不同元素替代掺杂化合物M_0_04_Ti__省略__M_Ni_Al_Mg_的热电
富五边形缺陷氮掺杂碳纳米材料的英文缩写
富五边形缺陷氮掺杂碳纳米材料的英文缩写全文共10篇示例,供读者参考篇1Hey, guys! Today, I want to talk about this super cool thing called "Pentagon-shaped Defective Nitrogen-doped Carbon Nanomaterials", or PDNCN for short. Sounds fancy, right?So, what is PDNCN? Well, it's basically a type of material that has a pentagon shape and is made up of carbon with nitrogen mixed in. It's really tiny, like nano-sized tiny, and it has some special properties that make it really useful in all kinds of things.One cool thing about PDNCN is that it has a lot of defects in its structure. Now, I know what you're thinking, defects sound bad, but in this case, they're actually good! These defects make the material super reactive and able to do all sorts of cool things, like capturing and storing energy, or even breaking down harmful pollutants.But wait, there's more! The nitrogen in PDNCN also helps to make it conductive, which means it can carry electricity really well. This makes it perfect for things like super-efficient batteries or even tiny electronic devices.Scientists are really excited about PDNCN because they think it could be the key to creating all kinds of new technologies that are better for the environment and more energy-efficient. So next time you hear about PDNCN, remember that it's not just a bunch of fancy words – it's a really amazing material that could change the world!篇2The other day, our science teacher told us about this super cool thing called "N-doped CNTs"! I was like, "What's that??" And she explained to us that it stands for "Nitrogen-Doped Carbon Nanotubes". Basically, it's this special kind of material that's made up of carbon nanotubes with nitrogen mixed in.She said that N-doped CNTs have this really interesting shape called a "pentagon", which means it has five sides. But there's a little problem with the shape because sometimes there can be defects in the pentagon. That's why they call it "pentagon defects".Even though there can be defects, N-doped CNTs are still really cool because they have all these amazing properties. Like, they're super strong and can conduct electricity really well. Plus,they're really light and can be used in all kinds of cool stuff like electronics and even medicine!I thought it was so fascinating to learn about N-doped CNTs and how they can be used in so many different ways. It just goes to show how science is always coming up with new and exciting things for us to discover!篇3Hey guys, today I want to talk about this super cool thing called FNPDCN, which stands for "Faulty PentagonNitrogen-Doped Carbon Nanomaterials." Cool name, right?So, basically, scientists have found a way to mix carbon and nitrogen together to make these tiny little materials that have five sides. They call them pentagons. But sometimes, there can be little mistakes in the way the pentagons are formed, and that's where the "faulty" part comes in.But don't worry, these materials are actually really useful for