电磁感应复习__1-4节
电磁感应、交流电及电磁波部分期中复习
电磁感应、交流电及电磁波部分期中复习(一)知识要点1. 感应电流(感应电动势)的方向——楞次定律楞次定律反映了在电磁感应现象中,感应电流的方向所应普遍遵守的客观规律,在对楞次定律的理解和使用上应注意以下几点:(1)在理解楞次定律时,首先应抓住“两个磁场”,即“引起感应电流的磁场”(通常称作原磁场)和“感应电流的磁场”,同时要明确,穿过导体回路的原磁通的变化是产生感应电流(或感应电动势)的原因,而感应电流所产生的磁场则要阻碍原磁通的变化。
其中阻碍原磁通的变化是指,原磁通增加时,感应电流的磁场阻碍原磁通的增加,此时,感应电流的磁场方向与原磁场方向相反;当原磁通要减弱时,感应电流的磁场阻碍原磁通的少,此时感应电流的磁场方向与原磁场方向相同,即“阻碍”应从感应电流的磁场的作用上来理解,同时还要注意“阻碍”并不是阻止,即在电磁感应现象中,虽然有感应电流的磁场对原磁通变化的阻碍作用,但导体回路中的磁通还是要变化的。
(2)在运用楞次定律判断感应电流的方向时,首先应查明原磁场的方向,这里所指原磁场的方向应是合磁场的方向,导体回路内的磁通应指的是净磁通。
例:如图1所示,两条平行的长直导线M 、N 中,通以同方向、同强度的稳恒电流,闭合导线框abcd 和两直导线在同一平面内,线框沿着与两导线垂直的方向由图中的位置I 移动到位置II 的过程中,导线框内的感应电流方向为( )A. 先是abcda 方向,后是adcba 方B. 先是adcba 方向,后是abcda 方向C. 始终是abcda 方向D. 始终是adcba 方向2. 自感现象 自感现象是由于导体自身的电流变化而产生的电磁感应现象,所以自感现象就是电磁感应现象的一个特例。
法拉第电磁感应定律和楞次定律在自感现象中都是适用的,在自感现象中所产生的自感电动势其作用总是阻碍导体中的电流变化的。
自感电动势的大小与电流变化率(tI ∆∆)成正比,自感系数是表示一个线圈电学特性的一个物理量,常用L 来表示,一个线圈自感系数(简称电感)大小由线圈自身的条件来决定。
高二物理第四章_电磁感应复习课件+++++
l
b
24
第一类问题:与闭合电路欧姆定律相结合
例题1:如图,边长为L均匀的正方形金属框 架abcd总电阻为R,框架以速度v向右匀速 平动,经过磁感强度为B的匀强磁场。求下 列三种情况ab之间的电势差。(1) 只有ab进 入磁场。(2) 线框全部进入磁场。(3) 只有 ab边离开磁场。 a d
7
感应电流(电动势)方向的判定: 2.右手定则 伸开右手,让大拇指跟 其余四指垂直,并与手掌在 同一平面内,让磁感线垂直 (或斜着)穿过掌心,大拇指 指向导体运动的方向,其余 四指所指的方向就是感应电 流的方向.
8
1
N
S S
线圈如何运动?
9
【例】如图所示,固定在水平面内的两光滑平行金 属导轨M、N,两根导体棒中P、Q平行放于导轨上, 形成一个闭合回路,当一条形磁铁从高处下落接近 回路时( ) AD
(2) I=E/R=4A F=BIL=0.4N a=(mg-F)/m=6m/s2; (3) F=BIL=B2 L2 vm /R =mg vm=mgR / B2 L2 =10m/s, 36
解:PQ滑动时产生感应电动势 E=B l v 画出等效电路如图示:R外=2R/9 I总=E /( R外+r )=9B l v/11R
v r=R
d Q c
a R/3 P 2R/3 b
E
R
IaP=2I总/3 = 6B l v/11R
电流方向由 P→a
d
Q
29
c
4、一金属圆环位于纸面内,磁场垂直纸面,规定向里 为正,如图所示。现今磁场B随时间变化是先按oa图 线变化,又按图线bc和cd变化,令E1、E2、E3分别表 示这三段变化过程中感应电动势的大小,I1、I2、I3分 别表示对应的感应电流,则E1、E2、E3的大小关系是 ___________;电流I1的方向是___________;I2的方向是 E2=E3>E1 逆时针方向 ___________;I3的方向是____________. 顺时针方向 顺时针方向
电磁感应解题技巧及练习
电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
电磁感应复习
8、如图所示,匀强磁场中固定的金属框架ABC,导体棒DE 在框架上沿图示方向匀速平移,框架和导体棒材料相同、同 A 样粗细,接触良好.则( ) A.电路中感应电流保持一定 B.电路中磁通量的变化率一定 C.电路中感应电动势一定 D.棒受到的外力一定 E. 回路的电功率一定 DE棒在任意时刻t在电路中的有效切割长度L=2·vt·tanθ 与t无关
来拒去留 S N S N S N
四、法拉第电磁感应定律
1.法拉第电磁感应定律:电磁感应中感应电动势的大小,即 跟穿过这一电路的磁通量的变化率成正比,即: 2、注意:产生感应电动势的那部分导体相当于电源,该电源 的正负极由楞次定律来确定,注意电源内部电流是由负极流 向正极. 3.磁通量变化产生电动势的几种情况
②E=2BRv;
③E=BRv
公式中的L为有效切割长度:即垂直于B、垂直于v且处于磁 场中的直线部分长度
例4、材料、粗细相同,长度不同的电阻丝做成ab、 cd、ef三种形状的导线,分别放在电阻可忽略的光滑 金属导轨上,并与导轨垂直,如图所示,匀强磁场方 向垂直导轨平面向内.外力使导线水平向右做匀速运动, 且每次外力所做功的功率相同,已知三根导线在导轨 间的长度关系是Lab<Lcd<Lef,则 ( )BD (A)ab运动速度最大 Rab<Rcd<Ref BLv (B)ef运动速度最大 L 0.8 N p=FV F BIL B R (C)因三根导线切割磁感线的有效长度相同,故它们产 生的感应电动势相同 (D)忽略导体内能变化,三根导线每秒产生的热量相同 Q=Pt
D1
D2
(2) 、接通瞬间可把线圈当断路
高中物理精品试题:电磁感应复习1
2021年1月12日高中物理作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.在科学研究的道路上经常会出现令人惋惜的遗憾。
1825年日内瓦年轻物理学家科拉顿一个人在研究电磁现象时,其类似的实验装置如图所示,示意图如图。
为避免磁铁的磁场对小磁针的作用,他把实验装置放在两个房间,在右边房间里把磁铁反复插入线圈,然后科拉顿跑到左边房间里观察,结果没有看到小磁针偏转。
下列说法中正确的 ( )A .该实验过程中没有感应电流的产生B .观察到小磁针没有偏转是因为墙壁把磁场隔离了C .观察到小磁针没有偏转是因为线圈电阻太大D .将磁铁插入线圈后跑去隔离房间观察小磁针,错过了感应电流产生的时机2.如图所示的情况中,金属导体中产生的感应电动势为Blv 的是( )A .乙和丁B .甲、乙、丁C .甲、乙、丙、丁D .只有乙3.如图,abcd 为边长为L 的正方形匀强磁场区域,磁场方向垂直于纸面向里,半径为r的匝数为n 的线圈如图所示放置。
当磁场以B t ∆∆的变化率变化时,线圈中感应电动势为( ) A .0 B .n B t ∆∆·L 2 C .n B t ∆∆·πr 2 D .n B t∆∆·r 2 4.如图所示,垂直于纸面向外的磁场的磁感应强度沿x 轴按B =B 0+kx (B 0、k 为常数)的规律均匀增大。
位于纸面内边长为L 的正方形导线框abcd 处于磁场中,在外力作用下始终保持dc 边与x 轴平行向右匀速运动。
规定电流沿a →b →c →d →a 的方向为正方向,在0~t 1时间内,下列关于该导线框中产生的电流i 随时间t 变化的图象正确的是( )A .B .C .D .5.用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的一条直径。
如图所示,在ab 的左侧存在一个匀强磁场,磁场垂直圆环所在平面,方向如图所示,磁感应强度大小随时间的变化率B t∆∆=k (k <0)。
(新课标)高考物理大一轮复习-第9章 电磁感应 第1节 电磁感应现象 楞次定律课件
A.若固定ab,使cd向右滑动,则abdc回路有电流,电流方 向为a→b→d→c→a
B.若ab、cd以相同的速度一起向右滑动,则abdc回路有电 流,电流方向为a→c→d→b→a
C.若ab向左、cd向右同时运动,则abdc回路中的电流为零 D.若ab、cd都向右运动,且两杆速度vcd>vab,则abdc回路 有电流,电流方向为a→c→d→b→a
感应电流方向判断的两点注意 (1)楞次定律可应用于磁通量变化引起感应电流的各种情况 (包括一部分导体切割磁感线运动的情况). (2)右手定则只适用于一段导体在磁场中做切割磁感线运动的 情景,是楞次定律的一种特殊情况.
