高等数学完整版详细 ppt课件
合集下载
高等数学课件详细
分学
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等
数
常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。
《高等数学课件PPT》-完整详细版
1
微积分基本定理
微积分基本定理的概念和推导,描述定积分和不定积分之间的关系。
2
带变限积分
带变限积分的计算方法和几何解释,通过例题演示如何求解带变限积分。
极限和连续
深入介绍极限和连续的概念、性质和运算法则,帮助学生理解和掌握这两个重要概念。
极限
数列极限和函数极限的定义和性质,常见的极限计 算方法和极限存在准则。
连续
函数连续的定义和判定条件,连续函数的性质和运 算法则。
函数及其图像
介绍函数的概念和性质,以及如何通过绘制函数图像来更好地理解函数。
函数
函数的定义、定义域、值域和性质,常见函数类型 和函数之间的关系。
图像
绘制函数图像的方法和技巧,通过观察图像认识函 数的特点和变化趋势。
导数和微分
介绍导数和微分的概念、性质和计算方法,以及它们在几何和物理中的应用。
1 导数
导数的定义和性质,导数的计算方法和常见 函数的导数公式。
2 微分
微分的概念和计算方法,微分在几何和物理 中的应用。
《高等数学课件PPT》-完整详 细版
一份完整详细的高等数学课件PPT,深入介绍高等数学的各个知识点,帮助 学生更好地理解和掌握这门重要学科。
课程目标和重要性
通过介绍高等数学课程的学习目标和重要性,帮助学生明确学习目标,激发学习兴趣,并认识到 高等数学在现实生活和学科发展中的广泛应用。
学习目标
深入理解高等数学的各个概念和方法,提高解决数学问题的能力。
不定积分与牛顿-莱布尼茨公式
深入研究不定积分的概念、性质和计算方法,以及牛顿-莱布尼茨公式的推导和应用。
1 不定积分
不定积分的定义和计算方法,常见函数的不 定积分公式。
高等数学(完整版)详细(课堂PPT)
因此
Sn
a, 0,
n 为奇数 n 为偶数
从而
lim
n
Sn
不存在
,
因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
例2. 判别下列级数的敛散性:
(1)
ln
n1
n
n
1
;
解: (1)
(2) n1n(n11) .
Sn
ln 2 1
ln 3 2
ln 4 3
的敛散性.
证: 将级数 un 的前 k 项去掉, 所得新级数 uk n
n1
n1
的部分和为
n
n uk l Sk n Sk
l 1
由于n 时, n 与Sk n 极限状况相同, 故新旧两级
数敛散性相同.
当级数收敛时, 其和的关系为 S Sk .
类似可证前面加上有限项的情况 .
性质4. 收敛级数加括弧后所成的级数仍收敛于原级数
将各项依
n1
un u1 u2 u3
n1
un
称上式为无穷级数,其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
n
Sn uk u1 u2 u3 un
k 1
称为级数的部分和. 若 lim Sn S 存在, 则称无穷级数
n
收敛 , 并称 S 为级数的和, 记作
S un
1 n (n 1)n
34
二 、交错级数及其审敛法
设 un 0 , n 1, 2, , 则各项符号正负相间的级数 u1 u2 u3 (1)n1un
称为交错级数 .
定理6 . ( Leibnitz 判别法 ) 若交错级数满足条件:
高等数学课件完整版
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
5.绝对值:
a
a a
a0 a0
运算性质:
ab a b;
( a 0)
a a; bb
a b a b a b.
绝对值不等式:
x a (a 0)
a x a;
x a (a 0)
x a 或 x a;
二、函数概念
定义 设x 和y 是两个变量,D是一个给定的数集, 如果对于每个数x D , 变量 y 按照一定法则总有
y arctan x
反余切函数 y arccot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
二、复合函数 初等函数
1.复合函数
设 y u, u 1 x2 ,
y 1 x2
定义: 设函数 y f (u) 的定义域D f , 而函数 u ( x)的值域为Z , 若 D f Z , 则称 函数 y f [( x)]为x 的复合函数.
