经典有机化学反应机理大全课件
详细有机化学常见反应机理..
常见的有机反应机理Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则 Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
常见有机化学反应及机理
Beckma nn 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰 氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:环己酮月亏己内酰胺Bouveault -Bia nc 还原反应机理:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反 位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
R II 1ST、OH + H H 2O N=C —R -OH 2 R F —N=C —RR F —NHC —R迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如 CH 3CH 2t-Bui .. CH3 H2SO4 CH 3CH 2XOIIc IIEt^O—NHCCH 3N H rX OH反应实例 H 2SO 4C6H 5y CH 3CII*OHO__一 C5H5NH -C - CH 3脂肪族竣酸酯可用金属钠和醇圧原得一级醇。
氏不饱和竣酸酯 还原得相应的饱和醇°芳香酸酯也可进行本反应,但收率较低,本法 在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共辄的双键可 不受影响9OEtOHR —C —OR 1 + 皿■ RCH 3OH + RQH反应机理首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中 夺取一个质子转变为自由基,再从钠得到一个电子生成负离子,泊除 烷细基成为醛,醛再经过相同的步骤还原咸醇钠,再酸化得到相应的 醇。
□O-EtCHR —C —OR' + Na ------------------------- — R^C —OR 1 _— R —C —OR 1_R —CH —OR* ------------ R —CH-OR ---------------------- R —C —H■ R —C —HiEtCHR —G —H ----------------Na +FCH 2OH反应实例醛酮也可以用本法还賦 得到相应的醇;Claisen- Schmidt 反应一个无:一氢原子的醛与一个带有:一氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇 溶液存在下发生缩合反应,并失水得到:汀;不饱和醛或酮:反应机理NaR —CH 3(CHi )10CO^tNa EtOHCH/CH^KCHaOH 75%EtO 2C(CH^CO^t ——_■ EtOH HOCH XCH 抚CH 例畑CHgH^CHOC 哄⑴沖・叭如皿0HCH=CH-CHO 亠 H 2OClaise n 酯缩合反应含有僅-氢的酯在酚钠等碱性缩合剂作用下发生缩合作用,失去一分子 醇得到E 番同酸it 如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合 得到乙麻乙酸乙酯。
有机化学反应机理(整理版)
1.Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例2.Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边插入一个氧原子生成相应的酯,其中三氟过氧乙酸是最好的氧化剂。
这类氧化剂的特点是反应速率快,反应温度一般在10~40℃之间,产率高。
3.Beckmann 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例4.Birch还原芳香化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物。
反应机理首先是钠和液氨作用生成溶剂化点子,然后苯得到一个电子生成自由基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自由基负离子仍是个环状共轭体系,(Ⅰ)表示的是部分共振式。
详细有机化学常见反应机理
详细有机化学常见反应机理(共66页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--常见的有机反应机理Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则 Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的枸型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
(完整版)有机化学反应机理
双分子反应一 步活化能较高
O
H+
CH3C-OH
+OH CH3C-OH HOC2H5
按加成--消除机理进行 反应,是酰氧键断裂
加成
OH CH3-C-OH
HO+ C2H5
质子转移
四面体正离子
OH CH3-C-O+ H2
OC2H5
-H2O 消除
+OH
-H+
CH3C-OC2H5
O CH3C-OC2H5
*2 碳正离子机理
OH
H+
(CH3)3C-OH
+OH R-C-OC(CH3)3
(CH3)3CO+ H2 -H2O (CH3)3C+
O=C-R
属于SN1机理
O -H+
R-C-OC(CH3)3
按SN1机理进
行反应,是烷
氧键断裂
* 3oROH按此反应机理进行酯化。 * 由于R3C+易与碱性较强的水结合,不易与羧酸结合,
故逆向反应比正向反应易进行。所以3oROH的酯化 反应产率很低。
1 自由基取代反应
有机化合物分子中的某个原子或基团被其 它原子或基团所置换的反应称为取代反应。若 取代反应是按共价键均裂的方式进行的,即是 由于分子经过均裂产生自由基而引发的,则称 其为自由基型取代反应。
自由基反应包括链引发、链转移、链终止三个
阶段。链引发阶段是产生自由基的阶段。由于键的 均裂需要能量,所以链引发阶段需要加热或光照。 链转移阶段是由一个自由基转变成另一个自由基的 阶段,犹如接力赛一样,自由基不断地传递下去, 像一环接一环的链,所以称之为链反应。链终止阶 段是消失自由基的阶段。自由基两两结合成键。所 有的自由基都消失了,自由基反应也就终止了。
有机化学第三章反应机理
>
CH3
常见碳自由基稳定性顺序:
CH2
>
CH2 CH CH2
( CH3)3 C
>
(CH3)2 CH >
CH3CH2 > CH3
(2) 产物分布 产物分布主要受两种因素影响: 反应物分子中各类氢的活泼性; 分子中各类氢的数目
三种不同氢在卤代时的相对生成速率:
1、亲核加成反应历程
决速步骤是由带负电荷或部分负电荷的试剂对碳
原子进行亲核进攻,产物结果为加成。 (1)炔烃的亲核加成
HC CH
+
CH3OH
KOH
H2C CH
OCH3
炔烃为什么可以发生亲核加成反应?