考点三 “三定则、一定律”的理解及应用
1.“三个定则、一个定律”的应用对比:
名称
三、感应电流方向的判断 1.右手定则:伸开右手,使拇指与其余四个手 指 垂直 ,并且都与手掌在同一个平面内;让磁感 线从掌心垂直进入,并使拇指指向 导线运动 的方 向,这时四指所指的方向就是 感应电流 的方 向.如右图所示.
2.楞次定律 内容:感应电流具有这样的方向,即感应电流的磁场总要 阻碍 引起感应电流的 磁通量 的变化.
主干回顾 夯基固源 考点透析 题组冲关
课时规范训练
考纲展示 1.电磁感应现象 2.磁通量 3.法拉第电磁感 应定律 4.楞次定律
5.自感、涡流
要求 Ⅰ Ⅰ Ⅱ Ⅱ
Ⅰ
复习定位
1.本章是高考考查的热点.考题既有选择 题又有计算题,选择题主要以电磁感应现 象的定性分析和图象问题等为主,计算题 主要以学科内的力、电综合题为主. 2.本章的复习应注意以下三点: (1)应用楞次定律和右手定则判断感应电流 的方向. (2)结合各种图象(如Φ-t图象、B-t图象和 i-t图象),考查感应电流的产生条件及其 方向的判定,导体切割磁感线产生感应电 动势的计算. (3)电磁感应现象与磁场、电路、力学等知 识的综合,以及电磁感应与实际相结合的 题目.
第二章 法拉第电磁感应定律(章节复习) 参考答案
2.5 第二章 法拉第电磁感应定律(章节复习)【知识再理解1】感应电流方向的判定——楞次定律1. 规律:楞次定律、右手定则,楞次定律的推论:电磁感应现象中的安培力,产生总阻碍磁通量的变化。
2. 方法:(1)归纳法(2)推论法【学以致用1】1. 一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动.已知线圈平面始终与纸面垂直,当线圈第一次通过位置I 和位置Ⅱ时,顺着磁场的方向看去,线圈中感应电流的方向分别为:( )A . 逆时针方向 逆时针方向B . 逆时针方向 顺时针方向C . 顺时针方向 顺时针方向D . 顺时针方向 逆时针方向2.矩形导线框abcd 与长直导线MN 放在同一水平面上,ab 边与MN 平行,导线MN 中通入如图所示的电流方向,下列说法正确的是( )A .当MN 中的电流增大时,导线框中有顺时针方向的感应电流B .当MN 中的电流增大时,导线框所受的安培力方向向左C .当导线框向右运动时,导线框有逆时针方向的感应电流D .当导线框向右运动时,导线框所受的安培力的合力向左【知识再理解2】感应电流大小的求解——法拉第电磁感应定律1. 规律:法拉第电磁感应定律:电源-电路-电流-力-能等2. 方法:(1)推论法 (2)等效法(3)转化法【学以致用2】1. 一个圆形线圈,共有n =10匝,其总电阻r =4.0Ω,线圈与阻值R 0=16Ω,的外电阻连成闭合回路,如图甲所示.线圈内部存在着一个边长l =0.20m 的正方形区域,其中有分布均匀但强弱随时间变化的磁场,图乙显示了一个周期内磁场的变化情况,周期T =1.0×10-2s ,磁场方向以垂直线圈平面向外为正方向.求:(1)t =18T 时刻,电阻R 0上的电流大小和方向; (2)0~2T ,时间内,流过电阻R 0的电量; (3)一个周期内电阻R 0的发热量.0.4A 方向b->a 1.5×10-3C 1.6×10-2J2. 如图所示,足够长的光滑斜面与水平面夹角θ=37°,在斜面上有垂直斜面向上的有界匀强磁场,边界aa '和bb '与斜面底边平行,且间距为d=0.1m 。
第1讲 电磁感应现象 楞次定律-2025版物理大一轮复习
电磁感应现象楞次定律目标要求 1.知道电磁感应现象的产生条件并会分析解决实际问题。
2.会根据楞次定律判断感应电流的方向,会应用楞次定律的推论分析问题。
3.能够综合应用安培定则、左手定则、右手定则和楞次定律解决实际问题。
考点一对电磁感应现象的理解和判断1.磁通量(1)定义:磁感应强度B与面积S的□1乘积。
(2)公式:Φ=□2BS。
(3)适用条件:①匀强磁场;②S为垂直磁场的□3有效面积。
(4)磁通量是□4标量(填“标量”或“矢量”)。
(5)物理意义:穿过某一面积的□5磁感线的条数。
(6)标矢性:磁通量是□6标量,但有正负。
(7)磁通量变化:ΔΦ=Φ2-Φ1。
2.电磁感应现象(1)定义:只要穿过闭合导体回路的□7磁通量发生变化,闭合导体回路中就有感应电流。
(2)条件:穿过□8闭合电路的□9磁通量发生变化。
(3)实质:产生□10感应电动势,如果电路闭合,则有感应电流;如果电路不闭合,则只有□11感应电动势而无感应电流。
【判断正误】1.穿过线圈的磁通量与线圈的匝数无关。
(√)2.电路中磁通量发生变化时,就一定会产生感应电流。
(×)3.当导体切割磁感线运动时,导体中一定产生感应电流。
(×)1.判断感应电流有无的方法2.判断磁通量是否变化的方法(1)根据公式Φ=BS sinθ(θ为B与S间的夹角)判断。
(2)根据穿过平面的磁感线的条数是否变化判断。
3.产生感应电流的三种常见情况【对点训练】1.(磁通量及其变化)如图所示,线框abdc的左侧放置一通有恒定电流的长直导线,线框从位置Ⅰ按照以下四种方式运动(位置Ⅰ和位置Ⅲ关于MN对称),磁通量变化量的绝对值最大的是()A.平移到位置ⅡB.平移到位置ⅢC.以MN为转轴转到位置ⅢD.以bd为转轴转到位置Ⅱ解析:B由图可知,通电直导线电流方向向上,由安培定则可知,导线右侧磁场的方向向里,左侧磁场的方向向外,靠近导线磁感应强度增大,远离导线磁感应强度减小,设线框的面积为S,位置Ⅰ处和位置Ⅲ处的平均磁感应强度为B1,位置Ⅱ处的磁感应强度为B2,线框从位置Ⅰ平移到位置Ⅱ,磁通量的变化量的大小为ΔΦ1=(B1-B2)S,线框从位置Ⅰ平移到位置Ⅲ,磁通量的变化量的大小为ΔΦ2=(B1+B1)S=2B1S,以MN为转轴转到位置Ⅲ,磁通量的变化量的大小为ΔΦ3=0,以bd为转轴转到位置Ⅱ,磁通量的变化量的大小为ΔΦ4=(B1+B2)S,由以上分析可知,线框从位置Ⅰ平移到位置Ⅲ,磁通量的变化量绝对值最大。
电磁感应复习
特别提醒 1.公式 E=BLvsinθ 是法拉第电磁感应定律的一种特 殊形式,不具有普遍性. 2.应用 E=BLv 处理转动切割类问题时,速度 v 是 1 2 转动棒中点的速度,此时写为 E=感应强度大小均为B, 方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁 场宽度均为L.边长为L的正方形线框abcd的bc边紧靠磁场边 缘置于桌面上.使线框从静止开始沿x轴正方向匀加速通 过磁场区域,若以逆时针方向为电流的正方向,能反映线 框中感应电流变化规律的是( )
三、理想变压器原、副线圈基本 量的关系如图所示:
功率关系 P1=P2
U1 n1 = ,与负载、副线圈的个数多少 电压关系 U2 n2 无关 I 1 n2 (1)只有一个副线圈: = 基本 I 2 n1 关系 电流关系 (2)多个副线圈: I1n1=I2n2+I3n3+…+Innn 或 U1I1=U2I2+U3I3+…+UnIn 频率关系 f1=f2 因果 (1)U1 决定了 U2 关系 (2)I2 决定了 I1 (n1、 n2 不 (3)P2 决定了 P1 变)