( x), ( x) 1
10 当( x) 1时,
或 x 0, ( x) x 2 1, 或 x 0, ( x) x2 1 1,
x 1; 0 x 2;
20 当( x) 1时,
或 x 0, ( x) x 2 1, 或 x 0, ( x) x2 1 1,
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
5.绝对值:
a
a a
a0 a0
运算性质:
ab a b;
( a 0)
a a; bb
a b a b a b.
绝对值不等式:
x a (a 0)
a x a;
x a (a 0)
x a 或 x a;
二、函数概念
定义 设x 和y 是两个变量,D是一个给定的数集, 如果对于每个数x D , 变量 y 按照一定法则总有
y arctan x
反余切函数 y arccot x
y arccot x
幂函数,指数函数,对数函数,三角函数和反 三角函数统称为基本初等函数.
二、复合函数 初等函数
1.复合函数
设 y u, u 1 x2 ,
y 1 x2
定义: 设函数 y f (u) 的定义域D f , 而函数 u ( x)的值域为Z , 若 D f Z , 则称 函数 y f [( x)]为x 的复合函数.
( x), ( x) 1
10 当( x) 1时,
或 x 0, ( x) x 2 1, 或 x 0, ( x) x2 1 1,
x 1; 0 x 2;
20 当( x) 1时,
或 x 0, ( x) x 2 1, 或 x 0, ( x) x2 1 1,
高等数学完整详细PPT课件
解
原式
lim a cos ax sinbx x0 bcos bx sinax
cos bx lim x0 cos ax
1.
第27页/共175页
例5 求 lim tan x . x tan 3 x
2
解
原式
lim
x
sec2 3sec2
x 3x
1 3
lim
x
cos2 3x cos2 x
2
2
1 lim 6cos 3x sin3x lim sin6x
第14页/共175页
例4 设函数f ( x)在[0,1]上连续, 在(0,1)内可导, 证明:
至少存在一点 (0,1),使 f ( ) 2[ f (1) f (0)].
证 分析: 结论可变形为
f (1) f (0) 10
f () 2
f ( x) ( x 2 )
x .
设 g( x) x2 ,
F(b) F(a) f (b) f (a) f () .
F (b) F (a) F ()
当 F ( x) x, F (b) F (a) b a, F ( x) 1,
f (b) f (a) f () F (b) F (a) F ()
f (b) f (a) f (). ba
第10页/共175页
例3 证明当x 0时, x ln(1 x) x. 1 x
证 设 f ( x) ln(1 x),
f ( x)在[0, x]上满足拉氏定理的条件,
f ( x) f (0) f ()( x 0), (0 x)
f (0) 0, f ( x) 1 , 由上式得 1 x
ln(1 x) x , 1
又0 x 1 1 1 x
高等数学课件详细
导数的应用
第五章
函数的单调性和极值
导数与函数的单调性:导数大于0,函数单调递增;导数小于0,函数单调递减
极值的定义:函数在某点处的导数为0,且该点两侧的导数符号相反,则该点为函数的极 值点
极值的分类:极大值和极小值
极值的求解:通过求导数等于0的点,并判断该点两侧的导数符号,确定极值点
曲线的凹凸性和拐点
质。
定积分的应用: 定积分在物理、 工程、经济等 领域有着广泛 的应用,如计 算物体的质量、 体积、重心等。
定积分的计算 方法:常用的 定积分计算方 法有牛顿-莱布 尼茨公式、积 分表法、数值
积分法等。
定积分的运算和求法
定积分的定义: 对函数在某一区 间上的积分
定积分的性质: 线性性、可加性、 单调性等
导数:函数在某一点的切 线斜率
凹凸性:函数在某点附近 的增减性
拐点:函数在某点附近的 凹凸性发生变化的点
应用:判断函数的单调性、 极值、最值等
洛必达法则和不定积分
洛必达法则:用于求解极限, 包括0/0型和∞/∞型
不定积分:用于求解函数的原 函数,包括基本积分公式和换 元积分法
洛必达法则的应用:求解极限、 求导、求积分等
不定积分的应用:求解函数的 原函数、求导、求积分等
泰勒公式和等价无穷小量代换
等价无穷小量代换:将复杂 函数替换为简单函数,便于 计算和近似
泰勒公式的应用:求极限、 求导数、求积分等
泰勒公式:将函数展开为多 项式形式,便于计算和近似
等价无穷小量代换的应用: 求极限、求导数、求积分等
不定积分与定积分
极限的应用:极限在微积分、函数分析、概率论等领域有着广泛的应用。
极限的运算和求法
极限的定义:函数 在某点或某区间上 的极限值
高等数学(完整版)详细 ppt课件
3)的定义域.
