5立体图形的展开图基础题
小学五年级下册数学专项训练---长方体正方体展开图(含解析)
小学五年级下册数学专项训练---长方体正方体展开图一、单选题(共38题;共76分)1.下列展开图中,不能围成正方体的是()。
A. B. C. D.2.下面的图形中,()是正方体的表面展开图。
A. B. C.3.一个立体图形,从上面看到的形状是,从左面看到的形状是。
搭这个立体图形,至少需要的小方块的个数是()。
A. 5个B. 6个C. 7个D. 8个4.一个立体图形,从正面看是,从上面看是,搭成这个立体图形最少需要()个小正方体。
A. 4B. 5C. 6D. 75.如图:将右面的纸片折起来可以做成一个正方体。
这个正方体的6号面的对面是()号面。
A. 2B. 3C. 4D. 56.下面的图形中,能按虚线折成正方体的是()。
A. B. C. D.7.下面能折成正方体盒子的是()。
A. B. C. D.8.下面能折成正方体的是()。
A. B. C. D.9.如图:将下面的纸片折起来可以做成一个正方体。
这个正方体2号面的对面是()号面。
A. 3B. 4C. 5D. 610.在图中(每个小四边形皆为全等的正方形),可以是一个正方体表面展开图的是()。
A. B. C. D.11.下面的展开图中,不能折成正方体的是()。
A. B. C.12.下面图形中不能拼成正方体的是()A. B. C. D.13.下面哪个图案不能围成正方体()。
A. B. C. D.14.下面四个图形中(每格都是正方形)不是正方体表面积展开图是()。
A. B. C. D.15.下面图形,沿虚线折叠后能围成正方体的是()A. B. C.16.下列图形中,不能围成正方体的是()A. B. C.17.如图,左边的展开图所对应的立体图形是()A. B. C.18.把下面硬纸片按虚线折叠,能折成一个正方体的是()A. B. C.19.下面图形都是由相同的小正方形组成的,()图形不折成正方体.A. B. C. D.20.下图是一个正方体的表面展开图,原正方体中与“国”字建所在的面相对的面上标的字是()A. 建B. 设C. 美D. 中21.下列形状的纸板,折叠后能围成一个无盖的正方体盒子的是()A. B.C. D.22.如果将下图折成一个正方体,那么数字“6”的对面是()A. 1B. 2C. 423.下图()是下面正方体的展开图。
立体图形的表面展开图 课时练习-2022-2023学年 华东师大版七年级数学上册
4.3立体图形的表面展开图(附解析)一、单选题(共10个小题)1.如图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是()A.B.C.D.2.图1、图2中的正方形的大小相同,将图1的正方形放在图2中的①、②、③、④的某个位置,与实线中的正方形所组成的图形能围成正方体的位置是()A.①B.②C.③D.④3.图中不是正方体的表面展开图的是()A.B.C.D.4.小红制做了一个正方体玩具,其展开图如图所示,原正方体中与“全”字所在的面上标的字相对的字应是()A.全B.国C.明D.城5.一个正方体的相对的表面上所标的数都是互为相反数的两个数,如图是这个正方体的表面展开图,那么图中x的值是()A.-8 B.-3 C.-2 D.36.如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A.4 B.6 C.12 D.157.如图是一个正方体纸盒的外表面展开图,则这个正方体是()A.B.C.D.8.把一个底面半径是5厘米,高10厘米的圆柱底面分成许多相等的扇形(如下图),切开后,再拼起来,得到一个近似的长方体.拼成后这个长方体的表面积与原来的圆柱体表面积相比,结果().A.不变B.变小C.变大9.下列图形不能作为一个三棱柱的展开图的是()A. B. C.D.10.如图是某正方体的展开图,在顶点处标有数字,当把它折成正方体时,与4重合的数字是()A.9和13B.2和9C.1和13D.2和8二、填空题(共10个小题)11.如图是一个长方体的展开图,如果A面在底面,那么_______面在上面.12.如图是一个正方体的平面展开图,正方体中相对的面上的数字或代数式互为相反数,则3x+2y的值为__________.13.如果五棱柱的底面边长都是2 cm,侧棱长都是4 cm,那么它所有棱长的和是_______ cm,它的侧面展开图的面积是________ cm2.14.如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的积是_______.15.如图可以沿线折叠成一个带数字的立方体,每三个带数字的面交于立方体的一个顶点,则相交于一个顶点的三个面上的数字之和最小是________.16.在下图的网格中选择一个涂上阴影,使全部阴影图形经折叠后能够形成一个正方体,一共有________种不同的涂法.17.如图①是边长为2的六个小正方形组成的图形,它可以围成如图②所示的正方体,则图①中小正方形的顶点A,B在围成的正方体上的距离是_____.18.一个长方体包装盒展开后如图所示(单位:cm),则其容积为__________cm3.19.如图①是一个小正方体的侧面展开图,小正方体从如图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,这时小正方体朝上面的字是__________.20.如图,将3个同样的正方体重叠放置在桌面上,每个正方体的6个面上分别写有-3、-2、-1、1、2、3,相对的两面上写的数字互为相反数,现在有5个面的数字无论从哪个角度都看不到,这5个看不到的面上数字的乘积是________.三、解答题(共3个小题)21.如图所示的是一个正方体的展开图,它的每一个面上都写有一个自然数,并且相对的两个面的两个数字之和相等,求2a b c +-的值.22.把一个正方体的六个面分别标上字母A ,B ,C ,D ,E ,F 并展开如图所示,已知:2243A x xy y =-+ ,2232C x xy y =--,()12B C A =-,若正方体相对的两个面上的多项式的和都相等,试用含x ,y 的代数式表示多项式D ,并求当x =-1,y =-2时,多项式D 的值.23.小明在学习了《展开与折叠》这一课后,明白了很多几何体都能展开成平面图形.于是他在家用剪刀展开了一个长方体纸盒,可是一不小心多剪了一条棱,把纸盒剪成了两部分,即图中的①和②.根据你所学的知识,回答下列问题:(1)小明总共剪开了条棱.(2)现在小明想将剪断的②重新粘贴到①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,你认为他应该将剪断的纸条粘贴到①中的什么位置?请你帮助小明在①上补全.(画出一种情况即可)(3)小明说:他剪的所有棱中,最短的一条棱长为a,最长的一条棱是最短的一条棱的5倍.已知纸盒的底面是一个正方形,并且这个长方体纸盒所有棱长的和是88cm,求a的值及长方体纸盒的体积.4.3立体图形的表面展开图解析1.【答案】A【详解】解:A、折叠后才能围成一个正方体,故本选项符合题意;B、含有“田”字形,,故本选项不符合题意;C、折叠后有一行两个面无法折起来,而且都缺个面,折叠后才不能围成一个正方体,故本选项不符合题意;D、含有“田”字形,折叠后才不能围成一个正方体,故本选项不符合题意;故选:A2.【答案】C【详解】解:将图1的正方形放在图2中的①、②、④的位置出现重叠的面,所以不能围成正方体,只有放在图2中的③的位置,能围成正方体.故选:C.3.【答案】B【详解】解:A、符合一四一型,是正方体的表面展开图,则此项不符合题意;B、不符合正方体的展开图的几种模型图,不是正方体的表面展开图,则此项符合题意;C、符合三三型,是正方体的表面展开图,则此项不符合题意;D、符合二二二型,是正方体的表面展开图,则此项不符合题意;故选:B.4.【答案】C【详解】解:由正方体的展开图特点可得:与“全”字所在的面相对的面上标的字应是“明”.故选:C.5.【答案】D【详解】解:根据正方体表面展开图的特征可知,“-3”与“x”的面是相对的面,“y”与“8”的面是相对的面,“-2”与“2”的面是相对的面,相对的表面上所标的数是互为相反数,x=3,故选:D.6.【答案】B【详解】观察图形可知长方体盒子的长=3,宽=2,高=1,∴盒子的容积=3×2×1=6,故选:B.7.【答案】D【详解】根据展开图,可得空心圆与一个实心圆的面是相对的,只与一个实心圆面相邻,A、B、C都不符合题意,只有D符合题意,故选D.8.【答案】C【详解】解:把圆柱的底面平均分成许多相等的扇形后,拼成近似的长方体,切割前后表面积增加了两个以圆柱的高和底面半径为边长的长方形的面的面积, 即拼成后这个长方体的表面积变大.故选:C .9.【答案】A【详解】解:由图形可知作为一个三棱柱的展开图有B 、C 、D ;故不能作为一个三棱柱的展开图的是:A ;故选:A .10.【答案】D【详解】解:当把这个平面图形折成正方体时,与4重合的数字是2、8.故选:D .11.【答案】C【详解】解:由展开图可知,A 和C 相对,B 和D 相对,E 和F 相对,如果A 面在底面,那么C 面在上面.故答案为:C .12.