有效值 对于非正弦交变电 流的有效值,以上 关系式不成立,应 根据定义来求
计算交流电通过导 计算通过导 体产生的热量、电 体的电荷量 q 功以及确定熔丝的 熔断电流
特别提醒 1.平移转轴,改变线圈形状,不会改变产生交流电的最大值. 2.交流电的瞬时值有时写成e=Emcosωt,不是交流电变了, 而是计时位置发生了改变.
ΔΦ 2.公式 E=n 与 E=nBLvsinθ 的比较 Δt ΔΦ E=nBLvsinθ E=n Δt 研究对 一段直导线(或可等效成直导 一个回路(不一定闭合) 象 线) 适用范 无论什么方式引起 Φ 的变 只适于一段导体切割磁感线 围 化都可以 磁场情 可以是匀强磁场,也可以 只能是匀强磁场 况 是变化磁场 物理意 义 各字母 含义 ① Δt 为一段时间,则 E 为 ①v 是平均速度,则 E 为平均 平均值②Δt→0 时, E 值②v 是瞬时速度,则 E 为瞬 则 为瞬时值 时值 ΔΦ 是 Φ 的变化率, ΔΦ、 ① L:有效切割长度②v:有效 与 Δt 切割速度③θ 是 B 与 v 的夹角 Φ 无必然联系
高二《电磁感应总复习》
卓越个性化教案GFJW0901学生姓名王逸维年级高二授课时间 2013-05-25 教师姓名胡梦莎课时 2课时(一)、电磁感应现象1、利用磁场产生电流的现象称为电磁感应现象,所产生的电动势称为感应电动势,所产生的电流称为感应电流。
2、产生感应电流的条件是穿过闭合电路的磁通量发生变化。
3、电磁感应现象的实质是产生感应电动势,电路闭合才有感应电流,若电路不闭合,虽没有电流,但感应电动势可依然存在。
4、产生感应电动势的那部分导体相当于电源。
(二)、楞次定律1、感应电流具有这样的方向,感应电流的磁场总要阻碍引起感应电流的磁通量的变化,该规律叫做楞次定律。
2、应用楞次定律判断感应电流的方向,首先要明确原磁场的方向;其次要明确穿过闭合电路的磁通量是增加的还是减少的;然后根据楞次定律确定感应电流的磁场方向;最后利用安培定则来确定感应电流的方向。
3、从导体和磁场的相对运动来看,感应电流总要阻碍它们之间的相对运动,因此楞次定律是能量守恒定律的必然结果。
4、判断导体切割磁感线所产生的感应电流的方向时,右手定则与楞次定律是等效的,而右手定则比楞次定律更方便,但前者只适宜于导体切割磁感线的情况,而后者是普遍适用的规律。
(三)求感应电动势的大小有两种方法:即法拉第电磁感应定律E= △Φ /△t ;切割法:E=BLv1、应用法拉第电磁感应定律E=△Φ /△t ,应注意以下几点:(1)要严格区分磁通量Φ磁通量的变化量△Φ,磁通量的变化率△Φ/△t ;(2)如是由磁场变化引起时,则用S△B来计算;如有回路面积变化引起时,则用B△S来计算。
(3)由E=△Φ/△t算出的通常是时间△t内的平均感应电动势,一般并不等于初态与末态电动势的平均值。
(4)当线圈有n匝时,E = n△Φ/△t 。
2、用公式E = BLv求电动势时,应注意以下几点:(1)此公式一般用于匀强磁场(或导体所在位置的各点的B相同),导体各部分切割磁感线速度相同的情况,(2)若导体各部分切割磁感线的速度不同,可取其平均速度,求电动势。
电磁感应专题复习
【本讲教育信息】一. 教学内容:电磁感应考点例析【典型例题】问题3:电磁感应中的“双杆问题”电磁感应中“双杆问题”是学科内部综合的问题,涉及到电磁感应、安培力、牛顿运动定律和动量定理、动量守恒定律及能量守恒定律等。
要求学生综合上述知识,认识题目所给的物理情景,找出物理量之间的关系,因此是较难的一类问题,也是近几年高考考察的热点。
下面对“双杆”类问题进行分类例析1.“双杆”向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两个电池正向串联。
[例5]两根相距d=0.20m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感应强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Q,回路中其余部分的电阻可不计。
已知两金属细杆在平行于导轨的拉力的作用下沿导轨朝相反方向匀速平移,速度大小都是v=5.0m/s,如图所示,不计导轨上的摩擦。
(1)求作用于每条金属细杆的拉力的大小。
(2)求两金属细杆在间距增加0.40m的滑动过程中共产生的热量。
解析:(1)当两金属杆都以速度v匀速滑动时,每条金属杆中产生的感应电动势分别为:E 1= E2=Bdv由闭合电路的欧姆定律,回路中的电流强度大小为:上尸因拉力与安培力平衡,作用于每根金属杆的拉力的大小为F 1=F2=IBd。
及二三二艺二二 3.2五由以上各式并代入数据得" N(2)设两金属杆之间增加的距离为△£,则两金属杆共产生的热量为如代入数据得Q =1.28X10-J。
2.“双杆”同向运动,但一杆加速另一杆减速当两杆分别沿相同方向运动时,相当于两个电池反向串联。
[例6]两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为L。
导轨上面横放着两根导体棒ab和cd,构成矩形回路,如图所示。
两根导体棒的质量皆为m,电阻皆为H,回路中其余部分的电阻可不计。
在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B。
高考物理一轮复习之《电磁感应》知识汇总
⾼考物理⼀轮复习之《电磁感应》知识汇总第⼀节 电磁感应现象 楞次定律【基本概念、规律】⼀、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场⽅向垂直的⾯积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标⽮性:磁通量是标量,但有正、负.⼆、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发⽣变化时,电路中有电流产⽣,这种现象称为电磁感应现象.2.产⽣感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发⽣电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:⽆论回路是否闭合,只要穿过线圈平⾯的磁通量发⽣变化,线圈中就有感应电动势产⽣.三、感应电流⽅向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适⽤情况:所有的电磁感应现象.2.右⼿定则(1)内容:伸开右⼿,使拇指与其余四个⼿指垂直,并且都与⼿掌在同⼀个平⾯内,让磁感线从掌⼼进⼊,并使拇指指向导体运动的⽅向,这时四指所指的⽅向就是感应电流的⽅向.(2)适⽤情况:导体切割磁感线产⽣感应电流.【重要考点归纳】考点⼀ 电磁感应现象的判断1.判断电路中能否产⽣感应电流的⼀般流程:2.判断能否产⽣电磁感应现象,关键是看回路的磁通量是否发⽣了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).考点⼆ 楞次定律的理解及应⽤1.楞次定律中“阻碍”的含义2.