lots of things. They can be used in batteries, electronics, and even in medicine! Plus, the nitrogen doping makes them even stronger and more stable than regular carbon nanomaterials.Scientists are still learning more about FNPDCN and how they can be used to make our lives better. Isn't it amazing how something so small can have such a big impact?So, next time you hear about FNPDCN, remember that it's all about those faulty pentagons and how they're changing the world one tiny material at a time. Cool, huh?篇4Hey guys, today I wanna talk to you about this cool thing called the "Penta-DNCC"! It stands for "Pentagonally Defective Nitrogen-Doped Carbon Nanomaterial", but we just call it Penta-DNCC for short because saying that whole thing is like a mouthful, right?So what's so awesome about this Penta-DNCC stuff? Well, it's like a super special kind of material that scientists make in a lab. It's made up of carbon atoms with a little bit of nitrogen mixed in, and it's shaped like a five-sided figure called a pentagon. It's like a tiny, tiny building block that can be used to make all kinds of cool things!One of the coolest things about Penta-DNCC is that it has these tiny defects in its structure that make it really good at absorbing and releasing different kinds of gases. This makes itsuper useful for things like filters that can clean up air pollution, or even for storing and releasing energy in batteries.But that's not all – Penta-DNCC is also really strong and lightweight, which makes it perfect for making things like super-tough coatings for cars and airplanes, or even for building tiny sensors that can detect all kinds of stuff.So yeah, Penta-DNCC may be a big, fancy name, but it's basically just a super cool material that can do all kinds of amazing things. Who knew that a bunch of carbon and nitrogen atoms could be so awesome, right? Let's give a big shoutout to all the scientists who are making this amazing stuff happen!篇5Hey guys, today I want to talk to you about the awesome topic of "Defect-rich Nitrogen-doped Carbon Nanomaterials (NDCNs) for Pentagonal-shaped Properties"!So, when scientists talk about this cool stuff, they give it a fancy name: "" But don't worry, we can just call it NDCNs for short, easy peasy, right?NDCNs are like super tiny particles that are made out of carbon, but they have some nitrogen mixed in too. And guesswhat? They have a special shape – they are pentagon-shaped, just like a five-sided shape! How cool is that?Now, why do scientists care about NDCNs? Well, these little guys have some really amazing properties. They can conduct electricity really well, and they are super strong too. Plus, they can be used in all kinds of things like batteries, sensors, and even in medicine to help treat diseases. Isn't that amazing?But here's the thing – scientists are still trying to figure out all the cool stuff NDCNs can do. They are studying how to make them even better and more useful. So maybe one day, these tiny NDCNs could change the world!And that's it for today, guys! I hope you had fun learning about NDCNs with me. See you next time!