【答案】-1【详解】解:∵正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“5”与“23x -”是相对面,“y ”与“x ”是相对面,“-2”与“2”是相对面,∵相对的面上的数字或代数式互为相反数,∴2350x -+=,0x y +=,解得1x =-,1y =,∴32321x y +=-+=-.故答案为:-1.13.【答案】 40 40【详解】解:由题意,得棱长和为2×5×2+4×5=40, 侧面积为2×4×5=40. 故答案为:40,40.14.【答案】316cm ##16立方厘米【详解】解:根据题意得:原长方体的宽的4倍等于8cm,原长方体的高与长的和为6cm,∴原长方体的宽为82cm4=,∵四边形ABCD是正方形,∴原长方体的长等于2×2=4cm,∴原长方体的高等于6-4=2cm,∴原长方体的积是342216cm⨯⨯=.故答案为:316cm15.【答案】7【详解】解:观察图形的特点,动手折一折会更准确,知带数字1,2,4的面交于立方体的一个顶点,且和是最小的为7,故答案为:7.16.【答案】4【详解】如图,由四种不同的涂法.故答案为4.17.【答案】2【详解】解:将图①折成正方体后点A和点B为同一条棱的两个端点,故AB=2.故答案为:2.18.【答案】6000【详解】解:由题意可得,该长方体的高为:42﹣32=10(cm),宽为:32﹣10=20(cm),长为:(70﹣10)÷2=30(cm),故其容积为:30×20×10=6000(cm 3), 故答案为:6000.19.【答案】路【详解】解:由图1可知:“国”和“兴”是对面,“梦”和“中”是对面,“复”和“路”是对面, 再由图2可知,1、2、3、4、5分别对应的面是“兴”、“梦”、“中”、“兴”、“复”, 所以第5格朝上的字是“路”.所以答案是路.20.【答案】36【详解】最下面的正方体中,-3对面是3,-1对面是1,故上下两个面的数是2和-2, 中间正方体中,1对面是-1,-2对面是2,故上下两个面的数是3和-3,最上面的正方体中,2对面是-2,3对面是-3,1-对面是1,故无论从哪个角度都看不到的5个面的数字分别是2,-2,3,-3,1,∴它们的乘积是()()2233136⨯-⨯⨯-⨯=,故答案为:36.21.【答案】-2【详解】解:因为相对的两个面的两个数字之和相等,所以845a b c +=+=+,所以3a c -=-,1b c -=,所以2312a b c a c b c +-=-+-=-+=-.22.【答案】22374x xy y -+,5【详解】解:由图形可知A 与C 是相对的面,B 与D 是相对的面,由题意得:B +D =A +C ,∴D =(A +C )-B=(A +C )-()12C A - 1122A C C A =+-+ 3122A C =+ 222231(43)(32)22x xy y x xy y =-++--2222393162222x xy y x xy y =-++-- 22374x xy y =-+,当x =-1,y =-2时,23(1)7(1)(2)4D =⨯--⨯-⨯-+ 2(2)⨯-=5. 23.【答案】(1)8;(2)见解析;(3)2,200cm 3【详解】(1)小明共剪了8条棱,故答案为:8.(2)如图,四种情况.(3)∵长方体纸盒的底面是一个正方形,∴设最短的棱长高为a cm ,则长与宽相等为5a cm , ∵长方体纸盒所有棱长的和是88cm ,∴4(a +5a +5a )=88,解得a =2,∴这个长方体纸盒的体积为2×10×10=200(cm 3).。
立体图形的侧面展开图
●
●
蚊子
壁虎
●
蚊子
●
●
壁虎
圆柱 棱柱 长方体
圆锥 长方体
圆 柱
展开
棱柱
展开
长方体
展开
圆锥
展开
(1)
(2)
(3)
3 : 想一想,拆一拆,下图是哪些多面体的表面
展开图,你能说出这些多面体的名称吗?
正方体
长方体
四棱锥
三棱柱
4 . 知识应用,培养学生空间观念
(1)下列图形是某些多面体的表面展开图,
你能说出这些多面体的名称吗?
正方体
三棱柱
五棱锥
(2) 试一试
(1)
(2)
(3)
(4)
A
B
C
D
5.质疑:同一个立体图形,按不同的方式展开得到
的表面展开图是否一样?
√
√
√
到 的表面展开图是不一样的.
√
引导举例说明:同一个立体图形,按不同的方式展开得
6.知识应用:
下面的图形是正方体的表面展开图吗?
×
×
×
×
×
√
7 “考考你”活动
下图是一个长方体展开图,图中已标出三个 面在正方体中的位置,f表示前面,r表示右面,d表 示上面,你能判断另外三个面a,b,c在正方体中的位 置吗?
a b c d f r
小壁虎的难题: 如图:一只圆桶的下方有一只壁虎, 上方有一只蚊子,壁虎要想尽快吃到蚊子, 应该走哪条路径?
●
蚊子
你有何高招?
壁虎
立体图形的表面展开图测试卷(含答案)初中数学
立体图形的表面展开图测试卷一、选择题(共10小题,每小题3分,满分30分)1.下列物体的形状类似于球的是()A.茶杯B.羽毛球C.乒乓球D.白炽灯泡2.如图把一个圆绕虚线旋转一周,得到的几何体是()A.B.C.D.3.如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是()A.长方体B.圆柱体C.球体D.三棱柱4.如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()A.B.C.D.5.如图1,是一个正方体的侧面展开图,小正方体从图2的位置依次翻到第1格、第2格、第3格、这时小正方体朝上面的字是()A.和B.谐C.社D.会6.如图,用一个平面去截长方体,则截面形状为()A.B.C.D.7.如下图是一块带有圆形空洞和方形空洞的小木板,则下列物体中既可以堵住圆形空洞,又可以堵住方形空洞的是()A.B.C.D.8.一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成()A.12个B.13个C.14个D.18个9.如图是由几个小立方块所搭成的几何体的俯视图,小正方形体的数字表示该位置小立方块的个数,则该几何体的主视图是()A.B.C.D.10.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.二、填空题(共10小题,每小题3分,满分30分)11.一个棱柱有12个顶点,所有侧棱长的和是48cm ,则每条侧棱长是_________cm .12.如图所示,是一个立体图形的展开图,请写出这个立体图形的名称:_________.13.展览厅内要用相同的正方体木块搭成一个三视图如图的展台,则此展台共需这样的正方体_________块.14.如图是一个几何体的三视图,根据图中标注的数据可求出这个几何体的体积为_________.15.如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的_________.(把下图中正确的立体图形的序号都填在横线上)16.下面4个图形均由6个相同的小正方形组成,折叠能围成一个正方体的是_________.17.图1是一个一面靠墙水平摆放的小正方体木块,图2、图3是由这样的小正方体木块靠墙叠放而成,按照这样的规律叠放下去,第5个叠放的图形中,小方体木块的个数是_________个.18.立方体木块的六个面分别标有数字1、2、3、4、5、6,如图,是从不同方向观察这个立方体木块看到的数字情况,数字1和5对面的数字的和是_________.19.如图,是一个直三棱柱的表面展开图,其中,黄色和绿色的部分都是边长等于1的正方形.问这个直三棱柱的体积是_________.20.一只蚂蚁从如图所示的正方体的一顶点A沿着棱爬向B,只能经过三条棱,共有_________种走法.三、解答题(共8小题,满分60分)21.下列三个图形都是由其中一个半圆经过变化而得到的,请分别说出每个图形最简单的变化过程.22.请画出下列几何体的主视图、左视图、俯视图.23.如图所示,是一个由小立方块搭成的几何体的俯视图,小正方体中的数字表示在该位置的小立方块的个数,试画出它的主视图与左视图.24.用白萝卜等材料做一个正方体,并把正方体表面涂上颜色.(1)把正方体的棱二等分,然后沿等分线把正方体切开,得到8个小正方体.观察其中三面被涂色的有a 个,如图①,那么a等于_________;(2)把正方体的棱三等分,然后沿等分线把正方体切开,得到27个小正方体.观察其中三面被涂色的有a个,各面都没有涂色的b个,如图②,那么a+b=_________;(3)把正方体的棱四等分,然后沿等分线把正方体切开,得到64个小正方体.观察其中两面被涂成红色有c个,各面都没有涂色的b个,如图③,那么b+c=_________.25.用一个平面去截一个几何体,截得的多边形可能有哪几种?请把结果画出来.26.如图(1)、(2)都是几何体的平面展开图,先想一想,再折一折,然后说出图(1)、(2)折叠后的几何体名称、底面形状、侧面形状、棱数、侧棱数与顶点数.27.如图,可用一个正方形制作成一副“七巧板”,利用“七巧板”能拼出各种各样的图案,根据“七巧板”的制作过程,请你解答下列问题.