数学人教版九年级下册27.3 位似 教学设计
人教版数学九年级下册27.3《位似》教案
-位似图形性质的理解:学生需要理解位似不仅仅是形状相似,还包括大小成比例,以及位似中心的概念;
-位似变换的灵活应用:学生在应用位似变换时,可能会难以把握变换的比例和方向;
-实际问题的转化:将现实生活中的问题转化为位似图形问题,学生可能会遇到从复杂情境中抽象出数学模型的困难;
-位似与相似的区别和联系:学生需要明确位似是相似图形在位置关系上的特殊表现,两者既有联系也有区别。
3.培养学生将位似变换应用于实际问题的解决,提高数学建模和数学应用能力;
4.引导学生通过探索位似图形的性质,培养几何直观和审美观念,激发对数学学科的兴趣。
三、教学难点与重点
1.教学重点
-位似图形的定义及其性质:位似图形的相似比、对应顶点的连线相交于一点(位似中心)的性质;
-位似图形的判定方法:通过对应边的比相等且对应角相等来判断两个图形是否位似;
实践活动方面,学生们在分组讨论和实验操作中表现得相当积极,但我也观察到一些小组在成果展示时表达不够清晰。我会在下一次的实践活动中加强学生表达能力的训练,指导他们如何更有效地展示自己的成果。
此外,我也在思考如何更好地利用课堂时间进行重难点的讲解。可能需要我在备课上下更多功夫,设计一些更有针对性的问题,引导学生逐步深入理解位似的概念和性质,而不是一次性灌输太多信息。
-位似变换的应用:理解位似变换在实际问题中的应用,如地图放大与缩小、相似图形的构造等;
-实际问题的解决:运用位似性质解决生活中的实际问题,如相似图形的面积和周长的计算。
举例:重点讲解位似图形的定义,通过具体图形的示例,让学生理解相似比的概念和位似中心的作用。强调位似图形的判定条件,并通过典型例题加深学生记忆。
(三)实践活动(用时10分钟)
人教版九年级数学下27.3 位 似精品教案
3、这几副图片表示出了图形之间的什么特殊的关系?引出课题——位似。
教师板书。
二、自主活动实践感知1、建构新知:位似图形及其有关概念如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.2、让学生进一步操作,亲身感受位似图形与相似图形的联系与区别。
通过观察、思考、交流、讨论得出如下结论:位似图形是一种特殊的相似图形,而相似图形未必都能构成位似关系。
(引导学生动手、动脑,观察、思考,感悟知识的生成和变化)3、认一认:见课本P66页图27.3-2(1)、(2)、(3)辨认位似图形,并指认位似中心。
(从正反两个方面强化学生对位似图形的认识)4、练一练:例1 下列说法正确的是()A.两个图形如果是位似图形,那么这两个图形一定全等;B.两个图形如果是位似图形,那么这两个图形不一定相似;C.两个图形如果是相似图形,那么这两个图形一定位似;D.两个图形如果是位似图形,那么这两个图形一定相似。
例2 下列每组图中的两个多边形,是位似图形的是()例3下列四边形ABCD和四边形EFGD是位似图形,它们的位似中心是()A. 点EB. 点FC.点GD.点D例4 已知上图中,AE∶ED=3∶2,则四边形ABCD与四边形EFGD的位似比为()A. 3∶2B. 2∶3C. 5∶2D. 5∶3(开发学生的思维能力,帮助学生掌握新知)三、合作探究明确强化1、想一想:本课已学过哪几种放大图形的方法?(让学生思考、交流,加深对前后知识的理解,感悟知识之间的内在联系)学生归纳:直角坐标系放大图形法;橡皮筋放大图形法。
它们都属于位似图形的作法。
2、做一做:按如下方法可以将△ABC的三边缩小为原来的一半:如图,任取一点O,连接AO,BO,CO,并取它们的中点D,E,F.△DEF的三边就是△ABC相应三边的一半。
(1)任意画一个三角形,用上面的方法亲自试一试;(2) 如果在射线AO,BO,CO上分别取点D,E,F,使DO=2OA,EO=2OB,FO=2OC,那么结果又会怎样?(让学生主动参与,合作探究,调动学生学习积极性)四、试一试已知五边形ABCDE,作出一个五边形A’B’C’D’E’,使新五边形 A’B’C’D’E’与原五边形ABCDE对应线段的比为1∶2。
人教版九年级数学下册:27.3《位似》教案1
人教版九年级数学下册:27.3《位似》教案1一. 教材分析《人教版九年级数学下册》第27.3节“位似”是学生在学习了相似三角形的基础上,进一步研究位似图形的性质。
本节内容通过具体的实例,让学生理解位似的定义,掌握位似图形的性质,并能够运用位似的概念解决实际问题。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、归纳的能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质,对图形的相似性有一定的认识。
但在实际应用中,学生可能对位似的概念理解不够深入,难以运用位似知识解决生活中的问题。
因此,在教学过程中,教师需要关注学生的认知水平,通过实例分析,引导学生深入理解位似的概念,提高学生的实际应用能力。
三. 教学目标1.了解位似的定义,掌握位似图形的性质。
2.能够识别生活中的位似图形,并运用位似知识解决实际问题。
3.培养学生的观察能力、思考能力和归纳能力。
四. 教学重难点1.重点:位似的定义,位似图形的性质。
2.难点:运用位似知识解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例,引导学生观察、思考,激发学生的学习兴趣。
2.启发式教学法:教师提问,学生回答,引导学生主动探究位似的概念。
3.小组合作学习:学生分组讨论,共同完成实践任务,提高学生的合作能力。
六. 教学准备1.准备相关的图片和实例,用于教学演示。
2.准备练习题,用于巩固所学知识。
3.准备黑板,用于板书关键知识点。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似图形,如放大或缩小的图片、相似的建筑等。
引导学生观察这些图形,并提出问题:“你们认为这些图形有什么共同的特点?”让学生思考并回答,从而引出位似的概念。
2.呈现(10分钟)介绍位似的定义,并用具体的实例进行分析。
讲解位似图形的性质,如对应边的比例关系、对应角的相等性等。
让学生通过观察实例,理解并掌握位似的概念。
3.操练(10分钟)学生分组讨论,找出生活中的位似图形,并运用位似知识进行分析。
九年级数学下册27_3位似教案新版新人教版
作法 三:(1)在四边形ABCD内任取一点O;
(2)过点O别离作射线OA,OB,OC,OD;
(3)别离在射线OA,OB, OC,O D上取点A′、B′、C′、D′,
使得 ;Байду номын сангаас
(4)按序连接A′B′、B′C′、C′D′、D′A′,取得所要画的四 边形A′B′C′D′,如图4.