篇6Hey guys, today I want to talk to you about this super cool thing called “Rich Pentagonal Defective Nitrogen-Doped Carbon Nanomaterial”. Whew, that’s a mouthful! But don’t worry, we can just call it RPDCNC for short.So, what is RPDCNC? Well, it’s a special kind of material that scientists have been studying to see how it can be used in allsorts of exciting ways. This material is made up of carbon atoms, with a bit of nitrogen mixed in. The coolest part is that it has a unique pentagonal shape, kind of like a five-sided star!Scientists think that RPDCNC could be really useful in things like making super strong structures, or even as a catalyst in chemical reactions. It’s still early days, but there’s a lot of potential for this material to do some pretty amazing things.One of the reasons RPDCNC is so interesting is because of its defects. Normally, we think of defects as being bad, but in this case, they actually make the material even more special. The defects can change the way the material behaves, making it more reactive or stronger in certain situations.Overall, RPDCNC is a really exciting material that could have a big impact on the way we do things in the future. Who knows, maybe one day we’ll all be using RPDCNC in our everyday lives without even realizing it!篇7Hey guys! Today I want to talk to you about a super cool topic - the FND-CNM materials!FND-CNM stands for "Faulty Pentagon Nitrogen-Doped Carbon Nano Materials." Wow, that's a mouthful, right? But don't worry, I'll break it down for you.So, these FND-CNM materials are basically a type of carbon material that has nitrogen atoms mixed in. Now, why is this so special? Well, it turns out that adding nitrogen atoms to carbon can actually change its properties and make it even more awesome!One of the key things about FND-CNM is that it has a unique structure called a pentagon. This structure is kind of like afive-sided shape, and it's what gives FND-CNM its special properties. Scientists are really excited about studying this structure because it could have all sorts of cool applications in things like electronics, energy storage, and even medicine!But here's the catch - not all FND-CNM materials are perfect. Some of them have defects, which can actually make them even more interesting to study. These defects can change the way the material behaves and open up new possibilities for how we can use it in the future.So, there you have it - FND-CNM materials are a super cool area of research that could have a big impact on the world. Who knows, maybe one day you'll be the one discovering new andexciting things about these materials! Keep learning and exploring, and you never know what you might find. See you next time, bye!