(1)“七巧板”的七个图形,可以归纳为三种不同形状的平面图形,即一块正方形,一块_________和五块_________.(2)请按要求将七巧板的七块图形重新拼接(不重叠,并且图形中间不留缝隙),在下面空白处画出示意图.①拼成一个等腰直角三角形;②拼成一个长与宽不等的长方形;③拼成一个六边形.(3)发挥你的想象力,用七巧板拼成一个图案,在下面空白处画出示意图,并在图案旁边写出简明的解说词.28.仔细观察下面的正四面体、正六面体、正八面体,解决下列问题:(1)填空:①正四面体的顶点数V=_________,面数F=_________,棱数E=_________.②正六面体的顶点数V=_________,面数F=_________,棱数E=_________.③正八面体的顶点数V=_________,面数F=_________,棱数E=_________.(2)若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V、F、E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式,请写出欧拉公式:_________.(3)如果一个多面体的棱数为30,顶点数为20,那么它有多少个面?参考答案与试题解析一、1-5.CBCBD 6-10.BBBAC二、11. 8 12. 圆锥13. 10 14. 24π15. ①②④16. ①②17.35 18. 719.20. 6三、21.22.(6分)请画出下列几何体的主视图、左视图、俯视图.23.解:如图所示:24.8 9 3225.解:截面的形状可能是三角形、四边形、五边形、六边形,如图所示.26.解:图(1)折叠后是长方体,底面是正方形,侧面是长方形,有12条棱,4条侧棱,8个顶点.图(2)折叠后是六棱柱,底面是六边形,侧面是长方形,有18条棱,6条侧棱,12个顶点.27.解:(1)平行四边形、等腰直角三角形;(2)如图所示:(3)如图所示:让我们舞起来吧!28.解:(1)①4,4,6;②8,6,12;③6,8,12;(2)V、F、E之间的数量关系是:V+F﹣E=2;(3)设面数为F,则20+F﹣30=2,解得F=12,答:它有12个面.。
2020中考立体图形的展开图专题复习题及答案
立体图形的展开图(时间:100分钟总分:100分)一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如左图所示的圆台中,可由右图中的()图形绕虚线旋转而成.2.如图所示图形中,不是正方体的展开图的是()3.如图所示,经折叠可以围成一个棱柱的是()4.如图1是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上互为相反数,则填入正方形A、B、C 的三个数依次是()A.-1,2,0 B.0,2,-1 C.2,0,-1 D.2,-1,0(1) (2) (3)5.用平面去截正方体,截出的平面图形中不可能是()A.梯形B.六边形C.五边形D.七边形6.某物体的三视图是如图(2)所示的图形,那么该图形的形状是()A.长方体B.圆锥体C.正方体D.圆柱体7.棱长是1cm的小立方体组成如图(3)所示的几何体,那么这个几何体的表面积是()A.36cm2B.33cm2C.30cm2D.27cm2 8.将一个正方体的盒子沿棱剪开成如图4所示的平面图形,至少需要剪()•刀A.5 B.6 C.7 D.8(4) (5) (6)9.把10个相同的小正方体按如图5所示的位置堆放,•它的外表含有若干个小正方形,如果将图中标字母A的一个小正方形搬去,•这时外表含有的小正方形个数与搬运前比较是()A.不增不减B.减少一个C.减少2个D.减少3个10.从n边形的同一个顶点可以引()条对角线n n D.n(n-3)A.n-3 B.n-2 C.(3)2二、填空题(本大题共8题,每题3分,共24分)11.从四边形的同一个顶点可以引一条对角线,将四边形分割成2个三角形,则从n边形的同一个顶点引对角线可以将n边形分割成_________个三角形.12.日常生活中,部分几何体的三视图都是同一种图形,•试举一例这样的几何体_______.13.一个正方体的棱长为5cm,则这个正方体的侧面积是_________.14.圆锥的侧面与底面的相交线是________.15.如图6,含有开心表情图形“”的正方形有________.16.图7中左边的图形是右边物体的三视图中的__________.(7) (8) (9)17.如图8,正方形ABCD─A1B1C1D1中,连接AB1,AC,B1C,则△AB1C的形状是______.18.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图9),•则这串珠子被盒子遮住的部分有________颗.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图所示是由几个小正方体所组成的几何体的俯视图,•正方体中的数字表示在该位置的小立方体的个数,请在图中画出这个几何体的主视图和左视图.主视图左视图20.平面图形经过旋转可以形成几何体,请将图•用线将对应的图形连接起来.21.如图,是由几个小正方体所组成的几何体,请画出这个几何体的三视图.22.如图,这两个几何体各由几个面组成?面与面相交成几条线?它们是直线还是曲线?23.一个透明的几何体如图,粗线表示一根嵌在几何体内的铁丝,右边是它的主视图,请你画出它的左视图和俯视图,并用彩笔标明铁丝位置.24.如图是一个正方体的展开图,每个面都标注了字母.(1)如果面A在多面体的底部,上面是哪一个面?(2)如果F在前面,从左看是面B,上面是哪一面?(3)从右面看到面C,面D在后面,上面是哪一面?25.如图是由些大小相同的小正方体组成的简单几何体的主视图和俯视图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,你写出n的所有可能值.答案:一、选择题1.A 2.C 3.C 4.A 5.D 6.D 7.C 8.C 9.A 10.A二、填空题11.(n-2)12.球13.100cm214.圆15.3个16.左视图17.等边三角形• 18.27三、解答题19.解:主视图:左视图:20.解:略.21.解:主视图:左视图:俯视图:22.解:圆台由三个面组成,面与面相交成两条曲线,六棱柱由8个面组成,面与面相交成18条直线.23.解:左视图:俯视图:24.解:(1)面F.(2)面E.(3)面F.25.解:(1)有5种情况:(2)8、9、10、11.。
5_9 投影与视图(一)(立体图形的展开与折叠)(分层精练)(原卷版)
第9讲投影与视图(一)(立体图形的展开与折叠)(精练)A基础训练B能力提升A基础训练一、单选题1.(2022秋·河南平顶山·七年级校考期中)下列图形都是由6个边长为1的小正方形组成的,其中不能折叠成正方体的是()A.B.C.D.2.(2022秋·河南郑州·七年级校考期中)下列正方体展开图上每个面上都有一个汉字.其中,“勤”的对面是“戴”的是()A.B.C.D.3.(2022秋·山东德州·七年级校考期末)如图是一个正方体的展开图,折成正方体后,x,y与其相对面上的数字相等,则y x的值为()-C.9 D.9-A.8 B.84.(2022秋·山东枣庄·七年级统考期中)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方体包装盒的是()A.B.C.D.5.(2022秋·北京西城·七年级统考期末)如图是某个几何体的展开图,则该几何体是()A.五棱柱B.长方体C.五棱锥D.六棱柱33A.圆锥B.圆柱C.四棱柱D.四棱锥A.B.C.D.9.(2022秋·山西运城·七年级统考期中)如图所示,图中每个小正方形的大小都相同,有4个涂了阴影,A.4个B.5个C.6个D.7个10.(2022秋·广东佛山·七年级樵北中学校考阶段练习)已知一不透明的正方体的六个面上分别写着1至6六个数字,如图是我们能看到三种情况,那么1和2的对面数字分别是()A.3,4 B.4,5 C.3,6 D.3,511.(2022秋·辽宁阜新·七年级校考期中)如图是某立方体图形的展开图,则这个立体图形的名称是______.12.(2022秋·重庆江北·七年级校考期末)如图,若平面展开图按虚线折叠成正方体后,相对面上两个数之 __________.积为20,则x y13.(2022秋·浙江温州·七年级校考期中)仓库里有如图四种规格数量足够多的长方形、正方形的铁片(尺寸单位:分米);从中选5块铁片,焊接成一个无盖的长方体(或立方体)铁盒(不浪费材料).甲型盒是由3种规格铁片焊接而成的表面积最大的铁盒,乙型盒是由2种规格铁片焊接而成的容积最小的铁盒.现在要分别做上述两种铁盒各100个,则至少需要②号铁片___________块.三、解答题(1)求x的值.a__________,b=__________,c=___________;(1)填空;=17.(2022秋·七年级单元测试)如图,是一个长方体的墨水瓶纸盒的平面展开图,已知纸盒中相对两个面上的数互为相反数.(1)=a __________,b =___________,c =___________.(2)求()()()a b c b c a a b +-+-+ 的值.18.