微积分的基本公式ppt课件

合集下载

微积分基本公式PPT课件

微积分基本公式PPT课件
xa a
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[ ( x)] ( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x

微积分基本公式优秀课件

微积分基本公式优秀课件

牛顿-莱布尼茨公式
例:求 2 x 2 d x 和 2 t 2 d t
1
1
例:求 y2cosx在 x [ 0 , ] 的平均值. 2
例:连续可导函数 f (x) 有 f (a) = 3, f (b) = 5, 求
b f ( x)dx. a
积分上限函数的导数
利用牛顿—莱布尼茨公式反过来理解积分上限函数 (注:此为非正规方式)
x
(x)a f(t)dt
就是 f (x) 在 [a , b] 上的一个原函数.即:
(x)f(x) 或 (x) f(x)dx
例:函数 f (t ) = t 的积分上限函数 (x)
x
tdt
0
(x)f(x)x
原函数存在定理
x
(x )af(t)d t (x )f(x )
证:
xx
x
(xx)(x) f(t)dt f(t)dt
例:已知
f
(x)
x x2
0 x1 ,求 1 x2
2
f ( x)dx.
0
y
f (x)
O
1 2x
例:已知
x2 f (x) ex
1 x2
,求
0 x1
2
f ( x)dx.
0
牛顿-莱布尼茨公式
例:求 cos x dx 0
例:求 sin x dx
2
例:求 1 x dx 0
2
例:求 2x 1 dx 0
F(x)(x)C, x[a,b]
当 x = a 得 F(a) (a)C,
牛顿-莱布尼茨公式
a
(a )af(x )d x0 F (a )C
( x ) F ( x ) C F ( x ) F ( a )

( 人教A版)微积分基本定理课件 (共38张PPT)

( 人教A版)微积分基本定理课件 (共38张PPT)

2
2
答案:D
3.设 f(x)=x22-,x0,≤1x<≤x≤1,2,
则2f(x)dx 等于________. 0
解析:2f(x)dx=1x2dx+2(2-x)dx
0
0
1
=x3310 +(2x-x22)21
=13+[(2×2-222)-(2-12)]=56.
答案:56
探究一 计算简单函数的定积分
[自主梳理]
如果 f(x)是区间[a,b]上的 连续 函数,并且 F′(x) 内容 = f(x),那么bf(x)dx= F(b)-F(a)
a
符号
bf(x)dx=F(x)ba = F(b)-F(a)
a
二、定积分和曲边梯形面积的关系 设曲边梯形在 x 轴上方的面积为 S 上,x 轴下方的面积为 S 下,则 1.当曲边梯形的面积在 x 轴上方时,如图(1), 则bf(x)dx= S 上.
(7)baxdx=lnaxaba (a>0 且 a≠1). a
1.计算下列定积分.
(1)1(x3-2x)dx; 0
(2)
2 0
(x+cos
x)dx;
(3
解析:(1)∵(14x4-x2)′=x3-2x,
∴1(x3-2x)dx=(14x4-x2)10 =-34. 0
2.(1)若
f(x)=x2 cos
x≤0 x-1
x>0
2.常见函数的定积分公式: (1)bCdx=Cxba (C 为常数).
a
(2)abxndx=n+1 1xn+1ba (n≠-1). (3)bsin xdx=-cos xba .
a
(4)bcos xdx=sin xba . a
(5)b1xdx=ln xba (b>a>0). a

《高数》微积分的基本公式PPT共26页

《高数》微积分的基本公式PPT共26页
《高数》微积分的基本公式
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左

课件:微积分基本公式

课件:微积分基本公式

二、积分上限函数及其导数
设f ( x)在[a,b]上连续, x [a,b],
记 ( x) ax f (t)dt ----积分上限函数
◆积分上限函数的重要性质:
定理1 若f ( x)在[a,b]上连续,则积分上限函数
( x) ax f (t )dt在[a,b]上可导,且x (a,b)有 :
( x)
其中: I可以为任意形式的区间.
d
x
x
f (t)dt [ f (t)dt] f (x)
dx a
a
例1 已知f ( x) 0x t 2 sin tdt,求f ( x). 解 f ( x) [0x t 2 sin tdt ] x2 sin x.
例2
已知f
(
x)
x2
0
t2
sintdt,求f
证 x (a,b),
y
( x x) axx f (t )dt
( x x) ( x)
axx f (t )dt ax f (t )dt
( x) (x)
o a x x x b x
x
f (t)dt
x x
f (t)dt
x
f (t)dt
x x
f (t)dt,
a
x
a
x
由积分中值定理得:
sin x
arctan x
xf
(t )dt ,
求g( x).
思考题解答
1. 已知f ( x)在[a,b]上连续,问ax f (t )dt与xb f (u)du 是 谁 的 函 数? 它 们 在[a , b]上 可 导 吗? 如可导, 求其导数.
解: 都是x的函数; 可导;
d dx
ax