篇8Once upon a time, there was a super cool material called the "Rich Pentagon Defect Nitrogen-Doped Carbon Nanomaterial," and everyone called it "RPDNDCN" for short. This material was like a superhero in the world of science because it had some amazing powers that made it stand out.First of all, RPNDNCN was super strong, just like a superhero with muscles of steel. Its unique structure made it resistant to all kinds of forces, making it useful for making things likesuper-tough coatings or even body armor.Not only was RPNDNCN strong, but it was also super conductive, just like a lightning bolt in a storm. This meant that it could transfer electricity really well, making it perfect for use in electronics or even as a catalyst for chemical reactions.But the coolest thing about RPNDNCN was that it had a secret weapon – nitrogen doping. This meant that nitrogen atoms were mixed into its carbon structure, giving it extrapowers like enhanced stability and improved performance. It was like adding turbo boost to an already super fast car!So, scientists all over the world were super excited about RPNDNCN and its amazing abilities. They knew that with this material, they could do incredible things and maybe even change the world for the better.And so, the story of the "Rich Pentagon DefectNitrogen-Doped Carbon Nanomaterial" continued, with scientists discovering new and exciting ways to use this superhero material in their research and experiments. Who knows what amazing things they will create next with RPNDNCN? The possibilities are endless!篇9Ha ha, let me try to explain the abbreviation of"Nitrogen-Doped Carbon Nanomaterials with Pentagonal Structure Defects" in a fun, elementary school-style way!So basically, scientists found this super cool material that is made up of carbon atoms with nitrogen mixed in. And get this - the carbon atoms are arranged in a special shape called a pentagon, which is like a five-sided shape. But wait, there's more- there are also some imperfections in the material, which make it even more interesting.Now, when scientists want to be fancy and professional, they call this material "N-DCNMPSD" for short. But you know what? We can make it more fun by calling it "Ninja-Doped Carbon Nanomaterials with Pentagon Shape Defects". How cool is that?These Ninja materials have some awesome properties that make them super useful in things like electronics, energy storage, and even medicine. And by studying them, scientists can learn more about how materials work and maybe even come up with new and exciting discoveries.So next time you hear about N-DCNMPSD, just remember that it's like having a group of ninja atoms in a unique shape, ready to kick some scientific butt! Science is so cool, isn't it?