应⽤楞次定律判断感应电流⽅向的步骤考点三 “⼀定律三定则”的综合应⽤1.“三个定则与⼀个定律”的⽐较2.应⽤技巧⽆论是“安培⼒”还是“洛伦兹⼒”,只要是涉及磁⼒都⽤左⼿判断.“电⽣磁”或“磁⽣电”均⽤右⼿判断.【思想⽅法与技巧】楞次定律推论的应⽤楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产⽣感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈⾯积有扩⼤或缩⼩的趋势——“增缩减扩”;(4)阻碍原电流的变化(⾃感现象)——“增反减同”第⼆节 法拉第电磁感应定律 ⾃感 涡流【基本概念、规律】⼀、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产⽣的电动势.产⽣感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=E/(R+r)2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的⼤⼩,跟穿过这⼀电路的磁通量的变化率成正⽐.3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Blv.(2)若B⊥l,l⊥v,v与B夹⾓为θ,则E=Blv sin_θ.⼆、⾃感与涡流1.⾃感现象(1)概念:由于导体本⾝的电流变化⽽产⽣的电磁感应现象称为⾃感,由于⾃感⽽产⽣的感应电动势叫做⾃感电动势.(3)⾃感系数L的影响因素:与线圈的⼤⼩、形状、匝数以及是否有铁芯有关.2.涡流当线圈中的电流发⽣变化时,在它附近的任何导体中都会产⽣像⽔的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培⼒,安培⼒的⽅向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产⽣感应电流,使导体受到安培⼒作⽤,安培⼒使导体运动起来.交流感应电动机就是利⽤电磁驱动的原理⼯作的.【重要考点归纳】考点⼀ 公式E=nΔΦ/Δt的应⽤1.感应电动势⼤⼩的决定因素(1)感应电动势的⼤⼩由穿过闭合电路的磁通量的变化率和线圈的匝数共同决定,⽽与磁通量Φ、磁通量的变化量ΔΦ的⼤⼩没有必然联系.3.应⽤电磁感应定律应注意的三个问题考点⼆ 公式E=Blv的应⽤1.使⽤条件本公式是在⼀定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进⾏计算,公式可为E=Blv sin θ,θ为B与v⽅向间的夹⾓.2.使⽤范围3.有效性公式中的l为有效切割长度,即导体与v垂直的⽅向上的投影长度.例如,求下图中MN两点间的电动势时,有效长度分别为甲图:l=cd sin β.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.5.感应电动势两个公式的⽐较考点三 ⾃感现象的分析1.⾃感现象“阻碍”作⽤的理解(1)流过线圈的电流增加时,线圈中产⽣的⾃感电动势与电流⽅向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减⼩时,线圈中产⽣的⾃感电动势与电流⽅向相同,阻碍电流的减⼩,使其缓慢地减⼩.2.⾃感现象的四个特点(1)⾃感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发⽣突变,只能缓慢变化.(3)电流稳定时,⾃感线圈就相当于普通导体.(4)线圈的⾃感系数越⼤,⾃感现象越明显,⾃感电动势只是延缓了过程的进⾏,但它不能使过程停⽌,更不能使过程反向.3.⾃感现象中的能量转化通电⾃感中,电能转化为磁场能;断电⾃感中,磁场能转化为电能.4.分析⾃感现象的两点注意(1)通过⾃感线圈中的电流不能发⽣突变,即通电过程,线圈中电流逐渐变⼤,断电过程,线圈中电流逐渐变⼩,⽅向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电⾃感现象中灯泡是否“闪亮”问题的判断,在于对电流⼤⼩的分析,若断电后通过灯泡的电流⽐原来强,则灯泡先闪亮后再慢慢熄灭.第三节 电磁感应中的电路和图象问题【基本概念、规律】⼀、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发⽣变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压⼆、电磁感应中的图象问题1.图象类型(1)随时间t变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象.(2)随位移x变化的图象如E-x图象和i-x图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.(3)利⽤给出的图象判断或画出新的图象.【重要考点归纳】考点⼀ 电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产⽣感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发⽣变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的⼀般思路:(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利⽤电路规律求解.主要应⽤欧姆定律及串、并联电路的基本性质等列⽅程求解.4.(1)对等效于电源的导体或线圈,两端的电压⼀般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的⽅向,电势逐渐升⾼.考点⼆ 电磁感应中的图象问题1.题型特点⼀般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.解题关键弄清初始条件,正负⽅向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的⼀般步骤(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等;(2)分析电磁感应的具体过程;(3)⽤右⼿定则或楞次定律确定⽅向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、⽜顿运动定律等规律写出函数关系式;(5)根据函数关系式,进⾏数学分析,如分析斜率的变化、截距等;(6)画出图象或判断图象.4.解决图象类选择题的最简⽅法——分类排除法.⾸先对题中给出的四个图象根据⼤⼩或⽅向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增⼤还是减⼩)、变化快慢(均匀变化还是⾮均匀变化),特别是⽤物理量的⽅向,排除错误选项,此法最简捷、最有效.【思想⽅法与技巧】电磁感应电路与图象的综合问题解决电路与图象综合问题的思路(1)电路分析弄清电路结构,画出等效电路图,明确计算电动势的公式.