烯烃可以吗?
亲核反应历程:
CH3OH HC CH HC CH
+
KOH
+
CH3O
+
K
+
H2O
CH3O OCH3 CH3OH
ROH
CH3 CH3 C CH3 CH2
+
CH3 Br CH3
C Br C CH3
CH2Br CH2
CH3 CH3 C CH2Br
+
CH3 HBr CH3 C H CH2Br
+
Br
本反应只与HBr作用,与HCl或HI不作用。
四、亲电反应历程
1、亲电加成反应(烯烃、炔烃) (1)烯烃的亲电加成 因π键电子云受原子核的束缚较小,易极化,具 有供电性,易受到带正电荷或部分正电荷的亲电试剂 进攻,发生亲电加成反应。
=
2×3.8
=
7.6
有机化学反应机理详解(共95个反应机理)
一、Arbuzow反应(重排)之杨若古兰创作亚磷酸三烷基酯作为亲核试剂与卤代烷感化,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl.除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也能够进行反应.当亚酸三烷基酯中三个烷基各不不异时,老是先脱除含碳原子数起码的基团.本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基不异(即 R' = R),则 Arbuzow反应如下:这是制备烷基膦酸酯的经常使用方法.除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理普通认为是按 SN2 进行的分子内重排反应:反应实例二、Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸.反应机理重氮甲烷与酰氯反应首先构成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺.反应实例三、Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂.是以,这是一个重排反应具有光学活性的3---苯基丁酮和过酸反应,重排产品手性碳原子的枸型坚持不变,说明反应属于分子内重排:分歧错误称的酮氧化时,在重排步调中,两个基团均可迁移,但是还是有必定的选择性,按迁移能力其顺序为:醛氧化的机理与此类似,但迁移的是氢负离子,得到羧酸.反应实例酮类化合物用过酸如过氧乙酸、过氧苯甲酸、间氯过氧苯甲酸或三氟过氧乙酸等氧化,可在羰基旁边拔出一个氧原子生成响应的酯,其中三氟过氧乙酸是最好的氧化剂.这类氧化剂的特点是反应速率快,反应温度普通在10~40℃之间,产率高.四、Beckmann 重排肟在酸如硫酸、多聚磷酸和能发生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等感化下发生重排,生成响应的取代酰胺,如环己酮肟在硫酸感化下重排生成己内酰胺:反应机理在酸感化下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所构成的碳正离子与水反应得到酰胺. 迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如:反应实例五、Birch还原芳喷鼻化合物用碱金属(钠、钾或锂)在液氨与醇(乙醇、异丙醇或仲丁醇)的混合液中还原,苯环可被还原成非共轭的1,4-环己二烯化合物.反应机理首先是钠和液氨感化生成溶剂化点子,然后苯得到一个电子生成自在基负离子(Ⅰ),这是苯环的л电子体系中有7个电子,加到苯环上那个电子处在苯环分子轨道的反键轨道上,自在基负离子仍是个环状共轭体系,(Ⅰ)暗示的是部分共振式.(Ⅰ)不波动而被质子化,随即从乙醇中夺取一个质子生成环己二烯自在基(Ⅱ).(Ⅱ)在取得一个溶剂化电子转酿成环己二烯负离子(Ⅲ),(Ⅲ)是一个强碱,敏捷再从乙醇中夺取一个电子生成1,4-环己二烯.环己二烯负离子(Ⅲ)在共轭链的两头碳原子上质子化比末端碳原子上质子快,缘由尚不清楚.取代的苯也能发生还原,而且通过得到单一的还原产品.例如六、Bouveault---Blanc 还原脂肪族羧酸酯可用金属钠和醇还原得一级醇.α,β-不饱和羧酸酯还原得响应的饱和醇.芳喷鼻酸酯也可进行本反应,但收率较低.本法在氢化锂铝还原酯的方法发现之前,广泛地被使用,非共轭的双键可不受影响.反应机理首先酯从金属钠获得一个电子还原为自在基负离子,然后从醇中夺取一个质子改变成自在基,再从钠得一个电子生成负离子,清除烷氧基成为醛,醛再经过不异的步调还原成钠,再酸化得到响应的醇.反应实例醛酮也能够用本法还原,得到响应的醇:七、Bucherer 反应萘酚及其衍生物在亚硫酸或亚硫酸氢盐存鄙人和氨进行高温反应,可得萘胺衍生物,反应是可逆的.反应时如用一级胺或二级胺与萘酚反应则制得二级或三级萘胺.如有萘胺制萘酚,可将其加入到热的亚硫酸氢钠中,再加入碱,经煮沸除去氨而得.反应机理本反应的机理为加成清除过程,反应的第一步(不管从哪个方向开始)都是亚硫酸氢钠加成到环的双键上得到烯醇(Ⅱ)或烯胺(Ⅵ),它们再进行下一步互变异构为酮(Ⅲ)或亚胺(Ⅳ):八、苯基羟胺(N-羟基苯胺)和稀硫酸一路加热发生重排成对-氨基苯酚: 在H 2SO 4-C 2H 5OH(或CH 3OH)中重排生成对-乙氧基(或甲氧基)苯胺: 其他芳基羟胺,它的环上的o-p 位上未被取代者会起类似的重排.