三、例题的用意
本节课安排了两个例题,例1是补充的一个例题,通过度辨位似图形,巩固位似图形的概念,让学生明白得位似图形必需知足两个条件:(1)两个图形是相似图形;(2)两个相似图形每对对应点所在的直线都通过同一点,二者缺一不可.例2是教材P61例题,通过例2 的教学,使学生把握位似图形的画法,能够利用作位似图形的方式将一个图形放大或缩小.讲解例2时,要注意引导学生能够用不同的方式画出所要求作的图形,要让学生通过作图明白得符合要求的图形不惟一,这和所作的图形与所确信的位似中心的位置有关(如位似中心O可能选在四边形ABCD外,可能选在四边形ABCD内,可能选在四边形ABCD的一条边上,可能选在四边形ABCD的一个极点上).而且同一个位似中心的双侧各 有一个符合要求的图形(如例2 中的图2与图3),因此,位似中心的确信是作出图形的关键.要及时强调注意的问题(见难点的冲破方式④),及时总结作图的步骤(见例2),并让学生练习找 所给图形的位似中心的题目(如 课堂练习2),以使学生真正把握位似图形的概念与作图.
(当点O在四边形ABCD的一条边上或在四边形ABCD的一个极点上时,作 法略——能够让学生自己完成)
六、课堂练习
1.教材P61.一、2
2.画出所给图中的位似中心.
27.3 位似(第一课时)( 教学设计)九年级数学下册同步备课系列(人教版)
27.3 位似(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》九年级下册(以下统称“教材”)第二十七章“相似”27.3 位似(第一课时),内容包括:位似图形的概念和利用位似作图的方法将一个图形放大或缩小.2.内容解析学生已学过轴对称、平移、旋转、中心对称,相似等几种图形变换,类比“全等”变换,位似变换是一种特殊位置的相似变换,是相似的延续.学生已经学习了相似的相关知识,对图形有了丰富的认知基础,本节课将按照几何图形研究的基本思路,分别学习位似图形的相关概念,性质以及识别.培养学生动手操作能力,强调作图的准确性和规范性将成为本节课的着力点.基于以上分析,确定本节课的教学重点:了解位似图形及其相关概念,会识别位似图形,确定位似中心.二、目标和目标解析1.目标1)了解位似图形及其相关概念,会识别位似图形,确定位似中心.2)理解位似图形的性质,能利用位似作图的方法将一个图形放大或缩小.2.目标解析达成目标1)的标志是:能够根据位似图形的概念判定位似图形,理解两组对应点连线的交点即为位似中心的位置.达成目标2)的标志是:理解与掌握位似图形的性质,能利用位似作图的方法将一个图形放大或缩小,需注意:位似中心的位置由两个图形的位置决定,可能在两个图形的同侧、异侧、图形的内部、边上或顶点上.三、教学问题诊断分析利用位似作图的方法将一个图形放大或缩小是本节课知识的一个难点.针对这一问题,在教学中应引导学生理解位似图形中每对对应点都在位似中心的同侧或在位似中心的异侧,通过实际操作,理解与掌握位似多边形的画法.基于以上分析,本节课的教学难点是:能利用位似作图的方法将一个图形放大或缩小.四、教学过程设计(一)复习巩固【提问一】我们学过哪些图形变化形式?【提问二】什么叫相似图形?相似与全等有什么区别与联系?师生活动:教师提出问题,学生通过之前所学知识尝试回答问题.【设计意图】通过回顾之前所学内容,为接下来学习位似图形的相关知识打好基础.(二)探究新知【情景导入】在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?师生活动:学生认真观察图形,尝试回答问题.教师做如下总结:放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上.摄影师通过照相机,把人物的影像缩小在底片上.这样的放大或缩小,没有改变图形的形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和照片.【设计意图】让学生体会数学来源于生活,激发学生学习的兴趣,为本节课的学习打好基础.【问题一】观察下列图形,这些图形相似吗?【问题二】除了相似,还有其它共同特征吗?师生活动:学生认真观察图形,尝试回答问题.教师通过图象引导学生发现如下内容:1)这些相似图形对应顶点的连线都经过点O;2)点O与对应顶点所连线段成比例;【设计意图】引导学生回忆知识间的联系,理解概念的本质,对概念认识进一步清晰化.【问题三】简述位似图形的概念?师生活动:根据上述问题发现的内容,学生尝试回答问题.【设计意图】让学生理解位似图形的概念.【问题四】如果△ADE和△ABC是位似图形,DE和BC平行吗?为什么?师生活动:学生认真观察图形,尝试回答问题并写出证明过程.具体证明过程如下:∵△ADE和△ABC是位似图形∴ADAB =AEAC=DEBC∴△ADE∽△ABC∴∠ADE=∠ABC∴ DE‖BC【设计意图】通过探索与证明的环节,使学生理解位似图形的性质.【问题五】简述位似图形的性质?师生活动:回顾本节课所学内容,归纳总结位似图形的性质,得出:1)位似图形是一种特殊的相似图形,它具有相似图形的所有性质,即对应角相等,对应边的比相等.2)位似图形上任意一对对应点到位似中心的距离之比等于相似比.(位似图形的相似比也叫做位似比)3)对应线段平行或者在一条直线上.针对第三条性质不好理解,教师可通过多媒体给出实例,加深学生理解与记忆.【设计意图】通过探索、观察、分析的环节,主动探究新知,真正实现学生的学习主体地位.【问题六】类比位似图形的概念,尝试归纳位似多边形的概念?师生活动:学生积极回答问题.【设计意图】提高学生类比、归纳总结的能力.