(2)图象分析①弄清图象所揭⽰的物理规律或物理量间的函数关系;②挖掘图象中的隐含条件,明确有关图线所包围的⾯积、图线的斜率(或其绝对值)、截距所表⽰的物理意义.(3)定量计算运⽤有关物理概念、公式、定理和定律列式计算.第四节 电磁感应中的动⼒学和能量问题【基本概念、规律】⼀、电磁感应现象中的动⼒学问题1.安培⼒的⼤⼩2.安培⼒的⽅向(1)先⽤右⼿定则判定感应电流⽅向,再⽤左⼿定则判定安培⼒⽅向.(2)根据楞次定律,安培⼒的⽅向⼀定和导体切割磁感线运动⽅向相反.⼆、电磁感应中的能量转化1.过程分析(1)电磁感应现象中产⽣感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培⼒,若安培⼒做负功,则其他形式的能转化为电能;若安培⼒做正功,则电能转化为其他形式的能.(3)当感应电流通过⽤电器时,电能转化为其他形式的能.2.安培⼒做功和电能变化的对应关系“外⼒”克服安培⼒做多少功,就有多少其他形式的能转化为电能;安培⼒做多少功,就有多少电能转化为其他形式的能.【重要考点归纳】考点⼀ 电磁感应中的动⼒学问题分析1.导体的平衡态——静⽌状态或匀速直线运动状态.处理⽅法:根据平衡条件(合外⼒等于零)列式分析.2.导体的⾮平衡态——加速度不为零.处理⽅法:根据⽜顿第⼆定律进⾏动态分析或结合功能关系分析.3.分析电磁感应中的动⼒学问题的⼀般思路(1)先进⾏“源”的分析——分离出电路中由电磁感应所产⽣的电源,求出电源参数E和r;(2)再进⾏“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流⼤⼩,以便求解安培⼒;(3)然后是“⼒”的分析——分析研究对象(常是⾦属杆、导体线圈等)的受⼒情况,尤其注意其所受的安培⼒;(4)最后进⾏“运动”状态的分析——根据⼒和运动的关系,判断出正确的运动模型.考点⼆ 电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程,⽽能量的转化是通过安培⼒做功的形式实现的,安培⼒做功的过程,是电能转化为其他形式能的过程,外⼒克服安培⼒做功,则是其他形式的能转化为电能的过程.2.能量转化及焦⽿热的求法(1)能量转化(2)求解焦⽿热Q的三种⽅法3. 在解决电磁感应中的能量问题时,⾸先进⾏受⼒分析,判断各⼒做功和能量转化情况,再利⽤功能关系或能量守恒定律列式求解.【思想⽅法与技巧】电磁感应中的“双杆”模型1.模型分类“双杆”模型分为两类:⼀类是“⼀动⼀静”,甲杆静⽌不动,⼄杆运动,其实质是单杆问题,不过要注意问题包含着⼀个条件:甲杆静⽌、受⼒平衡.另⼀种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产⽣的感应电动势是相加还是相减.2.分析⽅法通过受⼒分析,确定运动状态,⼀般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、⽜顿运动定律和能量观点分析求解.3.分析“双杆”模型问题时,要注意双杆之间的制约关系,即“动杆”与“被动杆”之间的关系,需要注意的是,最终两杆的收尾状态的确定是分析该类问题的关键.电磁感应中的含容电路分析⼀、电磁感应回路中只有电容器元件1.这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流.(2)由本例可以看出:导体棒在恒定外⼒作⽤下,产⽣的电动势均匀增⼤,电流不变,所受安培阻⼒不变,导体棒做匀加速直线运动.⼆、电磁感应回路中电容器与电阻并联问题1.这⼀类问题的特点是电容器两端的电压等于与之并联的电阻两端的电压,充电过程中的电流只是感应电流的⼀⽀流.稳定后,充电电流为零.2.在这类问题中,导体棒在恒定外⼒作⽤下做变加速运动,最后做匀速运动.。
高中物理-专题五第1课时 电磁感应
专题五 电磁感应和电路第1课时 电磁感应 专题复习定位 解决问题 本专题主要复习电磁感应的基本规律和方法,熟练应用动力学和能量观点分析并解决电磁感应问题。
高考重点 楞次定律和法拉第电磁感应定律的理解及应用;电磁感应中的平衡问题;电磁感应中的动力学和能量问题。
题型难度 本专题选择题和计算题都有可能命题,选择题一般考查楞次定律和法拉第电磁感应定律的应用,题目有一定的综合性,难度中等;计算题主要考查电磁感应规律的综合应用,难度较大。
1.楞次定律中“阻碍”的表现(1)阻碍磁通量的变化(增反减同)。
(2)阻碍物体间的相对运动(来拒去留)。
(3)使线圈面积有扩大或缩小的趋势(增缩减扩)。
(4)阻碍原电流的变化(自感现象)。
2.感应电动势的计算(1)法拉第电磁感应定律:E =n ΔΦΔt ,常用于计算感应电动势的平均值。
①若B 变,而S 不变,则E =n ΔB Δt S ;②若S 变,而B 不变,则E =nB ΔS Δt。
(2)导体棒垂直切割磁感线:E =Bl v ,主要用于求感应电动势的瞬时值。
(3)如图1所示,导体棒Oa 围绕棒的一端O 在垂直匀强磁场的平面内做匀速转动而切割磁感线,产生的感应电动势E =12Bl 2ω。
图13.感应电荷量的计算回路中磁通量发生变化时,在Δt 时间内迁移的电荷量(感应电荷量)为q =I Δt =E R Δt =n ΔΦR Δt ·Δt =n ΔΦR 。
可见,q 仅由回路电阻R 和磁通量的变化量ΔΦ决定,与发生磁通量变化的时间Δt 无关。
4.电磁感应电路中产生的焦耳热当电路中电流恒定时,可用焦耳定律计算;当电路中电流变化时,则用功能关系或能量守恒定律计算。
解决感应电路综合问题的一般思路是“先电后力”,即:1.“源”的分析——分析电路中由电磁感应所产生的“电源”,求出电源参数E 和r 。
2.“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力。
第三章 电磁感应(复习)
习题4
关于感应电流产生的条件,下列说法中正确的 是 A.只要闭合电路内有磁通量,闭合电路中就 有感应电流产生 B.穿过螺线管的磁通量发生变化时,螺线管 内部就一定有感应电流产生 C.线圈不闭合时,即使穿过线圈的磁通量发 生变化,线圈中也没有感应电流 D.只要穿过闭合电路的磁感线条数发生变化, 闭合电路中就有感应电流
要点2. 涡流
1.涡流:把块状金属放在变化的磁场中,或 者让它在磁场中运动时,金属块内将产生 感应电流,这种电流在金属块内自成闭合 回路,很像水的漩涡,故叫涡电流,简称 涡流.涡流常常很强.
2.涡流的防止:在各种电机和变压器中,为 了减少涡流的损失,在电机和变压器上通 常用涂有绝缘漆的薄硅钢片叠压制成的铁 芯. 3.涡流的利用:冶炼金属的高频感应炉就是 利用强大的涡流使金属尽快熔化.电学测量 仪表的指针快速停止摆动也是利用铝框在 磁场中转动产生的涡流.
复习课 电磁感应
知识网络
第一节 电磁感应现象 知识内容 一、磁通量 1、磁通量表示磁场中穿过某一面 积的磁感线条数. Φ=BS (条件:B垂直于S) Φ=BS sin θ 其中θ是指某一面积的平面与磁 感强度方向的夹角. 当B平于S时: 0
知识内容
2、如何使闭合电路的磁通量发生变化呢?
