形∴AP=PF=AH=1同理:四边形ABQP是矩形∴PQ=AB=4BQ=AP=1FQ=FP+PQ=5CQ=BC−BQ=3∵AD//BC∴△FPG∽△FQC∴FPFQ=PGCQ∴15=PG3∴PG=3 5∴AG=AP+PG=8 5在Rt△EAG中根据勾股定理得EG=√AG2+AE2=175∴△AEG的周长为AG+EG+AE=85+175+3=8故②正确∵AD=4∴DG=AD−AG=125∴DG2+BE2=14425+1=16925∵EG2=(175)2=28925≠16925∴EG2≠DG2+BE2故③错误∴正确的有①②故选:C.先判断出∠H=90°进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS)得出EF=EC ∠HEF=∠BCE判断出△CEF是等腰直角三角形再用勾股定理求出EC2=17即可得出①正确先判断出四边形APFH是矩形进而判断出矩形AHFP是正方形得出AP=PF=AH=1同理:四边形ABQP是矩形得出PQ=4BQ=1FQ=5CQ=3再判断出△FPG∽△FQC得出FPFQ =PGCQ求出PG=35再根据勾股定理求得EG=175即△AEG的周长为8判断出②正确先求出DG=125进而求出DG2+BE2=16925再求出EG2=28925≠16925判断出③错误即可得出结论.此题主要考查了正方形的性质和判断全等三角形的判定和性质相似三角形的判定和性质勾股定理求出AG是解本题的关键.11.【答案】7或−9【解析】【分析】本题考查了公式法分解因式熟练掌握完全平方公式的结构特点是解题的关键.根据完全平方公式第一个数为x第二个数为4中间应加上或减去这两个数积的两倍.【解答】依题意得(m+1)x=±2×4x解得:m=7或−9.故答案为:7或−9.12.【答案】2.08×10−5【解析】解:20800纳米×10−9=2.08×10−5米.故答案为:2.08×10−5.绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数一般形式为a×10−n其中1≤|a|<10n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.【答案】14【解析】【分析】此题考查了求概率用到的知识点为:概率=所求情况数与总情况数之比熟知概率的定义是解答此题的关键.根据题意先求出所有等可能的情况数和两枚硬币都是正面向上的情况数然后根据概率公式即可得出答案.【解答】解:同时抛掷两枚质地均匀的硬币一次共有正正正反反正反反四种等可能的结果两枚硬币都是正面向上的有1种所以两枚硬币都是正面向上的概率应该是14.故答案为:1414.【答案】10a+20b30【解析】【分析】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数利用平均数的定义利用数据x1x2…x10的平均数为a x11x12…x30的平均数为b可求出x1+x2+⋯+x10=10a x11+x12+⋯+x30=20b进而即可求出答案.【解答】解:因为数据x1x2…x10的平均数为a则有x1+x2+⋯+x10=10a因为x11x12…x30的平均数为b则有x11+x12+⋯+x30=20b∴x1x2…x30的平均数=10a+20b.30故答案为10a+20b30.15.【答案】−115【解析】 【分析】需要分类讨论:3−m >0和3−m <0两种情况 结合一次函数图象的增减性解答。
【解析版】潍坊市中考数学模拟试卷(一)
山东省潍坊市中考数学模拟试卷(一)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×1073.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 38.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:49.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<010.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣111.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 512.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是.14.数据:1,5,6,5,6,5,6,6的众数是,中位数是,方差是.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是米.(精确到1米)16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为度.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.山东省潍坊市中考数学模拟试卷(一)参考答案与试题解析一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.)1.计算的结果是()A. 2 B.±2 C.﹣2 D.考点:算术平方根.分析:即为4的算术平方根,根据算术平方根的意义求值.解答:解:=2.故选A.点评:本题考查了算术平方根.关键是理解算式是意义.2.地球平均半径约等于6 400 000米,6 400 000用科学记数法表示为()A. 64×105 B. 6.4×105 C. 6.4×106 D. 6.4×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:6 400 000=6.4×106,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是五个相同的正方体组成的一个几何体,它的左视图是()A. B. C. D.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看易得第一列有1个正方形,第二列有2个正方形.故选D.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+的值为() A. B. C. D.考点:抛物线与x轴的交点.分析:根据图象上点的坐标性质得出m2﹣2m=﹣1,进而代入求出即可.解答:解:∵抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),∴m2﹣2m+1=0,∴m2﹣2m=﹣1,则代数式m2﹣2m+=﹣1+=.故选:B.点评:此题主要考查了函数图象上点的坐标性质以及整体思想的应用,求出m2﹣2m=﹣1是解题关键.5.如图,已知矩形纸片ABCD,AD=2,AB=,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为()A. 1 B. C. D.考点:弧长的计算;特殊角的三角函数值.专题:压轴题.分析:扇形的弧长=圆锥的底面圆的周长.利用弧长公式计算.解答:解:设圆锥底面半径为R,∵cos∠BAE==,∴∠BAE=30°,∠EAD=60°,弧DE===2πR,∴R=.故选C.点评:熟记特殊角的三角函数值和掌握弧长公式是解题的关键.6.如图,AC为⊙O的直径,AB为⊙O的弦,∠A=35°,过点C的切线与OB的延长线相交于点D,则∠D=()A. 20° B. 30° C. 40° D. 35°考点:切线的性质;圆周角定理.专题:几何图形问题.分析:连接BC,则∠ABC=90°,且∠A=35°,∠OCB=55°,又△BCO为等腰三角形,即有∠COB=70°,即可求∠D=90°﹣∠COB=20°.解答:解:连接BC,∴∠OCD=90°,∴∠OCB=55°,在△OCB中,OB=OC;即有∠COB=70°;∴∠D=90°﹣∠COB=20°.故选A.点评:本题利用了切线的概念和性质的应用以及三角形内角和为180°的知识点;在直角三角形中,同角或等角的余角相等;7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD 交于点O,则四边形AB1OD的周长是()A. B. 2 C. 1+ D. 3考点:旋转的性质;正方形的性质.专题:计算题;压轴题.分析:连接AC,由正方形的性质可知∠CAB=45°,由旋转的性质可知∠B1AB=45°,可知点B1在线段AC上,由此可得B1C=B1O,即AB1+B1O=AC,同理可得AD+DO=AC.解答:解:连接AC,∵四边形ABCD为正方形,∴∠CAB=45°,∵正方形ABCD绕点A逆时针旋转45°,∴∠B1AB=45°,∴点B1在线段AC上,易证△OB1C为等腰直角三角形,∴B1C=B1O,∴AB1+B1O=AC==,同理可得AD+DO=AC=,∴四边形AB1OD的周长为2.故选:B.点评:本题考查了正方形的性质,旋转的性质,特殊三角形的性质.关键是根据旋转角证明点B1在线段AC上.8.如图,小正方形的边长均为1,关于△ABC和△DEF的下列说法正确的是()A.△ABC和△DEF一定不相似B.△ABC和△DEF是位似图形C.△ABC和△DEF相似且相似比是1:2D.△ABC和△DEF相似且相似比是1:4考点:相似三角形的判定与性质.专题:网格型.分析:先利用勾股定理分别计算两个三角形三边的长,再计算比值,得出三条对应边成比例,利用相似三角形的判定可知两个三角形相似.解答:解:∵AB=,BC=2,AC==,DE==,DF==2,EF=4,∴===,∴△ABC∽△DEF.故选C.点评:本题考查了勾股定理、相似三角形的判定和性质.9.已知二次函数y=ax2+bx+c图象如图所示,则下面结论成立的是()A. a>0,bc<0 B. a<0,bc>0 C. a>0,bc>0 D. a<0,bc<0考点:二次函数图象与系数的关系.专题:常规题型.分析:由抛物线的开口方向判断a的符号,然后结合对称轴判断b的符号,再由抛物线与y轴的交点判断c的符号,从而得出bc的符号解答即可.解答:解:由抛物线的开口向上知a>0,与y轴的交点为在y轴的负半轴上得c<0,对称轴为x=>0,a>0,得b<0,∴bc>0.故选C.点评:本题考查了二次函数图象与系数的关系,属于基础题,关键是掌握二次函数y=ax2+bx+c系数符号的确定.10.如图,是一次函数y=kx+b与反比例函数的图象,则关于方程的解为()A. x1=1,x2=2 B. x1=﹣2,x2=﹣1 C. x1=1,x2=﹣2 D. x1=2,x2=﹣1考点:反比例函数与一次函数的交点问题.专题:计算题.分析:根据题意可知,函数图象的交点坐标即为方程的解,根据格点找到交点坐标就可找到方程的解.解答:解:由图可知,两函数图象的交点坐标为(1,2);(﹣2,﹣1);则两横坐标为1和﹣2,∵函数的交点坐标符合两个函数的解析式,∴函数的交点坐标就是方程组的解,∴x=1或x=﹣2,故选C.点评:本题考查了反比例函数与一次函数的交点问题,找到两图象的交点坐标是解题的关键.11.已知直线y=x﹣3与函数y=的图象相交于点(a,b),则a2+b2的值是() A. 13 B. 11 C. 7 D. 5考点:反比例函数与一次函数的交点问题.专题:计算题.分析:利用反比例函数与一次函数的交点问题得到b=a﹣3,b=,则a﹣b=3,ab=2,再利用完全平方公式变形得到a2+b2=(a﹣b)2+2ab,然后利用整体代入的方法计算即可.解答:解:根据题意得b=a﹣3,b=,所以a﹣b=3,ab=2,所以a2+b2=(a﹣b)2+2ab=32+2×2=13.故选A.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.12.如图,半径为1cm,圆心角为90°的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()A.πcm2 B.πcm2 C.cm2 D.cm2考点:扇形面积的计算;等腰直角三角形.专题:压轴题;探究型.分析:过点C作CD⊥OB,CE⊥OA,则△AOB是等腰直角三角形,由∠ACO=90°,可知△AOC 是等腰直角三角形,由HL定理可知Rt△OCE≌Rt△ACE,故可得出S扇形OEC=S扇形AEC,与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,S阴影=S△AOB即可得出结论.解答:解:过点C作CD⊥OB,CE⊥OA,∵OB=OA,∠AOB=90°,∴△AOB是等腰直角三角形,∵OA是直径,∴∠ACO=90°,∴△AOC是等腰直角三角形,∵CE⊥OA,∴OE=AE,OC=AC,在Rt△OCE与Rt△ACE中,∵,∴Rt△OCE≌Rt△ACE,∵S扇形OEC=S扇形AEC,∴与弦OC围成的弓形的面积等于与弦AC所围成的弓形面积,同理可得,与弦OC围成的弓形的面积等于与弦BC所围成的弓形面积,∴S阴影=S△AOB=×1×1=cm2.故选C.点评:本题考查的是扇形面积的计算与等腰直角三角形的判定与性质,根据题意作出辅助线,构造出直角三角形得出S阴影=S△AOB是解答此题的关键.二、填空题(本大题共6小题,共15分,只要求填写最后结果,每小题填对得3分)13.把a3+ab2﹣2a2b分解因式的结果是a(a﹣b)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式a,再利用完全平方公式继续进行二次因式分解.解答:解:a3+ab2﹣2a2b,=a(a2+b2﹣2ab),=a(a﹣b)2.点评:本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.14.数据:1,5,6,5,6,5,6,6的众数是6,中位数是 5.5,方差是.考点:众数;中位数;方差.分析:根据方差,众数,中位数的定义解答.解答:解:将数据从小到大依次排列为1,5,5,5,6,6,6,6.众数是6,中位数是(5+6)÷2=5.5,平均数是(1+5×3+6×4)÷8=40÷8=5.方差为[(1﹣5)2+3(5﹣5)2+4(5﹣6)2]=.故填6,5.5,.点评:一组数据中出现次数最多的数据叫做众数.样本方差描述了一组数据围绕平均数波动的大小.把这组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.中位数把样本数据分成了相同数目的两部分.15.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=﹣x2+10,为保护廊桥的安全,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是18米.(精确到1米)考点:二次函数的应用.专题:压轴题.分析:由题可知,E、F两点纵坐标为8,代入解析式后,可求出二者的横坐标,F的横坐标减去E 的横坐标即为EF的长.解答:解:由“在该抛物线上距水面AB高为8米的点”,可知y=8,把y=8代入y=﹣x2+10得:x=±4,∴由两点间距离公式可求出EF=8≈18(米).点评:以丽水市“古廊桥文化”为背景呈现问题,考查了现实中的二次函数问题,赋予传统试题新的活力,感觉不到“老调重弹”,在考查提取、筛选信息,分析、解决实际问题等能力的同时,发挥了让学生“熏陶文化,保护遗产”的教育功能.16.一副三角板叠在一起如图放置,最小锐角的顶点D恰好放在等腰直角三角板的斜边AB上,BC与DE交于点M.如果∠ADF=100°,那么∠BMD为85度.考点:三角形内角和定理.专题:压轴题.分析:先根据∠ADF=100°求出∠MDB的度数,再根据三角形内角和定理得出∠BMD的度数即可.解答:解:∵∠ADF=100°,∠EDF=30°,∴∠MDB=180°﹣∠ADF﹣∠EDF=180°﹣100°﹣30°=50°,∴∠BMD=180°﹣∠B﹣∠MDB=180°﹣45°﹣50°=85°.故答案为:85.点评:本题考查的是三角形内角和定理,即三角形内角和是180°.17.把两个半径为5和一个半径为8的圆形纸片放在桌面上,使它们两两外切,若要用一个大圆形纸片把这三个圆形纸片完全盖住,则这个大圆形纸片的最小半径等于.考点:相切两圆的性质.专题:计算题;作图题.分析:由题意作出图形,要求则这个大圆形纸片的最小半径,则在△APO中,将OA、OP分别用R表示后由勾股定理可得R值,即这个大圆形纸片的最小半径.解答:解:如图所示,⊙A、⊙B半径为5,⊙C半径为8,设⊙O半径为R.连接AB、BC、CA,则AB=10,BC=CA=13,过C作CP⊥AB,则P是AB中点.∴AP=5,在△ACP中由勾股定理CP2=AC2﹣AP2,∴CP=12,∵OC=R﹣8,∴OP=20﹣R,在△APO中,∵OA=R﹣5,AP=5,∴由勾股定理AP2=AO2﹣OP2,即52=(R﹣5)2﹣2,∴R=,则这个大圆形纸片的最小半径等于.点评:本题考查了相切圆的性质,以及勾股定理的应用,同学们应熟练掌握.18.如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x 轴的直线l2的一个交点;…按照这样的规律进行下去,点A n的坐标为().考点:切线的性质;勾股定理.专题:压轴题;规律型.分析:根据题意,可以首先求得A1(,1),A2(,2),A3(,3).根据这些具体值,不难发现:A n的纵坐标是n,横坐标是.解答:解:∵点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点,∴A1的纵坐标为1,横坐标为:=,即A1(,1);同理可求:A2(,2),A3(,3)∴根据这些具体值,得出规律:A n的纵坐标是n,横坐标是.即A n的坐标为().故答案为:().点评:此题可以首先求得几个具体值,然后进一步发现坐标和脚码的规律.三、解答题(本大题共6小题,共66分,解答要写出必要的文字说明、证明过程或演算步骤.)19.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.考点:列表法与树状图法.分析:(1)利用频数÷百分比=总数,求得总人数;根据条形统计图先求得C类型的人数,然后根据百分比=频数÷总数,求得百分比,从而可补全统计图;(3)用居民区的总人数×40%即可;(4)首先画出树状图,然后求得所有的情况以及他第二个恰好吃到的是C粽的情况,然后利用概率公式计算即可.解答:解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.点评:本题主要考查的是条形统计图、扇形统计图以及概率的计算,掌握画树状图或列表求概率的方法是解题的关键.20.如图所示,江北第一楼﹣﹣超然楼,位于济南大明湖畔,始建于元代,是一座拥有近千年历史的名楼.某学校九年级数学课外活动小组的学生准备利用假期测量超然楼的高度,在大明湖边一块平地上,甲和乙两名同学利用所带工具测量了一些数据,下面是他们的一段对话:甲:我站在此处看楼顶仰角为45°.乙:我站在你后面37m处看楼顶仰角为30°.甲:我的身高是1.7m.乙:我的身高也是1.7m.请你根据两位同学的对话,参考右面的图形计算超然楼的高度,结果精确到1米.(请根据下列数据进行计算)考点:解直角三角形的应用-仰角俯角问题.分析:首先利用CE为超然楼的高度,构造直角三角形,进而利用锐角三角函数关系tan30°=得出CD的长,进而得出EC的长即可得出答案.解答:解:设根据题意画出图形得出:AB=37m,AM=BF=1.7m,∠CAD=30°,∠CBD=45°,故CD=BD,AM=DE=1.7m,∵tan30°====,∴解得:DC===≈50.5(m),则CE=DC+DE=50.5+1.7=52.2≈52(m),答:超然楼的高度为52m.点评:此题主要考查了解直角三角形中仰角问题的应用,根据锐角三角函数的关系得出CD的长是解题关键.21.如图,点C在以AB为直径的⊙O上,点D在AB的延长线上,∠BCD=∠A.(1)求证:CD为⊙O的切线;若CD=4,⊙O的半径为3,求BD的值.考点:切线的判定;圆周角定理;相似三角形的判定与性质.分析:(1)连接OC,根据等腰三角形的性质求出∠OCB=∠OBC,根据AB是直径得出∠ABC=90°,求出∠A+∠ABC=90°,代入求出∠OCB+∠BCD=90°,根据切线的判定推出即可;证△DCB∽△DAC,得出CD2=BD×DA,代入即可求出BD.解答:(1)证明:连接OC,∵OB=OC,∴∠OBC=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠A+∠ABC=90°,又∵∠BCD=∠A,∴∠OCB+∠BCD=90°,∴∠OCD=90°,即OC⊥CD又∵点C在⊙O上,∴CD是⊙O的切线.解:∵∠BCD=∠A,∠D=∠D,∴△BCD∽△CAD,∴,即CD2=AD•BD又∵CD=4,AO=OB=3,∴16=(BD+6)BD,解得:BD=2.点评:本题考查了切线的判定,圆周角定理,相似三角形的性质和判定,等腰三角形的性质等知识点,主要考查学生综合运用性质进行推理的能力,题目比较典型,难度适中.22.我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)… 30 40 50 60 …每天销售量y(件)… 500 400 300 200 …(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?考点:二次函数的应用;一次函数的应用.专题:压轴题;图表型.分析:(1)描点,由图可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;利润=销售总价﹣成本总价=单件利润×销售量.据此得表达式,运用性质求最值;(3)根据自变量的取值范围结合函数图象解答.解答:解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)(40,400)这两点,∴解得∴函数关系式是:y=﹣10x+800(0≤x≤80)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x﹣20)(﹣10x+800)=﹣10x2+1000x﹣16000=﹣10(x﹣50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=﹣10(x﹣50)2+9000,当x≤45时,W的值随着x值的增大而增大,∴销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.点评:根据函数解析式求出的最值是理论值,与实际问题中的最值不一定相同,需考虑自变量的取值范围.23.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=4,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从C点出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.考点:解直角三角形;等腰三角形的性质;勾股定理;梯形;相似三角形的判定与性质.专题:压轴题.分析:(1)作梯形的两条高,根据直角三角形的性质和矩形的性质求解;平移梯形的一腰,根据平行四边形的性质和相似三角形的性质求解;(3)因为三边中,每两条边都有相等的可能,所以应考虑三种情况.结合路程=速度×时间求得其中的有关的边,运用等腰三角形的性质和解直角三角形的知识求解.解答:解:(1)如图①,过A、D分别作AK⊥BC于K,DH⊥BC于H,则四边形ADHK是矩形.∴KH=AD=3.在Rt△ABK中,AK=AB•sin45°=4•=4,BK=AB•cos45°=4=4.在Rt△CDH中,由勾股定理得,HC==3.∴BC=BK+KH+HC=4+3+3=10.如图②,过D作DG∥AB交BC于G点,则四边形ADGB是平行四边形.∵MN∥AB,∴MN∥DG.∴BG=AD=3.∴GC=10﹣3=7.由题意知,当M、N运动到t秒时,CN=t,CM=10﹣2t.∵DG∥MN,∴∠NMC=∠DGC.又∵∠C=∠C,∴△MNC∽△GDC.∴,即.解得,.(3)分三种情况讨论:①当NC=MC时,如图③,即t=10﹣2t,∴.②当MN=NC时,如图④,过N作NE⊥MC于E.解法一:由等腰三角形三线合一性质得:EC=MC=(10﹣2t)=5﹣t.在Rt△CEN中,cosC==,又在Rt△DHC中,cosC=,∴.解得t=.解法二:∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴,即.∴t=.③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.解法一:(方法同②中解法一),解得.解法二:∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴,即,∴.综上所述,当t=、t=或t=时,△MNC为等腰三角形.点评:注意梯形中常见的辅助线:平移一腰、作两条高.构造等腰三角形的时候的题目,注意分情况讨论.此题的知识综合性较强,能够从中发现平行四边形、等腰三角形等,根据它们的性质求解.24.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣6,0)、B (0,﹣8)两点.(1)求出直线AB的函数解析式;若有一抛物线的对称轴平行于y轴且经过点M,顶点C在⊙M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE=S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)利用待定系数法即可求解;首先根据抛物线的顶点在圆上且与y轴平行即可确定抛物线的顶点坐标,再根据待定系数法求函数解析式;(3)三角形ABC的面积为15,所以假设三角形PDE的面积为1,因为DE长为2,所以P到DE 的距离为1,则P的坐标是(x,1),代入抛物线解析式即可求解.解答:解:(1)设直线AB的解析式为y=kx+b,。