篇10Hey guys, today I want to tell you all about this super cool thing called "FMDNC"! Don't worry if you don't know what that means, I'll explain it all to you in a way that's easy to understand.So, FMDNC stands for "Faulted Multilayer Five-membered Ring Defect Nitrogen-Doped Carbon Nanomaterial". Whew,that's a mouthful! But basically, it's a really special type of material that scientists have made in the lab. It's made up of carbon atoms, just like graphite or diamonds, but it also has nitrogen atoms mixed in. And not just that, it has these cool five-membered rings of carbon atoms, which are kind of like little pentagon shapes.Now, you might be wondering why this material is so special. Well, scientists have found that FMDNC has some really awesome properties that make it useful for all sorts of things. For example, it's super lightweight and strong, so it could be used to make really tough and durable materials. It's also a great conductor of electricity, so it could be used in electronics and batteries. And on top of all that, it can even help to clean up pollution in the environment!Isn't that amazing? I think it's so cool how scientists can make these amazing materials in the lab. Maybe one day, when we grow up, we can be scientists too and make even more cool stuff like FMDNC!。
杂质离子掺杂,取代。电极材料
杂质离子掺杂,取代。
电极材料
杂质离子掺杂和取代是一种常见的方法,用来改善电极材料的
性能。
这些方法可以通过多种方式实现,例如掺杂其他金属离子或
非金属离子,或者通过取代原有的离子来改变电极材料的性质。
这
些方法可以对电极材料的导电性、化学稳定性、电化学活性等方面
产生显著影响。
首先,掺杂杂质离子可以改变电极材料的导电性能。
通过引入
其他离子,可以改变材料的电子结构,从而调节其导电性能。
这种
方法常用于提高材料的导电性能,使其在电化学反应中表现更好的
电子传输性能。
其次,杂质离子掺杂和取代还可以改善电极材料的化学稳定性。
通过引入特定的离子,可以增强材料的抗氧化性能,减少在电化学
反应中的氧化或还原过程中的损耗,从而延长材料的使用寿命。
此外,掺杂和取代也可以调节电极材料的电化学活性。
通过引
入特定的离子,可以改变材料的电子结构和化学环境,从而影响其
在电化学反应中的活性,提高其对特定物质的催化效率。
总的来说,杂质离子掺杂和取代是一种有效的方法,可以通过调节电极材料的导电性、化学稳定性和电化学活性来改善其性能。
这些方法在电化学领域得到了广泛的应用,对于提高电极材料在能源存储、传感器和电化学催化等方面的性能具有重要意义。
《元素替代对AB5型稀土系储氢合金结构及储氢性能的影响》范文
《元素替代对AB5型稀土系储氢合金结构及储氢性能的影响》篇一一、引言随着新能源汽车、可再生能源等领域的快速发展,储氢合金作为关键材料在能源储存和转化方面得到了广泛关注。
AB5型稀土系储氢合金以其独特的物理化学性质,在氢能源存储中占有重要地位。
本文着重研究元素替代对AB5型稀土系储氢合金的结构和储氢性能的影响。
二、AB5型稀土系储氢合金概述AB5型稀土系储氢合金主要由稀土元素(如La、Ce、Pr等)和过渡金属元素(如Ni、Co、Fe等)组成,具有独特的晶体结构和良好的储氢性能。
其晶体结构由A位和B位元素组成,其中A位元素主要为稀土元素,B位元素主要为过渡金属元素。
这种结构使得AB5型稀土系储氢合金在储氢过程中表现出优异的可逆性和高容量。
三、元素替代对AB5型稀土系储氢合金结构的影响元素替代是改善储氢合金性能的重要手段之一。
通过引入不同元素替代原有的A位或B位元素,可以改变合金的晶体结构、原子间距以及电子分布等,从而影响其储氢性能。
研究表明,适量替代可以优化AB5型稀土系储氢合金的结构,使其更有利于氢的存储和释放。
具体来说,当使用不同大小的替代元素时,会导致晶格参数发生变化,从而影响晶体的稳定性。
同时,替代元素的电子结构也会影响原子的键合能力和氢的吸附能力。
此外,替代元素的加入还可以改变合金的相组成和相结构,进一步影响其储氢性能。
四、元素替代对AB5型稀土系储氢合金储氢性能的影响元素替代对AB5型稀土系储氢合金的储氢性能具有显著影响。
首先,替代元素的引入可以改变合金的吸放氢动力学性能,使其在较短时间内完成吸放氢过程。
其次,替代元素的种类和含量也会影响合金的储氢容量,从而影响其实际应用中的能量密度。
此外,替代元素还可以改善合金的循环稳定性和抗腐蚀性,延长其使用寿命。
五、结论通过对AB5型稀土系储氢合金进行元素替代研究,我们可以得出以下结论:1. 适当的元素替代可以优化AB5型稀土系储氢合金的结构,使其更有利于氢的存储和释放。
元素替代效应中学生物理知识大全
元素替代效应中学生物理知识大全当今社会是一个高速进展的信息社会。
生活在信息社会,就要不断地接触或猎取信息。
如何猎取信息呢?阅读便是其中一个重要的途径。
据有人不完全统计,当今社会需要的各种信息约有80%以上直截了当或间接地来自于图书文献。
这就说明阅读在当今社会的重要性。
还在等什么,快来看看这篇元素替代效应中学生物理知识大全吧~元素替代效应(effectsofatomicsubstitutions)元素替代效应(effectsofatomicsubstitutions)元素替代或掺杂效应,例如对氧化物超导体的某种物理元素为其他某种元素部分替代或由另外元素来替代后对超导电性的阻碍程度称元素替代效应。
由于氧化物超导体的CuO2平面载流子层对产生高温超导电性起有要紧作用,因此元素替代或掺杂效应一样地有三种情形:⑴发生在非CuO2面的元素替代对CuO2面的性质差不多无阻碍或无阻碍;⑵发生在非CuO2面的元素替代对CuO2面性质产生阻碍;⑶发生在CuO2面上的元素替代对超导电性质的阻碍程度。
例如对Y系氧化物超导体YBa2Cu3O7,若用La 或Nd或Sm等替代Y元素,它们对CuO2平面载流层性质均可说无阻碍,它们的Tc90K均一样,这是属于上述⑴的情形。
对镧系氧化物超导体(La1-xBax)2CuO4,那个地点x=0.08时对应的Tc=30K。
但若用Sr或Ca替代Ba 元素(x仍是0.08),CuO2平面载流层的性质就有变化,现在Tc分别对应为20K和40K,这是上述⑵的情形。