例如,对-氯苯基羟胺重排成2-氨基-5-氯苯酚:反应机理反应实例九、Berthsen,A.Y 吖啶合成法二芳基胺类与羧酸在无水ZnCl 2存鄙人加热起缩合感化,生成吖啶类化合物.反应机理反应机理不详反应实例十、Cannizzaro 反应凡α位碳原子上无活泼氢的醛类和浓NaOH 或KOH 水或醇溶液感化时,不发生醇醛缩合或树脂化感化而起歧化反应生成与醛相当的酸(成盐)及醇的混合物.此反应的特征是醛本身同时发生氧化及还原感化,一分子被氧化成酸的盐,另一分子被还原成醇:脂肪醛中,只要甲醛和与羰基相连的是一个叔碳原子的醛类,才会发生此反应,其他醛类与强碱液,感化发生醇醛缩合或进一步酿成树脂状物资.具有α-活泼氢原子的醛和甲醛首先发生羟醛缩合反应,得到无α-活泼氢原子的β-羟基醛,然后再与甲醛进行交叉Cannizzaro反应,如乙醛和甲醛反应得到季戊四醇:反应机理醛首先和氢氧根负离子进行亲核加成得到负离子,然后碳上的氢带着一对电子以氢负离子的方式转移到另一分子的羰基不克不及碳原子上.反应实例十一、Chichibabin 反应杂环碱类,与碱金属的氨基物一路加热时发生胺化反应,得到响应的氨基衍生物,如吡啶与氨基钠反应生成2-氨基啶,如果α位已被占领,则得γ-氨基吡啶,但产率很低.本法是杂环上引入氨基的简便无效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、丫啶和菲啶类化合物均能发生本反应.喹啉、吡嗪、嘧啶、噻唑类化合物较为困难.氨基化试剂除氨基钠、氨基钾外,还可以用取代的碱金属氨化物:反应机理反应机理还不是很清楚,可能是吡啶与氨基首先加成,(Ⅰ),(Ⅰ)转移一个负离子给质子给予体(AH),发生一分子氢气和构成小量的2-氨基吡啶(Ⅱ),此小量的(Ⅱ)又可以作为质子的给予体,最初的产品是2-氨基吡啶的钠盐,用水分解得到2-氨基吡啶:反应实例吡啶类化合物不容易进行硝化,用硝基还原法制备氨基吡啶甚为困难.本反应是在杂环上引入氨基的简便无效的方法,广泛适用于各种氮杂芳环,如苯并咪唑、异喹啉、吖啶和菲啶类化合物均能发生本反应.十二、Claisen 酯缩合反应含有α-氢的酯在醇钠等碱性缩合剂感化下发生缩合感化,失去一分子醇得到β-酮酸酯.如2分子乙酸乙酯在金属钠和少量乙醇感化下发生缩合得到乙酰乙酸乙酯.二元羧酸酯的分子内酯缩合见Dieckmann缩合反应.反应机理-24.5),而乙醇钠又是一个绝对较弱的碱(乙乙酸乙酯的α-氢酸性很弱(pKa~15.9),是以,乙酸乙酯与乙醇钠感化所构成的负离子在平衡体醇的pKa系是很少的.但因为最初产品乙酰乙酸乙酯是一个比较强的酸,能与乙醇钠感化构成波动的负离子,从而使平衡朝产品方向挪动.所以,尽管反应体系中的乙酸乙酯负离子浓度很低,但一构成后,就不竭地反应,结果反应还是可以顺利完成.经常使用的碱性缩合剂除乙醇钠外,还有叔丁醇钾、叔丁醇钠、氢化钾、氢化钠、三苯甲基钠、二异丙氨基锂(LDA)和Grignard试剂等.反应实例如果酯的α-碳上只要一个氢原子,因为酸性太弱,用乙醇钠难于构成负离子,须要用较强的碱才干把酯变成负离子.如异丁酸乙酯在三苯甲基钠感化下,可以进行缩合,而在乙醇钠感化下则不克不及发生反应:两种分歧的酯也能发生酯缩合,理论上可得到四种分歧的产品,称为混合酯缩合,在制备上没有太大意义.如果其中一个酯分子中既无α-氢原子,而且烷氧羰基又比较活泼时,则仅生成一种缩合产品.如苯甲酸酯、甲酸酯、草酸酯、碳酸酯等.与其它含α-氢原子的酯反应时,都只生成一种缩合产品.实际上这个反应不限于酯类本身的缩合,酯与含活泼亚甲基的化合物都可以发生如许的缩合反应,这个反应可以用以下通式暗示:十三、Claisen—Schmidt 反应一个无氢原子的醛与一个带有氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存鄙人发生缩合反应,并失水得到不饱和醛或酮: 反应机理反应实例十四、Claisen 重排烯丙基芳基醚在高温(200°C)下可以重排,生成烯丙基酚.当烯丙基芳基醚的两个邻位未被取代基占满时,重排次要得到邻位产品,两个邻位均被取代基占领时,重排得到对位产品.对位、邻位均被占满时不发生此类重排反应.交叉反应实验证实:Claisen重排是分子内的重排.采取 g-碳14C 标识表记标帜的烯丙基醚进行重排,重排后 g-碳原子与苯环相连,碳碳双键发生位移.两个邻位都被取代的芳基烯丙基酚,重排后则仍是a-碳原子与苯环相连.反应机理Claisen 重排是个协同反应,两头经过一个环状过渡态,所以芳环上取代基的电子效应对重排无影响.从烯丙基芳基醚重排为邻烯丙基酚经过一次[3,3]s 迁移和一次由酮式到烯醇式的互变异构;两个邻位都被取代基占领的烯丙基芳基酚重排时先经过一次[3,3]s 迁移到邻位(Claisen 重排),因为邻位已被取代基占领,没法发生互变异构,接着又发生一次[3,3]s 迁移()到对位,然后经互变异构得到对位烯丙基酚.取代的烯丙基芳基醚重排时,不管本来的烯丙基双键是Z-构型还是E-构型,重排后的新双键的构型都是E-型,这是因为重排反应所经过的六员环状过渡态具有波动椅式构象的原因.