2024年浙江省嘉兴市海宁第一中学中考数学模拟试卷
浙江省嘉兴市海宁一中2024年初中学业水平模拟测试数学试题卷卷I一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.数1,01中,是负数的是()A.1B.0C D.-12.如图所示的几何体,它的主视图是()A.B.C.D.3.2023年12月27日,第58颗北斗卫星成功定点于距地球36000公里的同步轨道上,数据36000用科学记数法表示为()A.0.36×105B.3.6×105C.3.6×104D.36×1034.一个不透明的布袋里装有5个只有颜色不同的球,其中3个白球,2个红球.从布袋里任意摸出1个球,是白球的概率()A.45B.35C.25D.155.如图,△ABC与△DEF是位似三角形,点O为位似中心.OA=AD,则△ABC与△DEF的位似比为()A.1∶1B.2∶3C.1∶2D.1∶36.化简(-2a)3∙a=()A.-8a4B.-8a3C.-6a4D.-6a37.如图所示的△ABC,进行以下操作:①以A,B为圆心,大于12AB为半径作圆弧,相交点D,E;②以A,C为圆心,大于12AC为半径作圆弧,相交于点F,G.两直线DE,FG相交于△ABC外一点P,且分别交BC点M,N.若∠MAN=50°,则∠MPN等于()A.60°B.65°C.70°D.75°8.已知y是关于x的一次函数,下表列出了部分对应值,则m的值为()A.-1B.12C.0D.129.如图1,在矩形ABCD中,点E在BC上,连结AE,过点D作DF⊥AE于点F.设AE=x,DF=y,已知x,y满足反比例函数y=kx(k>0,x>0),其图象如图2所示,则矩形ABCD的面积为()图1图2A.B.9C.10D.10.如图,量筒的液面A-C-B呈凹形,近似看成圆弧,读数时视线要与液面相切于最低点C(即弧中点).小温想探究仰视、俯视对读数的影响,当他俯视点C时,记录量筒上点D的高度为37mm;仰视点C(点E,C,B在同一直线),记录量筒上点E的高度为23mm,若点D在液面圆弧所在圆上,量筒直径为10mm,则平视点C,点C的高度为()mm.A.30-B.37-C.23+D.23+卷Ⅱ二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:m 2-4= .12.某校九(1)班同学每周课外阅读时间的频数直方图如图所示(每组含前一个边界值,不含后一个边界值).由图可知,该班每周阅读时间不低于4小时的学生一共有 人.13.已知扇形的圆心角为120°,它的半径为2,则扇形的面积为 (计算结果保留π).14.不等式2(x -1)>x +3的解为 .15.已知二次函数y =x 2+bx +c (b ,c 为常数且b >0,c <0),当-5≤x ≤0时,-11≤y ≤5,则c 的值为 . 16.如图1是古塔建筑中的方圆设计,寓意天圆地方.据古塔示意图,以塔底座宽AB 为边作正方形ABCD (图2),塔高AF =AC ,分别以点A ,B 为圆心,AF 为半径作圆弧,交于点G .正方形ABCD 内部由四个全等的直角三角形和一个小正方形组成,若点G 落在AM 的延长线上,连接GP 交DQ 于点T ,则GT GP的值为 .图1 图2三、解答题(本题有8小题,共72分)17.(本题8分)(10(1)|5|---.(2)计算:223221a a a a a a --+--. 18.(本题8分)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高线,点E ,F 分别在AC ,CD 上,且∠1=∠2(1)求证:AD∥EF.(2)当CE∶AE=3∶5,CF=6时,求BC的长.19.(本题8分)如图,是3个相同大小的6×6的方格,图1中放置一副七巧板组成的正方形图案,其顶点均在格点上,称之为格点图形.利用七巧板中的3种图形,按下列要求作出符合条件的格点图形.(1)在图2中,拼成一个轴对称但不是中心对称的图形.(2)在图3中,拼成一个中心对称但不是轴对称的图形.图1图2图320.(本题8分)某校组织的知识竞赛中,每班参加的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次为100分,90分,80分,70分,学校将九年级一班和九年级二班的成绩整理并绘制统计图,如图所示.(1)分别求出九年级一班成绩的平均数、中位数和众数;(2)规定成绩在90分以上为优秀(含90分),已知九年级二班成绩的平均数为87.6分,中位数为80分,众数为100分,优秀率为48%,请你选择两个统计量综合评价两个班的成绩.21.(本题8分)汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”.刹车距离y(m)与刹车时间的速度x(m/s)有以下关系式:y=ax2+bx(a,b为常数,且a≠0).某车辆测试结果如下:当车速为10m/s时,刹车距离y为3m;当车速为15m/s,刹车距离y为7.5m.(1)求出a,b的值;(2)行车记录仪记录了该车行驶一段路程的过程,汽车在刹车前匀速行驶了20s,然后刹车直至停下.测得刹车距离为5m,问:记录仪中汽车行驶路程为多少米?22.(本题10分)在Y ABCD中,E,F分别是AB,CD的中点,EG⊥BD于点G,FH⊥BD于点H,连接GF,EH.(1)求证:四边形EHFG是平行四边形.(2)当∠ABD=45°,tan∠EHG=14,EG=1时,求AD的长.23.(本题10分)综合与实践:测算校门所在斜坡的坡度.【背景】如图1,某学校校门在一道斜坡上,该校兴趣小组想要测量斜坡的坡度.图1图2【素材1】校门前的斜坡上铺着相同的长方形石砖,如图2,从测量杆AB到校门所在位置DE在斜坡上有15块地砖.【素材2】在点A处测得仰角tan∠1=19,俯角tan∠2=524;在点B处直立一面镜子,光线BD反射至斜坡CE的点N处,测得点B的仰角tan∠3=15;测量杆上AB∶BC=5∶8,斜坡CE上点N所在位置恰好是第9块地砖右边线.【讨论】只需要在∠1,∠2,∠3中选择两个角,再通过计算,可得CE的坡度.24.(本题12分)如图,在Rt△ABC中,∠ABC=90°,BC=6,AB=8,点D在AC上,过点B,D,C所作的弧为优弧BDC,交AB于点E,作DF//BC交BDC于点F,BF与CE,CD分别交于点G,H,连接DE.(1)求证:点H 是AC 的中点.(2)当»BE,»ED ,»DF 中的两段相等时,求DE 的长. (3)记△ADE 的面积为1S ,△CDF 的面积为2S ,若122596S S ,求¼BDC 所在圆的半径.。
山西2024年中考适应性模拟测试 (一)数学试卷及答案
山西2024年中考适应性模拟测试(一)数学试卷(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答填空题时,请将每小题的答案直接填写在答题卡中对应横线上。
写在本试卷上无效。
4.回答解答题时,每题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
写在本试卷上无效。
5.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共10小题,每小题3分,共30分。
1.计算:()163⎛⎫-÷- ⎪⎝⎭的结果是()A.18- B.2C.18D.2-2.下列环保标志图案既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列各式计算正确的是()A.248a a a ⋅= B.336a a a += C.()23639a a -=- D.222(12)4ab a b -=4.如图,该几何体的左视图是()A. B. C. D.5.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-,著名的“断臂维纳斯”便是如此.若小明的身高满足此黄金分割比例,且肚脐至足底的长度为108cm ,则小明的身高约为()A.155cmB.165cmC.175cmD.185cm6.不等式组2022x x +>⎧⎨≤⎩的解为()A.21x -<≤B.21x -<<C.21x -≤≤ D.21x -≤<7.小明学习了物理中的欧姆定律发现:电阻两端的电压=电流强度×电流通过的电阻.已知某滑动变阻器两端电压恒定,当变阻器的电阻调节为10Ω时,测得通过该变阻器的电流为24A ,则通过该滑动变阻器的电流I (单位:A )与电阻R (单位:Ω)之间的函数关系图象大致是()A. B. C. D.8.如图,正六边形螺帽的边长是2cm ,这个扳手的开口a 的值应是()B.cmC.3cm D.1cm9.如图,随机闭合开关1S 、2S 、3S 中的两个,则能让灯泡⊗发光的概率是()A.12B.13C.23D.1410.如图是二次函数()20y ax bx c a =++≠的一部分,对称轴是直线2x =-,关于下列结论:①0ab <;②240b ac ->;③<0a b c -+;④40b a -=;⑤方程20ax bx +=的两个根为10x =,24x =-.其中正确的结论有()A.①③④B.②③⑤C.①②⑤D.②④⑤二、填空题:本题共5小题,共15分。
九年级中考数学模拟试卷(01)
九年级中考数学模拟试卷(01)一、选择题(本大题共12小题,每小题3分,共36分)1.﹣2的相反数等于()A.﹣2 B. 2 C.D.2.下列实数中,是有理数的为()A.B.C.πD.03.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠COE=140°,则∠BOC=()A.50°B.60°C.70°D.80°4.使有意义的x的取值范围是()A.x>3 B.x<3 C.x≥3 D.x≠35.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④6.化简(a﹣)÷的结果是()A.a﹣b B.a+b C.D.7.广州正稳步推进碧道建设,营造“水清岸绿、鱼翔浅底、水草丰美、白鹭成群”的生态廊道,使之成为老百姓美好生活的好去处,到今年底各区完成碧道试点建设的长度分别为(单位:千米):5,5.2,5,5,5,6.4,6,5,6.68,48.4,6.3,这组数据的众数是()A.5 B.5.2 C.6 D.6.48.若(ax+3y)2=4x2﹣12xy+by2,则a,b的值分别为()A. 2,9 B.2,﹣9 C.﹣2,9 D.﹣4,99.A .B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30B .﹣=C .﹣=D . +=3010.如图,AD 是△ABC 的中线,CE 是△ACD 的中线,DF 是△CDE 的中线,若S △DEF =2,则S △ABC 等于( )A . 16B . 14C . 12D . 1011.如图,在Rt △ABC 中,∠ABC=90°,BD ⊥AD 于点D ,其中,则=( )A .B .C .D .12.二次函数2(0)y ax bx c a =++≠的部分图象如图所示,图象过点(1,0)-,对称轴为直线x =1,下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<其中正确的结论有( )A .1个B .2个C .3个D .4个的关系.解题的关键在于2y ax bx c ++=的图像的开口方向、对称轴、与y 轴的交点的决定因素.二、填空题(本大题共6小题,每小题3分,共18分)13.已知x+=5,那么x 2+= . 14.若关于x 的方程x 2﹣2x+m =0有两个相等的实数根,则实数m 的值等于 .15.一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y (米)与小明从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小明家到学校的路程为 米.16.作图:已知线段a 、b ,请用尺规作线段EF 使EF =a+b .请将下列作图步骤按正确的顺序排列出来(只填序号)_____.作法:①以M 为端点在射线MG 上用圆规截取MF =b ;②作射线EG ;③以E 为端点在射线EG 上用圆规截取EM =a ;④EF 即为所求的线段.17.已知点A (2,y 1)、B (m ,y 2)是反比例函数y=的图象上的两点,且y 1<y 2.写出满足条件的m的一个值,m 可以是 .18.在四边形ABCD 中,AD ∥BC ,∠ABC=90°,AB=BC ,E 为AB 边上一点,∠BCE=15°,且AE=AD .连接DE 交对角线AC 于H ,连接BH .下列结论正确的是 .(填序号)①AC ⊥DE ;② =;③CD=2DH ;④ =.三、解答题(本大题共8小题,共66分)19.(1)计算:031(2019)2sin 3012()2π---︒- (2)解方程:23220x x --=20.反比例函数y =k x的图象经过点A(2,3). (1)求这个函数的解析式;(2)请判断点B(1,6)是否在这个反比例函数的图象上,并说明理由.21.课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0.35m时,透光面积最大值约为1.05m2.我们如果改变这个窗户的形状,上部改为由两个正方形组成的矩形,如图2,材料总长仍为6m,利用图3,解答下列问题:(1)若AB为1m,求此时窗户的透光面积?(2)与课本中的例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.22.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.23.元宵节将至,我校组织学生制作并选送50盏花灯,共包括传统花灯、创意花灯和现代花灯三大种.已知每盏传统花灯需要35元材料费,每盏创意花灯需要33元材料费,每盏现代花灯需要30元材料费.(1)如果我校选送20盏现代花灯,已知传统花灯数量不少于5盏且总材料费不得超过1605元,请问选送传统花灯、创意花灯的数量有哪几种方案?(2)当三种花灯材料总费用为1535元时,求选送传统花灯、创意花灯、现代花灯各几盏?24.保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)25.在同一直角坐标系中,抛物线C1:y=ax2﹣2x﹣3与抛物线C2:y=x2+mx+n关于y轴对称,C2与x轴交于A.B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A.B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A.B、P、Q四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.26.在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,M为AB的中点,连接MD,ME.(1)如图1,当∠ADC=90°时,线段MD与ME的数量关系是;(2)如图2,当∠ADC=60°时,试探究线段MD与ME的数量关系,并证明你的结论;(3)如图3,当∠ADC=α时,求的值.。
广西中考数学模拟测试题(一)
广西中考数学模拟测试题(一)一.选择题(共12小题,满分36分,每小题3分)1.(3分)﹣3的倒数为()A.﹣B.C.3D.﹣32.(3分)下列美丽的壮锦图案是中心对称图形的是()A.B.C.D.3.(3分)2018年俄罗斯世界杯开幕式于6月14日在莫斯科卢日尼基球场举行,该球场可容纳81000名观众,其中数据81000用科学记数法表示为()A.81×103B.8.1×104C.8.1×105D.0.81×105 4.(3分)某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分5.(3分)下列运算正确的是()A.a(a+1)=a2+1B.(a2)3=a5C.3a2+a=4a3D.a5÷a2=a36.(3分)如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°7.(3分)在下列几何体中,三视图都是圆的为()A.B.C.D.8.(3分)下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12B.(﹣3x)2•4x2=﹣12x4C.3x+2x2=5x3D.x6÷x2=x39.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.10.(3分)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.11.(3分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60nmile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.60nmile B.60nmile C.30nmile D.30nmile 12.(3分)如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y =(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)13.(3分)若二次根式有意义,则x的取值范围是.14.(3分)如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=.15.(3分)如图,在4×4正方形网格中,有3个小正方形已经涂黑,若再涂黑任意一个白色的小正方形(每一个白色的小正方形被涂黑的可能性相同),使新构成的黑色部分的图形是轴对称图形的概率是.16.(3分)已知是方程组的解,则3a﹣b=.17.(3分)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是m(结果保留根号)18.(3分)如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于.三.解答题(共8小题,满分66分)19.(6分)计算:|﹣4|+3tan60°﹣﹣()﹣120.(6分)解分式方程:﹣1=.21.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B (4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无需说明理由)22.(8分)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.23.(8分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人.如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?24.(10分)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.25.(10分)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.26.(10分)如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.(1)求证:PG与⊙O相切;(2)若=,求的值;(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.。
2024年河南省焦作市中考第一次模拟考试数学模拟试题(含解析)