(2022秋·辽宁沈阳·七年级统考期中)如图是一个几何体的表面展开图,每个面上都标注了字母,请根据要求回答下列问题(字母均标注在几何体的表面):(1)如果字母A 所在的面是几何体的下底面,那么字母 所在的面是几何体的上底面;(2)若22B mn m =-,26D m mn =+-,先化简,再求值:34B D +,其中1m =-,2n =.B 能力提升 19.(2022秋·山东枣庄·七年级统考期中)小明在学习正方体展开图时,须在方格形纸片上画出正方体的展开图,探究研讨:(1)在方格纸上中绘制出如1-4-1型和2-3-1型的展开图(每个各画出一个)(并用斜线填充展开图)(2)在你画的2-3-1型中的展开图上,将“庆-祝,20-大,召-开”这三组字填在方格内,使得每一组字处于相对的面上.(3)通过正方体的展开图的研究,你发现至少剪开___条棱,就能将它能展成平面图形.20.(2022秋·江苏无锡·七年级校联考阶段练习)如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:=a ,b = ;(2)先化简,再求值:()()2223252ab a b ab a ab ⎡⎤-----+⎣⎦.21.(2022秋·全国·七年级专题练习)如图所示,图1为一个棱长为6的正方体,图2为图1的表面展开图(数字和字母写在外表面上,字母也可以表示数),请根据要求回答问题:(1)如果正方体相对面上的两个数字之和相等,则x =___________,y =___________;(2)如果面“2”是左面,面“4”在后面,则上面是___________(填6或10或x 或y );(3)图1中,点M 为所在棱的中点,在图2中找到点M 的位置,直接写出图2中ABM 的面积___________.22.(2022秋·江苏·七年级专题练习)已知图1为一个正方体,其棱长为12,图2为图1的表面展开图(数字和字母写在外面),请根据要求回答问题:(1)若正方体相对面上的数互为相反数,则xy =_________;(2)用一个平面去截这个正方体,下列关于截面(截出的面)的形状的结论:①可能是锐角三角形;②可能是直角三角形;③可能是钝角三角形;④可能是平行四边形.其中所有正确结论的序号是( ); A .① B .①④ C .①②④ D .①②③④(3)图1中,,M N 为所在棱的中点,请在图2标出点M 的位置,并求出ABM ∆的面积.23.(2022秋·山西运城·八年级统考期中)问题情境:如图①,一只蚂蚁在一个长为80cm,宽为50cm的长方形地毛毯上爬行,地毯上堆放着一根正三棱柱的木块,它的侧棱平行且等于场地宽AD,木块从正面看是一个边长为20cm的等边三角形.求一只蚂蚁从点A处到达点C处需要走的最短路程.(1)数学抽象:将蚂蚁爬行过...的木块的侧面“拉直”“铺平”,“化曲为直”.请在图②中用虚线补全木块的侧面展开图,并用实线连接AC.(2)线段AC的长即蚂蚁从点A处到达点C处需要走的最短路程,依据是_____.(3)问题解决:如图②,展开图中AB=_____,BC=_____.(4)这只蚂蚁从点A处到达点C处需要走的最短路程是_____.。
九年级数学下册常考点微专题提分精练(几何体的展开图最新中考真题精练(解析版)
专题27 几何体的展开图最新中考真题精练 1.(2022·山东淄博·中考真题)经过折叠可以围成正方体,且在正方体侧面上的字恰好环绕组成一个四字成语的图形是()A.B.C. D.【答案】C【分析】根据正方体侧面上的字恰好环绕组成一个四字成语,即是正方体的表面展开图,相对的面之间一定相隔一个正方形,且有两组相对的面,根据这一特点作答.【详解】解∶由正方体的表面展开图,相对的面之间一定相隔一个正方形可知,A.“心”、“想”、“事”、“成”四个字没有相对的面,故不符合题意;B.“吉”、“祥”、“如”、“意”四个字没有相对的面,故不符合题意;C.“金”与“题”相对,“榜”、“名”是相对的面,故符合题意;D.“马”、“到”、“成”、“功”四个字没有相对的面,故不符合题意;故选∶C.【点睛】本题主要考查了正方体相对两个面上的文字,明确正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.2.(2022·江苏徐州·中考真题)如图,已知骰子相对两面的点数之和为7,下列图形为该骰子表面展开图的是()A.B.C.D.【答案】D【分析】根据骰子表面展开后,其相对面的点数之和是7,逐项判断即可作答.【详解】A项,2的对面是4,点数之和不为7,故A项错误;B项,2的对面是6,点数之和不为7,故B项错误;C项,2的对面是6,点数之和不为7,故C项错误;D项,1的对面是6,2的对面是5,3的对面是4,相对面的点数之和都为7,故D项正确;故选:D.【点睛】本题主要考查了立体图形的侧面展开图的知识,解答时,找准相对面是解答本题的关键.没有共同边的两个面即为相对的面.3.(2022·贵州六盘水·中考真题)如图,裁掉一个正方形后能折叠成正方体,但不能裁掉的是()A.① B.② C.③ D.④【答案】A【分析】根据正方体展开图分析即可求解.【详解】根据正方体展开图分析,①的对面是⑤,不能裁掉①故选A【点睛】本题考查了正方体的表面展开图,理正方体的表面展开图的模型是解题的关键.正方体的表面展开图用‘口诀’:一线不过四,田凹应弃之,相间、Z端是对面,间二、拐角邻面知.4.(2022·山东枣庄·中考真题)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“亮”字所在面相对的面上的汉字是( )A.青B.春C.梦D.想【答案】D【分析】根据正方体表面展开图相对面之间相隔一个正方形这一特点即可作答.【详解】在原正方体中,与“亮”字所在面相对的面上的汉字是:想,与“点”字所在面相对的面上的汉字是:春,与“青”字所在面相对的面上的汉字是:梦,故选:D.【点睛】本题主要考查了正方体的表面展开图,准确的找出每个面的相对面是解题的关键.5.(2022·湖南益阳·中考真题)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是( )A.1 B.2 C.3 D.4【答案】B【分析】本题实际上是长为6的线段围成一个等腰三角形,求腰的取值范围.【详解】解:长为6的线段围成等腰三角形的两腰为a.则底边长为6﹣2a.由题意得,262 620 a aa>-⎧⎨->⎩,解得32<a<3,所给选项中分别为:1,2,3,4.∶只有2符合上面不等式组的解集,∶a只能取2.故选:B.【点睛】本题考查了三角形三边之间的关系、解不等式组,解题的关键是把把三棱柱的问题转化为三角形三边的问题.6.(2022·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.强B.富C.美D.高【答案】D【分析】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,即可求解.【详解】解:根据题意得:“盐”字所在面相对的面上的汉字是“高”,故选D【点睛】本题主要考查了正方体的平面展开图的特征,熟练掌握正方体的表面展开图,相对的面之间一定相隔一个正方形是解题的关键.7.(2022·广东广州·中考真题)如图是一个几何体的侧面展开图,这个几何体可以是()A.圆锥B.圆柱C.棱锥D.棱柱【答案】A【分析】由图可知展开侧面为扇形,则该几何体为圆锥.【详解】该几何体的侧面展开图是扇形,所以这个几何体可能是圆锥,故选:A.【点睛】此题主要考查几何体的展开图,熟记几何体的侧面展开图是解题的关键.8.(2022·江苏常州·中考真题)下列图形中,为圆柱的侧面展开图的是()A.B.C.D.【答案】D【分析】根据题意,注意其按圆柱的侧面沿它的一条母线剪开,分析得到图形的性质,易得答案.【详解】解:根据题意,把圆柱的侧面沿它的一条母线剪开展在一个平面上,得到其侧面展开图是对边平行且相等的四边形;又有母线垂直于上下底面,故可得是矩形.故选:D.【点睛】本题考查的是圆柱的展开图,解题的关键是需要对圆柱有充分的理解;难度不大.9.(2022·四川内江·中考真题)如图是正方体的表面展开图,则与“话”字相对的字是( )A.跟B.党C.走D.听【答案】C【分析】根据正方体表面展开图的特征进行判断即可.【详解】解:由正方体表面展开图的“相间、Z端是对面”可知,“话”与“走”是对面,故答案为:C.【点睛】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的特征是正确判断的前提.10.(2022·湖北恩施·中考真题)下图是一个正方体纸盒的展开图,将其折叠成一个正方体后,有“振”字一面的相对面上的字是()A.“恩” B.“乡” C.“村” D.“兴”【答案】D【分析】根据正方体的平面展开图的特点即可得.【详解】解:由正方体的平面展开图的特点得:“恩”字与“乡”字在相对面上,“施”字与“村”字在相对面上,“振”字与“兴”字在相对面上,故选:D.【点睛】本题考查了正方体的平面展开图,熟练掌握正方体的平面展开图的特点是解题关键.11.(2022·山东临沂·中考真题)如图所示的三棱柱的展开图不.可能..是()A.B.C.D.