(三)典例分析与针对训练例1 下列各组图形中不是位似图形的是()【针对训练】1. 下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么这两个图形是位似图形;④位似图形上任意两点到位似中心的距离之比等于相比.其中正确的序号是( )A.②B.①② C.③④ D.②③④2.下图所示的四种画法中,能使得△DEF是△ABC位似图形的有()A.①② B.③④ C.①③④D.①②③④【设计意图】考查学生对位似图形概念的理解.(四)探究新知【问题七】如图,已知△ABC,以点O为位似中心画△DEF,使其与△ABC位似,且位似比为2.师生活动:学生动手操作画位似图形.教师巡视,强调作图细节.同时利用多媒体展示当位似中心选取在其他位置时位似图形的画法.解:1)画射线OA,OB,OC;2)在射线OA,OB,OC上分别取点D,E,F,使OD=2OA,OE=2OB,OF=2OC;3)顺序连接D,E,F,则△DEF与△ABC位似,相似比为2.解:1)画射线OA,OB,OC;2)沿着射线OA,OB,OC反方向上分别取D,E,F,使OD=2OA,OE=2OB,OF=2OC;3)顺序连接D,E,F,则△DEF与△ABC位似,相似比为2.【设计意图】培养学生动手画图的能力,掌握利用位似知识对图形进行放大与缩小的多种方法.充分给学生自我展示的机会,使其获得成功体验.【问题八】由此你发现了什么?师生活动:先由学生回答,再由教师引导与总结,得出:位似中心的位置由两个图形的位置决定,可能在两个图形的同侧、异侧、图形的内部、边上或顶点上.【问题九】简述位似多边形的画法?师生活动:先由学生回答,再由教师引导与总结,得出:1) 确定位似中心.2) 确定原图形的关键点(每对对应点都在位似中心的同侧或在位似中心的异侧).3) 确定位似比.4) 根据对应点所在直线经过位似中心且到位似中心的距离之比等于位似比,作出关键点的对应点,再按照原图的顺序连接各点.【设计意图】让学生理解与掌握位似多边形的画法.(五)典例分析与针对训练例2 已知点O在△ABC内,以点O为位似中心画一个三角形,使它与△ABC位似,且位似比为1:2.【设计意图】让学生理解与掌握位似多边形的画法.例3.如图,以点O为位似中心,将△OAB放大后得到△OCD,OA=2,AC=3,则ABCD=____.【针对训练】1.如图,在△ABC中,DE∥AB,DE分别与AC,BC交于D,E两点.若S△DECS△ABC =49,AC=3,则DC=_____.2. 如图,△ABC与△DEF位似,点O是它们的位似中心,且位似比为1∶2,则△ABC与△DEF的周长之比是()A.1∶2 B.1∶4 C.1∶3 D.1∶93.如图,△ABC与△DEF位似,点O为位似中心.已知OA∶OD=1∶2,则△ABC与△DEF的面积比为()A.1∶2 B.1∶3 C.1∶4 D.1∶54.如图,以点O为位似中心,作四边形ABCD的位似图形A′B′C′D′,已知OAOA′=13,若四边形ABCD的面积是2,则四边形A′B′C′D′的面积是()A.4 B.6 C.16D.18【设计意图】利用位似的性质求解.例4 图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点OC.点M D.点N【针对训练】1.如图,正方形网格图中的△ABC与△A′B′C′是位似关系图,则位似中心是()A.点O B.点P C.点Q D.点R【设计意图】判断位似图形的位似中心.(七)直击中考1.(2023·辽宁阜新真题)如图,△ABC与△DEF是以点O为位似中心的位似图形,若OA:OD=2:3,则△ABC与△DEF的面积比是.2.(2023·吉林长春真题)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为.(八)归纳小结1. 通过本节课的学习,你学会了哪些知识?2. 简述位似图形的概念和性质?3. 简述位似多边形的画法?(九)布置作业P48:练习第2题P51:习题27.3 第2题、第4题五、教学反思。
人教版九年级数学下册教案设计:27.3位似
课题名称:《位似》 学科年级: 九年级下册 教材版本: 人教版一、教学内容分析本节课是《数学》(人教版)九年级下册27.3.2用坐标表示位似变换,本节课内容是在平面直角坐系下研究位似图形的点的坐标的变化特点及应用这个特点画图,是在平面直角坐标系下研究相似变换的基础,在学习本节课前学生已学习了在平面内画位似图形,在平面直角坐标系中画平移、轴对称和旋转(中心对称),由于一般的相似变换在平面直角坐标系下的描述比较复杂,所以只研究平面直角坐标系下的位似变换,而且是位似中心在原点的特殊情况,也是最简单的情况。
在生活和生产中有时需要放大(或缩小)一个图形,利用位似(特别是利用平面直角坐系下的位似)可以很方便地将一个图形放大或缩小,学习本节知识有一定的实际意义。
二、教学目标掌握平面直角坐标系下的位似图形的点的坐标的变化特点。
能够利用这个变化特点画出平面直角坐标系下的位似图形。
经历平面直角坐标系下的位似图形的点的坐标的变化特点的探究和应用的过程,进一步提高学生分析解决问题的能力。
情感态度与价值观 经历规律的探究和应用过程,培养学生的探究精神,通过四种变换构图,培养学生数学兴趣。
三、学习者特征分析九年级学生已形成了一定的数学研究的思想方法,但学生分化严重,学习本节内容前,学生已经能够画某个图形关于某点的位似图形,大部分学生能够通过自主探究的形式完成本节的规律归纳,但在有限时间内让学生形成规律并运用规律,对大多数学生来说还存在一定的难度,所以在此采用教师画板演示,学生观察思考并大胆发表意见,师生共同归纳规律的方法,这样就把规律应用部分让学生充分展现。