反应实例Claisen 重排具有普遍性,在醚类化合物中,如果存在烯丙氧基与碳碳相连的结构,就有可能发生Claisen 重排.十五、Clemmensen 还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸波动的化合物.对酸不波动而对碱波动的化合物可用还原.反应机理本反应的反应机理较复杂,目前尚不很清楚.反应实例十六、Combes 喹啉合成法Combes合成法是合成喹啉的另一种方法,是用芳胺与1,3-二羰基化合物反应,首先得到高产率的β-氨基烯酮,然后在浓硫酸感化下,羰基氧质子化后的羰基碳原子向氨基邻位的苯环碳原子进行亲电进攻,关环后,再脱水得到喹啉.反应机理在氨基的间位有强的邻、对位定位基团存在时,关环反应容易发生;但当强邻、对位定位基团存在于氨基的对位时,则不容易发生关环反应.反应实例十七、Cope 清除反应叔胺的N-氧化物(氧化叔胺)热解时生成烯烃和N,N-二取代羟胺,产率很高.实际上只需将叔胺与氧化剂放在一路,不需分离出氧化叔胺即可继续进行反应,例如在干燥的二甲亚砜或四氢呋喃中这个反应可在室温进行.此反应条件暖和、副反应少,反应过程中不发生重排,可用来制备很多烯烃.当氧化叔胺的一个烃基上二个β位有氢原子存在时,清除得到的烯烃是混合物,但是 Hofmann产品为主;如得到的烯烃有顺反异构时,普通以 E-型为主.例如:反应机理这个反应是E2顺式清除反应,反应过程中构成一个平面的五员环过度态,氧化叔胺的氧作为进攻的碱:要发生如许的环状结构,氨基和β-氢原子必须处于同一侧,而且在构成五员环过度态时,α,β-碳原子上的原子基团呈堆叠型,如许的过度态须要较高的活化能,构成后也很不波动,易于进行清除反应.反应实例十八、Cope 重排1,5-二烯类化合物受热时发生类似于 O-烯丙基重排为 C-烯丙基的重排反应()反应称为Cope 重排.这个反应30多年来惹起人们的广泛留意.1,5-二烯在150—200℃单独加热短时间就容易发生重排,而且产率非常好.Cope 重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性.例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产品几乎全部是(Z, E)-2,6辛二烯:反应机理Cope 重排是[3,3]s-迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表示为经过椅式环状过渡态:反应实例十九、Curtius 反应酰基叠氮化物在惰性溶剂中加热分解生成异氰酸酯:异氰酸酯水解则得到胺:反应机理反应实例二十、Crigee,R 反应1,2-二元醇类的氧化产品因所用的氧化剂的品种而分歧.用K 2Cr 2O 7或KMnO 4氧化时生成酸类.用特殊氧化剂四乙醋酸铅在CH 3COOH 或苯等不活泼无机溶剂中缓和氧化,生成二分子羰基化合物(醛或酮).氧化反应也能够在酸催化剂(三氯醋酸)存鄙人进行.本反应被广泛地利用于研讨醇类结构及制备醛、酮类,产率很高.反应机理反应过程中师长教师成环酯两头产品,进一步C--C键裂开成醛或酮.酸催化的场合,反应历程可以用下式暗示:反应实例二十一、Dakin 反应酚醛或酚酮类用H2O2在NaOH存鄙人氧化时,可将分子中的-CHO基或CH3CO-基被-OH基所置换,生成绝对应的酚类.本反应可利用以制备多远酚类.反应机理反应实例二十二、Elbs 反应羰基的邻位有甲基或亚甲基的二芳基酮,加热时发生环化脱氢感化,生成蒽的衍生物:因为这个反应通常是在回流温度或高达400-450 °C的温度范围内进行,不必催化剂和溶剂,直到反应物没有水放出为止,在如许的高温条件下,一部分原料和产品发生碳化,部分原料酮被释放出的水所裂解,烃基发生清除或降解和分子重排等副反应,导致产率不高.反应机理本反应的机理尚不清楚.反应实例二十三、Edvhweiler-Clarke 反应在过量甲酸存鄙人,一级胺或二级胺与甲醛反应,得到甲基化后的三级胺:甲醛在这里作为一个甲基化试剂.反应机理反应实例二十四、将一元酚类或类似化合物用过硫酸钾在碱性溶液中氧化羟基引入在原有羟基的对位或邻位,生成二元酚类.分子中的醛基或双键等都不影响.产率约20~48%.过硫酸钾的水溶液在加热时放出氧:芳伯胺类如用本试剂氧化时,酿成硝基化合物.反应机理反应实例二十五、Favorskii 重排a-卤代酮在氢氧化钠水溶液中加热重排生成含不异碳原子数的羧酸;如为环状a-卤代酮,则导致环缩小.如用醇钠的醇溶液,则得羧酸酯:此法可用于合成张力较大的四员环.反应机理反应实例二十六、Friedel-Crafts 烷基化反应芳烃与卤代烃、醇类或烯类化合物在Lewis 催化剂(如AlCl 3,FeCl 3, H 2SO 4, H 3PO 4, BF 3, HF 等)存鄙人,发生芳环的烷基化反应.卤代烃反应的活泼性顺序为:RF > RCl > RBr > RI ; 当烃基超出3个碳原子时,反应过程中易发生重排.