BS cos
-5
例2 一个矩形线圈在匀强磁场中转动, 产生的感应电动势
则( ) A.交变电流的频率是100πHz B.有效值为220V C.交变电流的周期是0.02 s D.t=0.05 s时,e有最大值
e=220 2sin100 t V
习题9
一个电动机上标“220V 1.5KW”,那么为了 使它正常工作,所使用的正弦交流电应是 A.电压最大值为220V,电流最大值约为9.6A B.电压最大值为311V,电流最大值约为6.8A C.电压有效值为220V,电流有效值约为6.8A D.电压有效值为311V,电流有效值约为9.6A
(高三公开课)电磁感应复习
电磁感应复习曲靖二中吕文东教学目标1.知道电磁感应现象,知道产生感应电流的条件。
2.会运用楞次定律和左手定则判断感应电流的方向。
3.会计算感应电动势的大小(切割法、磁通量变化法)。
4.通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力。
教学重点、难点分析1.楞次定律、法拉第电磁感应定律是本章的重点。
另外,电磁感应的规律也是自感、交流电、变压器等知识的基础,因而在电磁学中占据了举足轻重的地位。
2.在高考考试大纲中,楞次定律、法拉第电磁感应定律都属II级要求,每年的高考试题中都会出现相应考题,题型也多种多样,在历年高考中,以选择、填空、实验、计算各种题型都出现过,属高考必考内容。
同时,由电磁感应与力学、电学知识相结合的题目更是高考中的热点内容,题目内容变化多端,需要学生有扎实的知识基础,又有一定的解题技巧,因此在复习中要重视这方面的训练。
3.电磁感应现象及规律在复习中并不难,但是能熟练应用则需要适量的训练。
关于楞次定律的推广含义、法拉第电磁感应定律在应用中何时用其计算平均值、何时要考虑瞬时值等问题都需通过训练来达到深刻理解、熟练掌握的要求,因此要根据具体的学情精心选择一些针对性强、知识网络:单元切块:按照考纲的要求,本章内容可以分成三部分,即:电磁感应楞次定律;法拉第电磁感应定律、自感;电磁感应的综合应用。
其中重点是电磁感应的综合应用,也是复习的难点。
第一课时电磁感应现象楞次定律教学目标:1.理解电磁感应现象产生的条件、磁通量;2.能够熟练应用楞次定律或右手定则判断感应电流及感应电动势的方向教学重点:楞次定律的应用教学难点:楞次定律的应用教学方法:讲练结合,计算机辅助教学教学过程:一.磁通量()(1)定义:面积为,垂直匀强磁场放置,则与乘积,叫做穿过这个面的磁通量,用Φ表示.(2)理解:磁通量就是表示穿过这个面的磁感线条数.(3)公式:(4)单位:韦伯(Wb)1Wb=1T·m2(5)适用条件:a.磁场是匀强磁场b.磁感线要与平面相垂直(6)磁通量不是矢量,而是标量,其运算遵循代数运算。
电磁感应复习练习一
电磁感应复习练习一 姓名:________1.如图所示,导线框abcd 与通电直导线在同一平面内,直导线通有恒定电流并通过ad 和bc 的中点.在线框向右运动的瞬间( )A .线框中有感应电流,且沿顺时针方向B .线框中有感应电流,且沿逆时针方向C .线框中有感应电流,但方向难以判断D .由于穿过线框的磁通量为零,线框中没有感应电流2.如图所示,半径为R 的半圆形硬导体AB ,在拉力F 的作用下、以速度v 在水平U 形框架上匀速滑动,且彼此接触良好.匀强磁场的磁感应强度为B ,U 形框架中接有电阻R 0,AB 的电阻为r ,其余电阻不计.则AB 进入磁场的过程中( )A. R 0中电流的方向由上到下B. 感应电动势的平均值为B πRvC. 感应电动势的最大值为2BRvD. 感应电动势的最大值为B πRv3.如图所示,间距为L 的平行金属导轨上有一电阻为r 的金属棒ab 与导轨接触良好.导轨一端连接电阻R ,其他电阻不计,磁感应强度为B ,金属棒ab 以速度v 向右匀速运动,则( )A .回路中电流为逆时针方向B .电阻R 两端的电压为BLvC .ab 棒受到的安培力方向向左D .ab 棒中的电流大小为 BLv r4.用相同的导线绕制的边长为L 或2L 的四个闭合导体框,以相同的速度匀速进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 、U d .下列判断正确的是( )A .U a <U b <U c <U dB .U a <U b <U d <U cC .U a =U b <U c =U dD .U b <U a <U d <U c5.如图所示,用一根横截面积为S 的硬导线做成一个半径为r 的圆环,把圆环部分置于均匀变化的匀强磁场中,磁场方向垂直纸面向里,磁感应强度大小随时间的变化率ΔB Δt=k (k >0),ab 为圆环的一条直径,导线的电阻率为ρ.则( )A .圆环中产生顺时针方向的感应电流B .圆环具有扩张的趋势C .圆环中感应电流的大小为krS 4ρD .图中ab 两点间的电压大小为12k πr 2 6.如图所示的电路,开关原先闭合,电路处于稳定状态,在某一时刻突然断开开关S ,则通过电阻R 1中的电流I 1随时间变化的图线可能是下图中的( )7.在右图所示的电路中,带铁芯的、电阻较小的线圈L 与灯A 并联,合上电键S ,灯A 正常发光,则下 列说法正确的是( )A .当断开S 时,灯A 立即熄灭B .当断开S 时,灯A 突然闪亮后熄灭C .若用电阻值与线圈L 相同的电阻取代L 接入电路,当断开S 时,灯A 立即熄灭D .若用电阻值与线圈L 相同的电阻取代L 接入电路,当断开S 时,灯A 突然闪亮后熄灭8.矩形导线框abcd 放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B 随时间变化的图象如图所示,t =0时刻,磁感应强度的方向垂直纸面向里.若规定导线框中感应电流逆时针方向为正,则在0~4 s 时间内,线框中的感应电流I 以及线框的ab 边所受安培力F 随时间变化的图象为下图中的(安培力取向上为正方向) ( ).9.如图所示,面积为0.2 m 2的100匝 线圈处在匀强磁场中,磁场方向垂直于线圈平面.已知磁感应强度随时间变化的规律为B =(2+0.2t )T ,定值电阻R 1=6 Ω,线圈电阻R 2=4 Ω,求a 、b 两点间的电压Uab .10.金属杆MN 和PQ 间距为l ,MP 间接有电阻R ,磁场如图所示,磁感应强度为B ,金属棒AB 长为2l ,由图示位置以A 为轴,以角速度ω匀速转过90°(顺时针).求该过程中(其他电阻不计):(1) R 上的最大电功率.(2) 通过R 的电荷量.11.半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2 T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心地放置,磁场与环面垂直,其中a =0.4 m ,b =0.6 m ,金属环上分别接有灯L 1、L 2,两灯的电阻均为R 0=2 Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1) 若棒以v 0=5 m/s 的速率在环上向右匀速滑动,求棒滑动到圆环直径OO′的瞬时(如图所示),MN中的电动势和流过灯L 1的电流.(2) 撤去中间的金属棒MN ,将右面的半圆环OL 2O′以OO′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为ΔBΔt =4πT/s ,求L 2的功率. 。
电磁感应复习提纲
电磁感应1. 电磁感应现象:2. 楞次定律:闭合回路中产生的感应电流具有确定的方向,它总是使感应电流所产生的通过回路的磁通量,去补偿或者反抗引起感应电流的磁通量的变化。
3. 法拉第电磁感应定律:通过回路所包围的磁通量发生变化时产生的感应电动势与磁通量对时间的变化率成正比。
εi =-d /d t(εi =-d Ψ/d t , Ψ=N ) ; 说明1:感生电荷量q :如果闭合回路的电阻R ,通过导线任一界面的感生电荷量为 q i =⎰21d i t t t I =(1/R )(1-2); 说明2:感应电流产生的条件 感应电流产生的条件:凡是谈及感应电流,一般都是对闭合的导体回路而言。
这里一定要抓住磁通量的变化,不管这种变化是外界引起的还是回路本身运动、形变、电流变化引起的,只有在磁通量变化的过程中才有感应电流。
说明3:感应电动势与回路是否闭合、导体是否存在无关。
例1:尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,则环中: (A) 感应电动势不同, 感应电流不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同, 感应电流相同. (D) 感应电动势相同,感应电流不同. 说明4:感应电动势的方向(具体见例) 电磁感应定律是电动势与磁通量变化率的关系,实验测得电动势的方向与磁通量变化率正值方向成左手关系,当转换成右手关系是发现:大拇指指向磁通量变化率正值方向,四指绕行方向所得到的电动势方向与实验测得相反,于是负号修正。
根据此思想,可衍生以下几种方式判断方向的方法:(1) 右手大拇指指向磁通量变化率负值方向,四指绕行方向即电动势(电流)方向。
(这就是楞次定律,感应电流就是要产生负磁通量变化率来试图抵消线圈中的正值磁通量变化率或者产生正磁通量变化率来试图补偿线圈中的负值磁通量变化率)(2) 右手大拇指指向自定义的面的法向方向,四指绕行方向即电动势(电流)标定方向(将环路方向与电动势方向绑定)。
第4章 法拉第电磁感应定律 复习
第四章
2πa (2)线框转过120° 角这一时刻,CD边的线速度v= , 3t 速度方向与磁场方向夹角为60° . 3πBa2 则:E瞬=Blvsinθ= . 3t E ΔΦ ΔΦ (3)由于q= I · Δt,又有 I = R , E = Δt ,则q= R = 3Ba2 . 2R
第四章一、感ຫໍສະໝຸດ 电动势E感:1、在电磁感应现象中产生的电动势, 叫做感应电动势E感.产生感应电动势 的那部分导体相当于电源. 例如: 路等 效 电
一、感应电动势E感:
2、产生感应电动势条件:无论电 路是否闭合,只要穿过电路磁通 量发生变化.