1 x2
解
f
(x)
1 2
0 x1 1 x2
f
(x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
ppt课件
17
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
因变量
自变量
当x0 D时, 称f ( x0 )为函数在点x0处的函数值.
函数值全体组成的数集 W { y y f ( x), x D} 称为函数的值域.
ppt课件
9
函数的两要素: 定义域与对应法则.
( x D x0)
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
{x a x b} 称为半开区间, 记作 (a,b]
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
ppt课件
4
3.邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 ,
Q----有理数集 R----实数集
数集间的关系: N Z, Z Q, Q R. 若A B,且B A,就称集合A与B相等. ( A B)
例如 A {1,2}, C { x x2 3x 2 0}, 则 A C.
高等数学课件完整版详细.ppt
一、问题的提出
1.自由落体运动的瞬时速度问题
如图, 求 t0时刻的瞬时速度,
取一邻近于t
的时刻
0
t
,
运动时间
t
,
平均速度 v
s t
s s0 t t0
g 2 (t0
t).
当 t t0时, 取极限得
瞬时速度 v lim g(t0 t)
tt0
2
gt0 .
t0
t t
2.切线问题 割线的极限位置——切线位置
x
x
y lim y .
x0 x
例1 求函数 f ( x) C(C为常数)的导数.
解
f ( x) lim h0
f ( x h) h
f ( x) lim C h0
C h
0.
即 (C ) 0.
例2 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解 (sin x) lim sin( x h) sin x
x0
x
lim ( x0 x0
x) ( x0 )
x
f( x0 ) 存在,
且 f( x0 ) f( x0 ) a,
则 f ( x)在点 x0可导,
且 f ( x0 ) a.
三、由定义求导数
步骤: (1) 求增量 y f ( x x) f ( x);
(2) 算比值 (3) 求极限
y f ( x x) f ( x);
a x ln a.
即 (a x ) a x ln a.
(e x ) e x .
例5 求函数 y log a x(a 0, a 1)的导数.
解 y lim loga ( x h) loga x
1.自由落体运动的瞬时速度问题
如图, 求 t0时刻的瞬时速度,
取一邻近于t
的时刻
0
t
,
运动时间
t
,
平均速度 v
s t
s s0 t t0
g 2 (t0
t).
当 t t0时, 取极限得
瞬时速度 v lim g(t0 t)
tt0
2
gt0 .
t0
t t
2.切线问题 割线的极限位置——切线位置
x
x
y lim y .
x0 x
例1 求函数 f ( x) C(C为常数)的导数.
解
f ( x) lim h0
f ( x h) h
f ( x) lim C h0
C h
0.
即 (C ) 0.
例2 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解 (sin x) lim sin( x h) sin x
x0
x
lim ( x0 x0
x) ( x0 )
x
f( x0 ) 存在,
且 f( x0 ) f( x0 ) a,
则 f ( x)在点 x0可导,
且 f ( x0 ) a.
三、由定义求导数
步骤: (1) 求增量 y f ( x x) f ( x);
(2) 算比值 (3) 求极限
y f ( x x) f ( x);
a x ln a.