四、教学过程一、 课堂引入1.如图,△ABC 三个顶点坐标分别为,,,(1)将△ABC 向左平移三个单位得到△A 1B 1C 1,写出A 1、B 1、C 1三点的坐标;(2)写出△ABC 关于x 轴对称的△A 2B 2C 2三个顶点A 2、B 2、C 2的坐标;(3)将△ABC 绕点O 旋转180°得到△A 3B 3C 3,写出A 3、B 3、C 3三点的坐标.2.在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.(23)A ,(21)B ,(62)C ,3.探究:(1)如图,在平面直角坐标系中,有两点A (6,3),B (6,0).以原点O 为位似中心,相似比为,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现? (2)如图,△ABC 三个顶点坐标分别为A (2,3),B (2,1),C (6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k .二、例题讲解例1(教材P 63的例题)分析:略(见教材P 63的例题分析) 解:略(见教材P 63的例题解答)问:你还可以得到其他图形吗?请你自己试一试!解法二:点A 的对应点A ′′的坐标为(-6×,6×),即A ′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)例2(教材P 64)在右图所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?分析:观察的角度不同,答案就不同.如:它可以看作是一排鱼顺时针旋转45°角,连续旋转八次得到的旋转图形;它还可以看作位似中心是图形的正中心,相似比是4△3△2△1的位似图形,…….解:答案不惟一,略. 三、课堂练习 1. 教材P 64.1、22. △ABO 的定点坐标分别为A (-1,4),B (3,2),O (0,0),试将△ABO 放大为△EFO ,使△EFO 与△ABO 的相似比为2.5△1,求点E 和点F 的坐标.3. 如图,△AOB 缩小后得到△COD ,观察变化前后的三角形顶点,坐标发生了什么变化,并求出其相似比和面积比. 四、课后练习1.教材P 65.3, P 66.5、82.请用平移、轴对称、旋转和位似这四种变换设计一种图案(选择的变换不限).请画出图形,3.如图,将图中的△ABC 以A .为位似中心,放大到1.5倍,并指出三个顶点的坐标所发生的变化.31)21(-)21(-yx42-4-2ODC BA y x 42-4-2OB A。
人教版九年级数学下册第二十七章27.3位似图形教学设计
第27章第3节位似图形一、教学目标1、知识目标:(1)了解图形的位似概念,会判断简单的位似图形和位似中心。
(2)理解位似图形的性质,掌握以坐标原点为位似中心的位似变换的性质。
2、能力目标:(1)能利用位似将一个图形放大或缩小,解决一些简单的实际问题。
(2)培养学生综合分析问题、解决问题的能力,进一步提高学生利用图形的变换解决问题的能力和小组合作、探究学习的能力,促进良好的数学思维习惯和应用意识的形成。
(3)发展学生的合情推理能力和初步的逻辑推理能力。
3、情感目标:(1)通过较多的社会背景素材的展现,使学生亲身经历位似图形的概念形成过程和位似图形、位似变换的性质的探索过程,感受数学学习内容的现实性、应用性、挑战性。
(2)进一步体验合作互助、解决难题的情感,感受数学创造的乐趣,增进学好数学的信心。
重点、难点:1.重点:位似图形的有关概念、性质与作图.2.难点:利用位似将一个图形放大或缩小.教学过程:一、实例引入:1.观察:在日常生活中,我们经常见到下面所给的这样一类相似的图形,它们有什么特征?2.问:已知:如图,多边形ABCDE ,把它放大为原来的2倍,即新图与原图的相似比为2.应该怎样做?你能说出画相似图形的一种方法吗?二、新知探究:例1(补充)如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.分析:位似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)例2(教材P61例题)把图1中的四边形ABCD 缩小到原来的21.分析:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .作法一:(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图2.问:此题目还可以如何画出图形?作法二:(1)在四边形ABCD外任取一点O ;(2)过点O 分别作射线OA , OB , OC ,OD ;(3)分别在射线OA , OB ,OC , OD 的反向延长线上取点A ′、B ′、C ′、D ′,使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图3.作法三:(1)在四边形ABCD 内任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如图4.(当点O 在四边形ABCD 的一条边上或在四边形ABCD 的一个顶点上时,作法略——可以让学生自己完成)三、课堂练习,巩固深化:1.教材P61.1、22.画出所给图中的位似中心.1、把右图中的五边形ABCDE扩大到原来的2倍.四、课时小结,收获盘点:五、作业布置:p65第1、2题。