?感应电动势与哪些因素有关?
二、法拉第电磁感应定律: 1、内容:电路中的感应电动势的 大小,跟穿过这一电路的磁通量 的变化率成正比.
特殊情况.
五、感应电流、电量的计算
闭合电路欧姆定律:
E感 I Rr
q It N Rr
例.如图,电阻为r,直径为d的n匝线 圈放在匀强磁场中,与固定电阻R组 成闭合回路,磁场方向垂直线圈平面 向里.当磁感应强度以变化率K均匀 变化时,线圈中产生的感应电动势的 大小?通过电阻R的电流大小? ab两 × × × × 点间电压大小? a × × × × 时间t内通过导 × × × × R 体截面的电量? b
× × × × × ×
V
×
×
2、当B、L、V中任意两个量平行, 导体都不切割磁感线,E感=0
三、导体切割磁感线运动时E感大小: 3、当B⊥L、L⊥V但B与V 有夹角θ(叫斜向切割) 时:E=BLVsinθ θ
V
θ——B方向与V方向间夹角
例.如图,在磁感应强度为2T的匀强磁 场中,有长为0.1m的导体棒AB在金属 框架上,以5.0m/s的速度向右滑动,磁 场方向与金属框架平面垂直,已知电阻 R=9Ω,导体棒AB电阻r=1Ω,其他电阻 不计,求AB的感应电动势?通过AB的 电流强度是多大?AB两点间的电压? 电阻R消耗的电功率? A
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.关于感应电动势大小的下列说法中,正确的是[ ]A.线圈中磁通量变化越大,线圈中产生的感应电动势一定越大B.线圈中磁通量越大,产生的感应电动势一定越大C.线圈放在磁感强度越强的地方,产生的感应电动势一定越大D.线圈中磁通量变化越快,产生的感应电动势越大2.单匝矩形线圈在匀强磁场中匀速转动,转轴垂直于磁场,若线圈所围面积里磁通量随时间变化的规律如图3所示[ ]A.线圈中O时刻感应电动势最大B.线圈中D时刻感应电动势为零C.线圈中D时刻感应电动势最大D.线圈中O至D时间内平均感电动势为0.4V3.一个N匝圆线圈,放在磁感强度为B的匀强磁场中,线圈平面跟磁感强度方向成30°角,磁感强度随时间均匀变化,线圈导线规格不变,下列方法中可使线圈中感应电流增加一倍的是[ ]A.将线圈匝数增加一倍B.将线圈面积增加一倍C.将线圈半径增加一倍D.适当改变线圈的取向4.如图4所示,圆环a和圆环b半径之比为2∶1,两环用同样粗细的、同种材料的导线连成闭合回路,连接两圆环电阻不计,匀强磁场的磁感强度变化率恒定,则在a环单独置于磁场中和b环单独置于磁场中两种情况下,M、N两点的电势差之比为[ ]A.4∶1 B.1∶4 C.2∶1 D.1∶25.如图5所示,相距为l,在足够长度的两条光滑平行导轨上,平行放置着质量和电阻均相同的两根滑杆ab和cd,导轨的电阻不计,磁感强度为B的匀强磁场的方向垂直于导轨平面竖直向下,开始时,ab和cd都处于静止状态,现ab杆上作用一个水平方向的恒力F,下列说法中正确的是[ ]A.cd向左运动B.cd向右运动C.ab和cd均先做变加速运动,后作匀速运动D.ab和cd均先做交加速运动,后作匀加速运动6.如图7所示,平行金属导轨的间距为d,一端跨接一阻值为R的电阻,匀强磁场的磁感应强度为B,方向垂直于平行轨道所在平面。
一根长直金属棒与轨道成60°角放置,且接触良好,则当金属棒以垂直于棒的恒定速度v沿金属轨道滑行时,其它电阻不计,电阻R中的电流强度为[ ]7.如图8中,闭合矩形线框abcd位于磁感应强度为B的匀强磁中,ab边位于磁场边缘,线框平面与磁场垂直,ab边和bc边分别用L1和L2。
若把线框沿v的方向匀速拉出磁场所用时间为△t,则通过框导线截面的电量是[ ]8.一导体棒长l=40cm,在磁感强度B=0.1T的匀强磁场中作切割磁感线运动,运动的速度v=5.0m/s,若速度方向与磁感线方向夹角β=30°,则导体棒中感应电动势的大小为____V,此导体棒在作切割磁感线运动时,若速度大小不变,可能产生的最大感应电动势为____V.9.如图12所示,在一个光滑金属框架上垂直放置一根长l=0.4m的金属棒ab,其电阻r=0.1Ω.框架左端的电阻R=0.4Ω.垂直框面的匀强磁场的磁感强度B=0.1T.当用外力使棒ab以速度v=5m/s 右移时,ab棒中产生的感应电动势ε=____,通过ab棒的电流I=____.ab棒两端的电势差Uab=____,在电阻R上消耗的功率PR____,在ab棒上消耗的发热功率PR=____,切割运动中产生的电功率P=____.10.将一条形磁铁插入螺线管线圈。
第一次插入用0.2秒,第二次插入用1秒,则两次线圈中电流强度之比为____,通过线圈的电量之比为____,线圈放出的热量之比为____。
11.正方形导线框abcd,匝数为10匝,边长为20cm,在磁感强度为0.2T的匀强磁场中围绕与B方向垂直的转轴匀速转动,转速为120 r /min。
当线框从平行于磁场位置开始转过90°时,线圈中磁通量的变化量是____wb,线圈中磁通量平均变化率为____wb/s,平均感应电动势为____V。
12.如图14,边长l=20cm的正方形线框abcd共有10匝,靠着墙角放着,线框平面与地面的夹角α=30°。
该区域有磁感应强度B=0.2T、水平向右的匀强磁场。
现将cd边向右一拉,ab边经0.1s着地。
在这个过程中线框中产生的感应电动势为多少?13.如图15所示,金属圆环的半径为r,电阻的值为2R。
金属杆oa一端可绕环的圆心O旋转,另一端a搁在环上,电阻值为R。
另一金属杆ob一端固定在O点,另一端b固定在环上,电阻值也是R。
加一个垂直圆环的磁感强度为B的匀强磁场,并使oa杆以角速度匀速旋转。
如果所有触点接触良好,ob不影响oa的转动,求流过oa的电流的范围。
14.如图16,光滑金属导轨互相平行,间距为L,导轨平面与水平面夹角为θ。
放在一个范围较大的竖直向上的磁感强度为B的匀强磁场中。
将一根质量为m的金属棒ab垂直导轨搁在导轨上。