即 (a x ) a x ln a.
(e x ) e x .
例5 求函数 y log a x(a 0, a 1)的导数.
解 y lim loga ( x h) loga x
高等数学课件
微积分在力学中的应用: 解决力学问题,如牛顿第 二定律、能量守恒等
微积分在电学中的应用: 解决电学问题,如电场强 度、电势等
微积分在热力学中的应用: 解决热力学问题,如热传 导、热对流等
微积分在光学中的应用: 解决光学问题,如折射率、 反射率等
微积分在声学中的应用: 解决声学问题,如声速、 声压等
微积分在材料科学中的应 用:解决材料科学问题, 如应力、应变等
傅里叶变换与拉 普拉斯变换的关 系:傅里叶变换 是拉普拉斯变换 的特殊情况,当 s=jω时,傅里 叶变换等于拉普 拉斯变换
傅里叶变换与拉 普拉斯变换的应 用:信号处理、 控制系统分析、 图像处理等领域
05
高等数学解题方法
代数法与因式分解法
代数法:通过代数运算求解问题的方法, 包括解方程、解不等式等
导数与微分
导数:函数在某一点的切线斜率 微分:函数在某一点的增量 导数与微分的关系:导数是微分的极限 导数的计算方法:极限法、导数公式、导数表等 微分的计算方法:微分公式、微分表等 导数与微分的应用:求极限、求导数、求微分等
不定积分与定积分
不定积分:求导数的逆运算,用于求解微分方程 定积分:求函数在某一区间上的面积,用于求解物理问题 积分公式:牛顿-莱布尼茨公式,用于求解不定积分 积分技巧:换元法、分部积分法、积分表等,用于求解定积分
高等数学课件完整版
单击添加副标题
汇报人:
目录
01 03 05
单击添加目录项标题
02
高等数学基础知识
04
高等数学解题方法
06
高等数学概述 高等数学核心内容 高等数学实际应用案例
01
添加章节标题
02
高等数学概述
高等数学的定义
《高等数学课件》课件
导数的定义
导数是函数在某一点的变化率,表示函数在该 点的斜率或切线斜率。
导数的几何意义
导数在几何上表示曲线在某一点处的切线斜率 。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的导数法则等。
导数的计算方法
基本初等函数的导数
对于一些基本的初等函数,如幂函数、指数 函数、三角函数等,它们的导数已经给出。
链式法则
乘积法则用于计算两个函数的导数,公式为 (uv)'=u'v+uv'。
乘积法则
链式法则是计算复合函数导数的重要工具, 通过链式法则可以将复合函数的导数转化为 简单函数的导数。
商的导数法则
商的导数法则是计算分式函数的导数的关键 ,公式为(u/v)'=(u'v-uv')/v^2。
微分的概念与性质
详细描述
无穷级数在数学、物理、工程等领域有广泛的应用。在 数学领域,无穷级数可以用来证明一些数学定理,如泰 勒定理等;在物理领域,无穷级数可以用来描述一些物 理现象,如振动和波动等;在工程领域,无穷级数可以 用来解决一些工程问题,如信号处理和图像处理等。
感谢您的观看
THANKS
重积分、方向导数等概念的基础。
06
微分方程
微分方程的基本概念
总结词
理解微分方程的基本定义和分类
详细描述
介绍微分方程的定义,以及微分方程 的分类,如线性微分方程、非线性微 分方程、一阶微分方程、高阶微分方 程等。
一阶微分方程的解法
总结词
掌握一阶微分方程的常见解法
详细描述
介绍一阶微分方程的常见解法,如变量分离法、积分因子法、常数变易法等,并 举例说明每种解法的应用。
导数是函数在某一点的变化率,表示函数在该 点的斜率或切线斜率。
导数的几何意义
导数在几何上表示曲线在某一点处的切线斜率 。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的导数法则等。
导数的计算方法
基本初等函数的导数
对于一些基本的初等函数,如幂函数、指数 函数、三角函数等,它们的导数已经给出。