上述第⑶种情形,例如对镧系的La1.85S r0.15Cu1-xNixO4y,那个地点用Ni部分地替代Cu。
实验显示,少量的掺杂Ni即可引起Tc的急剧下降,且随着x的逐步增加,其导电行为从金属性质变为半导体性质。
这篇元素替代效应中学生物理知识大全,你举荐给朋友了么?。
无机固态电解质及其电极-电解质界面优化对全固态锂离子电池性能提高的研究进展
第37卷第1期 (2021 年1月)福建师范大学学报(自然科学版)Journal of Fujian Normal University (Natural Science Edition)V ol.37,No. 1Jan. 2021DOI :10. 12046/j. issn. 1000-5277. 2021. 01. 003 文章编号:1000-5277(2021)01-0018-13无机固态电解质及其电极-电解质界面优化对全固态锂离子电池性能提高的研究进展李志宣,陈越,林洪斌,林春,潘汉殿,黄志高(福建师范大学物理与能源学院,福建省f l子调控与新能源材料重点实验室,福建福州350117)摘要:固态电池研究的重点在于开发高离子电导率的固态电解质,并优化固态电解质和电极的界面问题.首先以近年来受到广泛研究的无机固态电解质为中心,主要介绍通过固相烧结、液相烧结、溶胶凝胶法等方法制备的包括L iPO N型、钙钛矿型、石榴石型和NAS丨C O N型在内的4种无机固态电解质及其在全固态锂离子电池中的应用;其次,通过对固态电解质表面修饰及界面优化,并结合不同的修饰方法讨论了界面优化的本征机制;最后对固态电池的研究开发、应用及发展前景进行了展望.关键词:全固态锂离子电池;固态电解质;无机;界面中图分类号:0641 文献标志码:AResearch Progress on Inorganic Solid Electrolyte and Its Improvement of Interface Issue for All-solid-state Lithium BatteriesLI Zhixuan, CHEN Yue, LIN Hongbin, LIN Chun, PAN Handian, HUANG Zhigao (College o f Physics and Energy, Fujian Normal University,Fujian Provincial Key Laboratory ofQuantum Manipulation and New Energy Materials, Fuzhou350117, China)Abstract :The key issue for research of all-solid-state lithium-ion batteries is development of solid electrolytes with high ionic conductivities and improvement of interface issue between electrolyte and electrode. In this review, four types of solid electrolytes applied in all-solid-state lithium- ion batteries including LiPON-type, perovskite-type, garnet-type, NASICON-type were discussed, and various preparation methods including solid phase sintering, liquid phase sintering and sol-gel method were also reviewed. Additionally, the modification of electrolyte interface for solving interface issue was investigated, and the intrinsic mechanism of interface issue was discussed. At last, the future development and application on solid-state lithium batteries were proposed.Key words:all-solid-state lithium batteries;solid electrolyte;inorganic;interface.20世纪90年代初索尼公司发布的首个商业化锂离子电池推动了移动电子产品开始向轻量化、便 携式的方向发展.如今锂离子电池应用领域不断扩大,性能逐年提升.成熟的商业化锂电池采用的是 有机液态电解质,它虽然具有很高的离子电导率,但是在电池充放电过程中,特别是高温下容易与电 极发生界面副反应导致钝化膜的持续增长;而在低温或大电流充电下,金属锂容易在负极表面析出产 生锂枝晶会对电池寿命产生影响;同时由于液态电解质热稳定性低、燃点低等方面的缺陷可能引起电 池的燃烧爆炸等不容忽视的安全问题1:.为解决上述难题,科研人员将目光转向了使用固态电解质的 全固态锂电池,其相比于使用液态电解质的锂电池具有更高的安全性和能量密度,在电子产品、混合 动力汽车等领域拥有广阔的市场前景.固态电解质分为聚合物电解质和无机电解质,聚合物固态电解质的优势在于生产成本低廉,并且 在可穿戴柔性设备上具有应用前景,但也面临在室温下离子电导率低、机械强度和热力学稳定性较差收稿日期:2020-06-01基金项目:国家自然科学基金资助项目(61574037 , 21203025)通信作者:黄志高(1%4-),男,教授,博士,研究方向为先进材料设计和新能源材料.Z ghuang@.,.n第1期李志宣,等:无机固态电解质及其电极-电解质界面优化对全固态锂离子电池性能提高的研究进展 19以及电化学窗口窄等问题2].无机固态电解质所具有的高离子电导率、电化学和热力学性能的稳定、优秀的机械性能和不易燃等特点使它在作为电解质时能够平衡电池的使用性能同时保障安全性.早期对固态电解质的开发在于寻找高离子电导率、低电子电导率及合适电化学窗口的离子导体材料3].这些关键性能参数在近几年的研究开发中得到了大幅提升,但同时固态电解质的实际应用发展又面临新—高的界面阻抗14].与传统有机液态电解质与电极良好的接触性不同的是,固态电解质虽然 的挑战—已经具有很高的离子电导率,但由于固态电解质和电极的固/固界面接触性较差使得界面阻抗大大增加,阻碍离子传输和电池的容M释放5i.因此,近年来全固态电池的研究方向一方面在于探索制备更 高离子电导率电解质,另一方面在于通过各种方法修饰固态电解质和电极的接触界面以优化界面,降 低阻抗,提高电池性能.本文将介绍近年来全固态锂离子电池所选用的电解质及其合成方法,并综述 了优化固态电解质界面问题的最新进展.1无机固态电解质近年来,无机化合物由于其高的离子电导率成为热门锂电池电解质研究材料.目前开发的无机固态电解质材料可分为氧化物型和硫化物型.