2023-2024学年焦作市九年级第一次模拟测试试卷数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上答在试卷上的答案无效一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1.下列各数中比大的数是( )A .B .C .D2.如图是焦作市博物馆的四件特色藏品,其中主视图与左视图相同的是( )A .汉“山阳”陶罐B .东汉五层彩绘陶仓楼C .东汉彩绘陶房D .西汉铜提梁卣3.记者1月19日从焦作海关了解到,2023年我市实现进出口总值亿元,进出口规模创历史新高数据“亿”用科学记数法表示为( )A .B .C .D .4.如图,直线相交于点平分,若,则的度数为( )12-0.6181-221.4221.492.21410⨯102.21410⨯922.1410⨯110.221410⨯,AB CD ,O OE BOD ∠113AOE ∠=︒BOC ∠A .B .C .D .5.化简的结果为( )A .B .C .D .6.如图,在中,,以为直径作,分别交于,,连接,若,则的度数为( )A .B .C .D .7.下图为某商家2023年1月至10月“人工智能机器人”的月销售量,下列说法错误的是( )A .这10个月的月销售量的众数为28B .这10个月中7月份的月销售量最高C .前5个月的月销售量的方差大于后5个月的月销售量的方差D .4月至7月的月销售量逐月增加8.二次函数的图象如图所示,则关于的一元二次方程的根的情况是( )46︒56︒67︒77︒2111m m m -⋅+1m m +11m m -+1m m -1m m+ABC AB AC =AC O ,AB BC D E ,DE CD 70B ∠=︒CDE ∠10︒20︒30︒40︒2y ax bx c =++x 20x ax b +-=A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根9.如图,已知矩形的顶点,若矩形绕点逆时针旋转,每次旋转,则第75次结束时,矩形对角线交点的坐标为( )A .B .C .D .10.如图1,点从等腰直角三角形的顶点出发,沿直线运动到三角形内部一点,再从该点沿直线运动到的中点.设点运动的路程为的面积为,图2是点运动时随变化的关系图象,则的长为( )A .1B .2CD .二、填空题(每小题3分,共15分)11.代数式可表示的实际意义是 .12.方程组的解为 .13.焦作市两部优秀作品人选河南省2023年度重点文艺创作项目名单,某校七、八、九年级分别从如图所示文艺项目中随机选择一部组织本年级学生欣赏,则这三个年级选择的文艺项目相同的概率为 .OABC ()()0,0,B 4,4O O 45︒D ()2,2(0,()-()2,2-P ABC A AC D P ,x PBC △y P y x BC 3n 25238x y x y +=⎧⎨+=⎩14.如图,在中,以为直径作交于点,过点作的切线交于点.则的长为 .15.如图,在矩形中,,点为的中点,取的中点,连接,当为直角三角形时,的值为 .三、解答题(本大题共8个小题,共75分)16.(1;(2)化简:.17.某学校为了解学生“消防安全知识”的掌握情况,从七、八年级各随机抽取名同学进行测试,并对成绩(百分制)进行整理,描述和分析,下面给出部分信息:a .七年级成绩的频数分布直方图如下:b .七年级成绩在这一组的是:80 80.5 82 82 82 82 83.5 84ABC 4120AB AC BAC ==∠=︒,AB O BC D D O AC E DE ABCD 1,AB BC a ==E CD AE F ,BE BF BEF △a 1132-+-()2(2)4x y x x y +-+508090x ≤<84 85 86 86.5 87 88 89 89c .七、八年级学生成绩的平均数、中位数如下:年级平均数中位数七年级85.3八年级87.285根据以上信息,回答下列问题:(1)在这次测试中,七年级测试成绩的中位数是______分,七年级成绩的众数不可能在_______组;(2)甲同学侧试成绩为分,在他所在的年级,他的成绩超过了一半以上被调查的同学,请判断甲同学是哪个年级的学生,并说明理由;(3)七年级共有名学生,若成绩在分以下(不含分)的同学需要参加消防安全知识培训,请你估计七年级有多少名同学需要参加消防安全知识培训.18.如图,是等边三角形,是边上一点,连接.(1)请用无刻度的直尺和圆规在的上方作等边(保留作图痕迹,不写作法);(2)连接,求证:.19.小晃同学借助反比例函数图像设计一个轴对称图形.如图,正方形的中心与平面直角坐标系的原点重合,边分别与坐标轴平行,反比例函数的图象经过正方形的顶点,以点为圆心,的长为半径作扇形交于点;以为对角线作正方形,再以点为圆心,的长为半径作扇形.m m 835008080ABC D AB CD CD CDE AE BD AE =ABCD k y x=()2,2A C CB ,BCD BDAC F CF CEFG C CE ECG(1)求反比例函数的解析式;(2)求的长;(3)直接写出图中阴影部分面积之和.20.南水北调第一楼位于山阳故城乐南,是一座具有汉代风格,可以望山、观水、展陈的文化地标.某小组利用无人机测量第一楼高度,如图是测量第一楼高度的示意图,无人机在距地面136.65米的P 处测得第一楼顶部A 的俯角为,测得第一楼底部B 的俯角为.求南水北调第一楼的高度(结果精确到).21.为庆祝中华人民共和国成立75周年,某平台店计划购进A ,B 两种纪念币,进价和售价如下表所示:品名A B 进价(元/枚)4560售价(元/枚)6690(1)第一次购进A 种纪念币80枚,B 种纪念币40枚,求全部售完后获利多少元?(2)第二次计划购进两种纪念币共150枚,且A 种纪念币的进货数量不超过B 种纪念币的进货数量的2倍,应如何设计进货方案才能获得最大利润,最大利润为多少?22.根据以下素材,探索完成任务设计小区大门灯笼的悬挂方案EG 11.3︒45︒AB 0.1m,sin11.30.196,cos11.30.980,tan11.30.200︒≈︒≈︒≈素材一图1是某小区的正门,图2是正门的示意图,小航查阅相关资料获得以下信息:①正门是由一个矩形和一个抛物线形拱组成的轴对称图形,②矩形的宽为,高为,抛物线形拱的高为.素材二为迎接龙年春节,拟在图1正门抛物线形拱上悬挂直径为的灯笼,如图3为了美观,要求悬挂灯笼的数量为双数,且平均分布,间隔在之间.问题解决任务1确定拋物线形拱形状在图2中建立合适的直角坐标系,求抛物线的函数表达式任务2探究悬挂数量给出符合所有悬挂条件的灯笼数量.任务3拟定设计方案根据你建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标23.在综合实践课上,老师设计下面问题,请你解答.10m 12m 2m 1m 0.8-1.5m(1)观察发现如图1,在平面直角坐标系中,过点作轴的对称点,再分别作点关于直线和轴的对称点,则点可以看作是点绕点顺时针旋转得到的,旋转角的度数为___________;点可以看作是点关于点___________的对称点.(2)探究迁移如图2,正方形中,为直线下方一点,作点关于直线的对称点,再分别作关于直线和直线的对称点和,连接,,请仅就图2的情况解决以下问题:①请判断的度数,并说明理由;②若,求两点间的距离.(3)拓展应用在(2)的条件下,若,请直接写出的长.()1,3A -y 1A 1A y x =x 23,A A 2A A O 3A A ABCD P AD P CD 1P 1P BD AD 2P 3P PD 2PD 2PDP ∠PD m =23,PP 30PD PDC =∠=︒12PP参考答案与解析1.D 【分析】本题考查实数比较大小,解题关键在于对二次根式进行正确的估算.【解答】A 、,不符合题意,选项错误;B 、,不符合题意,选项错误;C 、,不符合题意,选项错误;D,符合题意,选项正确.故选:D .2.A【分析】本题考查了三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.根据从正面看到的图形是主视图,从左边看到的图形是左视图,可得答案.【解答】解:根据主视图和左视图的定义,结合A 选项各个面的形状都一样,因此主视图与左视图相同.故选:A .3.B【分析】本题考查用科学记数法表示绝对值大于1的数.科学记数法的表示形式为的形式,其中为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n 是负数.熟记相关结论即可.【解答】解:∵亿,故选:B4.A【分析】本题考查几何图形中角度的计算,与角平分线有关的计算,利用邻补角和角平分线的定义进行求解即可.【解答】解:平分,21-<0.6181<11-<1.4141≈>10n a ⨯110a n ≤<,1>1<221.41022140000000 2.21410==⨯113AOE ∠=︒ ,18011367BOE ∴∠=︒-︒=︒,OE BOD ∠67,BOE DOE ∴∠=∠=︒故选:A5.C【分析】本题主要考查了分式的乘除法,利用分式的乘法法则解答即可.【解答】解:原式.故选:C .6.B【分析】本题主要考查了圆周角定理,等腰三角形的性质,圆心角、弧、弦的关系等知识点,正确作出辅助线是解题的关键.【解答】解:连接,,,,,,,故选:B7.C【分析】本题考查了折线图,众数、方差等知识,解题的关键知道方差是描述波动程度的量,方差越大,波动越大.【解答】解:A .这10个月的月销售量的众数为28出现了两次,出现次数最多,故众数为28,选项说法正确,不符合题意;18026746BOC ∴∠=︒-⨯︒=︒1(1)(1)1m m m m +-=⋅+1m m-=OE AB AC = 70ACB B ∴∠=∠=︒OE OC = 70CEO ACE ∴∠=∠=︒180707040COE ∴∠=︒-︒-︒=︒1202CDE COE ∴∠=∠=︒B .这10个月中7月份的月销售量为40,为最高,选项说法正确,不符合题意;C .前5个月的月销售量的波动程度小于后5个月的波动程度,故方差小于后5个月的方差,选项说法错误,符合题意;D .4月至7月的折线图是上升的,故月销售量逐月增加,选项说法正确,不符合题意;故选:C .8.A【分析】本题考查抛物线与轴的交点、根据判别式判断一元二次方程根的情况以及二次函数图象与各项系数符号,由函数图象可知,根据可以得到关于的一元二次方程的根的情况.【解答】函数图象开口向上.对称轴在轴左侧故一元二次方程有两个不相等的实数根故选:A .9.C【分析】本题考查了矩形的性质,点的坐标特点,旋转的性质,根据求出,进而求出,每次旋转,8次一个循环,,第75次结束时,矩形的对角线交点D 与第3次的点D 的坐标相同,第3次点D 落在x 轴的负半轴上,由此可得结论.【解答】解:∵四边形是矩形,,∴∴∵每次旋转,8次一个循环,,∴点D 在x 轴的负半轴上,∴点D 的坐标为.x 0,0a b >>24b ac =- x 20x ax b +-= 0a ∴> y 02b a∴-<0a >0b ∴>()224140a b a b ∴=-⨯⨯-=+> 0x ax b +-=()B 4,4OB OD 45︒75893÷=L L ABCO ()B 4,4OB ==OD =45︒75893÷=L L ()-故选:C .10.B【分析】本题考查了动点问题的函数图象.由图象知,时,的面积为,当点在()上运动时,的面积不变,为,当点位于点时,此时为等腰直角三角形,据此,利用的面积,求解即可.【解答】解:由图象知,当点在点,即时,的面积为,当点运动到点,此时时,的面积为,而在运动到的过程中,的面积不变,为,如图,当点在()上运动时,的面积不变,为,∴当点位于点时,此时为等腰直角三角形,,∵,∴,∴,∴,∴,∴,∵的面积,即,∴,∴,故选:B .11.一支笔3元,支笔的钱数(答案不唯一)【分析】本题考查了代数式表示的实际意义,结合实际生活即可求解.【解答】解:可表示一支笔3元,支笔的钱数,0x =PBC 2y a =P DE DE BC ∥PBC y a =P E AED △EBC 12BC EF a ⨯=P A 0x =PBC 2y a =P D 2x a =PBC y a =x a =2x a =PBC y a =P DE DE BC ∥PBC y a =P E AED △AE ED x a ===DE BC ∥1AE AD EF CD==AF EF a ==AD ==2AC AD ==4BC a ==EBC 12BC EF a ⨯=142a a a ⨯⨯=12a =1422BC =⨯=n 3n n故答案为:一支笔3元,支笔的钱数(答案不唯一)12.【分析】本题考查了二元一次方程组的求解,掌握消元法是解题关键.【解答】解:由①得:③,将③代入②得:,解得:,将代入①得:∴原方程组的解为:,故答案为:13.【分析】本题主要考查了树状图法或列表法求解概率,先画出树状图得到所有等可能性的结果数,再找到这三个年级选择的文艺项目相同的结果数,最后依据概率计算公式求解即可.【解答】解:设用A 、B 表示两部文艺项目,画树状图如下:由树状图可知,一共有8种等可能性的结果数,其中这三个年级选择的文艺项目相同的结果数有2种,n 12x y =⎧⎨=⎩25238x y x y +=⎧⎨+=⎩①②52x y =-()25238y y -+=2y =2y =5221x =-⨯=12x y =⎧⎨=⎩12x y =⎧⎨=⎩14∴这三个年级选择的文艺项目相同的概率为,故答案为:.14【分析】本题考查了切线的性质,圆周角定理,解直角三角形,等腰三角形的性质等,作出辅助线,构造直角三角形,是求解的关键.连接,,根据等腰三角形可求出,可证 ,求出,为等边三角形,根据切线的性质,可证,再证,在直角三角形中,解直角三角形即可求解.【解答】解:如图,连接,∵,,∴,∵为直径,∴,在中,,,∴,∵∴是等边三角形,∴,∵是切线,∴,∴,∴,又∵,,∴,∴2184=14OD AD 30B ∠=︒AD BD ⊥2AD =OAD △30ADE ∠=︒DE AE ⊥ADE ,OD OA AB AC =120BAC ∠=︒30B C ∠=∠=︒AB AD BD ⊥Rt ABD 30B ∠=︒4AB =2AD =2OA OD AD ===OAD 60ADO ∠=︒DE OD DE ⊥90ODA ADE ∠+∠=︒30ADE ∠=︒AB AC =AD BD ⊥1260DAE BAC ∠=∠=︒90AED ∠=︒在中,,,∴,15.【分析】本题考查了矩形的性质,全等三角形的判定与性质,等边三角形的性质,掌握分类讨论是解题的关键.先证明,当时,;当时,为正三角形,运用勾股定理求解即可.【解答】解:,,,,,,分情况解答:①时,则,,;②时,,,为正三角形,,,则③,不存在,故答案为:Rt ADE 30ADE ∠=︒2AB =1AE =DE ==12() ≌ADE BCE SAS 90BEF ∠=︒1122BC CE CD ===90BFE ∠=︒BEF △AD BC = DE CE =D C ∠=∠(SAS)ADE BCE ∴△≌△AE BE ∴=AED BEC ∠=∠90BEF ∠=︒45AED BEC ∠=∠=︒1122BC CE CD ∴===12α∴=90BFE ∠=︒1122EF AE BE ∴==60BEF ∴∠=︒BEA ∴ 1BE AB ∴==12CE ∴=BC ==α∴90FBE ∠=︒12α=16.(1);(2)【分析】本题考查了实数的混合运算,整式的化简,完全平方公式,解题的关键是熟练掌握实数的运算法则,(1)根据实数的运算法则即可解答;(2)先去括号再合并即可,【解答】解:(1)原式;(2)原式17.(1),(2)七年级,见解析(3)210人【分析】本题考查频数分布直方图,中位数、众数及用样本估计总体,理解中位数、众数的定义,掌握中位数的计算方法是正确解答的关键.(1)根据中位数、众数的定义直接求解即可;(2)从七、八年级的中位数进行分析,即可得出甲同学是七年级的同学;(3)先求出从抽取的50名学生中参加消防安全知识竞赛得人数,再结合统计图给出的数据,即可得出答案.【解答】(1)解:∵从七年级随机抽取名同学进行测试,∴中位数是第,名学生的成绩的平均数,∵,,三组的数据为、、,∴第,名学生的成绩在这一组,由这一组的成绩可知:第,名学生的成绩为、,∴,∵这一组中,82出现4次,次数最多,∴七年级成绩的众数不能小于4,由七年级成绩的频数分布直方图可知:成绩在一组的人数为,232y 111232=-+23=2224444x xy y x xy=++--2y =825060x ≤<5025265060x ≤<6070x ≤<7080x ≤<251425268090x ≤<8090x ≤<252682828282822m +==8090x ≤<5060x ≤<24<∴七年级成绩的众数不可能在组.故答案为:,(2)甲同学是七年级的同学,理由如下:∵,八年级成绩的中位数为,,∴甲同学是七年级的同学.(3)∵七年级成绩在分以下的有(人),∴七年级需要参加消防安全知识培训的人数为(人),答:七年级名同学需要参加消防安全知识培训.18.(1)见解析(2)见解析【分析】本题主要考查作等边三角形,等边三角形的性质以及全等三角形的判定与性质:(1)分别以点C ,D 为圆心,为半径画弧,两弧在的上方相交于点E ,连接,则等边三角形即为所求作;(2)根据证明,可得【解答】(1)解:如图,即为所求作;(2)证明:是等边三角形,即,19.(1)(3)5060x ≤<825060x ≤<82m =85828385<<80251421++=2150021050⨯=210CD CD ,CE DE CDE SAS BCD ACE ≌BD AE=CDE ,ABC CDE △△,,60CA CB CE CD ACB ECD ∴==∠=∠=︒ACB ACD ECD ACD ∴∠-∠=∠-∠BCD ACE∠=∠即BCD ACE ∴ ≌BD AE∴=4y x=246π-【分析】(1)将代入,可求,进而可得反比例函数的解析式;(2)由题意知,,计算求解即可;(3)根据,计算求解即可.【解答】(1)解:将代入得,,解得,,∴反比例函数的解析式为;(2)解:由题意知,∴,∴;(3)解:由题意知,,∴图中阴影部分面积之和为.【点拨】本题考查了反比例函数解析式,反比例函数与几何综合,弧长,扇形面积等知识.熟练掌握反比例函数解析式,反比例函数与几何综合,弧长,扇形面积是解题的关键.20.南水北调第一楼的高度约为109.3米【分析】本题考查了解直角三角形的应用,过P 作交的延长线于点D ,则米,根据等腰直角三角形的性质可得,在中,利用锐角三角形函数求解即可.【解答】解:过P 作交的延长线于点D ,则米,在中,,∴,在中,,∴,.()2,2A k y x=4k =CE OC OA ==== EG ABCD CEFG BGD ECG S S S S S =-+-阴影正方形正方形扇形扇形()2,2A k y x =22k =4k =4y x=CE OC OA ==== EG == EG ABCD CEFG BGD ECGS S S S S =-+-阴影正方形正方形扇形扇形(2229044360π⋅=-+246π=-246π-AB PD BA ⊥BA 136.65BD PC ====136.65PD BD Rt PAD PD BA ⊥BA 136.65BD PC ==Rt PBD 45BPD ∠=︒==136.65PD BD Rt PAD 11.3APD ∠=︒tan11.3136.650.20027.33AD PD =⋅≈⨯=︒136.6527.33109.32109.3AB BD AD ∴=-=-=≈答:南水北调第一楼的高度约为109.3米.21.(1)2880元(2)按照A 种纪念币购进100枚,B 种纪念币购进50枚的进货方案,才能使利润最大,最大利润为3600元【分析】本题考查了一元一次不等式的应用、一次函数的应用,解题的关键是:(1)根据题意分别计算两种纪念币的利润,即可求解;(2)设购进x 枚A 种纪念币,则购进枚B 种纪念币,获利y 元,根据题意分别列出关于y 与x 的一次函数,关于x 的一元一次不等式,从而求得,再根据一次函数的性质求解即可.【解答】(1)解:由题意得,(元),答:全部售完后获利2880元;(2)解:设购进x 枚A 种纪念币,则购进枚B 种纪念币,获利y 元.由题意得:,∵A 种纪念币的进货数量不超过B 种纪念币的进货数量的2倍,,∴,∵,,∴y 随x 的增大而减小,当时,(元),∴B 种纪念币的数量为(枚),答:按照A 种纪念币购进100枚,B 种纪念币购进50枚的进货方案,才能使利润最大,最大利润为3600元.AB (150)x -100x ≤()()6645809060402880-⨯+-⨯=(150)x -()()()6645906015094500y x x x =-+--=-+()2150x x ∴≤-100x ≤=94500y x -+90k =-<100x =910045003600y =-⨯+=最小15010050-=22.任务1:见解析,;任务2:4个;任务3:最左边一盏灯笼悬挂点的横坐标为【分析】本题考查了二次函数的应用,一元一次不等式组的应用;任务1:以中点为原点,以所在直线为轴建立平面直角坐标系,可得抛物线的顶点,且过点,然后利用待定系数法求解即可;任务2:设悬挂个灯笼,先根据“间隔在之间”列不等式求解,再根据“悬挂灯笼的数量为双数”得出答案;任务3:先求出间隔的距离,然后计算即可.【解答】解:任务1:以中点为原点,以所在直线为轴,建立如图所示的平面直角坐标系,∵矩形的宽为,高为,抛物线形拱的高为,∴抛物线的顶点,且过点,设抛物线的解析式为:,把点代入得:,解得:,所以抛物线的解析式为:;任务2:设悬挂个灯笼,依题意得:,解得:,因为灯笼的个数为双数,所以符合悬挂条件的灯笼数量为4个;221425y x =-+3310-BC O BC x ()0,14P ()5,12D x 0.8-1.5m BC O BC x 10m 12m 2m ()0,14P ()5,12D 214y ax =+()5,12D 122514a =+225a =-221425y x =-+x ()()0.8110 1.51x x x +≤-≤+213559x ≤≤任务3:由题意得间隔为,所以最左边一盏灯笼悬挂点的横坐标为.23.(1)(2)①90°,见解析;【分析】本题主要考查勾股定理以及逆定理,一次函数图象,轴对称的性质,中心对称的性质(1)根据轴对称和中心对称的性质以及勾股定理以及逆定理求解即可;(2)①连接,可得,进而即可求解;②先推出,再根据勾股定理求解即可;(3)分当点P 在正方形外部时,当点P 在正方形内部时,结合勾股定理求解即可【解答】(1)解:连接,∵,∴,∴,∴点可以看作是点绕点顺时针旋转得到的,旋转角的度数为,∵共线,∴点可以看作是点关于点的对称点,故答案为:;()61045m 5-÷=613355210-++=-90,O︒1112323PD P D P D P P 、、、112PDC PDC PDB P DB ∠=∠∠=∠,3290P DP ∠=︒322OA OA OA AA ,,,22OA OA AA =====22222OA OA AA =+290AOA ∠=︒2A A O 90︒3O A A O ===3A O A 、、3A A O 90O ︒,(2)①解:连接由对称性可得:,∴;②由(1)可知:共线,∴∵,∴;(3)解:①当点P 在正方形外部时,连接,过点作,则,,∴,∴∴;②当点P 在正方形内部时,连接,过点作,则,,12323PD P D P D P P 、、、112PDC PDCPDB P DB ∠=∠∠=∠,()2112224590PDP PDC PDB BDC ∠=∠+∠=∠=⨯︒=︒3P D P 、、321809090P DP ∠=︒-︒=︒32DP DP DP m ===23P P ==12PP 1P12PH DP ⊥()122453030PDP ∠=⨯︒-︒=︒12DP DP DP ===1HP HD ==2HP =121PP ==-12PP 1P12PH DP ⊥()1223045150PDP ∠=⨯︒+︒=︒12DP DP DP ==∴,∴,∴∴,综上所述:130PDH ∠=︒1HP HD ==2HP =121PP ==121PP =1。
中考数学模拟测试题(附有答案)
中考数学模拟测试题(附有答案)(满分:120分考试时间120分钟)第Ⅰ卷(选择题共30分)一选择题:本大题共10小题共30.0分。