链式法则
乘积法则用于计算两个函数的导数,公式为 (uv)'=u'v+uv'。
乘积法则
链式法则是计算复合函数导数的重要工具, 通过链式法则可以将复合函数的导数转化为 简单函数的导数。
商的导数法则
商的导数法则是计算分式函数的导数的关键 ,公式为(u/v)'=(u'v-uv')/v^2。
微分的概念与性质
详细描述
无穷级数在数学、物理、工程等领域有广泛的应用。在 数学领域,无穷级数可以用来证明一些数学定理,如泰 勒定理等;在物理领域,无穷级数可以用来描述一些物 理现象,如振动和波动等;在工程领域,无穷级数可以 用来解决一些工程问题,如信号处理和图像处理等。
感谢您的观看
THANKS
重积分、方向导数等概念的基础。
06
微分方程
微分方程的基本概念
总结词
理解微分方程的基本定义和分类
详细描述
介绍微分方程的定义,以及微分方程 的分类,如线性微分方程、非线性微 分方程、一阶微分方程、高阶微分方 程等。
一阶微分方程的解法
总结词
掌握一阶微分方程的常见解法
详细描述
介绍一阶微分方程的常见解法,如变量分离法、积分因子法、常数变易法等,并 举例说明每种解法的应用。
《高等数学》课件
《高等数学》PPT课件
欢迎来到《高等数学》PPT课件。让我们一起探索数学的奇妙世界,进一步 了解高等数学的概述和其在现实生活中的应用与意义。
什么是高等数学
高等数学是数学的重要分支,研究微积分、极限、连续、导数、积分和常微 分方程等概念与理论,为其他学科提供数学工具和方法。
极限与连续
1
极限的定义
极限是数列或函数无限接近某一特定值的概念。学习极限有助于我们理解数学中 的趋势和变化规律。
积分具有线性性质、换元积分法和分部积分法等运算法则,简化了对复杂函数的 积分计算。
3
牛顿-莱布尼兹公式
牛顿-莱布尼兹公式将定积分与不定积分联系起来,使我们能够通过求不定积分 来求定积分。
常微分方程
1 常微分方程的定义
常微分方程描述了自变量和函数之间的关系,在物理、生物和工程等领域中有广泛应用。
2 一阶常微分方程的解法
偏导数及其运算法则
多元函数的极值
偏导数描述了多元函数在给定 方向上的变化率,通过偏导数, 我们可以了解函数在各个方向 上的变化情况。
多元函数的极值是指函数在特 定约束条件下的最大值和最小 值,可以通过偏导数和拉格朗 日乘数法等方法求解。
通过分离变量、齐次化和常数变易法等方法,我们可以解决一阶常微分方程。
3 二阶常微分方程的解法
二阶常微分方程的解法需要基于一阶方程的解法,我们可以通过特征方程和待定系数法 等方法求解。
多元函数微积分初步
二元函数的概念和性质
二元函数描述了自变量和因变 量之间的关系,帮助我们研究 二维空间中的变化规律。
函数的微分
微分是导数的一个重要应用,描述了函数图像在某一点处的近似变化,以及函数在一段区间 内的平均变化率。
欢迎来到《高等数学》PPT课件。让我们一起探索数学的奇妙世界,进一步 了解高等数学的概述和其在现实生活中的应用与意义。
什么是高等数学
高等数学是数学的重要分支,研究微积分、极限、连续、导数、积分和常微 分方程等概念与理论,为其他学科提供数学工具和方法。
极限与连续
1
极限的定义
极限是数列或函数无限接近某一特定值的概念。学习极限有助于我们理解数学中 的趋势和变化规律。
积分具有线性性质、换元积分法和分部积分法等运算法则,简化了对复杂函数的 积分计算。
3
牛顿-莱布尼兹公式
牛顿-莱布尼兹公式将定积分与不定积分联系起来,使我们能够通过求不定积分 来求定积分。
常微分方程
1 常微分方程的定义
常微分方程描述了自变量和函数之间的关系,在物理、生物和工程等领域中有广泛应用。
2 一阶常微分方程的解法
偏导数及其运算法则
多元函数的极值
偏导数描述了多元函数在给定 方向上的变化率,通过偏导数, 我们可以了解函数在各个方向 上的变化情况。