反应机理首先是卤代烃、醇或烯烃与催化剂如三氯化铝感化构成碳正离子:所构成的碳正离子可能发生重排,得到较波动的碳正离子:碳正离子作为亲电试剂进攻芳环构成两头体s-络合物,然后失去一个质子得到发生亲电取代产品:反应实例二十七、Friedel-Crafts酰基化反应芳烃与酰基化试剂如酰卤、酸酐、羧酸、烯酮等在Lewis酸(通经常使用无水三氯化铝)催化下发生酰基化反应,得到芳喷鼻酮:这是制备芳喷鼻酮类最次要的方法之一,在酰基化中不发生烃基的重排.反应机理反应实例二十八、Fries 重排酚酯在Lewis酸存鄙人加热,可发生酰基重排反应,生成邻羟基和对羟基芳酮的混合物.重排可以在硝基苯、硝基甲烷等溶剂中进行,也能够不必溶剂直接加热进行.邻、对位产品的比例取决于酚酯的结构、反应条件和催化剂等.例如,用多聚磷酸催化时次要生成对位重排产品,而用四氯化钛催化时则次要生成邻位重排产品.反应温度对邻、对位产品比例的影响比较大,普通来讲,较低温度(如室温)下重排有益于构成对位异构产品(动力学控制),较高温度下重排有益于构成邻位异构产品(热力学控制).反应实例二十九、Fischer,O-Hepp,E 重排N-亚硝基芳胺用盐酸或氢溴酸或其乙醇溶液处理时氨基氮上的亚硝基转移到芳核上去构成p-亚硝基芳胺(对位重排):通常发生对位重排,但在奈系化合物中如N-亚硝基-N-加基-2-奈胺则发生邻位重排成1-亚硝基化合物:反应机理在HCl存鄙人,N-亚硝基化合物首先解离成仲胺及NOCl然后进行亚硝基化:三十、Gabriel 合成法邻苯二甲酰亚胺与氢氧化钾的乙醇溶液感化改变成邻苯二甲酰亚胺盐,此盐和卤代烷反应生成N-烷基邻苯二甲酰亚胺,然后在酸性或碱性条件下水解得到一级胺和邻苯二甲酸,这是制备纯净的一级胺的一种方法.有些情况下水解很困难,可以用肼解来代替:反应机理邻苯二甲酰亚胺盐和卤代烷的反应是亲核取代反应,取代反应产品的水解过程与酰胺的水解类似.反应实例三十一、Gattermann 反应重氮盐用新制的铜粉代替亚铜盐(见)作催化剂,与浓盐酸或氢溴酸发生置换反应得到氯代或溴代芳烃:本法长处是操纵比较简单,反应可在较低温度下进行,缺点是其产率普通较低.见反应实例三十二、Gattermann-Koch 反应芳喷鼻烃与等分子的一氧化碳及氯化氢气体在加压和催化剂(三氯化铝及氯化亚铜)存鄙人反应,生成芳喷鼻醛:反应机理反应实例三十三、Gomberg-Bachmann 反应芳喷鼻重氮盐在碱性条件下与其它芳喷鼻族化合物偶联生成联苯或联苯衍生物:反应机理反应实例三十四、Hantzsch 合成法两分子b-羰基酸酯和一分子醛及一分子氨发生缩合反应,得到二氢吡啶衍生物,再用氧化剂氧化得到吡啶衍生物.这是一个很普遍的反应,用于合成吡啶同系物.反应机理反应过程可能是一分子b-羰基酸酯和醛反应,另一分子b-羰基酸酯和氨反应生成b-氨基烯酸酯,所生成的这两个化合物再发生Micheal加成反应,然后失水关环生成二氢吡啶衍生物,它很溶液脱氢而芳构化,例如用亚硝酸或铁氰化钾氧化得到吡啶衍生物:反应实例三十五、Haworth 反应萘和丁二酸酐发生然后按尺度的方法还原、关环、还原、脱氢得到多环芳喷鼻族化合物.反应机理见反应实例三十六、Hell-Volhard-Zelinski 反应羧酸在催化量的三卤化磷或红磷感化下,能与卤素发生a-卤代反应生成a-卤代酸:本反应也能够用酰卤作催化剂.反应机理反应实例三十七、Hinsberg 反应伯胺、仲胺分别与对甲苯磺酰氯感化生成响应的对甲苯磺酰胺沉淀,其中伯胺生成的沉淀能溶于碱(如氢氧化钠)溶液,仲胺生成的沉淀则不溶,叔胺与对甲苯磺酰氯不反应.此反应可用于昆季叔胺的分离与鉴定.三十八、Hofmann 烷基化卤代烷与氨或胺发生烷基化反应,生成脂肪族胺类:因为生成的伯胺亲核性通常比氨强,能继续与卤代烃反应,是以本反应不成防止地发生仲胺、叔胺和季铵盐,最初得到的常常是多种产品的混合物.用大过量的氨可防止多取代反应的发生,从而可得到良好产率的伯胺.反应机理反应为典型的亲核取代反应(SN 1或SN2)反应实例三十九、Hofmann 清除反应季铵碱在加热条件下(100--200°C)发生热分解,当季铵碱的四个烃基都是甲基时,热分解得到甲醇和三甲胺:如果季铵碱的四个烃基分歧,则热分解时老是得到含取代基起码的烯烃和叔胺:反应实例四十、Hofmann 重排(降解)酰胺用溴(或氯)在碱性条件下处理改变成少一个碳原子的伯胺:反应机理反应实例四十一、Houben-Hoesch 反应酚或酚醚在氯化氢和氯化锌等Lewis酸的存鄙人,与腈感化,随后进行水解,得到酰基酚或酰基酚醚:反应机理反应机理较复杂,目前尚未完整说明反应实例。
基础有机化学反应机理PPT课件
15
酯化反应的机理
*1 加成-消除机理
双分子反应一 步活化能较高
O H + C3C H O H -
+OH C3C H O H - HC O 2H 5
OH CH 3 -C -OH
质子转移
按加成-消除
加成
HO +
C 2H
5
机制进行反应,
四面体正离子
是酰氧键断裂
OH
+
CH 3-C -OH 2
OC 2 H 5
* 3oROH按此反应机理进行酯化。 * 由于R3C+易与碱性较强的水结合,不易与羧酸结合,
故逆向反应比正向反应易进行。所以3oROH的酯化 反应产率很低。
该反应机理也 从同位素方法 中得到了证明
O
CH3C-O18H + (CH3)3COH
O18