在每小题给出的四个选项中只有一项是正确的,请把正确的选项选出来.每小题选对得3分选错不选或选出的答案超过一个均记零分. 211.下列实数中有理数是()A. √12B. √13C. √14D. √152.下列计算正确的是()A. a3+a2=a5B. a3÷a2=aC. 3a3⋅2a2=6a6D. (a−2)2=a2−43.如图AB//CD点E F在AC边上已知∠CED=70°∠BFC=130°则∠B+∠D的度数为()A. 40°B. 50°C. 60°D. 70°(第3题图)4.如图是我们数学课本上采用的科学计算器面板利用该型号计算器计算√23cos35°按键顺序正确的是()A.B.C.D.5.如图二次函数y=ax2+bx+c的图象的对称轴为x=−12且经过点(−2,0)下列说法错误的是()A. bc<0B. a=bC. 当x1>x2≥−12时D. 不等式ax 2+bx +c <0的解集是−2<x <32(第5题图)6. 《九章算术》是古代中国第一部自成体系的数学专著 其中《卷第八方程》记载:“今有甲乙二人持钱不知其数 甲得乙半而钱五十 乙得甲太半而亦钱五十 问甲 乙持钱各几何?”译文是:今有甲 乙两人持钱不知道各有多少 甲若得到乙所有钱的12 则甲有50钱 乙若得到甲所有钱的23 则乙也有50钱.问甲 乙各持钱多少?设甲持钱数为x 钱 乙持钱数为y 钱 列出关于x y 的二元一次方程组是( )A. {x +2y =5032x +y =50B. {x +12y =5023x +y =50B. C. {x +12y =5032x +y =50D. {x +23y =5012x +y =507. 如图 直角坐标系中 以5为半径的动圆的圆心A 沿x 轴移动 当⊙A 与直线l :y =512x 只有一个公共点时 点A 的坐标为( )A. (−12,0)B. (−13,0)C. (±12,0)D. (±13,0)(第7题图)8. 已知反比例函数y =bx 的图象如图所示 则一次函数y =cx +a 和二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( )A. B.C. D.9. 对于任意的有理数a b 如果满足a 2+b 3=a+b 2+3那么我们称这一对数a b 为“相随数对” 记为(a,b).若(m,n)是“相随数对” 则3m +2[3m +(2n −1)]=( ) A. −2B. −1C. 2D. 310. 如图 在正方形ABCD 中 E F 分别是AB BC 的中点 CE DF 交于点G 连接AG.下列结论:①CE =DF ②CE ⊥DF ③∠AGE =∠CDF.其中正确的结论是( ) A. ①② B. ①③ C. ②③ D. ①②③(第10题图)第Ⅱ卷(非选择题 共90分)二 填空题:本大题共8小题 其中11-14题每小题3分 15-18题每小题4分 共28分.只要求填写最后结果.11. “先看到闪电 后听到雷声” 那是因为在空气中光的传播速度比声音快.科学家发现 光在空气里的传播速度约为3×108米/秒 而声音在空气里的传播速度大约为3×102米/秒 在空气中声音的速度是光速的_______倍.(用科学计数法表示) 12. 分解因式:ax 2+2ax +a =______.13. “共和国勋章”获得者 “杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻 中国境外种植面积达800万公顷.某村引进了甲 乙两种超级杂交水稻品种 在条件(肥力 日照 通风…)不同的6块试验田中同时播种并核定亩产 统计结果为:x 甲−=1042kg/亩 s 甲2=6.5 x 乙−=1042kg/亩 s 乙2=1.2 则______ 品种更适合在该村推广.(填“甲”或“乙”)14. 从不等式组{x −3(x −2)≤42+2x 3≥x −1的所有整数解中任取一个数 它是偶数的概率是______.15. 如图 △ABC 中 ∠B =30° 以点C 为圆心 CA 长为半径画弧 交BC 于点D 分别以点A D 为圆心大于12AD 的长为半径画弧两弧相交于点E 作射线CE 交AB 于点F FH ⊥AC 于点H.若FH =√2 则BF 的长为______.16.如图从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形则此扇形的面积为______dm2.17.如图在Rt△OAB中∠AOB=90°OA=OB AB=1作正方形A1B1C1D1使顶点A1B1分别在OA OB上边C1D1在AB上类似地在Rt△OA1B1中作正方形A2B2C2D2在Rt△OA2B2中作正方形A3B3C3D3…依次作下去则第n个正方形A n B n C n D n的边长是______.(15题图)(16题图)(17题图)18.已知正方形ABCD的边长为3E为CD上一点连接AE并延长交BC的延长线于点F过点D作DG⊥AF交AF于点H交BF于点G N为EF的中点M为BD上一动点分别连接MC MN.若S△DCGS△FCE =14则MN+MC的最小值为______.(18题图)三解答题:本大题共7小题共62分.解答要写出必要的文字说明证明过程或演算步骤.19.(本题满分8分第(1)题3分第(2)题5分)(1)计算:(π−2021)0−3tan30°+|1−√3|+(12)−2.(2)先化简再求值:x−3x2−8x+16÷x−3x2−16−xx−4其中x=√2+4.20.(本题满分8分)为引导学生知史爱党知史爱国某中学组织全校学生进行“党史知识”竞赛该校德育处随机抽取部分学生的竞赛成绩进行统计将成绩分为四个等级:优秀良好一般不合格并绘制成两幅不完整的统计图.(第20题图)根据以上信息解答下列问题:(1)德育处一共随机抽取了______名学生的竞赛成绩在扇形统计图中表示“一般”的扇形圆心角的度数为______(2)将条形统计图补充完整(3)该校共有1400名学生估计该校大约有多少名学生在这次竞赛中成绩优秀?(4)德育处决定从本次竞赛成绩前四名学生甲乙丙丁中随机抽取2名同学参加全市“党史知识”竞赛请用树状图或列表法求恰好选中甲和乙的概率.21.(本题满分8分)如图△ABC内接于⊙O AB是⊙O的直径E为AB上一点BE=BC延长CE交AD于点D AD=AC.(1)求证:AD是⊙O的切线(2)若tan∠ACE=1OE=3求BC的长.3(第21题图)22.(本题满分8分)某工厂生产并销售A B两种型号车床共14台生产并销售1台A型车床可以获利10万元如果生产并销售不超过4台B型车床则每台B型车床可以获利17万元如果超出4台B型车床则每超出1台每台B型车床获利将均减少1万元.设生产并销售B型车床x台.(1)当x>4时完成以下两个问题:①请补全下面的表格:②若生产并销售B型车床比生产并销售A型车床获得的利润多70万元问:生产并销售B型车床多少台?(2)当0<x≤14时设生产并销售A B两种型号车床获得的总利润为W万元如何分配生产并销售AB两种车床的数量使获得的总利润W最大?并求出最大利润.23.(本题满分8分)如图在景区新建了一座垂直观光电梯.某测绘兴趣小组为测算电梯AC的高度测得斜坡AB=105米坡度i=1:2在B处测得电梯顶端C的仰角α=45°求观光电梯AC的高度.(参考数据:√2≈1.41√3≈1.73√5≈2.24.结果精确到0.1米)(第23题图)24.(本题满分10分)已知正方形ABCD E F为平面内两点.(第24题图)【探究建模】(1)如图1当点E在边AB上时DE⊥DF且B C F三点共线.求证:AE=CF【类比应用】(2)如图2当点E在正方形ABCD外部时DE⊥DF AE⊥EF且E C F三点共线.猜想并证明线段AE CE DE之间的数量关系【拓展迁移】(3)如图3当点E在正方形ABCD外部时AE⊥EC AE⊥AF DE⊥BE且D F E三点共线DE与AB交于G点.若DF=3AE=√2求CE的长.x2+bx+c与坐标轴交于A(0,−2)B(4,0) 25.(本题满分12分)如图在平面直角坐标系中抛物线y=12两点直线BC:y=−2x+8交y轴于点C.点D为直线AB下方抛物线上一动点过点D作x轴的垂线垂足为G DG分别交直线BC AB于点E F.x2+bx+c的表达式(1)求抛物线y=12(2)当GF=1时连接BD求△BDF的面积2(3)①H是y轴上一点当四边形BEHF是矩形时求点H的坐标②在①的条件下第一象限有一动点P满足PH=PC+2求△PHB周长的最小值.(第25题图)参考答案与解析1.【答案】C【解析】解:A.√12=√22不是有理数不合题意B.√13=√33不是有理数不合题意C.√14=12是有理数符合题意D.√15=√55不是有理数不合题意故选:C.2.【答案】B【解析】解:a3a2不是同类项因此不能用加法进行合并故A项不符合题意根据同底数幂的除法运算法则a3÷a2=a故B项符合题意根据单项式乘单项式的运算法则可得3a3⋅2a2=6a5故C项不符合题意根据完全平方公式展开(a−2)2=a2−4a+4故D项不符合题意.故选:B.3.【答案】C【解析】解:∵∠BFC=130°∴∠BFA=50°又∵AB//CD∴∠A+∠C=180°∵∠B+∠A+∠BFA+∠D+∠C+∠CED=360°∴∠B+∠D=60°故选:C.4.【答案】B【解析】解:根据计算器功能键正确的顺序应该是B.故选:B.5.【答案】D【解析】解:由图象可得b>0c<0则bc<0故选项A正确∵该函数的对称轴为x=−12∴−b2a =−12化简得b=a故选项B正确∵该函数图象开口向上 该函数的对称轴为x =−12 ∴x ≥−12时 y 随x 的增大而增大当x 1>x 2≥−12时 y 1>y 2 故选项C 正确 ∵图象的对称轴为x =−12 且经过点(−2,0) ∴图象与x 轴另一个交点为(1,0)不等式ax 2+bx +c <0的解集是−2<x <1 故选项D 错误 故选:D .6.【答案】B【解析】解:设甲 乙的持钱数分别为x y 根据题意可得:{x +12y =5023x +y =50故选:B .7.【答案】D【解析】解:当⊙A 与直线l :y =512x 只有一个公共点时 直线l 与⊙A 相切 设切点为B 过点B 作BE ⊥OA 于点E 如图∵点B 在直线y =512x 上 ∴设B(m,512m) ∴OE =−m在Rt △OEB 中 tan∠AOB =BEOE =512. ∵直线l 与⊙A 相切 ∴AB ⊥BO .在Rt△OAB中tan∠AOB=ABOB =512.∵AB=5∴OB=12.∴OA=√AB2+OB2=√52+122=13.∴A(−13,0).同理在x轴的正半轴上存在点(13,0).故选:D.8.【答案】D【解析】解:∵反比例函数的图象在二四象限∴b<0A∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限A错误B∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾B错误C∵二次函数图象开口向下对称轴在y轴右侧∴a<0b>0∴与b<0矛盾C错误D∵二次函数图象开口向上对称轴在y轴右侧交y轴的负半轴∴a>0b<0c<0∴一次函数图象应该过第一二四象限D正确.故选:D.9.【答案】A【解析】解:因为(m,n)是“相随数对”所以m2+n3=m+n2+3所以3m+2n6=m+n5即9m+4n=0所以3m+2[3m+(2n−1)]=3m+2[3m+2n−1]=3m+6m+4n−2=9m+4n−2=0−2=−2故选:A.10.【答案】D【解析】解:∵四边形ABCD是正方形∴AB=BC=CD=AD∠B=∠BCD=90°∵E F分别是AB BC的中点∴BE=12AB CF=12BC∴BE=CF在△CBE与△DCF中{BC=CD∠B=∠BCD BE=CF∴△CBE≌△DCF(SAS)∴∠ECB=∠CDF CE=DF故①正确∵∠BCE+∠ECD=90°∴∠ECD+∠CDF=90°∴∠CGD=90°∴CE⊥DF故②正确∴∠EGD=90°在Rt△CGD中取CD边的中点H连接AH交DG于K ∴HG=HD=12CD∴Rt△ADH≌Rt△AGH(HL)∴AG=AD∴∠AGD=∠ADG∵∠AGE+∠AGD=∠ADG+∠CDF=90°∴∠AGE=∠CDF故③正确故选:D .11.【答案】1×10−6【解析】【解答】解:3×102米/秒÷(3×108)米/秒=10−6故答案为1×10−6.12.【答案】a(x +1)2【解析】解:ax 2+2ax +a=a(x 2+2x +1)--(提取公因式)=a(x +1)2.--(完全平方公式)13.【答案】乙【解析】解:∵x 甲−=1042kg/亩 x 乙−=1042kg/亩 s 甲2=6.5s 乙2=1.2∴x 甲−=x 乙− S 甲2>S 乙2∴产量稳定 适合推广的品种为乙故答案为:乙.14.【答案】25 【解析】解:∵{x −3(x −2)≤4①2+2x3≥x −1②由①得:x ≥1由②得:x ≤5∴不等式组的解集为:1≤x ≤5∴整数解有:1 2 3 4 5∴它是偶数的概率是25.故答案为25.15.【答案】2√2【解析】解:过F 作FG ⊥BC 于G由作图知 CF 是∠ACB 的角平分线∵FH ⊥AC 于点H.FH =√2∴FG=FH=√2∵∠FGB=90°∠B=30°.∴BF=2FG=2√2故答案为:2√2.16.【答案】2π【解析】解:连接AC∵从一块直径为4dm的圆形铁皮上剪出一个圆心角为90°的扇形即∠ABC=90°∴AC为直径即AC=4dm AB=BC(扇形的半径相等)∵AB2+BC2=22∴AB=BC=2√2dm∴阴影部分的面积是90⋅π⋅(2√2)2360=2π(dm2).故答案为:2π.17.【答案】13n【解析】解:法1:过O作OM⊥AB交AB于点M交A1B1于点N如图所示:∵A1B1//AB∴ON⊥A1B1∵△OAB为斜边为1的等腰直角三角形∴OM=12AB=12又∵△OA1B1为等腰直角三角形∴ON=12A1B1=12MN∴ON:OM=1:3∴第1个正方形的边长A1C1=MN=23OM=23×12=13同理第2个正方形的边长A2C2=23ON=23×16=132则第n个正方形A n B n D n C n的边长13n法2:由题意得:∠A=∠B=45°∴AC1=A1C1=C1D1=B1D1=BD1AB=1∴C1D1=13AB=13同理可得:C2D2=13A1B1=132AB=132依此类推C n D n=13n.故答案为13n.18.【答案】2√10【解析】解:∵四边形ABCD是正方形∴A点与C点关于BD对称∴CM=AM∴MN+CM=MN+AM≥AN∴当A M N三点共线时MN+CM的值最小∵AD//CF∴∠DAE=∠F∵∠DAE+∠DEH=90°∵DG⊥AF∴∠CDG+∠DEH=90°∴∠DAE=∠CDG∴∠CDG=∠F∴△DCG∽△FCE∵S△DCGS△FCE =14∴CDCF =12∵正方形边长为3∴CF=6∵AD//CF∴ADCF =DECE=12∴DE=1CE=2在Rt△CEF中EF2=CE2+CF2∴EF=√22+62=2√10∵N是EF的中点∴EN=√10在Rt△ADE中EA2=AD2+DE2∴AE=√32+12=√10∴AN=2√10∴MN+MC的最小值为2√10故答案为:2√10.19.(1)【答案】解:(π−2021)0−3tan30°+|1−√3|+(12)−2=1−3×√33+√3−1+4=1−√3+√3−1+4=4.(2)【答案】解:原式=x−3(x−4)2⋅(x+4)(x−4)x−3−xx−4=x+4x−4−xx−4=4x−4.把x=√2+4代入原式=√2+4−4=2√2.20.【答案】40108°【解析】解:(1)德育处一共随机抽取的学生人数为:16÷40%=40(名)则在条形统计图中成绩“一般”的学生人数为:40−10−16−2=12(名)∴在扇形统计图中成绩“一般”的扇形圆心角的度数为:360°×1240=108°故答案为:40108°(2)把条形统计图补充完整如下:(3)1400×1040=350(名)即估计该校大约有350名学生在这次竞赛中成绩优秀(4)画树状图如图:共有12种等可能的结果恰好选中甲和乙的结果有2种∴恰好选中甲和乙的概率为212=16.21.【答案】解:(1)∵AB是⊙O的直径∴∠ACB=90°即∠ACE+∠BCE=90°∵AD=AC BE=BC∴∠ACE=∠D∠BCE=∠BEC又∵∠BEC=∠AED∴∠AED+∠D=90°∴∠DAE=90°即AD⊥AE∵OA是半径∴AD是⊙O的切线(2)由tan∠ACE=13=tan∠D可设AE=a则AD=3a=AC ∵OE=3∴OA=a+3AB=2a+6∴BE=a+3+3=a+6=BC在Rt△ABC中由勾股定理得AB2=BC2+AC2即(2a+6)2=(a+6)2+(3a)2解得a1=0(舍去)a2=2∴BC=a+6=8.22.【答案】解:(1)①由题意得生产并销售B型车床x台时生产并销售A型车床(14−x)台当x>4时每台B型车床可以获利[17−(x−4)]=(21−x)万元.故答案应为:14−x21−x②由题意得方程10(14−x)+70=[17−(x−4)]x解得x1=10x2=21(舍去)答:生产并销售B型车床10台(2)当0<x≤4时总利润W=10(14−x)+17x整理得W=7x+140∵7>0∴当x=4时总利润W最大为7×4+140=168(万元)当x>4时总利润W=10(14−x)+[17−(x−4)]x整理得W=−x2+11x+140∵−1<0=5.5时总利润W最大∴当x=−112×(−1)又由题意x只能取整数∴当x=5或x=6时∴当x=5时总利润W最大为−52+11×5+140=170(万元)又∵168<170∴当x=5或x=6时总利润W最大为170万元而14−5=914−6=8答:当生产并销售A B两种车床各为9台5台或8台6台时使获得的总利润W最大最大利润为170万元.23.【答案】解:过B作BM⊥水平地面于M BN⊥AC于N如图所示:则四边形AMBN是矩形∴AN=BM BN=MA∵斜坡AB=105米坡度i=1:2=BMAM∴设BM=x米则AM=2x米∴AB=√BM2+AM2=√x2+(2x)2=√5x=105∴x=21√5∴AN=BM=21√5(米)BN=AM=42√5(米)在Rt△BCN中∠CBN=α=45°∴△BCN是等腰直角三角形∴CN=BN=42√5(米)∴AC=AN+CN=21√5+42√5=63√5≈141.1(米)答:观光电梯AC的高度约为141.1米.24.【答案】(1)证明:如图1中∵四边形ABCD是正方形∴DA=DC∠A=∠ADC=∠DCB=∠DCF=90°∵DE⊥DF∴∠EDF=∠ADC=90°∴∠ADE=∠CDF在△DAE和△DCF中{∠ADE=∠CDF DA=DC∠A=∠DCF∴△DAE≌△DCF(ASA)∴AE=CF.(2)解:结论:EA+EC=√2DE.理由:如图2中连接AC交DE于点O过点D作DK⊥EC于点K DJ⊥EA交EA的延长线于点J.∵四边形ABCD是正方形△DEF是等腰直角三角形∴∠DAO=∠OEC=45°∵∠AOD=∠EOC∴△AOD∽△EOC∴AOEO =ODOC∴AOOD =OEOC∵∠AOE=∠DOC∴△AOE∽△DOC∴∠AEO=∠DCO=45°∴∠DEJ=∠DEK∵∠J=∠DKE=90°ED=ED∴△EDJ≌△EDK(AAS)∴EJ=EK DJ=DK∵∠J=∠DKC=90°DJ=DK DA=DC∴Rt△DJA≌Rt△DKC(HL)∴AJ=CK∴EA+EC=EJ−AJ+EK+CK=2EJ∵DE=√2EJ∴EA+EC=√2DE.(3)解:如图3中连接AC取AC的中点O连接OE OD.∵四边形ABCD是正方形AE⊥EC∴∠AEC=∠ADC=90°∵OA=OC∴OD=OA=OC=OE∴A E C D四点共圆∴∠AED=∠ACD=45°∴∠AEC=∠DEC=45°由(2)可知AE+EC=√2DE∵AE⊥AF∴∠EAF=90°∴∠AEF=∠AFE=45°∴AE=AF=√2∴EF=√2AE=2∵DF=3∴DE=5∴√2+EC=5√2∴EC=4√2.25.【答案】解:(1)∵抛物线y=12x2+bx+c过A(0,−2)B(4,0)两点∴{c=−28+4b+c=0解得{b=−32 c=−2∴y=12x2−32x−2.(2)∵B(4,0)A(0,−2)∴OB=4OA=2∵GF⊥x轴OA⊥x轴在Rt△BOA和Rt△BGF中tan∠ABO=OAOB =GFGB即24=12GB∴GB=1∴OG=OB−GB=4−1=3当x=3时y D=12×9−32×3−2=−2∴D(3,−2)即GD=2∴FD=GD−GF=2−12=32∴S△BDF=12⋅DF⋅BG=12×32×1=34.(3)①如图1中过点H作HM⊥EF于M ∵四边形BEHF是矩形∴EH//BF EH=BF∴∠HEF=∠BFE∵∠EMH=∠FGB=90°∴△EMH≌△FGB(AAS)∴MH=GB EM=FG∵HM=OGOB=2∴OG=GB=12∵A(0,−2)B(4,0)x−2∴直线AB的解析式为y=12a−2)设E(a,−2a+8)F(a,12由MH=BG得到a−0=4−a∴a=2∴E(2,4)F(2,−1)∴FG=1∵EM=FG∴4−y H=1∴y H=3∴H(0,3).②如图2中BH=√OH2+OB2=√32+42=5∵PH=PC+2∴△PHB的周长=PH+PB+HB=PC+2+PB+5=PC+PB+7要使得△PHB的周长最小只要PC+PB的值最小∵PC+PB≥BC∴当点P在BC上时PC+PB=BC的值最小∵BC=√OC2+OB2=√82+42=4√5∴△PHB的周长的最小值为4√5+7.第21页共21页。
山东省数学中考模拟卷(1)