人教版九年级下册27.3位似27.3位似课程设计
人教版九年级下册27.3位似27.3位似课程设计一、背景介绍人教版九年级下册《数学》第27章“函数”的第三节课为“27.3位似”。
这一节课程主要介绍了位似变化,即通过相似变化,将图形扩大或缩小,并延伸到相似三角形的相似比例与侧比例的计算。
在未来的学习生活中,位似变化会有很多应用,如绘画、建筑和地图等。
二、课程目标1.了解相似图形的概念,掌握相似三角形的相似比例和侧比例的计算方法。
2.知道位似变化的定义和性质,能够运用位似变化扩大或缩小图形,并计算相应的比例。
3.能够在实际问题中应用位似变化,解决计算问题。
三、教学方式本课程采用讲述法和实践法相结合的方式进行教学。
1.首先,讲师将通过实例讲解相似三角形的相似比例和侧比例的计算方法,同时引入位似变化的概念和性质。
2.接下来,讲师将通过展示实物模型或视频等方式,展示位似变化的效果,并引导学生探究其原理和应用。
3.最后,讲师将给学生一些实际问题,要求他们运用所学知识计算,增进对位似变化的理解和掌握。
四、课程计划一、引入(5分钟)1.介绍本节课的主要内容和目标,激发学生的学习兴趣。
2.带领学生回顾上节课所学内容,为本节课奠定基础。
二、讲授(30分钟)1.介绍相似图形的定义和判定方法,并通过实例演示相似三角形的相似比例和侧比例的计算方法。
2.讲解位似变化的概念和性质,并展示位似变化的效果。
3.引导学生通过实践实验,探究位似变化的原理和应用。
三、练习与巩固(10分钟)1.给学生一些练习题,要求他们运用所学知识计算。
2.讲师进行解答和讲解,及时纠正学生的错误,巩固所学知识。
四、拓展与应用(10分钟)1.讲师给学生提供几个实际问题,要求他们运用所学知识解决。
2.学生在小组内讨论,提出自己的答案,讲师进行点评和总结。
五、教学评估1.通过课堂练习和实际问题的解答,检验学生对位似变化的理解和掌握程度。
2.通过作业批改,评估学生的综合能力和学习效果。
六、总结本节课主要介绍了位似变化的概念和应用,通过实例演示和实践探究,提高学生的数学思维能力和解题能力,为未来的数学学习奠定基础。
人教版数学九年级下册27.3《位似》教学设计(二)
人教版数学九年级下册27.3《位似》教学设计(二)一. 教材分析人教版数学九年级下册27.3《位似》是学生在学习了相似图形、相似比等概念的基础上进一步学习的知识。
本节内容主要介绍位似的定义、性质和运用。
通过本节课的学习,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决一些实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对相似图形、相似比等概念有一定的了解。
但在学习本节课时,学生可能对位似的理解存在一定的困难,因此需要通过大量的实例和练习来帮助学生理解和掌握位似。
三. 教学目标1.知识与技能:理解位似的定义,掌握位似的性质,能够运用位似解决一些实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和问题解决能力。
四. 教学重难点1.重点:位似的定义和性质。
2.难点:位似在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和几何模型,引导学生观察、操作、思考,激发学生的学习兴趣。
2.合作学习法:引导学生分组讨论和交流,培养学生的团队合作意识和几何思维能力。
3.问题解决法:通过解决实际问题,引导学生运用位似知识,提高学生的问题解决能力。
六. 教学准备1.教学课件:制作课件,包括位似的定义、性质和实例等。
2.几何模型:准备一些几何模型,如正方形、矩形等,用于引导学生观察和操作。
3.实际问题:准备一些实际问题,如建筑设计、地图绘制等,用于引导学生运用位似知识。
七. 教学过程1.导入(5分钟)利用课件展示一些实际问题,如建筑设计、地图绘制等,引导学生思考这些问题与位似的关系。
2.呈现(10分钟)利用课件呈现位似的定义和性质,引导学生观察和理解。
同时,配合几何模型,让学生直观地感受位似的特点。
3.操练(10分钟)分组讨论和交流,让学生通过操作几何模型,探索位似的性质。
2024九年级数学下册第27章相似27.3位似(位似图形)教学设计(新版)新人教版
- 自主学习法:引导学生自主完成作业和拓展学习。
- 反思总结法:引导学生对自己的学习过程和成果进行反思和总结。
作用与目的:
- 巩固学生在课堂上学到的位似图形的性质和应用。
- 通过拓展学习,拓宽学生的知识视野和思维方式。
- 通过反思总结,帮助学生发现自己的不足并提出改进建议,促进自我提升。
六、学生学习效果
1. 知识与技能:
- 学生能够理解位似图形的概念,掌握位似图形的性质,并能够运用位似图形的性质解决实际问题。
- 学生能够理解位似变换的应用,并能够运用位似变换来解决实际问题。
- 学生能够通过实际问题,理解和掌握位似图形在实际中的应用,提高解决实际问题的能力。
2. 过程与方法:
- 学生能够通过自主学习,提高自学能力和独立思考能力。
3. 题型三:位似比的计算
题目:一个三角形通过位似变换变成了另一个三角形,位似比为2:1。求原三角形的面积。
答案:设原三角形面积为S,则新三角形面积为4S。由于位似比为2:1,原三角形的面积为新三角形面积的1/4,即S = (1/4) * 4S = S。
4. 题型四:位似图形的问题解决
题目:一个房间的设计图是实际房间尺寸的1:5缩小模型。如果设计图中的房间面积是50平方米,实际房间的面积是多少?