多元函数的极值是指函数在特 定约束条件下的最大值和最小 值,可以通过偏导数和拉格朗 日乘数法等方法求解。
通过分离变量、齐次化和常数变易法等方法,我们可以解决一阶常微分方程。
3 二阶常微分方程的解法
二阶常微分方程的解法需要基于一阶方程的解法,我们可以通过特征方程和待定系数法 等方法求解。
多元函数微积分初步
二元函数的概念和性质
二元函数描述了自变量和因变 量之间的关系,帮助我们研究 二维空间中的变化规律。
函数的微分
微分是导数的一个重要应用,描述了函数图像在某一点处的近似变化,以及函数在一段区间 内的平均变化率。
高数ppt课件
无穷级数的求和法和乘法运算
求和法
求和法是求无穷级数和的基本方法。对于简单的无穷级数,可以直接计算其和。对于复杂的无穷级数,可能需要 使用一些技巧来求解。
乘法运算
乘法运算是指将两个无穷级数相乘。在乘法运算中,需要特别注意收敛性的变化。如果两个无穷级数相乘后的结 果是收敛的,那么它们的乘积就是收敛的;否则,它们的乘积就是发散的。
总结标词题
利•用文无字穷级内数容表示π • 文字内容
和•e是文高字数内中容另一个 • 重文要字的内应容用。
详细描述
π和e是数学中非常重 要的常数,它们都可 以通过无穷级数来表 示。例如,π可以通
过级数sin(x)/x = π/2, x≠0来表示,而 e可以通过级数1 +
x/1! + x^2/2! + x^3/3! + ...来表示。
多元函数的极值和最小二乘法
多元函数的极值
极值是函数在某点达到的最大或最小值。对 于二元函数f(x,y),如果它在点(x0,y0)达到 极值,那么fx(x0,y0) = 0和fy(x0,y0) = 0。 类似地,对于三元函数f(x,y,z),它在点 (x0,y0,z0)达到极值,那么fx(x0,y0,z0) = 0 、fy(x0,y0,z0) = 0和fz(x0,y0,z0) = 0。
高数的历史和发展
1 2
3
早期起源
自古希腊数学家开始研究极限和微积分的前身,到17世纪牛 顿和莱布尼茨的微积分学革命。
18世纪发展
以拉格朗日、欧拉等数学家对微积分和解析几何的杰出贡献 为标志。
19世纪现状
高数在物理、工程、经济等多领域得到广泛应用,如麦克斯 韦的电磁学理论、傅里叶的三角级数方法等。
-高等数学-课件完整版
高等数学-课件完整版
2020/10/17
一、 基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2020/10/17
点a叫做这邻域的中心, 叫做这邻域的半径 .
U (a) {x a x a }.
a
a
a x
点a的去心的邻域,
记作
U
0
(
a
).
U (a) { x 0 x a }.
2020/10/17
5.绝对值:
a
a a
a0 a0
运算性质:
ab a b;
( a 0)
a a; bb
a b a b a b.
0
x
1 ,
求函数
f
(x
3)的定义域.
1 x2
解
f
(
x)
1 2
0 x1 1 x2
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
2020/10/17
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
则称函数 f ( x)在区间 I上是单调增加的 ;
y
y f (x)
2020/10/17
f (x2 )
f (x1)
o
x
I
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;
2020/10/17
一、 基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2020/10/17
点a叫做这邻域的中心, 叫做这邻域的半径 .
U (a) {x a x a }.
a
a
a x
点a的去心的邻域,
记作
U
0
(
a
).