山东省数学中考模拟卷(1)一.选择题(共8小题,满分24分,每小题3分)1.(3分)下列实数中是无理数的为()A.0B.﹣3.6C.D.2.(3分)某球形病毒直径的约为0.000063米,将0.000063用科学记数法表示为()A.6.3×10﹣5B.6.3×10﹣4C.63×10﹣6D.63×10﹣53.(3分)下列图形是中心对称图形的是()A.B.C.D.4.(3分)函数y=+(x﹣5)﹣2中自变量x的取值范围是()A.x≥3且x≠5B.x>3且x≠5C.x<3且x≠5D.x≤3且x≠5 5.(3分)在如图所示的尺规作图中,与AD相等的线段是()A.线段AC B.线段BD C.线段DC D.线段DE6.(3分)若二次函数y=x2+bx+c的图象的对称轴是经过点(2,0)且平行于y轴的直线,且过点(5,5),则关于x的方程x2+bx+c=5的解为()A.x1=0或x2=4B.x1=1或x2=5C.x1=﹣1或x2=5D.x1=1或x2=﹣57.(3分)如图,△ABC与△DEF位似,点O为位似中心,且B为OE的中点,则△ABC 与△DEF的面积比为()A.1:2B.1:3C.1:4D.1:58.(3分)如图,四边形ABCD是矩形,AB=4,BC=6,点O是线段BD上一动点,EF、GH过点O,EF∥AB,交AD于点E,交BC于点F,GH∥BC,交AB于点G,交DC 于点H,四边形AEOG的面积记为S,GB=a,则S关于a的函数关系图象是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)9.(3分)m2﹣=(m+)(﹣n2).10.(3分)若关于x的方程=的解为x=1,则a的值是.11.(3分)如图,在△ABC中,O为BC边上的一点,以O为圆心的半圆分别与AB,AC 相切于点M,N.已知∠BAC=120°,AB+AC=16,的长为π,则图中阴影部分的面积为.12.(3分)在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程的两个实数根,则△ABC的周长为.13.(3分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y 轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=,则BN的长为.14.(3分)如图,已知点P是正方形ABCD对角线BD上一点,且AP=3,PF⊥CD于点F,PE⊥BC于点E,连结EF,则EF的长为.三.解答题(共10小题,满分78分)15.(4分)计算:(﹣)﹣1+tan60°﹣|2﹣|+(π﹣3)0﹣.16.(6分)已知x是不等式组的整数解,选取一个合适的x值,进行化简求值:(﹣)÷17.(6分)如图,已知菱形ABCD中,AB=6,∠B=60°,E是BC边上一动点,F是CD 边上一动点,且BE=CF,连接AE、AF.(1)∠EAF的度数是;(2)求证:AE=AF;(3)延长AF交BC的延长线于点G,当∠BAE=30°时,求点F到BG的距离18.(6分)某校为了更好的记录学生们在秋季运动会中精彩的瞬间,学校特意邀请了一名摄影师携带无人机来进行航拍.如图,摄影师在水平地面上点A测得无人机位置点C的仰角为53°;当摄影师迎着坡度为1:2.4的斜坡从点A走到点B时,无人机的位置恰好从点C水平飞到点D,此时,摄影师在点B测得点D的仰角为45°,其中AB=2.6米,CD=3米,无人机与水平地面之间的距离始终保持不变,且A、B、C、D四点在同一平面内,求无人机距水平地面的高度.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈)19.(10分)“冰墩墩”和“雪容融”作为第24届北京冬奥会和冬残奥会的吉祥物深受大家喜爱.某文旅店订购“冰墩墩”和“雪容融”两种毛绒玩具,花费分别是24000元和10000元,已知“冰墩墩”毛绒玩具的订购单价是“雪容融”毛绒玩具的订购单价的1.2倍,并且订购的“冰墩墩”毛绒玩具的数量比“雪容融”毛绒玩具的数量多100件.(1)求文旅店订购的两种毛绒玩具的单价分别是多少元;(2)该文旅店计划再订购这两种毛绒玩具共200件,其中购进“雪容融”毛绒玩具的数量不超过“冰墩墩”毛线玩具的数量的,该文旅店购进“雪容融”毛绒玩具多少件时?购买两种玩具的总费用最低,最低费用是多少元?20.(8分)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)求△AOB的面积.21.(8分)学生社团是指学生在自愿基础上结成的各种群众性文化、艺术、学术团体.不分年级、由兴趣爱好相近的同学组成,在保证学生完成学习任务和不影响学校正常教学秩序的前提下开展各种活动.某校就学生对“篮球社团、动漫社团、文学社团和摄影社团”四个社团选择意向进行了抽样调查(每人选报一类),绘制了如图所示的两幅统计图(不完整).请根据图中信息,解答下列问题.(1)求扇形统计图中m=,并补全条形统计图;(2)已知该校有1600名学生,请估计“文学社团”共有多少人?(3)在“动漫社团”活动中,甲、乙、丙、丁四名同学表现优秀,现决定从这四名同学中任选两名参加“中学生原创动漫大赛”,请用列表或画树状图的方法求出恰好选中乙、丙两位同学的概率.22.(10分)如图,四边形ABCD内接于⊙O,BC=CD,点E在AB的延长线上,∠ECB =∠DAC.(1)求证:EC是⊙O的切线;(2)若AD=2,∠E=30°,求⊙O的半径.23.(10分)一节数学课上,张老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,P A=1,PB=2,PC=3.你能求出∠APB的度数吗?(1)小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.(2)如图2,若点P是正方形ABCD外一点,P A=,PB=1,PC=,求∠APB 的度数.24.(10分)如图,在平面直角坐标系中,半径为2的⊙O与x轴分别交于点A,B,与y 轴分别交于点C,D,抛物线经过点A,B,C.点P为抛物线上一动点.(1)求抛物线的解析式;(2)若弦CE过AO的中点M,连接DE.求线段DE的长度;(3)连接PO,P A,PC,在抛物线上是否存在点P,使△POA≌△POC?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
中考数学模拟考试卷(附答案解析)
中考数学模拟考试卷(附答案解析)A 卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上) 1. |﹣2023|的结果是( ) A .12023B .2023C .−12023D .﹣20232. 一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )A. B. C. D.3. 月球与地球之间的平均距离约为38.4万公里,38.4万用科学记数法表示为( ) A .38.4×104B .3.84×105C .0.384×106D .3.84×1064.在平面直角坐标系中,将点()3,2P -向右平移3个单位得到点P ',则点P '关于x 轴的对称点的坐标 为( ) A. ()0,2-B. ()0,2C. ()6,2-D. ()6,2--5.下列运算正确的是( ) A .3xy ﹣xy =2 B .x 3•x 4=x 12 C .x ﹣10÷x 2=x ﹣5D .(﹣x 3)2=x 66.某小组8名学生的中考体育分数如下:39,42,44,40,42,43,40,42.该组数据的众数、中位数分别为( ) A .40,42B .42,43C .42,42D .42,417. 如图,Rt △ABC 中,∠ABC =90°,根据尺规作图的痕迹判断以下结论错误的是( )A.DB=DE B.AB=AE C.∠EDC=∠BAC D.∠DAC=∠C8.已知关于x的分式方程xx−2−4=k2−x的解为正数,则k的取值范围是()A.﹣8<k<0 B.k>﹣8且k≠﹣2 C.k>﹣8 且k≠2 D.k<4且k ≠﹣29. 如图,在△ABC中,点D在BC边上,连接AD,点E在AC边上,过点E作EF∥BC,交AD 于点F,过点E作EG∥AB,交BC于点G,则下列式子一定正确的是()A.AEEC =EFCDB.EFCD=EGABC.AFFD=BGGCD.CGBC=AFAD10.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题,共70分)二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上) 11. 把多项式a 3﹣4a 分解因式,结果是 .12. 在平面直角坐标系中,△ABC 和△A 1B 1C 1的相似比等于12,并且是关于原点O 的位似图形,若点A 的坐标为(2,4),则其对应点A 1的坐标是 .13. 如图,△ABC 内接于⊙O ,MH ⊥BC 于点H ,若AC =10,AH =8,⊙O 的半径为7,则AB = .14. 我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x 斗,行酒为y 斗,根据题意,可列方程组为 . 三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上) 15.(8分)(1)计算:0|12sin 45(2020)︒--+-;(2)解不等式组:(1)3,29 3.x x -->⎧⎨+>⎩16.(8分)先化简,再求值:÷(1﹣),其中a=5.17.(10分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.18. (8分)2020年5月5日,为我国载人空间站工程研制的长征五号运载火箭在海南文昌首飞成功.运較火箭从地面O处发射,当火箭到达点A时,地面D处的雷达站测得AD=4000米,仰角为30°.3秒后,火箭直线上升到达点B处,此时地面C处的雷达站测得B处的仰角为45°.已知C,D两处相距460米,求火箭从A到B处的平均速度(结果精确到1米/秒,参考数据:√3≈1.732,√2≈1.414).19.(10分)如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围.20.(10分)如图,AB 是⊙O 的直径,AC 与⊙O 交于点F ,弦AD 平分∠BAC ,DE ⊥AC ,垂足为E .(1)试判断直线DE 与⊙O 的位置关系,并说明理由; (2)若⊙O 的半径为2,∠BAC =60°,求线段EF 的长.B卷(共50分)一、填空题(本大题共5个小題,每小題4分,共20分,答案写在答题卡上)21. 当x=12.代数式(x+1)(x﹣1)+x(2﹣x),的值为________.22. 已知x1,x2是一元二次方程x2﹣4x﹣7=0的两个实数根,则x12+4x1x2+x22的值是.23.如图,已知矩形ABCD的边长分别为a,b,连接其对边中点,得到四个矩形,顺次连接矩形AEFG各边中点,得到菱形I1;连接矩形FMCH对边中点,又得到四个矩形,顺次连接矩形FNPQ各边中点,得到菱形I2;…如此操作下去,得到菱形In,则In的面积是.24.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且△ABP的面积是△AOB的面积的2倍,则点P的横坐标为.25. 如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为.二、解答题(本大题共3个小题,共30分解答过程写在答题卡上)26.(9分)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.27.(9分)如图①,在Rt△ABC中,∠ACB=90°,AC=BC,点D、E分别在AC、BC边上,DC =EC,连接DE、AE、BD,点M、N、P分别是AE、BD、AB的中点,连接PM、PN、MN.(1)BE与MN的数量关系是.(2)将△DEC绕点C逆时针旋转到图②和图③的位置,判断BE与MN有怎样的数量关系?写出你的猜想,并利用图②或图③进行证明.28.(12分)如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线223y x bx c =-++过点B 且与直线相交于另一点53,24C ⎛⎫⎪⎝⎭.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,当PAO BAO ∠=∠时,求点P 的坐标;(3)点5(,0)02N n n ⎛⎫<<⎪⎝⎭在x 轴的正半轴上,点(0,)M m 是y 轴正半轴上的一动点,且满足90MNC ︒∠=.①求m 与n 之间的函数关系式;②当m 在什么范围时,符合条件的N 点的个数有2个?参考答案与解析A 卷第Ⅰ卷(选择题,共30分)一、选择题 1. 【答案】B【解析】根据绝对值的性质直接解答即可. |﹣2023|=2023 2. 【答案】A【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.从正面看所得到的图形为A 选项中的图形. 3. 【答案】B【解析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 38.4万=384000=3.84×105 4.【答案】A【解析】先根据点向右平移3个单位点的坐标特征:横坐标加3,纵坐标不变,得到点P '的坐标,再根据关于x 轴的对称点的坐标特征:横坐标不变,纵坐标变为相反数,得到对称点的坐标即可.∵将点()3,2P -向右平移3个单位, ∴点P '的坐标为:(0,2),∴点P '关于x 轴的对称点的坐标为:(0,-2). 5.【答案】D【解析】分别根据合并同类项法则,同底数幂的乘法法则,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.A .3xy ﹣xy =2xy ,故本选项不合题意;B .x 3•x 4=x 7,故本选项不合题意;C .x ﹣10÷x 2=x ﹣12,故本选项不合题意;D .(﹣x 3)2=x 6,故本选项符合题意.6.【答案】C【解析】先将数据按照从小到大重新排列,再根据众数和中位数的定义求解可得.将这组数据重新排列为39,40,40,42,42,42,43,44,所以这组数据的众数为42,中位数为42+422=427. 【答案】D【分析】证明△ADE≌△ADB即可判断A,B正确,再根据同角的补角相等,证明∠EDC=∠BAC 即可.【解析】由作图可知,∠DAE=∠DAB,∠DEA=∠B=90°,∵AD=AD,∴△ADE≌△ADB(AAS),∴DB=DE,AB=AE,∵∠AEB+∠B=180°∴∠BAC+∠BDE=180°,∵∠EDC+∠BDE=180°,∴∠EDC=∠BAC,故A,B,C正确.8.【答案】B【分析】表示出分式方程的解,根据解为正数确定出k的范围即可.【解析】分式方程xx−2−4=k2−x,去分母得:x﹣4(x﹣2)=﹣k,去括号得:x﹣4x+8=﹣k,解得:x=k+83,由分式方程的解为正数,得到k+83>0,且k+83≠2,解得:k>﹣8且k≠﹣2.9. 【分析】根据平行线分线段成比例性质进行解答便可.【解析】∵EF∥BC,∴AFFD =AEEC,∵EG∥AB,∴AEEC =BGGC,∴AFFD =BGGC,故选:C.10.【答案】C【解析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.抛物线开口向下,a<0,对称轴为x=−b2a=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=−b2a=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,第Ⅱ卷(非选择题,共70分)二、填空题11. 【答案】a(a+2)(a﹣2).【解析】首先提公因式a,再利用平方差进行二次分解即可.原式=a(a2﹣4)=a(a+2)(a﹣2).12. 【解析】(4,8)或(﹣4,﹣8).【分析】利用关于原点对称的点的坐标,把A点横纵坐标分别乘以2或﹣2得到其对应点A1的坐标.【解析】∵△ABC和△A1B1C1的相似比等于12,并且是关于原点O的位似图形,而点A的坐标为(2,4),∴点A对应点A1的坐标为(2×2,2×4)或(﹣2×2,﹣2×4),即(4,8)或(﹣4,﹣8).13. 【答案】565.【分析】作直径AD,连接BD,根据圆周角定理得到∠ABD=90°,∠D=∠C,证明△ABD∽△AHC,根据相似三角形的性质解答即可.【解析】作直径AD,连接BD,∵AD为直径,∴∠ABD=90°,又AH⊥BC,∴∠ABD=∠AHC,由圆周角定理得,∠D=∠C,∴△ABD∽△AHC,∴ABAH =ADAC,即AB8=1410,解得,AB=56514. 【答案】{x+y=250x+10y=30.【分析】根据“现用30钱,买得2斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【解析】依题意,得:{x+y=250x+10y=30.故答案为:{x+y=250x+10y=30.三、解答题15.(8分)(1)计算:0|12sin45(2020)︒--+-;(2)解不等式组:(1)3, 29 3.xx-->⎧⎨+>⎩【答案】(1)0;(2)-3<x<-2【解析】(1)原式1212-⨯+=0;(2)(1)3 293xx-->⎧⎨+>⎩①②,解不等式①得:x<-2,解不等式②得:x>-3,∴不等式组的解集为:-3<x<-2.16.(8分)先化简,再求值:÷(1﹣),其中a=5.【答案】a+2,7.【解析】根据分式的混合运算法则把原式化简,代入计算即可.÷(1﹣)=÷(﹣)=•=a+2,当a=5时,原式=5+2=7.17.(10分)某企业为了解员工安全生产知识掌握情况,随机抽取了部分员工进行安全生产知识测试,测试试卷满分100分.测试成绩按A、B、C、D四个等级进行统计,并将统计结果绘制了如下两幅不完整的统计图.(说明:测试成绩取整数,A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下)请解答下列问题:(1)该企业员工中参加本次安全生产知识测试共有人;(2)补全条形统计图;(3)若该企业共有员工800人,试估计该企业员工中对安全生产知识的掌握能达到A级的人数.【答案】见解析。
2024年中考数学第一次模拟试卷(山西卷)(全解全析)
2024年中考第一次模拟考试(山西卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.18-的相反数是()A.8B.-8C.18-D.18【答案】D【解析】解:18-的相反数是18,故选:D.2.观察下列图案,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】B【解析】解:第一个图案是轴对称图形,不是中心对称图形,故此图案不符合题意;第二个图案是轴对称图形,也是中心对称图形,故此图案符合题意;第三个图案是轴对称图形,不是中心对称图形,故此图案不符合题意;第四个图案不是轴对称图形,也不是中心对称图形,故此图案不符合题意.故选:B.3.下列运算正确的是()A.a3•a2=a6B.(ab3)2=a2b6C.(a﹣b)2=a2﹣b2D.(a+b)(﹣a﹣b)=a2﹣b2【答案】B【解析】解:a3•a2=a5,故选项A错误,不符合题意;(ab3)2=a2b6,故选项B正确,符合题意;(a﹣b)2=a2﹣2ab+b2,故选项C错误,不符合题意;(a+b)(﹣a﹣b)=﹣a2﹣2ab﹣b2,故选项D错误,不符合题意;故选:B.【点评】本题考查整式的混合运算,熟练掌握运算法则是解答本题的关键,注意完全平方公式的应用.4.“白日不到处,青春恰自来.苔花如米小,也学牡丹开.”这是清朝袁枚所写五言绝句《苔》,这首咏物诗启示我们身处逆境也要努力绽放自己,要和苔花一样尽自己所能实现人生价值.苔花也被称为“坚韧之花”.袁枚所写的“苔花”很可能是苔类孢子体的苞荫,某孢子体的苞荫直径约为0.0000084m,将数据0.0 000084用科学记数法表示为8.4×10n,则n的值是()A.6B.﹣7C.﹣5D.﹣6【答案】D【解析】解:0.0000084=8.4×10﹣6,则n=﹣6,故选:D.5.如图,是一个底部呈球形的蒸馏瓶,球的半径为6cm,瓶内液体的最大深度CD=3cm,则截面圆中弦A B的长为()A.B.C.D.8cm【答案】C【解析】解:由题意得:OC⊥AB,∴AC=BC=AB,∠OCA=90°,∵OA=OD=6cm,CD=3cm,∴OC=OD﹣CD=6﹣3=3(cm),在Rt△OAC中,由勾股定理得:AC===3(cm),∴AB=2AC=6(cm).∴截面圆中弦AB的长为6cm,故选:C.6.如图,将质量为10kg的铁球放在不计重力的木板OB上的A处,木板左端O处可自由转动,在B处用力F竖直向上抬着木板,使其保持水平,已知OA的长为1m,OB的长为x m,g取10N/kg,则F关于x的函数解析式为()A.B.C.D.【答案】A【解析】解:∵g取10N/kg,铁球质量为10kg,∴G=mg=10×10=100(N),∵OA=1m,OB=x m,∴由杠杆平衡原理可得:F×OB=G×OA,即F⋅x=100×1,∴F关于x的函数解析式为.故选:A.7.某市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,∠BCD=60°,∠BAC=54°.当∠MAC为()度时,AM与CB平行.A.16B.60C.66D.114【答案】C【解析】解:∵AB,CD都与地面l平行,∴AB∥CD,∴∠BAC+∠ACD=180°,∴∠BAC+∠ACB+∠BCD=180°,∵∠BCD=60°,∠BAC=54°,∴∠ACB=66°,∴当∠MAC=∠ACB=66°时,AM∥CB,故选:C.8.已知反比例函数,下列结论不正确的是()A.图象经过点(﹣1,1)B.图象在第二、四象限C.当x<0时,y随着x的增大而增大D.当x>1时,y>﹣1【答案】D【解析】解:A、(﹣1,1)代入,得:左边=右边,故本选项正确;B、图象在第二、四象限内,故本选项正确;C、在每个象限内,y随x的增大而增大,故本选项正确;D、当x>1时,﹣1<y<0,故本选项不正确;不正确的只有选项D.故选:D.9.如图1是一座立交桥的示意图(道路宽度忽略不计),A为入口,F,G为出口,其中直行道为AB,CG,EF,且AB=CG=EF;弯道为以点O为圆心的一段弧,且所对的圆心角均为90°,甲、乙两车由A口同时驶入立交桥,均以12m/s的速度行驶,从不同出口驶出,其间两车到点O的距离y(m)与时间x(s)的对应关系如图2所示,结合题目信息,下列说法错误的是()A.甲车从G口出,乙车从F口出B.立交桥总长为252mC.从F口出比从G口出多行驶72mD.乙车在立交桥上共行驶16s【答案】D【解析】解:根据两车运行时间,可知甲车从G口出,乙车从F口出,故A正确;由图象可知,两车通过、、弧时每段所用时间均为3s,通过直行道AB,CG,EF时,每段用时为4s.所以立交桥总长为(3×3+4×3)×12=252m,故B正确;根据两车运行路线,从F口驶出比从G口多走,弧长之和,用时为6s,则多走72m,故C正确;根据题意乙车行驶时间为:4×2+3×3=17秒,故D错误;故选:D.10.如图,在平面直角坐标系中,将边长为1的正六边形OABCDE绕点O顺时针旋转n个45°,得到正六边形OA n B n∁n D n E n,当n=2030时,正六边形OA2030B2030C2030D2030E2030的顶点D2030的坐标是()A.B.C.D.【答案】B【解析】解:由题意可知:正六边形绕点O顺时针旋转一圈,旋转了8个45°,∵当n=2030时,2030÷8=253……6,∴D2030的坐标与D6的坐标相同,如图所示:过点D6H⊥OE于点H,过点D作DF⊥x轴于点F,∵∠DEO=120°,DE=EO=1,∴∠EDO=∠DOE=30°,∵∠DFO=90°,∴∠FDE=30°,∴在Rt△DFE中,,∴,∴在Rt△ODF中,,∴,∴,∠EOD6=60°,又∵∠D6HO=90°,在Rt△OHD6中,∴,,∴,,又∵点D6在第三象限,∴点D6的坐标为,故选:B.第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:=.【解析】解:原式=(+)×(﹣)×(﹣)=(3﹣2)×(﹣)=﹣.故答案为:﹣.12.化学中直链烷烃的名称用“碳原子数+烷”来表示,当碳原子数为1~10时,依次用天干——甲、乙、丙、丁、戊、己、庚、辛、壬、癸——表示,其中甲烷、乙烷、丙烷的分子结构式如图所示,则庚烷分子结构式中“H”的个数是.【解析】解:由图可得,甲烷分子结构式中“H”的个数是2+2×1=4;乙烷分子结构式中“H”的个数是2+2×2=6;丙烷分子结构式中“H”的个数是2+2×3=8;…,∴第7个庚烷分子结构式中“H”的个数是:2+2×7=16;故答案为:16.13.如图,在△ABC中,按以下步骤作图:①以点A为圆心,适当长为半径作弧,分别交AB,AC于点M,N;②分别以点M,N为圆心,大于的长为半径作弧,两弧交于点P;③作射线AP交BC于点D,若AB:AC=2:3,△ABD的面积为2,则△ABC的面积为.【解析】解:过点D作DE⊥AB于点E,作DF⊥AC于点F,由作图可知,射线AP为∠BAC的平分线,∴DE=DF,∵AB:AC=2:3,,,∴S△ABD:S△ACD=2:3,∵△ABD的面积为2,∴△ACD的面积为3,∴△ABC的面积为S△ABD+S△ACD=2+3=5.故答案为:5.14.有甲、乙两把不同的锁和A、B、C三把不同的钥匙.