这些题型和答案仅供参考,实际教学中应根据学生的具体情况和教材内容进行调整和扩展。
八、作业布置与反馈
1. 作业布置:
(1)题目:请根据位似图形的定义和性质,完成以下题目:
- 判断下列两个图形是否为位似图形,并解释原因。
- 确定下列位似变换中的位似比,并说明如何计算。
- 利用位似图形的性质,求解实际问题中的相关量。
人教版九年级数学下册:27.3《位似》教学设计1
人教版九年级数学下册:27.3《位似》教学设计1一. 教材分析人教版九年级数学下册第27.3节《位似》主要介绍了位似的定义、性质和运用。
位似是几何中的一个重要概念,它涉及到图形的变换和相似性质。
通过学习本节内容,学生能够理解位似的含义,掌握位似的性质,并能够运用位似解决实际问题。
二. 学情分析九年级的学生已经具备了一定的几何基础,对图形的变换和相似性质有一定的了解。
但是,对于位似的定义和性质,学生可能还存在一定的困惑。
因此,在教学过程中,教师需要引导学生通过观察、操作和思考,逐步理解位似的含义,并能够运用位似解决实际问题。
三. 教学目标1.知识与技能:学生能够理解位似的定义,掌握位似的性质,并能够运用位似解决实际问题。
2.过程与方法:学生通过观察、操作和思考,培养直观思维和逻辑推理能力。
3.情感态度与价值观:学生培养对数学的兴趣,增强自信心,培养合作意识和探究精神。
四. 教学重难点1.重点:位似的定义和性质。
2.难点:位似的运用和实际问题的解决。
五. 教学方法1.情境教学法:通过创设实际情境,引导学生观察和操作,培养学生的直观思维和逻辑推理能力。
2.问题驱动法:通过提出问题,引导学生思考和讨论,激发学生的学习兴趣和探究精神。
3.案例教学法:通过分析实际案例,引导学生运用位似解决实际问题,培养学生的应用能力。
六. 教学准备1.教学课件:制作精美的教学课件,包括图片、动画和实例,帮助学生直观地理解位似的含义和性质。
2.教学素材:准备一些实际的图形和图片,用于展示和分析位似的情况。
3.练习题:设计一些练习题,用于巩固学生对位似的理解和运用。
七. 教学过程1.导入(5分钟)教师通过展示一些实际的图形和图片,引导学生观察和思考,提出问题:“你们可以看出这些图形之间有什么关系吗?”学生可能回答:“它们看起来很相似,但是不完全一样。
”教师引导学生总结出位似的定义。
2.呈现(15分钟)教师通过课件展示位似的性质,包括位似的比例、位似的中心等。
人教版数学九年级下册教案27.3《位似》
人教版数学九年级下册教案27.3《位似》一. 教材分析《位似》是人教版数学九年级下册第27章第三节的内容,本节课主要让学生理解位似的性质,学会求位似图形的相似比。
通过本节课的学习,学生能够掌握位似的定义,理解位似与相似的关系,以及位似在实际问题中的应用。
二. 学情分析学生在学习本节课之前,已经掌握了相似图形的性质,能够求出两相似图形的相似比。
但位似这一概念对学生来说比较抽象,不易理解。
因此,在教学过程中,教师需要利用生活中的实例,引导学生直观地理解位似的含义,并学会求位似图形的相似比。
三. 教学目标1.理解位似的定义,掌握位似图形的性质。
2.学会求位似图形的相似比。
3.能够运用位似知识解决实际问题。
四. 教学重难点1.教学重点:位似的定义,位似图形的性质,求位似图形的相似比。
2.教学难点:位似与相似的关系,位似在实际问题中的应用。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过生活实例引入位似概念,引导学生直观地理解位似;通过具体案例,让学生学会求位似图形的相似比;通过小组合作学习,培养学生运用位似知识解决实际问题的能力。
六. 教学准备1.教学课件:位似的概念、位似图形的性质、求相似比的方法。
2.实例图片:生活中的位似现象。
3.练习题:巩固位似知识。
七. 教学过程1.导入(5分钟)利用生活中的实例,如相机拍照、放大镜观察等,引导学生直观地认识位似现象。
提问:这些现象中,你们发现了什么共同特点?2.呈现(10分钟)呈现位似的定义,引导学生理解位似的含义。
通过具体案例,让学生学会求位似图形的相似比。
3.操练(10分钟)让学生分组讨论,每组选择一个实例,求出位似图形的相似比。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师讲解答案,巩固位似知识。
5.拓展(10分钟)引导学生运用位似知识解决实际问题,如设计图案、建筑布局等。
学生分组讨论,分享解题过程和答案。
人教版数学九年级下册27.3《位似》教案(一)
人教版数学九年级下册27.3《位似》教案(一)一. 教材分析人教版数学九年级下册27.3《位似》是本册的一个重点章节。
位似是几何中的一个重要概念,它涉及到图形之间的相似关系,是学生进一步学习函数、解析几何等数学分支的基础。
本节课的内容包括位似的定义、位似的性质以及位似的判定。
通过本节课的学习,学生能够理解位似的含义,掌握位似的性质和判定方法,并能够运用位似解决一些实际问题。
二. 学情分析九年级的学生已经学习了平面几何中的许多基本概念和性质,具备了一定的几何思维能力。
但是,对于位似这一概念,学生可能较为陌生,需要通过具体的实例和操作来理解和掌握。
同时,学生可能对于位似的判定方法感到困惑,需要通过大量的练习和讲解来加深理解。
三. 教学目标1.理解位似的含义,掌握位似的性质和判定方法。
2.能够运用位似解决一些实际问题。
3.培养学生的几何思维能力和解决问题的能力。
四. 教学重难点1.位似的定义和性质。
2.位似的判定方法。