微积分的基本公式PPT幻灯片课件

微积分的基本公式PPT幻灯片课件

一个原函数, 则
b a
f
(x)d x

F ( x)
b a

F (b)
于是
0 | F(x) | |
x x
f (t)dt |
xx
| f (t) | dt Mx
x
x
由夹逼定理及点 x 的任意性, 即可得 F (x) C([a,b]) .
7
定理1说明: 定义在区间[a,b] 上的 积分上限函数是连续的.
积分上限函数是否可导?
8
由 F(x x) F(x)
xx
f (t)dt,
x
如果 f (x) C([a,b]), 则由积分中值定理, 得
xx
F(x x) F(x) x f (t)dt f ( )x ,
( 在 x 与 x x 之间)
故 lim F (x x) F (x) lim f ( )x
x0
推论2 基本初等函数在其定义域内原函数存在.
推论3 初等函数在其有定义的区间内原函数存在.
17
2. 微积分基本公式
如果 f (x) C([a,b]), 则
x
f (t)dt
为 f (x) 在[a,b] 上
a
的一个原函数.
若已知 F (x) 为 f (x) 的原函数, 则有
x
a f (t)dt F (x) C0.
( x)
F(x) ( a f (t)dt ) f ((x)) (x) .
14
例3
e1 t2 d t
计算 lim x0
cos x
x2
.

e1 t2 d t
cos x et2 d t

微积分讲解ppt课件

微积分讲解ppt课件

3.2.1 原函数和不定积分的概念
一、案例 二、概念和公式的引出
一、案例[路程函数]
已知物体的运动方程为 s(t) t2 ,则其速度为 v(t) s(t) (t 2 ) 2t
这里速度2t是路程t2的导数,反过来,路程t2又称为速 度2t的什么函数呢?若已知物体运动的速度v(t),又如 何求物体的运动方程s(t)呢?
f xdx f x C 或 df x f x C
3.2.2 基本积分表
一、案例 二、概念和公式的引出
一、案例[幂函数的不定积分]
因为

x 1

1

x
x 1
1 是 x 的一个原函数
于是
x dx x 1 C
32微积分基本公式321原函数和不定积分的概念322基本积分表323微积分基本公式321原函数和不定积分的概念一案例二概念和公式的引出一案例路程函数已知物体的运动方程为又称为速度2t的什么函数呢
3.2 微积分基本公式
3.2.1 原函数和不定积分的概念 3.2.2 基本积分表 3.2.3 微积分基本公式
1
1
类似地, 由基本初等函数的求导公式,可以写出与之对应的不定积分公式.
二、概念和公式的引出
1.基本积分表
(1)
kdx kx C ( k 为常数)
(2) x dx x 1 C
1
1
(3)

1 x
dx

ln
x

C
(4) a xdx a x C
即两个函数和(差)的定积分等于它们定积分的和(差). 性质1可推广到有限个函数的情形.
(2) 性质2 kf xdx k f xdx k为常数

2-1微积分学基本定理及基本积分公式.ppt

2-1微积分学基本定理及基本积分公式.ppt

1
0
f ( x )dx ′ = f ( x ) , ∫
d ∫ f ( x )dx = f ( x )dx
不定积分 积分再求导 先 不定积分再求导 =本身 本身

20

∫ f ′( x )dx = ∫ df ( x ) =
f ( x) + C ,
f ( x) + C .
运算法则 ② 运算法则
10
20
∫ [ f ( x ) ± g ( x ) ] dx = ∫
∫ kf ( x ) dx = k ∫
f ( x )dx ±
(可加性 (可加性) ∫ g ( x )dx , 可加性)
f ( x )dx , (齐次性) 齐次性)
∫∑k
i =1
n
i
f i ( x )dx =
∑k ∫
i =1 i
n
f i ( x )dx . 线性性质) (线性性质 (线性性质)
1
1
例2
证:(1)
≤∫