其中两把钥匙分别能打开这两把锁,第三把钥匙不能打开这两把锁.随机取出一把钥匙开甲锁,恰好能打开的概率是.【解析】解:因为三把钥匙中只有1把能打开甲锁,所以随机取出一把钥匙开甲锁,恰好能打开的概率是.故答案为:.15.如图,在正方形ABCD中,AB=3,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交线段AB于点N.连接NC交BD于点G.若BG:MB=3:8,则NG•CG=.【解析】解:如图,把△DMC绕点C逆时针旋转90°得到△BHC,连接GH,∵△DMC≌△BHC,∠BCD=90°,∴MC=HC,DM=BH,∠CDM=∠CBH=45°,∠DCM=∠BCH,∴∠MBH=90°,∠MCH=90°,∵∠CMN=∠CBN=90°,∴M、N、B、C四点共圆,∴∠MCN=45°,∴∠NCH=45°,在△MCG和△HCG中,,∴△MCG≌△HCG(SAS),∴MG=HG,∵BG:MB=3:8,∴BG:MG=3:5,设BG=3a,则MG=GH=5a,在Rt△BGH中,BH=4a,则MD=4a,∵正方形ABCD的边长为3,∴BD=6,∴DM+MG+BG=12a=6,∴a=,∴BG=,MG=,∵∠MGC=∠NGB,∠MNG=∠GBC=45°,∴△MGN∽△CGB,∴,∴CG •NG =BG •MG =.故答案为:.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:()101120222tan452π-⎛⎫---+-︒ ⎪⎝⎭(2)下面是小明同学进行因式分解的过程,请认真阅读并完成相应任务.因式分解:()()2233a b a b +-+解:原式()()22229669a ab b a ab b =++-++第一步2288a b =-第二步()228a b =-第三步任务一:填空:①以上解题过程中,第一步进行整式乘法用到的是___________公式;②第三步进行因式分解用到的方法是___________法.任务二:同桌互查时,小明的同桌指出小明因式分解的结果是错误的,具体错误是______________________.任务三:小组交流的过程中,大家发现这个题可以先用公式法进行因式分解,再继续完成,请你写出正确的解答过程.【解析】(1)解:原式11221=-+-⨯0=.(2)任务一:①以上解题过程中,第一步进行整式乘法用到的是完全平方公式;②第三步进行因式分解用到的方法是提公因式法;任务二:小明因式分解的结果不彻底,22a b -还可以进行因式分解;任务三:原式[(3)(3)][(3)(3)]a b a b a b a b =++++-+(44)(22)a b a b =+-=8()()a b a b +-故答案为:任务一:①完全平方;②提公因式;任务二:因式分解不彻底(或a 2−b 2还可以进行因式分解);任务三:8(a +b )(a −b ).17.(7分)解分式方程:.【解析】解:,去分母得:x﹣4﹣3=3﹣x,解得:x=5,经检验:x=5是分式方程的解.18.(9分)某校在课后服务中,成立了以下社团:A.计算机,B.围棋,C.篮球,D.书法每人只能加入一个社团,为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图1中D所占扇形的圆心角为150°.请结合图中所给信息解答下列问题:(1)这次被调查的学生共有360人;(2)请你将条形统计图补充完整;(3)若该校共有1800学生加入了社团,请你估计这1800名学生中有多少人参加了篮球社团;(4)在书法社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,恰好四位同学中有两名是男同学,两名是女同学.现决定从这四人中任选两名参加全市书法大赛,用画树状图求恰好选中一男一女的概率.【解析】解:(1)∵D所占扇形的圆心角为150°,∴这次被调查的学生共有:(人);故答案为:360.(2)C组人数为:360﹣120﹣30﹣150=60(人),故补充条形统计图如下图:(3)(人),答:这1800名学生中有300人参加了篮球社团,(4)设甲乙为男同学,丙丁为女同学,画树状图如下:∵一共有12种可能的情况,恰好选择一男一女有8种,∴.19.(8分)为了响应“足球进校园”的目标,某校计划为学校足球队购买一批足球,已知购买2个A品牌的足球和3个B品牌的足球共需380元;购买4个A品牌的足球和2个B品牌的足球共需360元.(1)求A,B两种品牌的足球的单价.(2)2023年学校购买足球的预算为6400元,总共购买100个球且购买A品牌足球的数量不多于B品牌足球数量的2倍,有几种购买方案.【解析】解:(1)设A品牌的足球的单价为x元/个,B品牌的足球的单价为y元/个,根据题意得:,答:A品牌的足球的单价为40元/个,B品牌的足球的单价为100元/个.(2)设购买A品牌足球a个,则购买B品牌足球(100﹣a)个.则,∴a可取60,61,62,63,64,65,66共7种购买方案.答:有7种购买方案.20.(8分)学科综合我们在物理学科中学过:光线从空气射入水中会发生折射现象(如图1),我们把n=称为折射率(其中α代表入射角,β代表折射角).观察实验为了观察光线的折射现象,设计了图2所示的实验,即通过细管MN可以看见水底的物块C,但不在细管MN所在直线上,图3是实验的示意图,四边形ABFE为矩形,点A,C,B在同一直线上,测得BF =12cm,DF=16cm.(1)求入射角α的度数.(2)若BC=7cm,求光线从空气射入水中的折射率n.(参考数据:,,)【解析】解:(1)如图:过点D作DG⊥AB,垂足为G,由题意得:四边形DGBF是矩形,∴DG=BF=12cm,BG=DF=16cm,在Rt△DGB中,tan∠BDG===,∴∠BDG=53°,∴∠PDH=∠BDG=53°,∴入射角α的度数为53°;(2)∵BG=16cm,BC=7cm,∴CG=BG﹣BC=9(cm),在Rt△CDG中,DG=12cm,∴DC===15(cm),∴sinβ=sin∠GDC===,由(1)得:∠PDH=53°,∴sin∠PDH=sinα≈,∴折射率n===,∴光线从空气射入水中的折射率n约为.21.(8分)阅读与思考下面是小宇同学写的一篇数学小论文,请认真阅读并完成相应的任务:由一道习题引发的思考——“十字架模型”的拓展研究在我们教材上,有这样一道习题:如图1,四边形ABCD是一个正方形花园,E,F是它的两个门,要修建两条路BE和AF,且使得BE⊥AF,那么这两条路等长吗?为什么?对于上面问题,我是这样思考的:∵四边形ABCD是正方形,∴AB=AD,∠BAE=∠ADF=90°.又∵BE⊥AF,∴∠BEA+∠DAF=∠DAF+∠AFD=90°∴∠BEA=∠AFD,(依据*)∴Rt△ABE≌Rt△DAF,∴BE=AF.有趣的是对于两个端点分别在正方形ABCD一组对边上的线段,若这样的两条线段互相垂直,是否这两条线段仍然相等呢?对此我们可以做进一步探究:如图2,在正方形ABCD中,若点M、N、P、Q分别是AB、CD、BC、AD上的任意四点,且MN⊥PQ,垂足为O,则MN仍然与PQ相等.理由如下:过点M作ME⊥CD,垂足为E,过点P作PF⊥AD,垂足为F.则容易证明四边形AMED和ABPF均为矩形,∴ME=AD,PF=AB.∵AB=AD,∴ME=PF在四边形QOND中,∵∠NOQ=∠D=90°,…任务:根据上面小论文的分析过程,解答下列问题:(1)画横线部分的“依据*”是在等式两边同时加上(或减去)同一个数或同一个式子,等式仍成立.(2)在小论文的分析过程,主要运用的数学思想有:AC.(从下面选项中填出两项).A.转化思想B.方程思想C.由特殊到一般的思想D.函数思想(3)请根据小论文提供的思路,补全图2剩余的证明过程.【解析】解:(1)在等式两边同时加上(或减去)同一个数或同一个式子,等式仍成立;(2)由正方形中的顶点A和顶点B转变成为点M和点N,所以是由特殊到一般的转化思想,所以AC正确.故选为:AC.(3)证明:过点M作ME⊥CD,垂足为E,过点P作PF⊥AD,垂足为F.则容易证明四边形AMED和ABPF均为矩形,∴ME=AD,PF=AB,∵AB=AD,∴ME=PF在四边形QOND中,∵∠NOQ=∠D=90°,∠NOQ+∠D+∠OQD+∠OND=360°,∴∠OQD+∠OND=180°,∵∠FQP+∠OQD=180°,∴∠FQP=∠OND=∠MNE,∵∠FQP+∠QPF=90°,∠MNE+∠NME=90°,∴∠QPF=∠NME,∵∠QPF=∠NME,ME=PF,∠PFQ=∠MEN=90°,∴△MNE≌△PQF(SAS),∴MN=PQ.22.(12分)综合与实践:数学模型可以用来解决一类问题,是数学应用的基本途径.通过探究图形的变化规律,再结合其他数学知识的内在联系,最终可以获得宝贵的数学经验,并将其运用到更广阔的数学天地.(1)发现问题:如图1,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=30°,连接BE,C F,延长BE交CF于点D.则BE与CF的数量关系:BE=CF,∠BDC=30°;(2)类比探究:如图2,在△ABC和△AEF中,AB=AC,AE=AF,∠BAC=∠EAF=120°,连接BE,CF,延长BE,FC交于点D.请猜想BE与CF的数量关系及∠BDC的度数,并说明理由;(3)拓展延伸:如图3,△ABC和△AEF均为等腰直角三角形,∠BAC=∠EAF=90°,连接BE,CF,且点B,E,F在一条直线上,过点A作AM⊥BF,垂足为点M.则BF,CF,AM之间的数量关系:B F=CF+2AM;(4)实践应用:正方形ABCD中,AB=2,若平面内存在点P满足∠BPD=90°,PD=1,则S△ABP=或.【解析】解:(1)BE=CF,∠BDC=30°,理由如下:如图1所示:∵△ABC和△ADE都是等腰三角形,∴AB=AC,AE=AF,又∵∠BAC=∠EAF=30°,∴△ABE≌△ACF(SAS),∴BE=CF,∴∠ABE=∠ACD,∵∠AOE=∠ABE+∠BAC,∠AOE=∠ACD+∠BDC,∴∠BDC=∠BAC=30°;(2)BE=CF,∠BDC=60°,理由如下:如图2所示:证明:∵∠BAC=∠EAF=120°,∴∠BAC﹣∠EAC=∠EAF﹣∠EAC,即∠BAE=∠CAF,又∵△ABC和△AEF都是等腰三角形,∴AB=AC,AE=AF,∴△BAE≌△CAF(SAS)∴BE=CF,∴∠AEB=∠AFC,∵∠EAF=120°,AE=AF,∴∠AEF=∠AFE=30°,∴∠BDC=∠BEF﹣∠EFD=∠AEB+30°﹣(∠AFC﹣30°)=60°;(3)BF=CF+2AM,理由如下:如图3所示:∵△ABC和△AEF都是等腰三角形,∴∠CAB=∠EAF=90°,AB=AC,AE=AF,∴∠CAB﹣∠CAE=∠FAE﹣∠CAE,即:∠BAE=∠CAF,∴△BAE≌△CAE(SAS),∴BE=CF,∵AM⊥BF,AE=AF,∠EAF=90°,∴EF=2AM,∵BF=BE+EF,∴BF=CF+2AM;(4))如图4所示:连接BD,以BD为直径作圆,由题意,取满足条件的点P,P′,则PD=P′D=1.∠BPD=∠BP′D=90°,∴BD=2,∴BP===,连接PA,作AF⊥PB于点F,在BP上截取BE=PD,∵∠PDA=ABE,AD=AB,∴△ADP≌△ABE(SAS),∴AP=AE,∠BAE=∠DAP,∴∠PAE=90°,由(3)可得:PB﹣PD=2AF,∴AF==,∴S△P AB=PB•AF=,同理可得:S△P′AB=,故△ABP的面积为:或.23.(13分)综合与实践如图,抛物线y=x2﹣x﹣2与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,对称轴为直线l.(1)求点A,B,C的坐标;(2)试探究抛物线上是否存在点E,使OE=EC,若存在,请求出点E的坐标;若不存在,请说明理由;(3)设点F在直线l上运动,点G在平面内运动,若以点B,C,F,G为顶点的四边形是菱形,且BC 为边,直接写出点F的坐标.【解析】解:(1)当y=x2﹣x﹣2=0时,解得:x1=﹣1,x2=4,∴A(﹣1,0),B(4,0);当x=0时,y=x2﹣x﹣2=﹣2,∴C(0,﹣2);(2)∵OE=EC,∴点E在OC的垂直平分线上,∵C(0,﹣2),∴点E的纵坐标为﹣1,将y=﹣1代入抛物线y=x2﹣x﹣2得,x2﹣x﹣2=﹣1,解得x=;∴点E的坐标为(,﹣1)或(,﹣1);(3)∵y=x2﹣x﹣2与x轴交于A(﹣1,0),B(4,0),∴y=x2﹣x﹣2的对称轴为直线x==,设点F的坐标的坐标为(,m),①当BC为边,BF为对角线时,BC=CF,∴BC2=CF2,∴42+22=()2+(m+2)2,解得m=±,∴点F的坐标为(,﹣2)或(,﹣﹣2);②当BC为边,CF为对角线时,BC=BF,∴BC2=BF2,∴42+22=(4﹣)2+m2,解得m=±,∴点F的坐标为(,)或(,﹣);综上所述,点F的坐标为(,﹣2)或(,﹣﹣2)或(,)或(,﹣).。
中考数学模拟考试卷(附带有答案)
中考数学模拟考试卷(附带有答案)(满分:120分 ;考试时间:120分钟)第I 卷 (选择题 共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3-的相反数是( )A .3B .-3C .31D .31-2. 下列运算正确的是( )A .326a a a =÷ B .222a b a b -=-)( C .6223b a ab =)( D .b 3-a 2-b 3-a 2-=)(3. 如图,直线AB 、CD 相交于点O ,EO ⊥CD ,下列说法错误的是( ) A .∠AOD =∠BOC B .∠AOE +∠BOD =90° C .∠AOC =∠AOE D .∠AOD +∠BOD =180°4.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度 高中 大专 本科 硕士 博士 人数9172095关于这组文化程度的人数数据,以下说法正确的是:( )A .众数是20B .中位数是17C .平均数是12D .方差是26 5. 下列一元二次方程中,没有实数根的是( )A .2x +3x =0B .22x –4x +1=0C .2x –2x +2=0D .52x +x –1=06.如图,石拱桥的桥顶到水面的距离CD 为8m ,桥拱半径OC 为5m ,则水面AB 宽为A .8mB .6mC .5mD .4m7.如图,小刚从山脚A 出发,沿坡角为α的山坡向上走了300米到达B 点,则小刚上升了( )A .300sin α米B .300cos α米C .300tan α米D .300tan α米EOD CBA8. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,可列出的方程是 ( ) A .(x +1)(4–0.5x )=15 B .(x +3)(4+0.5x )=15 C .(x +4)(3–0.5x )=15 D .(3+x )(4–0.5x )=159. 在同一坐标系内,一次函数y =ax +b 与二次函数y =ax 2+8x +b 的图象可能是( )A .B .C .D .10.如图,在正方形ABCD 中,AC 、BD 相交于点O ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AG 交BD 于点F ,连结EG 、EF 下列结论:①tan ∠AGB =2; ②若将△GEF 沿EF 折叠,则点G 一定落在AC 上;③ BG =BF ; ④S 四边形GFOE =S △AOF ,上述结论中正确的个数是( ) A .1个 B .2个 C .3个 D .4个第II 卷 (非选择题共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分只要求填写最后结果.GFE OD CBA11. 华为正式发布2020年财报,报告显示,华为去年销售收入8914亿元人民币,销售收入遥遥领先。
中考数学模拟考试卷(附有答案)
中考数学模拟考试卷(附有答案)(满分:120分 ;考试时间:120分钟)第I 卷(选择题)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.﹣15的绝对值是( ) A .5 B .﹣5 C .﹣15 D .152.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 33.如图,把一块三角板的直角顶点放在一直尺的一边上,若∠1=50°,则∠2的度数为( )A .55°B .50°C .45°D .40°第3题 第6题 第7题4.若在“正三角形、平行四边形、圆、正六边形”这四种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( )A .14B .12C .34D .15.若点()2,1A a b -+在第二象限,则点()3,2B a b -+在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,菱形OABC 的顶点B 在y 轴上,顶点C 的坐标为(-5,2).若反比例函数y =k x(x >0)的图象经过点A ,则k 的值为( )A .-5B .-10C .5D .10 7.如图,∠O 的弦AB =8,M 是弦AB 上的动点,若OM 的最小值是3,则∠O 的半径是( ) A .4 B .5 C .6 D .78.如图,在矩形ABCD 中4AB BC ==,E 为BC 的中点,连接,,,AE DE P Q 分别是,AE DE 上的点,且PE DQ =.设EPQ ∆的面积为y ,PE 的长为x ,则y 关于x 的函数关系式的图象大致是 ( )A .B .C .D .9.如图,在△ABC 中,AB =AC ,分别以点A 、B 为圆心,以适当的长为半径作弧,两弧分别交于E ,F ,作直线EF ,D 为BC 的中点,M 为直线EF 上任意一点.若BC =4,△ABC 面积为10,则BM +MD 长度的最小值为( )A .52B .3C .4D .510.如图,在正方形ABCD 中,对角线,AC BD 相交于点O ,点E 在BC 边上,且CE=2BE ,连接AE 交BD 于点G ,过点B 作BF AE ⊥于点F ,连接OF 并延长,交BC 于点M ,过点O 作OP OF ⊥交DC 于占N ,94MONC S =四边形现给出下列结论:∠13GE AG = ∠sin 10BOF ∠= ∠5OF = ∠OG BG = 其中正确的结论有( )A .①②③B .②③④C .①②④D .①③④第II 卷(非选择题)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.11.2020年6月23日9时43分,“北斗三号”最后一颗全球组网卫星发射成功,它的授时精度小于0.00000002秒,则0.00000002用科学记数法表示为___.12.因式分解:244ax ax a -+=______.13.临近中考,报考体育专项的同学利用课余时间紧张地训练,甲、乙两名同学最近20次立定跳远成绩的平均值都是2.58m ,方差分别是:22 0.075,0.04s s ==甲乙,这两名同学成绩比较稳定的是_______________(填“甲”或“乙”).14.如果关于x 的一元二次方程230x x k -+=有两个相等的实数根,那么实数k 的值是________. 15.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为___.第15题 第16题 第17题16.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D 处,无人机测得操控者A 的俯角为37°,测得点C 处的俯角为45°.又经过人工测得操控者A 和教学楼BC 距离为57米,则教学楼BC 的高度为______米.(注:点A ,B ,C ,D 都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75) 17.如图,在平面直角坐标系xOy 中,A (8,0),∠O 半径为3,B 为∠O 上任意一点,P 是AB 的中点,则OP 的最小值是____.18.如图,在平面直角坐标系中,12OA = 130AOx ∠=︒ 以1OA 为直角边作12Rt OA A △,并使1260AOA ∠=︒,再以12A A 为直角边作123Rt A A A △,并使21360A A A ∠=︒,再以23A A 为直角边作234Rt A A A △,并使32460A A A ∠=︒…按此规律进行下去,则2020A 的坐标是_______.三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:.2012cos301(2019)2π-⎛⎫-+︒-+- ⎪⎝⎭ (2)解不等式组:.20.(8分)某校对九年级学生进行“综合素质”评价,评价的结果分为A (优秀)、B (良好)、C (合格)、D (不合格)四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制以下两幅不完整的统计图.请根据统计图提供的信息,解答下列问题:(1)B (良好)等级人数所占百分比是______________________;(2)在扇形统计图中,C (合格)等级所在扇形的圆心角度数是___________________;(3)请补充完整条形统计图;(4)若该校九年级学生共1000名,请根据以上调查结果估算:评价结果为A (优秀)等级或B (良好)等级的学生共有多少名?21.(8分)如图,在直角坐标系中,直线y 1=ax+b 与双曲线y 2=k x(k≠0)分别相交于第二、四象限内的A (m ,4),B (6,n )两点,与x 轴相交于C 点.已知OC =3,tan∠ACO =23. (1)求y 1,y 2对应的函数表达式;(2)求∠AOB 的面积;(3)直接写出当x <0时,不等式ax+b >k x的解集.22.(8分)某公司计划购买A ,B 两种型号的机器人搬运材料.已知A 型机器人比B 型机器人每小时多搬运30kg 材料,且A 型机器人搬运1000kg 材料所用的时间与B 型机器人搬运800kg 材料所用的时间相同. (1)求A ,B 两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A ,B 两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg ,则至少购进A 型机器人多少台?23.(8分)如图,AB 为∠O 的直径,在AB 的延长线上,C 为∠O 上点,AD ⊥CE 交EC 的延长线于点D ,若AC 平分∠DAB .(1)求证:DE 为∠O 的切线;(2)当BE =2,CE =4时,求AC 的长.24.(10分)如图,已知二次函数2y x bx c =-++的图象经过点()1,0A - ()3,0B 与y 轴交于点C .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PAB ABC ∠=∠,若存在请写出点P 的坐标,并说明理由.若不存在,请说明理由.25.