【答案】D【分析】三棱柱的表面展开图的特点,由三个长方形的侧面和上下两个三角形的底面组成.从而可得答案.【详解】解:选项A、B、C均可能是该三棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.【点睛】考查了几何体的展开图,动手折叠一下,有助于空间想象力的培养.12.(2022·江苏泰州·中考真题)如图为一个几何体的表面展开图,则该几何体是()A.三棱锥B.四棱锥C.四棱柱D.圆锥【答案】B【分析】底面为四边形,侧面为三角形可以折叠成四棱锥.【详解】解:由图可知,底面为四边形,侧面为三角形,∴该几何体是四棱锥,故选:B.【点睛】本题主要考查的是几何体的展开图,熟记常见立体图形的展开图特征是解题的关键.13.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.14.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【答案】C【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A选项,圆柱的底面是圆,故该选项不符合题意;B选项,圆锥的底面是圆,故该选项不符合题意;C选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C.【点睛】本题考查了几何体的展开图,掌握n棱柱的底面是n边形是解题的关键.15.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.16.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱【答案】C【分析】观察所给图形可知展开图由一个扇形和一个圆构成,由此可以判断该几何体是圆锥.【详解】解:∶展开图由一个扇形和一个圆构成,∶该几何体是圆锥.故选C.【点睛】本题考查圆锥的展开图,熟记圆锥展开图的形状是解题的关键.17.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.【答案】C【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.18.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∶AB为底面直径,∶将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∶两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.19.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁【答案】B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.20.(2022·四川广元·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.圆柱C.圆锥D.三棱柱【答案】B【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由图形可得该几何体是圆柱;故选B.【点睛】本题主要考查几何体的展开图,熟练掌握几何体的展开图是解题的关键.21.(2021·四川巴中·中考真题)某立体图形的表面展开图如图所示,这个立体图形是( )A.B.C.D.【答案】A【分析】利用立体图形及其表面展开图的特点解题.【详解】解:四个三角形和一个四边形,是四棱锥的组成,所以该立体图形的名称为四棱锥.故选:A.【点睛】本题考查了几何体的展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.22.(2021·广西百色·中考真题)下列展开图中,不是正方体展开图的是()A.B.C.D.【答案】D【分析】根据正方体的展开图特征解题.【详解】解:A.是正方体的展开图,故A不符合题意;B.是正方体的展开图,故B不符合题意;C.是正方体的展开图,故C不符合题意;D.不是正方体的展开图,故D符合题意,故选:D.【点睛】本题考查正方体的展开图,熟知正方体的11种展开图是解题关键.23.(2021·湖北荆门·中考真题)如图是一个正方体的平面展开图,把展开图折叠成正方体后,“红”字的面的对面上的字是()A.传B.国C.承D.基【答案】D【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,则:“传”与“因”是相对面,“承”与“色”是相对面,“红”与“基”是相对面.故选:D.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.24.(2021·辽宁大连·中考真题)某几何体的展开图如图所示,该几何体是( )A.B.C.D.【答案】D【分析】根据几何体的展开图可直接进行排除选项.【详解】解:由该几何体的展开图可知该几何体是圆锥;故选D.【点睛】本题主要考查几何体的展开图,熟练掌握简单几何体的展开图是解题的关键.25.(2021·广东深圳·中考真题)如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A.跟B.百C.走D.年【答案】B【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】∶正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∶在此正方体上与“建”字相对的面上的汉字是“百”.故选B.【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.26.(2021·广东·中考真题)下列图形是正方体展开图的个数为()A.1个B.2个C.3个D.4个【答案】C【分析】根据正方体的展开图的特征,11种不同情况进行判断即可.【详解】解:根据正方体的展开图的特征,只有第2个图不是正方体的展开图,故四个图中有3个图是正方体的展开图.故选:C.【点睛】考查正方体的展开图的特征,“一线不过四,田凹应弃之”应用比较广泛简洁.27.(2021·江苏扬州·中考真题)把图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选A.【点睛】本题考查了几何体的展开图,掌握各立体图形的展开图的特点是解决此类问题的关键.28.(2021·浙江金华·中考真题)将如图所示的直棱柱展开,下列各示意图中不可能...是它的表面展开图的是()A.B.C.D.【答案】D【分析】由直棱柱展开图的特征判断即可.【详解】解:图中棱柱展开后,两个三角形的面不可能位于同一侧,因此D选项中的图不是它的表面展开图;故选D.【点睛】本题考查了常见几何体的展开图,解决本题的关键是牢记三棱柱展开图的特点,即其两个三角形的面不可能位于展开图中侧面长方形的同一侧即可.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题29.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.【答案】月【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.故答案为:月.【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.三、解答题30.(2021·山东济宁·中考真题)研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体ABCD A B C D -''''(图1).因为在平面AA C C ''中,//CC AA '',AA '与AB 相交于点A ,所以直线AB 与AA '所成的BAA '∠就是既不相交也不平行的两条直线AB 与CC '所成的角.解决问题如图1,已知正方体ABCD A B C D -'''',求既不相交也不平行的两条直线BA '与AC 所成角的大小.(2)如图2,M ,N 是正方体相邻两个面上的点.①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是 ; ②在所选正确展开图中,若点M 到AB ,BC 的距离分别是2和5,点N 到BD ,BC 的距离分别是4和3,P 是AB 上一动点,求PM PN +的最小值.【答案】(1)60︒;(2)①丙;②10【分析】(1)连接BC ',则A BC ''△为等边三角形,即可求得既不相交也不平行的两条直线BA '与AC 所成角的大小;(2)①根据正方体侧面展开图判断即可;②根据对称关系作辅助线即可求得PM PN +的最小值.【详解】解:(1)连接BC ',∶//AC A C '',BA '与A C ''相交与点A ',即既不相交也不平行的两条直线BA '与AC 所成角为BAC''∠, 根据正方体性质可得:A B BC A C ''''==,∶A BC ''△为等边三角形,∶=60BA C ''∠︒,即既不相交也不平行的两条直线BA '与AC 所成角为60︒;(2)①根据正方体展开图可以判断,甲中与原图形中对应点位置不符,乙图形不能拼成正方体,故答案为丙;②如图:作M 关于直线AB 的对称点M ',连接NM ',与AB 交于点P ,连接MP ,则PM PN PN PM NM ''+=+=,过点N 作BC 垂线,并延长与M M '交于点E ,∶点M 到BC 的距离是5,点N 到BC 的距离是3,∶8NE =,∶点M 到AB 的距离是2,点N 到BD 的距离是4,∶6EM '=,∶22226810NM EM NE ''=+=+=,故PM PN +最小值为10.【点睛】本题主要考查正方形的性质、正方体的侧面展开图、根据对称关系求最短距离、勾股定理等知识点,读懂题意,明确PM PN +最小时的情况是解题的关键.。