2 1 2
e
− x2
dx ≤ 2 ;
π 1 sin x 2 2 (2) < ∫π dx < . 2 x 2 4
例3
3∫
设 f ( x ) ∈ C[0, 1] , f ( x ) ∈ D(0, 1) ,且
1 2 f ( x )dx = 3
1]
f ( 0 ) .证: ∃ ξ∈( 0 , 1) ,使 f ′( ξ ) = 0 .
a
ξ
b
x
推广的积分中值 推广的积分中值 Thm
上可积, 若函数 f ( x ) ∈ C[ a , b ] , g ( x ) 在 [a , b] 上可积,

《微积分》课件

《微积分》课件
微分学主要研究函数在某一点附近的 局部行为,包括切线、函数的变化率 等;积分学则研究函数在某个区间上 的整体行为,包括面积、体积等。
微积分的历史背景
01
微积分的发展可以追溯到古代数 学,如希腊数学家阿基米德在求 面积和体积时已经有了积分学的 萌芽。
02
微积分的真正奠基人是牛顿和莱 布尼茨,他们分别独立地发展出 了微积分的基本理论,为后来的 数学发展奠定了基础。
《微积分》PPT课件
contents
目录
• 微积分的定义与历史 • 微积分的基本概念 • 微积分的应用 • 微积分的解题技巧 • 微积分的重点与难点解析 • 微积分的习题与答案解析
01
微积分的定义与历史
微积分的定义
微积分是研究函数、极限和连续性的 数学分支,通过微分和积分的方法来 研究函数的性质和变化规律。
极限的运算性质与法则
1 2
极限的运算性质
极限的四则运算法则、复合函数的极限运算法则 等。
极限的法则
极限的保号性、极限的局部有界性等。
3
注意事项
理解极限的运算法则和性质是解决极限问题的关 键,需要注意运算过程中的等价变换和放缩技巧 。
导数的几何意义与运算性质
导数的几何意义
切线的斜率、函数图像的变化率等。
习题一:极限的运算
$lim_{x to infty} frac{1}{x}$
判断下列叙述是否正 确,并说明理由
$lim_{x to 0} (1 + x)^{1/x}$
习题一:极限的运算
$lim_{x to 0} frac{sin x}{x} = 1$
$lim_{x to infty} frac{1}{x} = 0$
$lim_{x to 0} (1 + x)^{1/x} = e$