CH 3CO -C(C H3)3 + H2O
17
*3 酰基正离子机理
6
实例: 甲烷的氯化
卤代反应 分子中的原子或基团被卤原子或基团 取代的反应称为卤代反应。若卤原子为氯 原子,则该卤代反应称为氯代反应。
7
C H 4+ C l2 h v C H 3 C l+H C l
反应机理
链引发 链增长
链终止
hv
Cl2
2Cl
C H 4 + lC H 3 +HC Cl
H= 7. 5kJ/mol Ea=16.7 kJ/mol
C H 3+ C l2 C H 3 C l+C l
H= -112. 9 kJ/mol Ea=8. 3 kJ/mol
Cl + Cl
C l2
常见有机化学反应及机理
(2)Beckma nn 重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰 氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:环己酮月亏己内酰胺Bouveault -Bia nc 还原反应机理:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反 位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
R II 1ST、OH + H H 2O N=C —R -OH 2 R F —N=C —RR F —NHC —R迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如 CH 3CH 2t-Bui .. CH3 H2SO4 CH 3CH 2XOIIc IIEt^O—NHCCH 3N H rX OH反应实例 H 2SO 4C6H 5y CH 3CII*OHO__一 C5H5NH -C - CH 3脂肪族竣酸酯可用金属钠和醇圧原得一级醇。
氏不饱和竣酸酯 还原得相应的饱和醇°芳香酸酯也可进行本反应,但收率较低,本法 在氢化锂铝还原酯的方法发现以前,广泛地被使用,非共辄的双键可 不受影响9OEtOHR —C —OR 1 + 皿■ RCH 3OH + RQH反应机理首先酯从金属钠获得一个电子还原为自由基负离子,然后从醇中 夺取一个质子转变为自由基,再从钠得到一个电子生成负离子,泊除 烷细基成为醛,醛再经过相同的步骤还原咸醇钠,再酸化得到相应的 醇。
□O-EtCHR —C —OR' + Na ------------------------- — R^C —OR 1 _— R —C —OR 1_R —CH —OR* ------------ R —CH-OR ---------------------- R —C —H■ R —C —HiEtCHR —G —H ----------------Na +FCH 2OH反应实例醛酮也可以用本法还賦 得到相应的醇;Claisen- Schmidt 反应一个无:一氢原子的醛与一个带有:一氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇 溶液存在下发生缩合反应,并失水得到:汀;不饱和醛或酮:反应机理NaR —CH 3(CHi )10CO^tNa EtOHCH/CH^KCHaOH 75%EtO 2C(CH^CO^t ——_■ EtOH HOCH XCH 抚CH 例畑CHgH^CHOC 哄⑴沖・叭如皿0HCH=CH-CHO 亠 H 2OClaise n 酯缩合反应含有僅-氢的酯在酚钠等碱性缩合剂作用下发生缩合作用,失去一分子 醇得到E 番同酸it 如2分子乙酸乙酯在金属钠和少量乙醇作用下发生缩合 得到乙麻乙酸乙酯。
常见有机化学反应及机理
Beckmann重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如反应实例Bouveault-Blanc还原反应机理反应实例Claisen-Schmidt反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:反应机理反应实例Claisen酯缩合反应二元羧酸酯的分子内酯缩合见Dieckmann 缩合反应。
反应机理:反应实例:Cope 消除反应反应机理反应实例Cope重排1,5-二烯类化合物受热时发生类似于O-烯丙基重排为C-烯丙基的重排反应(Claisen重排)反应称为Cope重排。
这个反应30多年来引起人们的广泛注意。
1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。
Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。
例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3] -迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:反应实例Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。