(完整版)正方体的展开图练习题
正方体的展开图练习题一、判断给定的平面图形是否属正方体表面展开图1.如以最长的正方形链横排为准,展开图一般是三行,个别是两行,•不能是一行或四行,最长的一行(或列)在中间,可为2、3、4个,超过4•个或长行不在中间的不是正方体表面展开图.如都不是.2.在每一行(或列)的两旁,每旁只能有1个正方形与其相连,超过1个就不是.如都不是.中间的长行可折作正方体侧面,它两旁(或一旁)的正方形,与中间一行相连的折作底面,不相连的再下折作侧面.具体说可有以下4类11种图形,如作旋转或翻折后,方向会不同,但相对位置不变,这些不重复计算.1.“一·四·一”,中间一行4个作侧面,两边各1个分别作上下底面,•共有6种.2.“二·三·一”(或一·三·二)型,中间3个作侧面,上(或下)边2•个那行,相连的正方形作底面,不相连的再下折作另一个侧面,共3种.3.“二·二·二”型,成阶梯状.4.“三·三”型,两行只能有1个正方形相连.二、找正方体相邻或相对的面1.从展开图找.(1)正方体中相邻的面,在展开图中有公共边或公共顶点.如,•或在正方形长链中相隔两个正方形.如中A与D.(2)在正方体中相对的面,在展开图中同行(或列)中,中间隔一个正方形.如ABCD中,A与C,B与D,或和中间一行(或列)•均相连的两正方形亦相对.例1 右图中哪两个字所在的正方形,在正方体中是相对的面.解“祝”与“似”,“你”和“程”,“前”和“锦”相对.例2在A、B、C内分别填上适当的数.使得它们折成正方体后,对面上的数互为倒数,则填入正方形A、B、C•的三数依次是:(A)12,13,1 (B)13,12,1 (C)1,12,13(D)12,1,13分析A与2,B与3中间都隔一个正方形,C与1分处正方形链两边且与其相连,选(A).例3 在A、B、C内分别填上适当的数,使它们折成正方体后,对面上的数互为相反数.分析A与0,B与2,C和-1都分处正方形链两侧且与其相连,∴A─0,B─-2,C ─1.例4 代出折成正方体后相对的面.解A和C,D和F,B和E是相对的面.2.从立体图找.例5 正方体有三种不同放置方式,问下底面各是几?分析先找相邻的面,余下就是相对的面.上图出现最多的是3,和3相连的有2、4、5、6,余下的1就和3相对.再看6,•和6相邻的有2、3、4,和3相对的是1,必和6相邻,故6和5相对,余下是4和2相对,•下底面依次是2、5、1.例6由下图找出三组相对的面.分析和2相连的是1、3、5、6,相对的是4,和3相连的是2、4、5、6,相对的是1,和6相连的是1、2、3、4,相对的是5.三、由带标志的正方体图去判断是否属于它的展开图例7 如下图,正方体三个侧面分别画有不同图案,它的展开图可以是().分析基本方法是先看上下,后定左右,图A图B都是□和+两个面相对,不合题意,图C“□”和“○”之上,从立体图看“+”在右,符合要求.图D•“□”和“+”之上,“○”在右,而立体图“○”应在左,不合要求,故选(C).例8 下面各图都是正方体的表面展开图,若将它们折成正方体,•则其中两个正方体各面图案完全一样,它们是().分析首先找出上下两底,(1)是+和*,(2)是+和*,(3)(4)都是□和×,排除(1)(2),再检查侧面,(3)(4)顺序相同,所以选(3)(4).。
华师大版七年级(上) 中考题同步试卷:4.3 立体图形的展开图(02)
19.如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是
()
A.创
B.教
C.强
D.市
பைடு நூலகம்
20.如图是一个正方体纸盒的展开图,其中的六个正方形内分别标有数字“0”、“1”、“2”、
“5”和汉字、“数”、“学”,将其围成一个正方体后,则与“5”相对的是( )
A.0
B.2
C.数
D.学
21.如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是( )
声明:试题解析著 作权属菁优网 所有,未经书 面同意,不得 复制发布 日期:2019/3/15 15:03:19; 用户:qgjyus er10 659;邮箱:q gjyus er10659.219 57750;学号 :21985669
第7页(共7页)
A.1
B.5
C.4
D.3
15.小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如
图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,
“加”的对面是“油”,则它的平面展开图可能是 ( )
A.
B.
C.
D.
16.如图是一个正方体展开图,把展开图折叠成正方体后,“你”字相对面上的字是( )
A.大
B.伟
C.国
D.的
3.如图是正方体的一种展开图,其每个面上都标有一个数字,那么在原正方体中,与数字
“2”相对的面上的数字是( )
A.1
B.4
C.5
D.6
4.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“共”字一面的相对面
上的字是( )
六年级下册数学试题- 专题24立体图形的认识全国通用 有答案
24.立体图形的认识知识要点梳理一、立体图形的展开图正方体的展开图长方体的展开图圆柱的展开图圆锥的展开图二、观察物体在实际生活中,常常需要对一个物体从不同角度、不同方位进行观察,来获得其形状、大小、颜色等各方面的信息。
1.从不同的角度、不同的方位观察物体,看到物体的形状可能是不同的。
2.能正确辨认从正面、侧面、上面观察到的物体的形状。
三、立体图形的认识1.长方体与正方体特征的区别与联系2、圆柱、圆锥的特征考点精讲分析典例精讲考点1立体图形的认识【例1】一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是多少厘米?【精析】根据长方体棱长总和的计算公式,计算出长方体的高。
【答案】40÷4-5-3=2(厘米)答:高是2厘米。
【归纳总结】长方体的棱长总和=(长+宽+高)×4。
【例2】把一个大正方体木块表面涂上红色的漆(如图),锯成完全一样的27块小正方体木块。
小正方体中一面红色、二面红色、三面红色各有多少块?【精析】我们可以想象一下,大正方形被切割成小正方体后,一面有红色的在大正方体每个面的最中间(如A处),两面有红色的在大正方体每条棱的中间(如B处),三面有红色的在大正方体的8个角上(如C处),没有红色的在中心内部。
【答案】因为正方体有6个面,12条棱,8个顶点,所以一面有红色的是6块,两面有红色的是12块,三面有红色的是8块。
【归纳总结】根据正方体表面涂色的特点,分别得出切割后的小正方体涂色面的排列特点。
【例3】用一个平面去截一个正方体,把正方体分为两个多面体,则截面最多会是()边形。
【精析】正方体有六个面,欲截最多边,肯定是平面与最多的面相交,形成的交线越多,多边形边数就越多。
让截面过正方体的各条棱的中点。
【答案】六【归纳总结】正方体有六个面,用平面去截正方体时,最少与三个面相交得三角形,最多与六个面相交得六边形。
考点2图形的展开与折叠【例4】在下面四个正方体中,()正方体展开后可能得到右面的展开图。
立体图形的展开图专题训练