U (a) { x 0 x a }.
2020/10/17
5.绝对值:
a
a a
a0 a0
运算性质:
ab a b;
( a 0)
a a; bb
a b a b a b.
0
x
1 ,
求函数
f
(x
3)的定义域.
1 x2
解
f
(
x)
1 2
0 x1 1 x2
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
2020/10/17
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
则称函数 f ( x)在区间 I上是单调增加的 ;
y
y f (x)
2020/10/17
f (x2 )
f (x1)
o
x
I
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;
《高等数学》PPT课件
x
y
y
xy ln y xy ln x
y2 x2
例9
设
y
(x
a1 )a1 ( x
a2求
dy dx
解 两边取对数得
ln y a1 ln( x a1 ) a2 ln( x a2 ) an ln( x an )
两边对 x 求导得
完整版课件ppt
14
例10
1 y a1 a2 an
例6
设 y ( x 1)3 x 1 , 求y. ( x 4)2 e x
解 等式两边取对数得
完整版课件ppt
11
ln y ln( x 1) 1 ln( x 1) 2 ln( x 4) x 3
上式两边对 x求导得
y 1 1 2 1 y x 1 3( x 1) x 4
dx
解得
dy dx
ex y xey
,
由原方程知 x 0, y 0,
dy dx
x0
ex xe
y
y
x0 y0
1.
完整版课件ppt
4
例2 设曲线C的方程为 x3 y3 3 xy,求过C上
点(3 , 3)的切线方程, 并证明曲线C在该点的法 22
线通过原点 .
解 方程两边对 x求导, 3x2 3 y2 y 3 y 3xy
§4、隐函数与参变量 函数微分法
完整版课件ppt
1
一、隐函数的导数
定义: 由方程F(x, y)0所确定的函数 y y(x)称为 隐函数.
相应地,y f (x)形式的函数称为显函数.
F(x, y) 0
y f ( x) 隐函数的显化
问题:1、 方程F(x, y)0什么时候确定一个隐函数? 2、隐函数不易显化或不能显化如何求导?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xx0
切线 MT的斜率为 ktan lim f(x)f(x0). x x0 xx0
二、导数的定义
定义 设函数 y f ( x)在点 x0的某个邻域内 有定义, 当自变量 x在 x0处取得增量x (点 x0 x 仍在该邻域内)时, 相应地函数 y取 得增量y f ( x0 x) f ( x0 ); 如果y与 x之比当x 0时的极限存在, 则称函数 y f ( x)在点 x0处可导, 并称这个极限为函 数 y f ( x)在点 x0处的导数, 记为y x x0 ,
一、问题的提出
1.自由落体运动的瞬时速度问题
如图, 求t0时刻的瞬时速, 度
取一邻t0的 近时 于t,刻 运动时间 t,
平均速 v度 s t
s t
s0 t0
g 2 (t0 t).
当tt0时 , 取极限得
瞬
时v 速 lim g度 (0 tt) 2 t t0
gt0.
t0 t
t
2.切线问题 割线的极限位置——切线位置
即 f (0 )f (0 ), 函y数 f(x)在 x0点不 . 可
四、导数的几何意义
★ 如 果 f(x )在 开 区 间 a ,b 内 可 导 , 且 f (a )及
f (b )都 存 在 , 就 说 f(x )在 闭 区 间 a ,b 上 可 导 .
★
设函f(x 数 ) ((x x)),,
xx0, xx0
讨论x在 0的点
可导 . 性
若 lim f(x0 x)f(x0)
x 0
x
lx i0m (x0 x x )(x0)f(x0)存,在
若 lim f(x0 x)f(x0)
x 0
x
lx i0m (x0 x x )(x0)f(x0)存,在
且 f ( x 0 ) f ( x 0 ) a ,
则f(x)在点x0可导,
且 f(x0)a.