(12)分如图,在矩形ABCD 中,6AB cm = 8BC cm = 如果点E 由点B 出发沿BC 方向向点C 匀速运动,同时点F 由点D 出发沿DA 方向向点A 匀速运动,它们的速度分别为2/cm s 和1/cm s ,FQ BC ⊥,分别交AC , BC 于点P 和Q ,设运动时间为()04ts t <<.(1)连接EF ,若运动时间t=_______s 时,EF =(2)连接EP ,当EPC 的面积为23cm 时,求t 的值(3)若EQP ADC ∽△△,求t 的值参考答案1.【答案】D 2.【答案】B 3.【答案】D 4.【答案】C 5.【答案】A6.【答案】D 7.【答案】B 8.【答案】C 9.【答案】D 10.【答案】D11.8210-⨯ 12.()221a x - 13.乙 14.94 15.8π 16.13 17.5218.(0,101013-)19.【答案】(1)原式=+1+1=6. (2)∠可化简为:,,∠;∠可化简为:,∠ ∠ 不等式的解集为. 21.【答案】解:(1)4=4010%, 40-18-8-4=10,; 10100%=25%40⨯ 故答案为:25%;(2)8360=7240⨯︒︒,故答案为:72°;(3)如图所示:(4)由题意得:1810100070040+⨯=(名);答:评价结果为A等级或B等级的学生共有700名.22.【答案】解:(1)设直线y1=ax+b与y轴交于点D;在Rt∠OCD中,OC=3,tan∠ACO=.∠OD=2,即点D(0,2);把点D(0,2),C(0,3)代入直线y1=ax+b得;b=2,3a+b=0,解得,a=﹣;∠直线的关系式为y1=﹣x+2;把A(m,4),B(6,n)代入y1=﹣x+2得,m=﹣3,n=﹣2;∠A(﹣3,4),B(6,﹣2);∠k=﹣3×4=﹣12;∠反比例函数的关系式为y2=﹣,因此y1=﹣23x+2,y2=﹣12x;(2)由S∠AOB=S∠AOC+S∠BOC=×3×4+×3×2=9.(3)由图象可知,当x<0时,不等式ax+b>的解集为x<﹣3.(1)根据OC=3,tan∠ACO=,可求直线与y轴的交点坐标,进而求出点A、B的坐标,确定两个函数的关系式;(2)由S∠AOB=S∠AOC+S∠BOC,进行计算即可;(3)由函数的图象直接可以得出,当x<0时,不等式ax+b>的解集.23.【答案】(1)设B型机器人每小时搬运x千克材料,则A型机器人每小时搬运(x+30)千克材料;根据题意,得100080030x x=+;解得x=120;经检验,x=120是所列方程的解;当x=120时,x+30=150;答:A型机器人每小时搬运150千克材料,B型机器人每小时搬运120千克材料;(2)设购进A型机器人a台,则购进B型机器人(20﹣a)台;根据题意,得150a+120(20﹣a)≥2800;解得a≥40 3;∠a是整数;∠a≥14;答:至少购进A型机器人14台.24.【答案】解:(1)连接OC;∠AC平分∠OAD;∠∠DAC=∠OAC;∠OC=OA;∠∠OAC=∠OCA;∠∠OCA=∠DAC;∠OC∠AD;∠∠ADC=∠OCE;∠AD∠CE;∠∠ADC=90°;∠∠OCE =90°;∠OC∠ED;∠OC 是∠O 的半径;∠DE 是∠O 的切线. (2)设∠O 的半径为r; 在Rt∠OCE 中(r +2)2=r 2+42;∠r =3;∠OC∠AD;∠∠EOC∠∠EAD; ∠OC OE AD AE=; ∠358AD =; ∠AD =245; ∠由勾股定理可知:DE =325; ∠CD =DE ﹣CE =125; 在Rt∠ADC 中;由勾股定理可知:AC =525.【答案】(1)∠二次函数2y x bx c =-++的图象经过点A(-1,0),B(3,0);∠10930b c b c --+=⎧⎨-++=⎩; 解得:23b c =⎧⎨=⎩;∠抛物线的解析式为:2y x 2x 3=-++; (2)存在,理由如下: 当点P 在x 轴下方时;如图,设AP 与y 轴相交于E;令0x =,则3y =; ∠点C 的坐标为(0,3); ∠A(-1,0),B(3,0); ∠OB=OC=3,OA=1; ∠∠ABC=45︒;∠∠PAB=∠ABC=45︒; ∠∠OAE 是等腰直角三角形; ∠OA=OE=1;∠点E 的坐标为(0,-1); 设直线AE 的解析式为1y kx =-; 把A(-1,0)代入得:1k =-; ∠直线AE 的解析式为1y x =--; 解方程组2123y x y x x =--⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2245x y =⎧⎨=-⎩;∠点P 的坐标为(4,5-); 当点P 在x 轴上方时;如图,设AP 与y 轴相交于D;同理,求得点D 的坐标为(0,1);同理,求得直线AD 的解析式为1y x =+;解方程组2123y x y x x =+⎧⎨=-++⎩; 得:1110x y =-⎧⎨=⎩(舍去)或2223x y =⎧⎨=⎩; ∠点P 的坐标为(2,3);综上,点P 的坐标为(2,3)或(4,5-) 25.【答案】解:(1)由题意得:2,,BE t DF t ==矩形ABCD ,,FQ BC ⊥∴ 四边形FQCD 为矩形,83,6,QC DF t EQ t FQ CD ∴===-== 由勾股定理可得:()(222836,t -+=()28336,t ∴-=836t ∴-=或836,t -=- 23t ∴=或14,3t = 04t << 143t ∴=不合题意,舍去,取2.3t s =故答案为:23. (2)由题意知,2BE t = DF t = 82CE t =- CQ t = 在Rt ABC 中,3tan 4AB ACB BC ∠== 在Rt CPQ 中,3tan 4PQ PQ ACB CQ t ∠=== ∠34PQ t = ∠EPC 的面积为23cm ; ∠()113823224EPC S CE PQ t t =⋅=⨯-⨯=△ 2440,t t ∴-+=∠122t t ==,即t 的值为2 (3)∠四边形ABCD 是矩形 ∠//AD BC∠CAD ACB ∠=∠ ∠EQP ADC ∽△△ ∠CAD PEQ ∠=∠ ∠ACB PEQ ∠=∠ ∠EQ CQ =∠2CE CQ =由(2)知CQ t =,82CE t =- ∠822t t -=∠2t =,即t 的值为2。
2023年中考数学模拟试卷(1)(含详解)
2023年中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.在﹣3,2,﹣1,0这四个数中,比﹣2小的数是()A.﹣3 B.2 C.﹣1 D.02.下列几何体中,主视图与俯视图不相同的是()A.B.C.D.3.2022年10月12日,“天宫课堂”第三课在中国空间站开讲,3名航天员演示了在微重力环境下毛细效应实验、水球变“懒”实验等,相应视频在某短视频平台的点赞量达到150万次,数据150万用科学记数法表示为()A.1.5×105B.0.15×105C.1.5×106D.1.5×1074.下列运算正确的是()A.2a3﹣a2=a B.(a3)2=a5C.2a3•3a2=6a5D.﹣8a2÷4a=25.某校对部分参加研学活动的中学生的年龄(单位:岁)进行统计,结果如下表:年龄13 14 15 16人数 1 3 4 2则这些学生年龄的众数和中位数分别是()A.15,15 B.15,13 C.15,14 D.14,156.如图为一节楼梯的示意图,BC⊥AC,∠BAC=a,AC=6米.现要在楼梯上铺一块地毯,楼梯宽度为1米,则地毯的面积至少需要()平方米.A.6tanα+6B.+6 C.D.7.如图,在△ABC中,DE∥AB,且,则的值为()A.B.C.D.8.已知一次函数y=(4﹣m)x﹣3,y随x的增大而减小,则m的值可能是()A.1 B.2 C.3 D.59.如图,AB为⊙O的直径,C、D为⊙O上两点,若∠BCD=25°,则∠ABD的大小为()A.50°B.55°C.60°D.65°10.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G,下列结论:①HF=2HG;②∠GDH=∠GHD;③图中有8个等腰三角形;④S△CDG=S△DHF.其中正确的结论个数是()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分24分,每小题4分)11.分解因式:3x2﹣3=.12.在平面直角坐标系中,点(﹣2,3)关于原点对称的点的坐标是.13.不等式组的解为.14.关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是.15.如图,已知A为反比例函数y=(x<0)图象上的一点,过点A作AB⊥y轴,垂足为B.若△OAB的面积为1,则k的值为.16.如图,在Rt△ABC中,∠ACB=90°,AC=12,BC=5,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为.三.解答题(共8小题,满分66分)17.(6分)计算:()﹣1+3tan30°+|1﹣|﹣(3.4﹣π)0.18.(6分)先化简÷(﹣x﹣1),再从﹣2,﹣1,0,1,2中选一个合适的数作为x的值代入求值,19.(6分)为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的倍,购进数量比第一次少了30盒,求第一次每盒乒乓球的进价是多少元?20.(8分)某居民小区为宣传生活垃圾分类,开展了相关知识测试,并随机抽取50户的成绩分成A、B、C、D、E 五个等级,制成如下统计图表,部分信息如下:等级分数频数A90≤x≤10011B80≤x<90 mC70≤x<80 10D60≤x<70 nE x<60 3(1)频数统计表中有两个数字模糊不清,分别记为m,n,直接写出m=,n=.(2)求这50户的成绩的中位数所在的等级以及扇形统计图中D等级所对应的扇形的圆心角度数.(3)已知这个居民小区共有1200户,这次测试成绩在A和B两个等级者为优秀,请你估计该小区测试成绩为优秀的有多少户.21.(9分)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.22.(9分)如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E.(1)求证:AD是圆O的切线.(2)若PC是圆O的切线,BC=4,求PE的长.23.(10分)如图,在矩形ABCD中,AB=4,AD=6,E是AD边上的一个动点,将四边形BCDE沿直线BE折叠,得到四边形BC′D′E,连接AC′,AD′.(1)若直线DA交BC′于点F,求证:EF=BF;(2)当AE=时,求证:△AC′D′是等腰三角形;(3)在点E的运动过程中,求△AC′D′面积的最小值.24.(12分)如图,已知抛物线y=﹣x2+bx+c与y轴交于点C,与x轴交于A(﹣1,0),B(3,0)两点.(1)求抛物线的解析式.(2)连接AC,在抛物线的对称轴上是否存在点P,使得△ACP的周长最小?若存在,求出点P的坐标和△ACP 的周长的最小值,若不存在,请说明理由.(3)点M为抛物线上一动点,点N为x轴上一动点,当以A,C,M,N为顶点的四边形为平行四边形时,直接写出点M的横坐标.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵﹣3<﹣2<﹣1<0<2,∴比﹣2小的数是﹣3.故选:A.2.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.3.【解答】解:150万=1500000=1.5×106.故选:C.4.【解答】解:A、2a3与a2不是同类项,故不能合并,故A不符合题意.B、原式=a6,故B不符合题意.C、原式=6a5,故C符合题意.D、原式=﹣2a,故D不符合题意.故选:C.5.【解答】解:15出现的次数最多,15是众数.一共10个学生,按照顺序排列第5、6个学生年龄分别是15、15,所以中位数为=15.故选:A.6.【解答】解:在Rt△ABC中,∴tanα=,∴BC=AC•tanα=6tanα(米),∴AC+BC=(6+6tanα)(米),∴地毯的面积至少需要1×(6+6tanα)=(6+6tanα)(米2),故选:A.7.【解答】解:∵=,∴=,∵DE∥AB,∴==,故选:A.8.【解答】解:∵y随x的增大而减小,∴4﹣m<0,∴m>4,故选:D.9.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵圆周角∠BCD和∠A都对着,∴∠BCD=∠A,∵∠BCD=25°,∴∠A=25°,∴∠ABD=90°﹣∠A=65°,故选:D.10.【解答】解:∵DF=BD,∴∠DFB=∠DBF∵四边形ABCD是正方形,∵AD∥BC,AD=BC=CD,∠ADB=∠DBC=45°,∴DE∥BC,∠DFB=∠GBC,∵DE=AD,∴DE=BC,∴四边形DBCE是平行四边形,∴∠DEC=∠DBC=45°,∴∠DEC=∠ADB=∠DFB+∠DBF=2∠EFB=45°,∴∠GBC=∠EFB=22.5°,∠CGB=∠EGF=22.5°=∠GBC,∴CG=BC=DE,∵BC=CD,∴DE=CD=CG,∴∠DEG=∠DCE=45°,EC=CD,∠CDG=∠CGD=(180°﹣45°)=67.5°,∴∠DGE=180°﹣67.5°=112.5°,∵∠GHC=∠CDF+∠DFB=90°+22.5°=112.5°,∴∠GHC=∠DGE,∴△CHG≌△EGD(AAS),∴∠EDG=∠CGB=∠CBF,∴∠GDH=90°﹣∠EDG,∠GHD=∠BHC=90°﹣∠CGB,∴∠GDH=∠GHD,∴∠GDH=∠GHD,故②符合题意;∵∠EFB=22.5°,∴∠DHG=∠GDH=67.5°,∴∠GDF=90°﹣∠GDH=22.5°=∠EFB,∴DG=GF,∴HG=DG=GF,∴HF=2HG,即EC≠HF=2HG,故①符合题意;∵△CHG≌△EGD,∴S△CHG=S△EGD,∴S△CHG+S△DHG=S△EGD+S△DHG,即S△CDG=S四边形DHGE≠S△DHF,故④不符合题意;结合前面条件易知等腰三角形有:△ABD、△CDB、△BDF、△CDE、△BCG、△DGH、△EGF、△CDG、△DGF 共9个,故③不符合题意;则正确的个数有2个.故选:B.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:3x2﹣3,=3(x2﹣1),=3(x+1)(x﹣1).12.【解答】解:点(﹣2,3)关于原点对称的点的坐标为(2,﹣3).故答案是:(2,﹣3).13.【解答】解:,解得,0<x≤4.故答案为:0<x≤4.14.【解答】解:根据题意得k﹣1≠0且Δ=(﹣2)2﹣4×(k﹣1)>0,解得k<2且k≠1,所以k的取值范围是k<2且k≠1.故答案为:k<2且k≠1.15.【解答】解:∵AB⊥y轴,∴S△OAB=|k|=1,而k<0,∴k=﹣2.故答案为﹣2.16.【解答】解:由翻折变换的性质得:AE=EF,∵∠ACB=90°,AC=12,BC=5,∴AB==13,设AE=EF=x,则BF=13﹣2x;分三种情况讨论:①当BF=BC时,13﹣2x=5,解得:x=4,∴AE=4;②当BF=CF时,F在BC的垂直平分线上,∴F为AB的中点,∴AF=BF,∴x+x=13﹣2x,解得:x=,∴AE=;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FG=BF,根据射影定理得:BC2=BG•AB,∴BG===,即(13﹣2x)=,解得:x=,∴AE=;综上所述:当△BCF为等腰三角形时,AE的长为:4或或;故答案为:4或或.三.解答题(共8小题,满分66分)17.【解答】解:原式=4+3×+﹣1﹣1=4++﹣1﹣1=2+2.18.【解答】解:原式=÷=•=﹣,∵x≠0且x≠1,x=2,∴x只能取﹣2或﹣1,当x=﹣1时,原式=﹣=﹣.19.【解答】解:设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意得:=+30,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,答:第一次每盒乒乓球的进价是4元.20.【解答】解:(1)m=50×40%=20,n=50﹣11﹣20﹣10﹣3=6,故答案为:20,6;(2)∵中位数是数据从大到小排列的第25和第26个的平均数,∴这50户的成绩的中位数在的B等级,D等级所对应的扇形的圆心角度数是360°×=43.2°;(3)1200×=744(户),答:估计该小区测试成绩为优秀的有744户.21.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.22.【解答】解:(1)∵AB=AC,D是BC的中点,∴AD⊥BC,BD=DC,∵OD是⊙O的半径,∴AD是圆O的切线;(2)连接OP,∵BC=4,∴BD=DC=2,∵BD为直径,∴BO=OD=1,∵EP为⊙O切线,∴OP=1,∵OC=3,∴在Rt△OPC中,OP2+OC2=PC2,∴,∵∠EDC=∠PCO,∠EDC=∠OPC=90°,∴△EOC∽△POC,∴,∴,∴,∴PE=PC﹣EC==.23.【解答】(1)证明:由折叠得:∠FBE=∠CBE,∵四边形ABCD是矩形,∴AD∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴EF=BF;(2)解:在Rt△ABE中,∵AB=4,AE=,∴BE==,∴∠ABE=30°,∴∠AEB=60°,由(1)知:EF=BF,∴△BEF是等边三角形,∵AB⊥EF,∴AE=AF,如图1,过A作AH⊥C'D',∵FC'⊥C'D',ED'⊥C'D',∴FC'∥AH∥ED',∴C'H=D'H,∵AH⊥C'D',∴AC'=AD',∴△AC′D′是等腰三角形;(3)如图1,S△C'D'A=AH•C'D',∵C'D'=CD=4为定值,∴当AH最小时,△AC′D′面积最小,如图2,当C'、A、B三点共线时,此时H与C'重合,△AC′D′面积最小,由折叠得:BC=BC'=6,∠C=∠C'=90°,∵AB=4,∴AC'=6﹣4=2,△AC′D′面积的最小值===4.24.【解答】解:(1)将A(﹣1,0),B(3,0)代入y=﹣x2+bx+c,∴,解得,∴y=﹣x2+2x+3;(2)抛物线的对称轴上存在点P,使得△ACP的周长最小,理由如下:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,∵A、B点关于直线x=1对称,∴P A=PB,∴△ACP的周长=AC+AP+CP=AC+PB+CP≥AC+BC,∴当B、C、P三点共线时,△ACP的周长有最小值,当x=0时,y=3,∴C(0,3),设直线BC的解析式为y=kx+m,∴,解得,∴y=﹣x+3,∴P(1,2),∵AC=,BC=3,∴△ACP的周长的最小值为+3;(3)设M(x,﹣x2+2x+3),N(n,0),当AC为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AM为平行四边形的对角线时,∴,解得(舍)或,∴M(2,3);当AN为平行四边形的对角线时,∴,解得或,∴M(1+,﹣3)或(1﹣,﹣3);综上所述:M点横坐标为2或1+或1﹣.。
2023年陕西省中考数学全真模拟试卷(一)及答案解析
2023年陕西省中考数学全真模拟试卷(一)一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.(3分)﹣2023的相反数是()A.2023B.C.D.﹣20232.(3分)中国“二十四节气“已被正式列入联合国教科文组织人类非物质文化遗产代表作品录,下列四幅作品分别代表“立春“、“谷雨“、“白露“、“大雪”,其中是中心对称图形的是()A.B.C.D.3.(3分)计算()=8a,正确的结果是()A.16a2b2B.4ab2C.(4ab)2D.(2ab)24.(3分)如图,在Rt△ABC中,∠CAB=90°,AD⊥BC于点D,若BD=2,sin C=,则线段AB的长为()A.10B.4C.4D.25.(3分)如图,两个相同的菱形拼接在一起,若∠ADB=15°,则∠BCF的度数为()A.60°B.45°C.30°D.70°6.(3分)已知直线y=3x与y=﹣2x+b的交点坐标为(1,a),则a﹣b的值为()A.8B.2C.﹣2D.﹣17.(3分)如图,A,B,C,D,E均是⊙O上的点,且BE是⊙O的直径,若∠BCD=2∠BAD,则∠DAE的度数是()A.15°B.20°C.25°D.30°8.(3分)如图,物体从点A抛出,物体的高度y(m)与飞行时间t(s)近似满足函数关系式y=,在飞行过程中,若物体在某一个高度时总对应两个不同的时间,则t的取值范围是()A.0<t<6B.0≤t≤6C.0≤t≤6且t≠3D.0<t≤6且t≠3二、填空题(共5小题,每小题3分,计15分)9.(3分)有理数a,b在数轴上的位置如图所示,化简|a﹣b|﹣|a|=.10.(3分)如图所示,已知∠MON=60°,正五边形ABCDE的顶点A、B在射线OM上,顶点E在射线ON上,则∠AEO=度.11.(3分)我国古代数学家赵爽巧妙地用“弦图”证明了勾股定理,标志着中国古代的数学成就.如图,若弦图中四个全等的直角三角形的两条直角边长分别为3和4,则中间小正方形的对角线长为.12.(3分)等边△OAB在平面直角坐标系中的位置如图所示,已知点A(4,0),若一个反比例函数经过边AB的中点,则该反比例函数的表达式为.13.(3分)如图,在矩形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH.若AB=6,BC=10,则GH的长为.三、解答题(共13小题,计81分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学中考模拟试卷(一)一、选择题(本大题共10小题,共30.0分)1.下列四个数中,绝对值最大的数是()A. 5B. 0C. −2D. −72.如图所示是一个正方体展开图,图中的六个正方形内分别标有“新”、“时”、“代”、“去”、“奋”、“斗”六个字,将其围成一个正方体后,则与“奋”相对的字是()A. 斗B. 新C. 时D. 代3.下列运算中,正确的是()A. 3x−(−x)=2xB. (−x2y)2÷x4=y2C. x3⋅(−x2)=x5D. (x+y)(y−x)=x2−y24.对于一组统计数据:1,6,2,3,3,下列说法错误的是()A. 平均数是3B. 中位数是3C. 众数是3D. 方差是2.55.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A. k<5B. k>5C. k≤5,且k≠1D. k<5,且k≠16.如图,等边△ABC的顶点A、B分别在网格图的格点上,则∠α的度数为()A. 15∘B. 20∘C. 25∘D. 30∘7.为响应国家“精准扶贫”号召,某银行2019年安排精准扶贫贷款100亿元,已知该银行2017年安排精准扶贫贷款64亿元,设2017年至2019年该银行安排精准扶贫贷款的平均增长率为x,根据题意可列方程为()A. 100(1+x)2=64B. 64(1+x)2=100C. 64(1+2x)=100 D. 64(1−x2)=1008.如图,分别以圆O的弦AB的两个端点A,B为圆心,以大于1AB长为半径作弧,两弧交于点M,连接OM,交AB于点C,2交⊙O于点D,连接AO并延长交⊙O于点N,连接NC.若AB=8,CD=2,则NC的长为()A. 2√15B. 8C. 2√10D. 2√139.