立体图形的展开图一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个是符合题目要求的)1.如左图所示的圆台中,可由右图中的()图形绕虚线旋转而成.2.如图所示图形中,不是正方体的展开图的是()3.如图所示,经折叠可以围成一个棱柱的是()4.如图1是一个正方体纸盒的展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得它们折成正方体后相对的面上互为相反数,则填入正方形A、B、C的三个数依次是()A.-1,2,0 B.0,2,-1 C.2,0,-1 D.2,-1,0(1) (2) (3)5.用平面去截正方体,截出的平面图形中不可能是()A.梯形B.六边形C.五边形D.七边形6.某物体的三视图是如图(2)所示的图形,那么该图形的形状是()A.长方体B.圆锥体C.正方体D.圆柱体7.棱长是1cm的小立方体组成如图(3)所示的几何体,那么这个几何体的表面积是()A.36cm2B.33cm2C.30cm2D.27cm28.将一个正方体的盒子沿棱剪开成如图4所示的平面图形,至少需要剪()•刀A.5 B.6 C.7 D.8(4) (5) (6)9.把10个相同的小正方体按如图5所示的位置堆放,•它的外表含有若干个小正方形,如果将图中标字母A的一个小正方形搬去,•这时外表含有的小正方形个数与搬运前比较是()A.不增不减B.减少一个C.减少2个D.减少3个10.从n边形的同一个顶点可以引()条对角线A.n-3 B.n-2 C.(3)2n nD.n(n-3)二、填空题(本大题共8题,每题3分,共24分)11.从四边形的同一个顶点可以引一条对角线,将四边形分割成2个三角形,则从n边形的同一个顶点引对角线可以将n边形分割成_________个三角形.12.日常生活中,部分几何体的三视图都是同一种图形,•试举一例这样的几何体_______.13.一个正方体的棱长为5cm,则这个正方体的侧面积是_________.14.圆锥的侧面与底面的相交线是________.15.如图6,含有开心表情图形的正方形有________.16.图7中左边的图形是右边物体的三视图中的__________.(7) (8) (9)17.如图8,正方形ABCD─A1B1C1D1中,连接AB1,AC,B1C,则△AB1C的形状是______.18.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图9),•则这串珠子被盒子遮住的部分有________颗.三、解答题(本大题共46分,19~23题每题6分,24题、25题每题8分.解答题应写出文字说明、证明过程或演算步骤)19.如图所示是由几个小正方体所组成的几何体的俯视图,•正方体中的数字表示在该位置的小立方体的个数,请在图中画出这个几何体的主视图和左视图.主视图左视图20.平面图形经过旋转可以形成几何体,请将图•用线将对应的图形连接起来.21.如图,是由几个小正方体所组成的几何体,请画出这个几何体的三视图.22.如图,这两个几何体各由几个面组成?面与面相交成几条线?它们是直线还是曲线?23.一个透明的几何体如图,粗线表示一根嵌在几何体内的铁丝,右边是它的主视图,请你画出它的左视图和俯视图,并用彩笔标明铁丝位置.24.如图是一个正方体的展开图,每个面都标注了字母.(1)如果面A在多面体的底部,上面是哪一个面?(2)如果F在前面,从左看是面B,上面是哪一面?(3)从右面看到面C,面D在后面,上面是哪一面?25.如图是由些大小相同的小正方体组成的简单几何体的主视图和俯视图.(1)请你画出这个几何体的一种左视图;(2)若组成这个几何体的小正方体的块数为n,你写出n的所有可能值.。
立体图形的展开与折叠综合测试题
立体图形的展开与折叠综合测试题一、选择题(每小题3分,共30分)1. 【导学号31100748】下列几何图形中为圆柱体的是()A B C D2. 【导学号31100613】在下列立体图形中,只要两个面就能围成的是()A.长方体B.圆柱C.圆锥D.球3. 【导学号31100765】如图是一个三棱柱笔筒,则该物体的主视图是()A B C D 第3题图4. 【导学号31100997】如图是一个正方体,则它的表面展开图可以是()A B C D 第4题图5. 【导学号31100764】下列选项中的图形,绕其虚线旋转一周能得到如图所示的图形的是()A B C D 第5题图6. 【导学号31100217】房间窗户的边框形状是矩形,在阳光的照射下边框在房间地面上形成了投影,则投影的形状可能是()A.三角形B.平行四边形C.圆D.梯形7. 【导学号31100750】我们常用“y随x的增大而增大(或减小)”来表示两个变量之间的变化关系.有这样一个情境:如图,小王从点A经过路灯C的正下方沿直线走到点B,他与路灯C的距离y随他与点A之间的距离x的变化而变化.下列函数中y与x之间的变化关系,最有可能与上述情境类似的是()A.y=x B.y=x+3C.y=3xD.y=(x-3)2+3第7题图8. 【导学号31100769】一个几何体的三视图如图所示,则该几何体的表面积为()A.4π B.3πC.2π+4 D.3π+4第8题图第10题图9. 【导学号31100752】一个直角三角形的三条边分别为3,4,5,将这个三角形绕它的直角边所在直线旋转一周得到的几何体的体积是()A.12π B.16πC.12π或16π D.36π或48π10. 【导学号31100742】如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个二、填空题(每小题4分,共32分)11. 【导学号31100759】把如图形状的硬纸板折成一个四棱锥,那么与E点重合在一起的是_____________.第11题图第12题图12. 【导学号31100996】如图是一个三棱柱,它的正投影是下图中的________(填序号).13. 【导学号31100763】星期天,小明和小华在村后的小山岭上玩,突然,小明说“我捡到了一块非常好看的石头,它类似于我们刚学过的棱柱.”小华问:“几棱柱啊?”小明说:我说不上来,只知道它有9个面,14个顶点,21条棱.小华说:“我知道了,它是_______棱柱.”14. 【导学号31100957】图①是一个正方体的展开图,该正方体从图②所示的位置依次翻到第1格、第2格、第3格、第4格、第5格,此时这个正方体朝上一面的字是__________.①②第14题图15.【导学号31100751】如图,一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为____________cm.第15题图第16题图16. 【导学号31100757】如图是由若干个棱长为1cm的小正方体堆砌而成的几何体,那么其三视图中面积最小的是_________cm217. 【导学号31100745】如图是一个几何体的三视图,已知左视图是一个等边三角形,根据图中尺寸(单位:cm),这个几何体的体积为__________cm3;表面积为__________cm2.第17题图第18题图18. 【导学号31100744】如图是一个由若干个正方体搭建而成的几何体的主视图与左视图,那么下列图形中可以作为该几何体的俯视图的序号是:_____________.三、解答题(共58分)19.【导学号31100741】(10分)画出下面几何体的三种视图.第19题图20.【导学号31100755】(12分)在一次数学活动课上,李老师带领学生去测教学楼的高度.在阳光下,测得身高1.65米的黄丽同学(BC)的影长BA为1.1米,与此同时,测得教学楼DE的影长DF为12.1米,如图.(1)请你在图中画出此时教学楼DE在阳光下的投影DF;(2)请你根据已测得的数据,求出教学楼DE的高度(精确到0.1米).第20题图21.【导学号31100369】(12分)如图,某同学想测量旗杆的高度,他在某一时刻测得1m长的竹竿竖直放置时影长为1.5m,在同一时刻测量旗杆的影长时,因旗杆靠近一楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21m,留在墙上的影高为2m,求旗杆的高度.第21题图22.【导学号31100304】(12分)如图是一个包装纸盒的三视图(单位:cm)(1)该包装纸盒的几何形状是__________;(2)画出该纸盒的平面展开图.,精确到个位)(3)计算制作一个纸盒所需纸板的面积.(3 1.73第22题图23.【导学号31100879】(12分)如图,某光源下有三根杆子,甲杆GH的影子GM,乙杆EF的影子一部分是照在地面上的EA,一部分是照在斜坡AB上的AD.(1)请在图中画出形成影子的光线,确定光源所在的位置R,并画出丙杆PQ在地面上的影子.(2)在(1)的结论下,若过点F的光线FD⊥AB,斜坡与地面夹角为60°,AD=1米,AE=2米,请求出乙杆EF的高度.(结果保留根号)第23题图立体图形的展开与折叠综合测试题一、1.C 2.C 3.C 4.B 5.C 6.B 7.D 8.D 9.C 10.A二、11. A和C 12. ②13. 七14. 我15.81316. 3 17. 3318+2318. ①②③三、19. 解:20.解:(1)连接AC,过点E作EF∥AC交AD于点F,则DF即为所求,如图所示.第20题图(2)由题意,得1.121.165.1DE =,解得DE=18.15≈18.2.所以教学楼DE 的高度约为18.2米. 21.解:过C 作CE ⊥AB 于E ,如图.∵CD ⊥BD ,AB ⊥BD ,∴∠EBD=∠CDB=∠CEB=90°.∴四边形CDBE 为矩形,则BD=CE=21,CD=BE=2. 设AE=xm ,则1:1.5=x:21,解得x=14. 故旗杆高AB=AE+BE=14+2=16(m ).第21题图 第22题图22. 解:(1)正六棱柱(2)如图所示:(3)由图可知正六棱柱的侧面是边长为5的正方形,上、下底面是边长为5的正六边形, 侧面面积:6×5×5=150(cm 2),底面积:2×6×21×5×235=753,制作一个纸盒所需纸板的面积:150753+≈280(cm 2). 23. 解:(1)如图,QN 即为PQ 在地面的影子.(2)分别延长FD 、EA 交于点S.在Rt △ADS 中,∠ADS=90°,∠DAS=60°,所以∠S=30°. 又AD=1,∴AS=2.∴ES=AS+AE=2+2=4.在Rt △EFS 中,∠FES=90°,EF=ES•tan ∠FSE=4•tan30°=4×33=433(米). 所以乙杆EF 的高度为433米.第23题图。