当ab最后在导轨上以v匀速下滑时,与导轨相连的小灯炮D正好正常发光,若不计导轨、金属棒ab的电阻,则D的额定功率为多少?灯丝此时的电阻为多少?15.如图17所示,匀强磁场B=0.1T,金属棒AB长0.4m,与框Ω,当金属棒以5m/s的速度匀速向左运动时,求:(1)流过金属棒的感应电流多大?(2)若图中电容器C为0.3μF,则充电量多少?16.如图18所示,平行金属导轨的电阻不计,ab、cd的电阻均为R,长为l,另外的电阻阻值为R,整个装置放在磁感强度为B的匀强磁场中,当ab、cd以速率v向右运动时,通过R的电流强度为多少?1.位于载流长直导线近旁的两根平行铁轨A和B,与长直导线平行且在同一水平面上,在铁轨A、B上套有两段可以自由滑动的导体CD和EF,如图1所示,若用力使导体EF向右运动,则导体CD将[ ]A.保持不动B.向右运动C.向左运动D.先向右运动,后向左运动2.M和N是绕在一个环形铁心上的两个线圈,绕法和线路如图2,现将开关S从a处断开,然后合向b处,在此过程中,通过电阻R2的电流方向是[ ]A.先由c流向d,后又由c流向d B.先由c流向d,后由d流向cC.先由d流向c,后又由d流向c D.先由d流向c,后由c流向d3.如图3所示,闭合矩形线圈abcd从静止开始竖直下落,穿过一个匀强磁场区域,此磁场区域竖直方向的长度远大于矩形线圈bc边的长度,不计空气阻力,则[ ]A.从线圈dc边进入磁场到ab边穿过出磁场的整个过程,线圈中始终有感应电流B.从线圈dc边进入磁场到ab边穿出磁场的整个过程中,有一个阶段线圈的加速度等于重力加速度C.dc边刚进入磁场时线圈内感应电流的方向,与dc边刚穿出磁场时感应电流的方向相反D.dc边刚进入磁场时线圈内感应电流的大小,与dc边刚穿出磁场时感应电流的大小一定相等4.在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接,如图4所示.导轨上放一根导线ab,磁感线垂直于导轨所在平面.欲使M所包围的小闭合线圈N产生顺时针方向的感应电流,则导线的运动可能是[ ]A.匀速向右运动B.加速向右运动C.匀速向左运动D.加速向左运动5.如图5所示,导线框abcd与导线在同一平面内,直导线通有恒定电流I,当线框由左向右匀速通过直导线时,线框中感应电流的方向是[ ]A.先abcd,后dcba,再abcd B.先abcd,后dcbaC.始终dcba D.先dcba,后abcd,再dcba E.先dcba,后abcd6.如图6所示,光滑导轨MN水平放置,两根导体棒平行放于导轨上,形成一个闭合回路,当一条形磁铁从上方下落(未达导轨平面)的过程中,导体P、Q的运动情况是:[ ]A.P、Q互相靠扰B.P、Q互相远离C.P、Q均静止D.因磁铁下落的极性未知,无法判断7如图7所示,一个水平放置的矩形线圈abcd,在细长水平磁铁的S极附近竖直下落,由位置Ⅰ经位置Ⅱ到位置Ⅲ。
位置Ⅱ与磁铁同一平面,位置Ⅰ和Ⅲ都很靠近Ⅱ,则在下落过程中,线圈中的感应电流的方向为[ ]A.abcda B.adcba C.从abcda到adcba D.从adcba到abcda8.如图8所示,要使Q线圈产生图示方向的电流,可采用的方法有[ ]A.闭合电键K B.闭合电键K后,把R的滑动方向右移C.闭合电键K后,把P中的铁心从左边抽出D.闭合电键K后,把Q靠近P9.如图9所示,光滑杆ab上套有一闭合金属环,环中有一个通电螺线管。
现让滑动变阻器的滑片P迅速滑动,则[ ]A.当P向左滑时,环会向左运动,且有扩张的趋势B.当P向右滑时,环会向右运动,且有扩张的趋势C.当P向左滑时,环会向左运动,且有收缩的趋势D.当P向右滑时,环会向右运动,且有收缩的趋势10.如图10所示,在一蹄形磁铁两极之间放一个矩形线框abcd。
磁铁和线框都可以绕竖直轴OO′自由转动。
若使蹄形磁铁以某角速度转动时,线框的情况将是[ ]A.静止B.随磁铁同方向转动C.沿与磁铁相反方向转动D.要由磁铁具体转动方向来决定11.如图11所示,在光滑水平桌面上有两个金属圆环,在它们圆心连线中点正上方有一个条形磁铁,当条形磁铁自由下落时,将会出现的情况是[ ]A.两金属环将相互靠拢B.两金属环将相互排斥C.磁铁的加速度会大于g D.磁铁的加速度会小于g12.纸面内有U形金属导轨,AB部分是直导线(图12)。
虚线范围内有向纸里的均匀磁场。
AB右侧有圆线圈C。
为了使C中产生顺时针方向的感应电流,贴着导轨的金属棒MN在磁场里的运动情况是[ ]A.向右匀速运动B.向左匀速运动C.向右加速运动D.向右减速运动13.如图14所示,均匀金属棒ab位于桌面上方的正交电磁场中,且距桌面的高度小于ab棒长。
当棒从水平状态由静止开始下落时,棒两端落到桌面的时间先后是[ ]A.a先于b B.b先于aC.a、b同时D.无法确定15.甲、乙两个同心的闭合金属圆环位于同一平面内,甲环中通以顺时针方向电流I,如图15所示,当甲环中电流逐渐增大时,乙环中每段导线所受磁场力的方向是[ ]A.指向圆心B.背离圆心C.垂直纸面向内D.垂直纸面向外16.如图16所示,一根条形磁铁自左向右穿过一个闭合线圈,则流过表的感应电流方向是[ ]A.始终由a流向b B.始终由b流向aC.先由a流向b,再由b流向a D.先由b流向a,再由a流向b17.如图17所示为一个圆环形导体,有一个带负电的粒子沿直径方向在圆环表面匀速掠过的过程,环中感应电流的情况是[ ]A.无感应电流B.有逆时针方向的感应电流C.有顺时针方向的感应电流D.先逆时针方向后顺时针方向的感应电流18.如图18所示,两个线圈A、B上下平行放置,分别通以图示电流I1、I2,为使线圈B中的电流瞬时有所增大,可采用的办法是[ ]A.线圈位置不变,增大线圈A中的电流B.线圈位置不变,减小线圈A中的电流C.线圈A中电流不变,线圈A向下平移D.线圈A中电流不变,线圈A向上平移19.如图19所示,两个闭合铝环A、B与一个螺线管套在同一铁芯上,A、B可以左右摆动,则[ ]A.在S闭合的瞬间,A、B必相吸B.在S闭合的瞬间,A、B必相斥C.在S断开的瞬间,A、B必相吸D.在S断开的瞬间,A、B必相斥20.如图20所示,(a)图中当电键S闭合瞬间,流过表的感应电流方向是____;(b)图中当S闭合瞬间,流过表的感应电流方向是____。