三、由定义求导数
步骤: ( 1 ) 求 y 增 f ( x x 量 ) f ( x );
dy 或df(x)
dxxx0
dx
, xx0
即 y x x 0 l x 0 i x y m l x 0 ifm (x 0 x x ) f(x 0 )
其它形式 f(x 0) lh i0m f(x 0 h h )f(x 0).
f(x0)x l ix0 m f(xx ) x f0 (x0).
1 x
loga
e.
即 (lo axg )1 xloae g.
(lnx) 1 . x
例6 讨论f(函 x)x数 在 x0处的.可导
解 f(0h)f(0)h,
h
h
lim f(0h)f(0)lim h 1,
h 0
h
h h 0
y y x
o
x
f(0h )f(0 ) h
lim
lim1.
h 0
h
h h 0
2.右导数:
f ( x 0 ) x lx 0 i 0 f m ( x x ) x f 0 ( x 0 ) l x i 0 f ( m x 0 x x ) f ( x 0 ) ;
★ 函 数 f(x )在 点 x 0处 可 导 左 导 数 f (x 0)和 右 导 数 f (x 0)都 存 在 且 相 等 .
解 (sx i)n lis m ix n h ()sixn
h 0
h
h
limcos(x
h0
h) 2
sin 2
h
cx o . s
2 即(sx ) i n co x . s
(sixn) x coxsx
4
4
2. 2
例3 求函 yx数 n(n为正 )的 整导 .数数
解 (xn)lim (xh)nxn
解 (ax)lim axhax
h0 h ax limah 1
h0 h axlna.
即(ax)axl求y 函 lo ax ( 数 g a 0 ,a 1 )的.导数
解 ylim loa(g xh )loax g
h 0
h
h
lim
loga
(1
) x
1
h0
h
x
x
1xlh im 0loag(1h x)h x
h 0
h
li[n m n 1 x n (n 1 )x n 2 h h n 1 ]nxn1
h 0
2 !
即(xn)nn x 1.
更一般地 (x ) x 1 . ( R )
例如,
(
x )
1
11
x2
2
1. 2x
( x 1 )
(1)x11
1 x2
.
例4 求函 f(x) 数 ax(a0 ,a1 )的.导数
记作 y, f(x),dy或df(x). dx dx
即 ylim f(x x)f(x)
x 0
x
或 f(x ) lif m (x h )f(x ).
h 0
h
注意: 1.f(x0)f(x)xx0.
2.导函数(瞬时变化率)是函数平均变化率的逼近 函数.
播放
★ 单侧导数
1.左导数:
f ( x 0 ) x lx 0 i 0 f m ( x x ) x f 0 ( x 0 ) l x i 0 f ( m x 0 x x ) f ( x 0 ) ;
播放
精品资料
y
如图, 如果割线MN绕点 M旋转而趋向极限位置 MT,直线MT就称为曲线 C在点M处的切线.
yf(x)
N
T
CM
极限位置即
o
x0
xx
M N 0, NM 0.T设 M (x 0 ,y 0 )N ,(x ,y ).
割线 MN的斜率为 tan y y0 f(x) f(x0),
N 沿 C 曲 M 线 ,x x 0 , x x0
关于导数的说明:
★ 点导数是因变x0量 处在 的点 变化 ,它率 反映因 了变量随自变量 而的 变变 化化 的快 慢程.度
★ 如果y函 f(x数 )在开I内 区的 间每 处都, 就 可称 导f(函 x)在 数 开I内 区可 间 . 导
★ 对于任x 一I,都对应f(着 x)的一个确定的 导数.这 值个函数叫做原 f(x)来 的函 导数 函 . 数
(2 )算比 y f(x 值 x ) f(x );
x
x
(3)求极 y 限 lim y.
x 0 x
例1 求函 f(x ) C 数 (C 为)常 的数 .导数
解 f(x)lim f(xh )f(x)limCC 0.
h 0
h
h0 h
即(C )0.
例2 设函 f(x ) s数 ix ,n 求 (sx ) i及 n (sx ) ix n . 4