展开与折叠 典型例题
展开与折叠典型例题【知识梳理】1、棱柱在棱柱中,任何相邻两个面的交线都叫做棱;相邻两个侧面的交线叫做侧棱。
棱柱的所有侧棱长都相等。
棱柱的上、下底面是相同的多边形,侧面都是长方形。
人们通常根据棱柱底面多边形的边数将棱柱分成三棱柱、四棱柱、五棱柱、六棱柱等。
长方体和正方体都是四棱柱。
2、关于棱柱、圆柱、圆锥的表面展开图。
棱柱的表面展开图是由两个相同的多边形和一些长方形连成的,如下图,沿棱柱表面不同的棱剪开,可能得到不同组合方式的平面展开图。
圆柱的表面展开图是由两个相同的圆形和一个长方形连成的。
圆锥的表面展开图是由一个圆形和一个扇形连成的。
思考:下面四个图形中有没有经过折叠可以围成一个棱柱的?3、最特殊的棱柱――正方体的展开图(基本图形)(变式图形)注意:基本图形中的中间四块,上下各一块均能折成正方体;变式图形中将其中一块或数块沿一个点旋转90°,旋转一次或数次后能得到基本图形的即可折成正方体。
【重点与难点】重点:(1)认识棱柱的某些特征,开始学习较为规范的几何语言。
(2)了解棱柱、圆柱、圆锥的侧面展开图。
(3)能根据展开图判断和制作简单的立体模型。
难点:(1)根据展开图判断立体图形的形状。
(2)根据简单立体图形的形状画出它的展开图。
(3)在展开与折叠的过程中,发展空间观念,积累数学活动经验。
【典例解析】例1如右图是一多面体的展开图,每个面内都标注了字母,请根据要求回答问题(1)如果面A在多面体的底部,那么哪一面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面C,面D在后面,那么哪一面会在上面?分析(1)面F;(2)面C ;(3)面A说明这是一个长方形的表面展开图,共有6个面,其中面A与面C、E、F相同,根据所处位置可知面A与面F相对,面C与面E相对,面B与面D相对。
(1)中,面A在长方体的底部,那么它所对的面F就应该在上面;(2)中面F在前面,面B在左面,那么它们所对的面A就在后面,面D就在右面,所以面C应该在上面,而面E在底部;(3)中面C在右面,那么面E就在左面,面D在后面,那么面B就在前面,所以此时面F 在底部,而面A则应该在上面。
立体图形的展开图(有答案)汇总
01
02
03
空间性
立体图形存在于三维空间 中,具有长、宽、面围 成的封闭空间。
组合性
立体图形可以由多个简单 的基本图形组合而成。
立体图形的重要性
实际应用
立体图形在建筑、机械、 电子等领域有广泛应用。
数学研究
立体图形是数学中几何学 的重要研究对象,对于理 解空间结构和性质具有重 要意义。
优化材料
根据立体图形的结构和展开图的特 点,选择合适的材料,如金属、塑 料等,以降低成本和提高加工效率。
考虑加工工艺
在绘制展开图时需要考虑加工工艺 的可行性,如折弯、切割、焊接等, 以保证加工的准确性和效率。
04 立体图形展开图的实例分 析
正方体展开图的实例分析
正方体的展开图是一个六面体,其中 三个面是正方形,另外三个面是长方 形。
01
选择合适的CAD软件,如AutoCAD、SolidWorks等。
02
在软件中创建立体图形的三维模型,然后通过软件的展开功能
生成展开图。
CAD软件可以快速生成准确的展开图,并可以方便地进行修改
03
和优化。
立体图形展开图的优化技巧
简化图形
在保证功能的前提下,尽量简化 展开图的形状和结构,减少材料
的使用和加工难度。
教育价值
立体图形的教学有助于培 养学生的空间想象能力和 逻辑思维能力。
02 常见立体图形的展开图
正方体的展开图
1-4-1型
2-3-1型
三个面相连构成底面,上方有两个面 相互垂直。
三个面相连构成底面,上方有两个面 相互垂直且不相邻。
1-3-2型
四个面相连构成底面,上方有一个面 与底面相邻。
长方体的展开图
立体图形的表面展开图例题与讲解
立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是( ).解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是( ).A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( ).A.4 B.6 C.7 D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是( ).解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图( ).解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形认识初步➢展开图
【基础练习】
1.如图所示的图形中,不是正方体平面展开图的是()
2.下列图形经过折叠不能围成三棱柱的是()
3.下列平面图形不能够围成正方体的是()
4.右面的立体图形从上面看到的图形是()
A.B.C.D .
A B C D
5.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如
图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是( )
A.0
B.6
C.快
D.乐
6.几何体( )展开后如下图.
(A)棱柱(B)球(C)圆柱(D)圆锥
7.不能折成左图的长方体的是( ).
8.如图,哪些图形经过折叠可以围成一个棱柱?先想一想,再折一折.
9.下面是一个长方体的展开图,其中错误的是()
10.用如图所示的平面图形可以折成的多面体是______.
11.下列四张图中,能经过折叠围成一个棱柱的是( ).
12.下面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是( )
13.下面图形经过折叠可以围成一个棱柱的是()
14.下面图形经过折叠可以围成一个棱柱的是( )
A. B. C.D.
15. 已知某多面体的平面展开图如图所示,其中是三棱柱的有( )
A .1个 B.2个 C.3个 D.4个
16. 七棱柱的侧面是( )
A.长方形
B.七边形
C.三角形
D.正方形
17. 分别写出表面能展开成如图所示的五种平面图的几何体的名称.
(1)_______ (2)_______ (3)_______ (4)_______ (5)_______
18. 下图是一些立体图形的展开图,用它们能围成怎样的立体图形?
19. 下面是一些常见几何体的展开图,你能正确说出这些几何体的名字么?
20. 下列图形是某些多面体的平面展开图,
说出这些多面体的名称.
__________ _________ _________ __________ __________
21.如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成
的几何体图形是().
22.如图六个平面图形中,有圆柱、圆锥、三棱柱(它的底面是三边相等的三角形)的表面
展开图,请你把立体图形与它的表面展开图用线连起来.
23.下列图形中,是正方体的平面展开图的是()
24.下列图形中,不是正方体的表面展开图的是()
25.如图,每个图片都是6个相同的正方形组成的,不能折成正方形的是()
26.如图是一个正方体的表面展开图,则图中“加”字所在面的对面所标的字是()
A.北B.京C.奥 D.运
27.将如图所示的正方体沿某些棱展开后,能得到的图形是()
28.小丽制作了一个对面图案均相同的正方体礼品盒(如下左图所示),则这个正方体礼品
盒的平面展开图可能是().
29.小新准备用如图的纸片做一个正方体礼品盒,为了美观,他想在六个正方形纸片上画上
图案,使做成后三组对面的图案相同,那么画上图案后正确的是()
30.一个正方体,六个面上分别写有六个连续的整数(如图所示),且每两个相对面上的数字
和相等,本图所能看到的三个面所写的数字分别是3,6,7,问:与它们相对的三个面的数字各是多少?为什么?
31.把正方体的6个面分别涂上不同的颜色,并画上朵数不等的花,各面上的颜色与花朵数
的情况列表如下:
现将上述大小相同,颜色、花朵分布完全一样的四个正方体拼成一个在同一平面上放置的长方体,如下图所示,那么长方体的下底面共有______朵花.
32.如果图(1)~(10)均是正方体A的展开图,正方体的每一面分别有1,2,3,4,5,6六
个数,请你在图(2)~(10)的空格上填上相应的数.
33.马小虎准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的
拼接图形(实线部分),经折叠后发现还少一个面,请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.(注:①只需添加一个符合要求的正方形;②添加的正方形用阴影表示)
34.有一个长方形的硬纸正好可以分成15个小正方形,如图,试把它剪成3份,每份有5
个小正方形相连,折起来都可以成为一个无盖的正方体纸盒,应该怎样剪?。