反应实例Diels-Alder反应含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯体)发生1,4-加成,生成六员环状化合物:这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。
常见有机化学反应及机理
Beckmann重排肟在酸如硫酸、多聚磷酸以及能产生强酸的五氯化磷、三氯化磷、苯磺酰氯、亚硫酰氯等作用下发生重排,生成相应的取代酰胺,如环己酮肟在硫酸作用下重排生成己内酰胺:反应机理:在酸作用下,肟首先发生质子化,然后脱去一分子水,同时与羟基处于反位的基团迁移到缺电子的氮原子上,所形成的碳正离子与水反应得到酰胺。
迁移基团如果是手性碳原子,则在迁移前后其构型不变,例如反应实例Bouveault-Blanc还原反应机理反应实例Claisen-Schmidt反应一个无α-氢原子的醛与一个带有α-氢原子的脂肪族醛或酮在稀氢氧化钠水溶液或醇溶液存在下发生缩合反应,并失水得到α,β-不饱和醛或酮:反应机理反应实例Claisen酯缩合反应二元羧酸酯的分子内酯缩合见Dieckmann 缩合反应。
反应机理:反应实例:Cope 消除反应反应机理反应实例Cope重排1,5-二烯类化合物受热时发生类似于O-烯丙基重排为C-烯丙基的重排反应(Claisen重排)反应称为Cope重排。
这个反应30多年来引起人们的广泛注意。
1,5-二烯在150—200℃单独加热短时间就容易发生重排,并且产率非常好。
Cope重排属于周环反应,它和其它周环反应的特点一样,具有高度的立体选择性。
例如:内消旋-3,4-二甲基-1,5-己二烯重排后,得到的产物几乎全部是(Z, E)-2,6辛二烯:反应机理Cope重排是[3,3] -迁移反应,反应过程是经过一个环状过渡态进行的协同反应:在立体化学上,表现为经过椅式环状过渡态:反应实例Clemmensen还原醛类或酮类分子中的羰基被锌汞齐和浓盐酸还原为亚甲基:此法只适用于对酸稳定的化合物。
对酸不稳定而对碱稳定的化合物可用Wolff-Kishner-黄鸣龙反应还原。
反应实例Diels-Alder反应含有一个活泼的双键或叁键的化合物(亲双烯体)与共轭二烯类化合物(双烯体)发生1,4-加成,生成六员环状化合物:这个反应极易进行并且反应速度快,应用范围极广泛,是合成环状化合物的一个非常重要的方法。
《有机反应机理》PPT课件
第1章学习要点
1 什么是反应机理?研究反应机理有何意义? 2 研究反应机理的步骤和方法 3 如何表示反应机理? 4 共振结构,酸碱理论等概念 5 重要离子型反应的机理
1.1 反应机理的定义和研究机理的方法
1.1.1 定义 理想的机理模型: 建立体系所有原子空间位置与时间的函数关系, 可以求任意时刻体系中所有原子的空间位置
哪一步是速率控制步骤(rate determining step, rds)
反应条件对反应速率有何影响
可以认为
反应机理是对组成一个化学反应的全部基元过程、 全部中间体(Int.)以及与中间体、反应物(R)和 产物(P)相关联的过渡态(TS)的总体描述
以上也可看作是反应机理的定义
1.1.2 研究机理的步骤和方法 研究机理的步骤
研究机理的方法
动力学方法-速率 速率与温度的关系-活化参数 速率与浓度的关系-动力学方程
同位素的应用 动力学同位素效应 平衡同位素效应 同位素标记
活性中间体的研究 立体化学的研究 密切相关体系的研究
1.2 反应机理的分类与表示法 1.2.1 有机反应与机理的分类 1.2.2 有机反应机理的表示法
自由基( free-radical)反应 反应中伴随单电子转移过程 自由机反应可能为链反应,也可能为非链反应
周环( pericyclic)反应 经由环状过渡态的协同反应
金属催化(metal-catalyzed)反应
由过渡金属催化或促进的各种反应
有些过渡金属 (如 TiCl4, FeCl3) 在反应中仅起Lewis 酸的作用;有些金属在反应中仅提供电子(如Na 和Li) 这些金属参与的反应一般分类为极性反应,周环 反应或自由基反应
IUPAC表示机Biblioteka 的符号及意义见下表符号 A D + * E N R e n r H h xh C P int SS {}
经典有机化学反应机理大全
-OH R
H R' B R'
R
anti-Malkovnicov syn-addition
H R
R' B
R'
O OH
O R' -OOH
O OR'
R
B
R
B
R'
OR'
OH + B(OH)3
13
12. Carroll 重排(碱催化下的烯丙基醇和β-酮酯转化为γ-酮羰基烯烃)
R1 R1 OH
反应机理
OO +
O
OH
heat
O
heat O
反应机理
O
O
OH
heat
H
H3C
O
CH3 heat H3C
O CH3
H3C
O
CH3
H2C
H
H3C
OH CH3
17
16. Cope重排(1,5-二烯烃在加热下[3,3] σ迁移)
300oC
HO
O
heat
反应机理
Ph Ph
Ph
Ph
Ph
Ph
18
17. Cope消除(叔胺的N-氧衍生物在加热下消除生成烯烃)
G
G
G
Na, NH3 (liquid)
Na, NH3 (liquid)
EtOH G=R, NR2, OR etc.