微积分第二版课件第二节微积分基本公式

微积分第二版课件第二节微积分基本公式

y
y=f (x)
(x) ax f (t)dt ,
称为变上限的积分.
oa
x
bx
定理(微积分基本定理)
若函数f (x)在区间[a,b]上连续,则变上限函数
Φ(x)
x
f (t)dt
(a
x b)在[a,b]上具有导数,且
a
Φ '(x)
d dx
ax
f
(t
)dt
f (x)
(a x b).
即上限函数Φ(x)是f (x)在[a,b]上的一个原函数.
对应变上限积分函数还有变下限积分函数
(x) xb f (t)dt 对于变上(下)限积分函数也可以进行函数的复合, 由变上限积分函数导数与复合函数求导法则有结论:
若函数 (x), (x) 可微,函数 f (x) 连续,则
(1) d dx
a x
f
(t)dt
d dx
x a
f
(t
)dt
f (x)
0
cos
t
2
d
t
x2
lim
x0
2x cos 2x
x4
lim cos
x0
x4
1
1
lim
x0
0xarctan x2
tdt
.
lim
x0
arctan 2x
x
1 2
lim
x0
1
x2
1
1. 2
二、微积分基本公式
变速直线运动的路程问题
设物体作变速直线运动其路程函数为s=s(t) , 速度
函数为v=v(t) .则在时间间隔 [T1,T2 ] 内有
根据导数的定义及函 数的连续性,有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高 等 数 学(文)
—— 一元微积分学
微积分的基本公式
.
1
第六章 定积分
第二节 微积分的基本公式
一. 积分上限函数 二. 微积分基本公式
.
2
一. 积分上限函数 (变上限的定积分)
对可f(积 x)而 函 ,每 言 数 给a,定 b值 ,就 一有 对
确定的I定 bf(积 x)dx分 与值 之 . 对应 a 这意f(味 x)的 着 定b积 f(x)d分 x与它的上 a
取 t) d t a f( x ) d x F ( b ) F ( a ).
.
18
定理 (牛顿—莱布尼茨公) 式
若 f( x ) C (a ,b [ ]F ) ( x ) ,为 f( x ) 在 [ a ,b ] 上 一个原函,数则
d
x
costdt cx o . s
a
dx a
F(x)
x
(acoxsdx)?
定积分与积分变量的记号无关.
( xcoxdsx)cox.s a
.
12
例2
设 F (x )x 2 s1 i t n 2 )d t( ,求 F (x ). 0
解 令 u x 2 ,g ( u ) u s1 i t 2 ) d n t ,则 F ( ( x ) g ( x 2 ) , 0
yf(x)
aO
xx b x
曲边梯形的面积的代数和随 x 的位置而变化。
.
5
由积分bf的 (x)dx性 a质 f(x)dx : ,有
a
b
b
x
xf(t)dtbf(t)dt,
所以,我们只需讨论积分上限函数.
bf (t)dt 称为积分下限函 . 数 x
.
6
定理 1 若 f ( x ) R ( a , b [ ]则 ) F ( x , ) x f ( t ) d t C ( a , b [ ] .) a 证 x [ a , b ] ,且 x x [ a , b ] ,则
故F(x)g(u)du(usi1n t2 ()dt)(x2)
dx 0
s1 i n u 2 )2 (x 2 x s1 i n x 4 ).(
这是复合函数求导, 你能由此写出它的一般形式吗?
.
13
一般地,
若 (x )可 ,f(x 导 ) C ,则
( x )
F ( x ) ( a f( t ) d t) f(( x )) ( x ) .
x
x
由夹逼 x的 定 任 ,即 理 意 F 可 及 (x)性 C 得 (点 a [,b ].)
.
7
定理1说明: 定义在区[a间 ,b]上的 积分上限函数是连 . 续的
积分上限函数是否可导?
.
8
由 F (x x ) F (x )x xf( t)d t, x
如果 f(x)C(a [,b])则 , 由积分,中 得值定
之间存在一种函数关系.
固定积分 ,让 下 积 限 分 不 ,上 则 变 限 得变 到
分上限函数:
x
x
F ( x ) a f( x ) d x a f( t) d tx [ a ,b ] .
.
3
积分上限函数的几何意义 y yf(x)
aO
xx b x
.
4
积分上限函数的几何意义 y
x
a f (x)dx
定理 若 f ( x ) C ( a , b [ ]则 )F ( , x ) x f ( t ) d t ,x [ a , b ] a 为f(x)在[a,b]上的一个原. 函数
推论1 若 f(x)C(I),则 f(x)在 I上原函 . 数 推论2 基本初等函数域 在内 其原 定函 义数 . 存 推论3 初等函数在其区 有间 定内 义原 的函 . 数
a.
15
定理 2 若 f( x ) C ( a ,b [ ]则 )F ( , x ) x f( t ) d t在 [ a ,b ] a 上可,导 且F (x ) dx f( t)d t f(x )( a x b ). d xa
由 F(x)
x
f(t)dt
及F(x)f(x)你会想到
a
.
16
.
10
定理 3 若 f(x ) R (a ,[ b ]且 ), x 0 在 [ a ,b ]处 点 , 连
则 F ( x ) a x f( t ) d t在 x 0 处 点 ,且 F 可 ( x 0 ) f( x 0 导 ) .
(在端点处是指的 左右导数 )
.
11
例1
(
x
cotsdt)
x x
F ( x x ) F ( x ) f( t) d t f() x , x (在 x与 xx之) 间
故 liF m (x x ) F (x ) lifm () x
x 0 x
x 0 x
条件
这说明了什么 ?
lim f()f(x) x 0
.
9
定理 2 若 f( x ) C ( a ,b [ ]则 )F ( , x ) x f( t ) d t在 [ a ,b ] a 上可,导 且 F (x ) dx f( t)d t f(x )( a x b ). d xa
.
14
例3 解
e 1 t2 dt
计算lx im 0 coxsx2 .
1et2dt
coxe st2dt
lx i0m cox x2 s
lim1 x 0
x2
下面再看 定理 2 .
罗必达法则
lim eco2sx(sinx)
x0
2x
1. 2e
(x )
( f(t)d t) f((x ))(x )
.
17
2. 微积分基本公式
如 f( x ) C 果 ( a , b [ ]则 )x , f( t ) d t为 f( x ) 在 [ a , b ] 上 a
的一个原函数.
若已 F(x)知 为 f(x)的原 ,则 函有 数
x
af(t)dtF(x)C 0. 令 x a ,则 0 a a f ( t ) d t F ( a ) C 0 ,故 C 0 F ( a ) .
F ( x ) F ( x x ) F ( x )
x x
x
x x
a f( t) d t a f( t) d t x f( t) d t
又 f( x ) R (a ,[ b ]故 )f ,( x )在 [ a ,b ]上|f有 ( x )| M .界
于 0 | F ( 是 x ) | |x x f ( t ) d t | x x |f ( t ) |d t M x
相关文档
最新文档