如图,点M是反比例函数y=9(x>0)的图象上的一点,x且点M的横坐标为3,连接OM并延长至点B,使A. 92B. 9C. 12D. 1810.如图,在平面直角坐标系中,已知点A(-3,6),B(-9,-3),以原点O为位似,把△ABO缩小,则点A的对应点A′的坐标是()中心,相似比为13A. (−1,2)B. (−1,2)或(1,−2)C. (−9,18)D. (−9,18)或(9,−18)二、填空题(本大题共8小题,共24.0分)11.近两年,中国倡导“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学记数法表示为______.12.已知x+y=5,xy=2,则x3y+2x2y2+xy3的值等于______.13.若分式x2−4的值为0,则x=______.x+214.三角形三边长分别为3,4,5,那么最长边上的中线长等于______.15.如图,为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个对角线为AC和BD的菱形,使不规则区域落在菱形内,其中AC=8m,BD=4m,现向菱形内随机投掷小石子(假设小石子落在菱形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%,由此可估计不规则区域的面积是______m2.16.已知一个圆锥的底面半径为8cm,母线长为25cm,这个圆锥的侧面积为______cm2.17.某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件,为使每天所获销售利润最大,销售单价应定为______元.18.在平面直角坐标系中,“把某一圆形先沿x轴翻折,再沿y轴翻折”为一次变化,已知等腰直角三角形ABC,顶点A(1,3),C(3,1),若△ABC连续做2018次这样的变化,则点B变化后的坐标为______.19. 先化简,再求值:x 2−4x−1÷(x +1-4x−5x−1),其中x 是不等式组{2(x −1)>x −312x −1≤3−32x 的整数解.20. 某渔场计划购买甲、乙两种鱼苗共6000尾,已知乙种鱼苗比甲种鱼苗每尾多0.3元,用1000元购买甲种鱼苗的尾数与用1600元购买乙种鱼苗的尾数相同,相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)求甲、乙两种鱼苗每尾各是多少元.(2)若要使这批鱼苗的成活率不低于93%,购买这批鱼苗的钱不超过4200元,最好应如何选购鱼苗?四、解答题(本大题共6小题,共74.0分)21. 某市实验中学“科技周”期间,为参加活动的同学提供了一次“转动幸运转盘,赢取纪念邮票”的游戏机会,获胜者将获得中国邮政发行的《科技创新》纪念邮票1套(5枚),如图,转盘上A 、B 、C 、D 、E 五个字母分别代表如图所示的5枚邮票,邮票面值分别为1.20元、1.20元、1.20元、1.50元、1.50元.(1)任意转动转盘一次,指针指向字母D 所在扇形的概率是______;(2)游戏规定:任意转动转盘两次,若指针所指字母代表的邮票面值之和恰为3元时,即可获得一套纪念邮票.请用列表法或画树状图法求获得一套纪念邮票的概率.22.某中学开展“我最喜欢的校男篮球员”的调查,要求学生从A、B、C、D、E五名球员中必选且只选一人,现随机抽查了部分学生,如图所示为校篮球社团整理数据后绘制的不完整的统计图表.选项频数频率A a0.20B80.16C14bD120.24E60.12请根据图中所给出的信息,解答下列各题:(1)本次抽样调查的样本容量为______;(2)a=______,b=______;(3)请根据以上信息直接补全频数分布直方图;(4)若该校共有1500 名学生,请你估计全校最喜欢C的学生人数.23.如图,某旅游最点修建了直达山峰A,B的缆车索道AC,BD,其中AC长1200m,BD长540m.为了方便游客,某旅游公司计划再修建一条连接山峰A,B的缆车索道,测量人员在C,D两处测得山峰A,B的仰角均为30°,在B处测得山峰A的仰角为60°,求缆车索道AB的长.(结果精确到1米,参考数据:√2≈1.4,√3≈1.7)24.如图,AB是⊙O的直径,弦CD垂直平分OA,垂足为点M,连接并延长CO交⊙O于点E,分别连接DE,BE,DB,其中∠EDB=30°,∠CDE的平分线DN交CE于点G,交⊙O于点N,延长CE至点F,使FG=FD.(1)求证:DF是⊙O的切线;(2)若⊙O半径r为8,求线段DB,BE与劣弧DE所围成的阴影部分的面积.25.在△ABC中,AC=BC,射线AP交边BC于点E,点D是射线AP上一点,连接BD,CD.(1)如图1,当∠CAB=45°,∠BDP=90°时,请直接写出DA与DB,DC之间满足的数量关系为:______.(2)如图2,当∠CAB=30°,∠BDP=60°时,试猜想:DA与DB,DC之间具有怎样的数量关系?并说明理由.(3)如图3,当∠ACB=α,∠BDP=β,若α与β之间满足α+β=180°,则DA与DB,DC之间的数量关系为______(请直接写出结论)26.如图1,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+bx+5与x轴交于A,点B,与y轴交于点C,过点C作CD⊥y轴交抛物线于点D,过点B作BE⊥x轴,交DC延长线于点E,连接BD,交y轴于点F,直线BD的解析式为y=-x+2.(1)点E的坐标为______;抛物线的解析式为______.(2)如图2,点P在线段EB上从点E向点B以1个单位长度/秒的速度运动,同时,点Q在线段BD上从点B向点D以√2个单位长度/秒的速度运动,当一个点到达终点时,另一个点随之停止运动,当t为何值时,△PQB为直角三角形?(3)如图3,过点B的直线BG交抛物线于点G,且tan∠ABG=1,点M为直线BG2上方抛物线上一点,过点M作MH⊥BG,垂足为H,若HF=MF,请直接写出满足条件的点M的坐标.答案和解析1.【答案】D【解析】解:数5、0、-2、-7中绝对值最大的是-7,故选:D.先求出每个数的绝对值,再比较即可.本题考查了绝对值和有理数的大小,能熟记有理数的大小比较法则是解此题的关键.2.【答案】C【解析】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“时”相对的字是“奋”;“代”相对的字是“新”;“去”相对的字是“斗”.故选:C.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体的平面展开图,解题的关键是掌握立方体的11种展开图的特征.3.【答案】B【解析】解:A、3x-(-x)=3x+x=4x,此选项错误;B、(-x2y)2÷x4=x4y2÷x4=y2,此选项正确;C、x3•(-x2)=-x5,此选项错误;D、(x+y)(y-x)=y2-x2,此选项错误;故选:B.根据合并同类项法则、单项式除以单项式、同底数幂的乘法及平方差公式逐一计算可得.本题主要考查整式的混合运算,解题的关键是掌握整式混合运算顺序和运算法则.4.【答案】D【解析】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.根据平均数、中位数、众数和方差的定义逐一求解可得.本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5.【答案】D【解析】【分析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.根据一元二次方程的定义和判别式的意义得到k-1≠0且△=42-4(k-1)×1>0,然后求出两个不等式的公共部分即可.【解答】解:根据题意得k-1≠0且△=42-4(k-1)×1>0,解得:k<5,且k≠1.故选D.6.【答案】A【解析】解:如图:由图可知:∠BOE=∠OBE=45°,∵等边△ABC,∴∠ABC=60°,∴∠OFB=180°-45°-60°=75°,∴∠BFG=∠α=90°-75°=15°,故选:A.根据等边三角形的性质和三角形内角和解答即可.此题考查等边三角形的性质,关键是根据等边三角形的性质和三角形内角和解答.7.【答案】B【解析】解:设2017年至2019年该银行安排精准扶贫贷款的平均增长率为x,根据题意得:64(1+x)2=100.故选:B.设2017年至2019年该银行安排精准扶贫贷款的平均增长率为x,根据2017年及2019年该银行安排精准扶贫贷款总额,即可得出关于x的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【答案】D【解析】解:连接BN,由作图知OM是弦AB的中垂线,∵⊙O的半径OD⊥弦AB于点C,AB=8,∴AC=BC=4,设OA=x,∵CD=2,∴OC=x-2,在Rt△AOC中,AC2+OC2=OA2,∴42+(x-2)2=x2,解得:x=5,∴OA=ON=5,OC=3,∴BN=2OC=6,∵AN是直径,∴∠B=90°,则NC===2,故选:D.首先连接BN,由⊙O的半径OD⊥弦AB于点C,AB=8,CD=1,根据垂径定理可求得AC=BC=4,然后设OA=x,利用勾股定理可得方程:42+(x-1)2=x2,则可求得半径的长,继而利用三角形中位线的性质,求得BN的长,又由AN是直径,可得∠B=90°,继而求得答案.此题考查了圆周角定理、垂径定理、勾股定理以及三角形中位线的性质.注意准确作出辅助线是解此题的关键.9.【答案】D【解析】解:∵点M是反比例函数y=(x>0)的图象上的一点,且点M的横坐标为3,∴点M的纵坐标为3,∴M(3,3),∴OB是∠DOC的平分线,∵BM=OM,BC⊥OC,BD⊥OD,∴四边形OCBD是正方形,∴B(6,6),∴S阴影=S△OBD=S△OBD=S正方形OCBD=×6×6=18.故选:D.由点A是反比例函数y=(x>0)的图象上的一点,且点A的横坐标为2,求出点M的坐标,由已知条件证出四边形OCBD是正方形,得到阴影部分的面积是正方形的一半.主要考查了反比例函数y=中k的几何意义,由反比例函数的解析式去点的坐标,求阴影部分的面积,这里体现了数形结合的思想.10.【答案】B【解析】解:∵点A的坐标为(-3,6),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标为(-3×,6×)或(-3×(-),6×(-)),即(-1,2)或(1,-2),故选:B.根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k解答.本题考查的是位似变换的性质,掌握在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k 是解题的关键.11.【答案】1.8×105【解析】解:将180000用科学记数法表示为1.8×105,故答案为:1.8×105科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.【答案】50【解析】解:原式=xy(x2+2xy+y2)=xy(x+y)2,把x+y=5,xy=2代入得,原式=2×25=50.把所求的代数式分解因式,整理成条件中x+y,xy的形式,整体代入x+y,xy的值即可.本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.13.【答案】2【解析】解:∵x2-4=0,∴x=±2,当x=2时,x+2≠0,当x=-2时,x+2=0.∴当x=2时,分式的值是0.故答案为:2.分式的值是0的条件是,分子为0,分母不为0.分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.14.【答案】2.5【解析】解:∵32+42=25=52,∴该三角形是直角三角形,∴×5=2.5.故答案为:2.5.根据勾股定理逆定理判断出三角形是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的逆定理,判断出是直角三角形是解题的关键.15.【答案】4【解析】解:∵经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数25%附近,∴小石子落在不规则区域的概率为0.25,∵AC=8m,BD=4m,∴面积为×8×4=16m2,设不规则部分的面积为s,则=0.25,解得:s=4,故答案为:4.首先确定小石子落在不规则区域的概率,然后利用概率公式求得其面积即可.考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中事件发生的频率可以估计概率.16.【答案】200π【解析】解:这个圆锥的侧面积=•2π•8•25=200π(cm2).故答案为200π.利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.【答案】14【解析】解:设销售单价为x元,利润为w元,w=(x-8)[100-(x-10)×10]=-10x2+280x-1600=-10(x-14)2+360,∴当x=14时,w取得最大值,此时w=360,故答案为:14.根据题意可以得到利润与售价的函数关系式,然后将函数关系式化为顶点式,利用二次函数的性质即可解答本题.本题考查二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质解答.18.【答案】(1,1)【解析】解:由题意得:B(1,1),把一个点先沿x轴翻折,再沿y轴翻折”为一次变化,则相当于这点的原点对称点,∴点B(1,1)先沿x轴翻折,再沿y轴翻折后的B1的坐标为(-1,-1);点B1(-1,-1)先沿x轴翻折,再沿y轴翻折后的B2的坐标为(1,1);…∴△ABC连续做2018次这样的变化,则点B变化后的坐标为(1,1).故答案为:(1,1).根据平面直角坐标系内关于x和y轴成轴对称点的坐标特征易得,一次变化即将点B原点对称:横坐标和纵坐标分别互为相反数,根据规律可得结论.本题考查了平面直角坐标系中的翻折变换问题和点的坐标的规律问题,熟悉坐标原点对称,关于x轴和y轴对称的坐标特征是解决问题的关键.19.【答案】解:由不等式组解得:-1<x ≤2,∴原式=x 2−4x−1÷(x−2)2x−1=x+2x−2由分式有意义的条件可知:x ≠1且x ≠2 ∴当x =0时, 原式=-1 【解析】根据分式的运算法则以及一元一次不等式组的解法即可求出答案. 本题考查分式的运算法则,解题关键是熟练运用分式的运算法则以及不等式组的解法,本题属于基础题型.20.【答案】解:(1)设甲种鱼苗每尾是x 元.乙种鱼苗每尾是(x +0.3)元.根据题意得:1000x=1600x+0.310x =16x +0.3解得:x =0.5经检验:x =0.5是原方程的解; 0.5+0.3=0.8答:甲、乙两种鱼苗每尾各是0.5元,0.8元;(2)设甲种鱼苗购买b 尾,则乙种鱼苗购买(6000-b )株,购买的总费用为w 元,由题意得:w =0.5b +0.8(6000-b )=-0.3b +4800≤4200 b ≥200090%b +95%(6000-b )≥6000×93%, ∴b ≤2400. ∴2000≤b ≤2400答:购买甲种鱼苗2000~2400尾. 【解析】(1)设甲种鱼苗每尾是x 元,根据1000元购买甲种鱼苗的尾数与用1600元购买乙种鱼苗的尾数相同,列分式方程,求出其解即可;(2)根据成活率,可得一元一次不等式,根据解一元一次不等式,可得不等式的解集,根据鱼苗的费用,可得一次函数,根据函数的性质,可得答案. 本题考查了列二元一次方程组解实际问题的运用,一元一次不等式解实际问题的运用,一次函数的解析式的运用,解答时由方程组求出两种树苗的单价是关键.21.【答案】15【解析】解:(1)∵转动转盘一次共有A、B、C、D、E这5种等可能结果,其中指正指向字母D的只有1种可能,∴任意转动转盘一次,指针指向字母D所在扇形的概率是,故答案为:;(2)画树状图如下:由树状图知共有25种等可能结果,其中指针所指字母代表的邮票面值之和恰为3元的有4种结果,所以指针所指字母代表的邮票面值之和恰为3元的概率为.(1)直接利用概率公式计算;(2)画树状图展示所有25种等可能的结果数,再找出指针所指字母代表的邮票面值之和恰为3元的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.【答案】50 10 0.28【解析】解:(1)样本容量=8÷0.16=50,故答案为50.(2)a=50×0.2=10(人),b==0.28,故答案为10,0.28.(3)如图所示:(4)估计全校最喜欢C 的学生人数有:1500÷0.28=420(人). (1)根据B 组人数以及频率求出总人数即可; (2)根据频率=,计算即可;(3)根据A 组人数画出频数分布直方图即可; (4)利用样本估计总体的思想解决问题即可;本题考查的是条形统计图和统计表的综合运用、用样本估计总体的应用等,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键. 23.【答案】解:如图所示:过点B 作BE ⊥CD 延长线于点E ,过点A 作AF ⊥CD 延长线于点F ,过点B作BN ⊥AF 于点N ,∵AC 长1200m ,BD 长540m ,测量人员在C ,D 两处测得山峰A ,B 的仰角均为30°, ∴BE =12BD =270m ,AF =12AC =600m , 则AN =AF -BE =330m ,∵在B 处测得山峰A 的仰角为60°, ∴AB =330sin60∘≈388(m ), 答:缆车索道AB 的长为388m . 【解析】直接构造直角三角形,进而利用30度所对直角边与斜边的关系得出BE ,AF 的长,进而求出AB 的长.此题主要考查了解直角三角形的应用,正确得出AN 的长是解题关键.24.【答案】(1)证明:连接OD ,∵CD 垂直平分OA , ∴OM =12OA =12OD ,∴∠ODC =30°,∵CE 为⊙O 的直径, ∴∠CDE =90°, ∵DN 平分∠CDE , ∴∠CDN =45°,∴∠ODN =45°-30°=15°,∵OD =OC ,∴∠DCO =∠ODC =30°,∴∠FGD =45°+30°=75°,∵FD =FG ,∴∠FDG =∠FGD =75°,∴∠ODF =∠ODN +∠FDG =15°+75°=90°,∴DF 是⊙O 的切线; (2)解:∵∠EDB =30°, ∴∠EOB =60°,Rt △CDE 中,∠DEC =60°, ∴∠DEC =∠EOB =60°, ∴DE ∥AB ,∴S △DOE =S △ODE , ∴S 阴影=S 扇形ODE =60π×82360=32π3; 答:线段DB ,BE 与劣弧DE 所围成的阴影部分的面积是32π3,【解析】(1)连接OD ,分别求∠ODN=45°-30°=15°,和∠FDG=∠FGD=75°,相加可得结论;(2)先证明DE ∥AB ,S △DOE =S △ODE ,所以S 阴影=S 扇形ODE ;根据扇形面积公式可得结论.本题考查了圆的切线的判定、圆周角定理、直角三角形30°角的判定、扇形面积公式、等腰三角形的性质等知识,是一道应用知识点较多的圆的有关计算和判断直线和圆位置关系的好题,难度适中. 25.【答案】AD =BD +√2CD . AD =BD +2CD •cosα【解析】解:(1)结论:AD=BD+CD.理由:如图1中,作CM⊥CD交AD于M.∵∠ACE=∠BDE=90°,∠AEC=∠BED,∴∠CAM=∠CBD,∵∠ACB=∠MCD=90°,∴∠ACM=∠BCD,∵AC=CB,∴△ACM≌△BCD,∴CM=CD,AM=BD,∴△CDM是等腰直角三角形,∴DM=CD,∴AD=AM+DM=BD+CD.故答案为:AD=BD+CD.(2)如图2中,结论∴AD=BD+CD.理由:如图2中,作∠DCM=∠ACB交AD于M.∵∠ACE=∠BDE=120°,∠AEC=∠BED,∴∠CAM=∠CBD,∵∠ACB=∠MCD,∴∠ACM=∠BCD,∵AC=CB,∴△ACM≌△BCD,∴CM=CD,AM=BD,作CH⊥DM于H,则MH=DH=CD•cos30°=CD,∴DM=CD,∴AD=AM+DM=BD+CD.(3)如图3中,结论:AD=BD+2CD•cosα.理由:如图3中,作∠DCM=∠ACB交AD于M.∵∠ACE=∠BDE,∠AEC=∠BED,∴∠CAM=∠CBD,∵∠ACB=∠MCD,∴∠ACM=∠BCD,∵AC=CB,∴△ACM ≌△BCD ,∴CM=CD ,AM=BD ,作CH ⊥DM 于H ,则MH=DH=CD•cosα,∴DM=2CD•cosα,∴AD=AM+DM=BD+2CD•cosα.故答案为:AD=BD+2CD•cosα.(1)结论:AD=BD+CD .只要证明△ACM ≌△BCD ,推出CM=CD ,AM=BD ,推出△CDM 是等腰直角三角形,推出DM=CD ,可得AD=AM+DM=BD+CD .(2)如图2中,结论∴AD=BD+CD .只要证明△ACM ≌△BCD ,推出CM=CD ,AM=BD ,作CH ⊥DM 于H ,则MH=DH=CD•cos30°=CD ,推出DM=CD ,可得AD=AM+DM=BD+CD .(3)如图3中,结论:AD=BD+2CD•cosα.证明方法类似.本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质、等腰三角形的性质、锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.26.【答案】(2,5) y =-12x 2-32x +5【解析】 解:(1)∵直线BD 的解析式为y=-x+2∴点B 坐标为(2,0)由抛物线解析式可知点C 坐标为(0,5)∵CD ⊥y ,BE ⊥x 轴∴点D 纵坐标为5,代入y=-x+2得到横坐标x=-3,点D 坐标为(-3,5)则点E 坐标为(2,5)将点D (-3,5)点B (2,0)代入y=ax 2+bx+5解得∴抛物线解析式为:y=-x2-+5故答案为:(2,5),y=-x2-+5(2)由已知∠QBE=45°,PE=t,PB=5-t,QB=当∠QPB=90°时,△PQB为直角三角形.∵∠QBE=45°∴QB=∴解得t=当∠PQB=90°时,△PQB为直角三角形.△BPQ∽△BDE∴BQ•BD=BP•BE∴5(5-t)=解得:t=∴t=或时,△PQB为直角三角形.(3)由已知tan∠ABG=,且直线GB过B点则直线GB解析式为:y=延长MF交直线BG于点K∵HF=MF∴∠FMH=∠FHM∵MH⊥BG时∴∠FMH+∠MKH=90°∠FHK+∠FHM=90°∴∠FKH=∠FHK∴HF=KF∴F为MK中点设点M坐标为(x,y)∵F(0,2)∴点K坐标为(-x,4-y)把K点坐标代入入y=解得x1=0(舍去)x2=-4把x=-4代入y=-x2-+5解得y=3则点M坐标为(-4,3)(1)由待定系数法求点坐标及函数关系式;(2)根据题意,△DEB为等腰直角三角形,通过分类讨论PQB=90°或∠QPB=90°的情况求出满足条件t值;(3)延长MF交GB于K,由∠MHK=90°,HF=MF可推得HF=FK,即F为MK 中点,设出M坐标,利用中点坐标性质,表示K点坐标,代入GB解析式,可求得点M坐标.本题为代数几何综合题,考查了二次函数性质、一次函数性质、三角形相似以及直角三角形的性质,应用了分类讨论和数形结合思想.。