反应机理
EtOH
G= COO-, COOR, COR, CONR2, CN, Ar, SiR3 etc.
Na + NH3
Na+ + [e]- NH3 氨溶剂化的电子很活泼
有机化学九十六个反应机理
Arbuzov 反应亚磷酸三烷基酯作为亲核试剂与卤代烷作用,生成烷基膦酸二烷基酯和一个新的卤代烷:卤代烷反应时,其活性次序为:R'I >R'Br >R'Cl。
除了卤代烷外,烯丙型或炔丙型卤化物、a-卤代醚、a- 或 b-卤代酸酯、对甲苯磺酸酯等也可以进行反应。
当亚酸三烷基酯中三个烷基各不相同时,总是先脱除含碳原子数最少的基团。
本反应是由醇制备卤代烷的很好方法,因为亚磷酸三烷基酯可以由醇与三氯化磷反应制得:如果反应所用的卤代烷 R'X 的烷基和亚磷酸三烷基酯 (RO)3P 的烷基相同(即 R' = R),则 Arbuzov 反应如下:这是制备烷基膦酸酯的常用方法。
除了亚磷酸三烷基酯外,亚膦酸酯 RP(OR')2和次亚膦酸酯 R2POR' 也能发生该类反应,例如:反应机理一般认为是按 S N2 进行的分子内重排反应:反应实例Arndt-Eister 反应酰氯与重氮甲烷反应,然后在氧化银催化下与水共热得到酸。
这也是制备烯酮的方法之一。
反应机理重氮甲烷与酰氯反应首先形成重氮酮(1),(1)在氧化银催化下与水共热,得到酰基卡宾(2),(2)发生重排得烯酮(3),(3)与水反应生成酸,若与醇或氨(胺)反应,则得酯或酰胺。
反应实例Baeyer----Villiger 反应反应机理过酸先与羰基进行亲核加成,然后酮羰基上的一个烃基带着一对电子迁移到-O-O-基团中与羰基碳原子直接相连的氧原子上,同时发生O-O键异裂。
因此,这是一个重排反应。
酮类化合物被过酸氧化,与羰基直接相连的碳链断裂,插入一个氧原子形成酯的反应。
首先酮羰基质子化,然后过酸对酮羰基进行亲核加成。
加成产物再进行重排得到产物。
具有光学活性的3---苯基丁酮和过酸反应,重排产物手性碳原子的构型保持不变,说明反应属于分子内重排:不对称的酮氧化时,在重排步骤中,两个基团均可迁移,但是还是有一定的选择性,按迁移能力其顺序为:醛氧化的机理与此相似,但迁移的是氢负离子,得到羧酸。
有机化学反应机理
实例: 甲烷的氯化
卤化反应 分子中的原子或基团被卤原子取代的 反应称为卤化反应。若卤原子为氯原子, 则该卤化反应称为氯化反应。
CH4 + Cl2
反应机理
链引发 链增长
hv
CH3Cl + HCl
Cl2
hv
2Cl
CH4 + Cl
CH3 + Cl2
C H3 + HCl
H= 7. 5kJ/mol Ea=16.7 kJ/mol
反应机理
HNO3 + H2SO4 H2O+NO2 H2SO4 + H2O HSO4- + H2O+NO2 H2O + +NO2 H3O+ + HSO4-
(1) HNO3 + 2H2SO4
(2) + +NO2
H
+
H3O+ +
H
+
+NO
2
+ 2 HSO4-
NO2
NO2
(3)
NO2 + HSO 4
+ H2SO4
(五)重要有机反应的反应机理
反应机理是对一个反应过程的详细描述,在表述反 应机理时,必须指出电子的流向,并规定用箭头表示一 对电子的转移,用鱼钩箭头表示单电子的转移。 反应机理是根据很多实验事实总结后提出的,它有 一定的适用范围,能解释很多实验事实,并能预测反应 的发生。如果发现新的实验事实无法用原有的反应机理 来解释,就要提出新的反应机理。反应机理已成为有机 结构理论的一部分。
180 C
o
O2N
HN NO2
+ EtOH