五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探究,让学生主动发现和总结位似的性质和判定方法。
2.利用多媒体和实物模型等教学辅助工具,直观地展示位似的变化和性质,帮助学生理解和记忆。
3.学生进行小组讨论和合作交流,让学生通过互相解释和讨论,加深对位似概念的理解。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和答案。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的图片,如相似的建筑、相似的生物形态等,引导学生思考这些图片之间的相似关系。
提问:你们认为这些图片之间有什么共同的特点?引导学生发现这些图片都是相似的,从而引入位似的概念。
2.呈现(15分钟)讲解位似的定义和性质。
位似是指两个图形之间的大小和形状都相似,但位置不同。
通过展示一些具体的图形和实例,让学生直观地理解位似的概念。
同时,引导学生发现位似具有对称性、传递性和唯一性等性质。
3.操练(15分钟)学生进行小组讨论和合作交流,让学生通过互相解释和讨论,加深对位似概念的理解。
人教版数学九年级下册教学设计27.3《位似》
人教版数学九年级下册教学设计27.3《位似》一. 教材分析人教版数学九年级下册第27.3节《位似》主要介绍了位似的性质和位似图形的画法。
位似是几何中的一个重要概念,它涉及到图形之间的相似关系,是学生进一步学习几何图形的必要基础。
本节内容通过对位似的探讨,让学生了解位似的定义、性质和应用,提高学生的空间想象力。
二. 学情分析九年级的学生已经掌握了相似的基本知识,具备一定的空间想象力。
但在实际操作中,部分学生可能对位似的理解不够深入,对位似图形的画法不够熟练。
因此,在教学过程中,教师需要注重引导学生理解位似的本质,并通过适量练习,提高学生的实际操作能力。
三. 教学目标1.理解位似的定义,掌握位似的性质。
2.学会位似图形的画法,提高空间想象力。
3.能运用位似知识解决实际问题。
四. 教学重难点1.位似的定义和性质。
2.位似图形的画法。
五. 教学方法1.采用问题驱动法,引导学生探究位似的性质。
2.利用多媒体辅助教学,展示位似图形的画法。
3.运用实例分析法,让学生学会运用位似知识解决实际问题。
4.小组讨论,提高学生的合作能力。
六. 教学准备1.多媒体教学设备。
2.位似图形的相关图片。
3.练习题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的位似现象,如相似的建筑、生物体的结构等,引导学生关注位似现象,激发学生的学习兴趣。
2.呈现(15分钟)介绍位似的定义,通过示例让学生理解位似的性质。
示例1:两圆的半径之比等于它们面积之比。
示例2:两矩形的边长之比等于它们面积之比。
3.操练(15分钟)让学生动手画一些位似图形,体会位似图形的画法。
1.画出位似比为2:1的两个圆。
2.画出位似比为3:1的两个矩形。
4.巩固(10分钟)通过解答练习题,巩固位似的知识。
1.位似比为2:1的两个圆,半径之比为2:1,面积之比为4:1。
2.位似比为3:1的两个矩形,边长之比为3:1,面积之比为9:1。
5.拓展(10分钟)利用位似知识解决实际问题,如设计图案、建筑物的布局等。
九年级数学下册(人教版)27.3位似优秀教学案例
在教学过程中,我将以生动的语言、丰富的教学手段和实际案例,引导学生逐步掌握位似知识,提高学生的数学素养。同时,注重培养学生的合作意识、创新精神和实践能力,使学生在学习过程中体验到数学的乐趣,培养积极的情感态度和正确的价值观。
2.引导学生利用图形软件或手工绘制位似图形,培养学生的空间想象能力和创新思维。
3.培养学生运用位似知识解决实际问题的能力,提高学生的数学应用意识。
(三)情感态度与价值观
1.激发学生对数学学科的兴趣,培养学生对数学的美感,使学生感受到数学的魅力。
2.培养学生勇于探究、积极思考的科学精神,提高学生面对挑战时的自信心。
(三)小组合作
1.组织学生进行小组讨论和合作交流,让学生共同探究位似的性质和应用,培养学生的合作意识和团队精神。
2.设计具有挑战性的任务,让学生通过合作解决问题,如“请小组合作绘制一个位似比为2:1的图形。”培养学生的实践能力和创新能力。
3.鼓励学生分享自己的想法和成果,培养学生的表达能力和交流能力,如“请各小组展示你们的成果,并分享你们的思考过程。”
2.组织学生进行小组总结,让学生相互学习和借鉴,如“你觉得哪个小组的成果最好?为什么?”培养学生的评价能力和批判性思维。
3.进行课堂总结,对学生的学习情况进行总结和反馈,如“本节课你们学到了什么?你们认为哪些地方还需要加强?”帮助学生巩固知识,提高学习效果。
(五)作业小结
1.布置具有实践性和创新性的作业,如“请运用位似知识解决实际问题,设计一个位似变换后的图形。”培养学生的应用能力和创新能力。
二、教学目标
(一)知识与技能
1.让学生掌握位似的定义,理解位似的概念,能够识别和判断位似图形。
人教版九年级数学下册:27.3《位似》教学设计2
人教版九年级数学下册:27.3《位似》教学设计2一. 教材分析人教版九年级数学下册27.3《位似》是学生在学习了相似三角形的基础上,进一步研究位似图形的性质和运用。
本节内容通过具体的图形和实例,让学生理解位似的定义,掌握位似图形的性质,以及会运用位似图形解决实际问题。
教材通过丰富的素材,激发学生的学习兴趣,培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经学习了相似三角形的性质和运用,对图形的相似性有一定的理解。
但位似图形与相似图形既有联系又有区别,学生需要进一步理解和掌握。
学生在学习过程中,可能对位似图形的性质的理解和运用存在一定的困难,需要通过实例和练习进行巩固。
三. 教学目标1.理解位似的定义,掌握位似图形的性质。
2.能运用位似图形解决实际问题,提高空间想象能力和抽象思维能力。
3.培养学生的观察能力,提高学生分析问题和解决问题的能力。
四. 教学重难点1.教学重点:位似图形的性质和运用。
2.教学难点:位似图形性质的理解和运用。
五. 教学方法采用问题驱动法、案例分析法、合作交流法等,引导学生通过观察、思考、讨论、实践等方式,理解和掌握位似图形的性质,提高学生的空间想象能力和抽象思维能力。
六. 教学准备1.教学素材:教材、多媒体课件、练习题。
2.教学工具:黑板、粉笔、多媒体设备。
七. 教学过程1.导入(5分钟)通过展示一些生活中的位似图形,如相似的树叶、相似的建筑等,引导学生观察和思考,提出问题:“这些图形有什么共同的特点?”让学生回顾相似图形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)介绍位似的定义,通过具体的图形和实例,让学生理解位似的概念。
呈现位似图形的性质,如对应边成比例、对应角相等等,引导学生观察和思考,总结位似图形的性质。
3.操练(10分钟)让学生通过观察和分析一些位似图形,运用位似图形的性质,解决问题。
如给定一个位似图形,求其对应边的比例和对应角的大小。
引导学生动手操作,培养学生的空间想象能力和抽象思维能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
27. 3 位似1 教学设计
昆五中石晶晶
【教学目标】
1、知识目标:
①了解位似图形及其有关概念会判断位似图形;
②理解位似图形的性质;
③掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小。
2、能力目标:
①利用图形的位似解决一些简单的实际问题;
②在有关的学习和运用过程中发展学生的应用意识和动手操作能力。
3、情感目标:
①通过学习培养学生的合作意识;
②通过探究提高学生学习数学的兴趣。
【教学重点】
探索并掌握位似图形的定义和性质,能够利用作位似图形的方法将一个图形放大或缩小。
【教学难点】
运用定义和性质进行简单的位似图形的证明和计算。
【教学方法】
从学生生活经验和已有的知识出发,采用引导、启发、合作、探究等方法,经历观察、发现、动手操作、归纳、交流等数学活动,获得知识,形成技能,发展思维,学会学习;提高学生自主探究、合作交流和分析归纳能力;同时在教学过程对不同层次的学生进行分类指导,让每个学生都得到充分的发展。
【教学准备】
刻度尺、学案、多媒体展示课件、
【教学手段】
小组合作、多媒体辅助教学
【教学过程】:
一、温故知新
1、通过观察图像复习几种图像的变化及之间的关系
(平移、旋转、轴对称、相似)
2、复习相似的性质
二、情境导入
观察图像,寻找图像的共同特征,引入位似的概念
二、新知学习
1.概念:如果两个图形不仅相似,而且对应点的连线交于一个点,那么这样的两个图形叫做位似图 形。
这个点叫做位似中心。
这时的相似比叫做位似比。
2.如何判断一个图形是位似图形?
①证明两个图形相似;
②看每对对应点所在的直线是否交于一点;
例题:如图,D ,E 分别AB ,AC 上的点,如果DE ∥BC ,那么∆ADE 和 ∆ABC 是位似图形吗?如果是位 似中心在哪?为什么?
解: ∆ADE 和 ∆ABC 是位似图形. ∵DE ∥BC ∴ ∆ADE ∽ ∆ABC
又∵ 点A 是∆ADE 和 ∆ABC 的公共点, 点D 和点B 是对应点,
点E 和点C 是对应点,直线BD 与CE 交于点A ,
∴ ∆ADE 和 ∆ABC 是位似图形,位似中心是点A.
练习:判断下列各图形哪些是位似图形?位似中心在哪?
(做随堂反馈1-4,巩固知识
) A B C
D
E
3.位似中心可以在任意的位置,分类归纳
位似中心可以在:
1、图形外部(两个图形的同侧或之间)
2、图形的内部
3、图形上(边上或顶点上)
4.位似的性质:
(1)位似的两图形相似
(2)每组对应点所在直线都经过同一点
(3)对应边互相平行或在同一条直线上(观察得到)
(4)位似图形的对应点到位似中心的距离比相等,等于位似比
(通过平行得到相似三角形,由对应边成比例得到)
5.作位似图形
例:以点O为位似中心,把△ABC缩小为原来的一半。
学生练习后教师展示做法:
选取不同的位似中心把△ABC缩小到原来的一半.你有多少种不同的作法?
D C B A D C B A
D
C B
A 总结:作位似图形的步骤:
1、在原图取一点作为位似中心——定
2、作位似中心与各顶点的连线——连
3、在连线上截取对应点,使之满足缩放比例——截
4、顺次连接截取点——顺
【随堂反馈】
1.如图,△ABC 与△DEF 是位似图形,位似比为2∶3,已知AB =4,则DE 的长为 6___.
2.下列说法正确的是( D ).
A .相似形是位似图形
B .两个正三角形是位似图形
C .位似图形是全等形
D .两个图形是位似图形,则这两个图形一定相似
4.画出右边图中的位似中心.
3.用作位似图形的方法,可以将一
个图形放大或缩小,位似中心的
位置可选在( D ).
A .原图形的外部
B .原图形的内部
C .原图形的边上
D .任意位置要求:
5.将四边形ABCD 放大2倍. (1)对称中心在两个图形的之间,
(2)对称中心在两个图形的同侧. (3)对称中心在两个图形的内部.
【课堂小结】
位似图形的概念 =》 位似图形的判定及性质 =》 利用位似图形的方法将图形放大和缩小。