硫化物固态电解质由于和金属锂的化学亲和力较弱f6],锂离子在硫化物内的流动性更强使它具有超高的离子电导率.硫化物固态电解质主要为LISICON型,其 化学式为 Li.I V^M'S,(M 为 Si、Ge,M'为P、A l、Zii、Ga、Sb),它们为7-Li3P04 结构;还有 Li2S-P2S5.且认为硫化物电解质Li2S-P2S5和L1SIC0N型固态电解质Li4_,Ge h P tS4(0 < x < 1)具有好的发 展前景7:.Yoshikatsu等[8]制备出一种Li2S-P2S5玻璃陶瓷,在室温下离子电导率达到了 1.7x l(T2S . cm'2011年,Norilu等[9:使用真空烧结的方法制备出了新型的固态电解质I」丨〇GeP2S12,在室温下离 子电导率达到了 1.2x l(T2S •cm'虽然硫化物固态电解质超高的离子电导率甚至超过了许多液态电 解质,但硫化物电解质在接触到空气后会和空气中的水发生反应产生有毒气体H2S,在影响电池稳定 性的同时也会造成安全隐患和环境污染问题.与之相比,无机氧化物电解质在化学稳定性和热稳定性 上的优势可以很好地解决人们对锂离子电池高能量密度的需求和电池使用安全问题之间的矛盾.随着 研究不断深人,新开发的无机氧化物电解质种类繁多,以下将主要综述广泛使用的石榴石型、LiPON 型、钙钛矿型和NASIC0N型4种类型的无机氧化物固态电解质.1.1石榴石墦石榴石型的固态电解质在1969年被首次报道11(1,化学通式为:Li3+,A,B2012,石榴石固态电解质 的结构分为四方相和立方相,锂原子可分别占据八面体Zr06和十二面体LaOs配位,其中立方相为离 子电导率更高的高温稳定相.Tliangadurai等11在2003年首次发现『新型石溜石结构的锂离子导体Li5La3M2012(M = Nb,Ta),并且之后在高温下采用传统的固态反应法成功制备出离子电导率达到0. 1~ 1.0 mS •的石榴 石型固态电解质Li7La,Zr2012(LLZ0).相比于上文提到的硫化物固态电解质,石榴石型固态电解质 具备更好的安全性和热稳定性[121.为了提高石榴石型电解质的电导率,在制备过程中掺人元素是一 种有效的办法.Xiang等'13制备了 LiwA^La^Zi^O^ (A= Be、B、Al、Fe、Z n和Ga),其中掺人兀素 的比例0.2~0. 3.根据电化学阻抗谱的测量结果,发现A1、F e和G a掺杂的LLZ0样品具有更高的离 子电导率,其中G a掺杂的样品在室温下的电导率达到了 1.31x l〇-3S .cm'同时结合XRD物相分析 发现,通过Al、F e和G a元素的掺杂实现了对L i元素的替代,使得掺杂后的LLZ0样品中具有更高离 子电导率的立方相更加稳定,从而提高了样品的离子电导率.243»等[|4]使用固相反应法制备了 A1掺 杂的LLZ0样品.样品化学式为:Li7_,Al,La3Zr2012,A1的掺杂量控制在0~0.25之间.如图l(a)(b)所示的乂1^测量结果表明,在丨」7_,丨>1^為20|:样品中的四方相和立方相的含量随着人1掺杂量的变 化而变化,当掺人0.1 mol的A1时,样品中四方相的信号几乎消失而表现出纯的立方相.结合对一系 列不同含量的样品的阻抗谱分析(如图I(c)所示),并通过计算得出掺量为0.1 mol的样品具有最大的 离子电导率,在30 t下达到了 L41x l〇_4S •o ir1,这与之前XRD的测试中立方相含量最高的结果相吻合.20福建师范大学学报(自然科学版)2021 年-20.-0 mol A1 0.05 mol A1 0.10 mol A1 0.20 mol A i3026/(°)40图1(a) (b) Al-LLZO样品的X射线衍射图谱,(c)在30尤下0〜0.25 mo丨含量范围内A1元素掺杂LLZO样品的电化学阻抗谱[|4]Fig. 1( a) ( b) X-ray diffraction patterns of Al-LLZO samples,( c) Nyquist plots for the totalionic conductivity of LLZO samples with 0 〜0. 25 mol Al doping at 30 Ti 14■等[15]则使用Li2C03、Rb2C03、La203、21〇2和〇320,粉末,通过固相反应的方法制得了 Ga、汕元素掺杂的1^62。
不同元素掺杂纳米CuO及常温脱除H2S性能
Na no— — CuO do pe d wi t h di fe r e nt e l e me n t s a nd r e mo v a l o f h y dr o g e n
a c t e r i z e d u s i n g XR D. T h e r e s u l t s i n d i c a t e d t h a t t h e n a n o— C u O d o p e d w i t h i r o n,z i n c a n d c e r i u m h a d i mp r o v e d t h e d e o d o i r z i n g a c t i v i t y s h o wi n g a c e t r a i n a c t i v i t y o f t h e v a i r a t i o n w i t h
第3 1 卷 第3 期
2 0 1 5 年6 月
哈 尔 滨 商 业 大 学 学 报 (自然科 学版 )
J o u r n a l o f Ha r b i n Un i v e r s i t y o f C o mme r c e( Na t u r a l S c i e n c e s E d i t i o n )
V o 1 . 3 1 N 。 . 3
J u n . 2 0 1 5
不 同元 素掺 杂纳 米 C u O及 芾皿 日 脱除 H 2 S性 能
王 悦, 李 芬 , 杨胜 宇 , 王艳红
镍基高温合金
金属材料学
发动机涡轮盘用高温合金
•喷射沉积快速凝固工艺制造的高温合金涡轮盘,与粉末高
温合金相比,工序简单,成本降低,具有良好的锻造加工 性能。 •快凝组织特性又奠定了其性能优势,包括远优于铸锻工艺、 相当或高F粉末冶金工艺的强度与持久寿命,优于粉末冶 金工艺的塑性、韧性及低周疲劳寿命,因晶粒细化而改善 的热加工性能等。
西北工业大学 材料学院 陈铮 本科生学位课 金属材料学
11
发动机涡轮盘用高温合金
•就涡轮盘材料而论,除广泛使用的粉末盘 及其发展型的双性能粉末盘、三性指粉末盘 外,细晶变形盘由于成本低也被看好。 •俄罗斯就坚恃认为采用传统熔铸变形盘,
完全可满足第四、五代发动机的需要。
12
西北工业大学
材料学院
陈铮
本科生学位课
西北工业大学 材料学院 陈铮 本科生学位课 金属材料学
13
发动机涡轮盘用高温合金
•由于传统变形盘的工艺设备均能使蔼用, 且材料利用率高,成本明显低于粉末盘, •因此,喷射盘有可能成为粉末盘的强劲对 手,是一种有极大发展潜力的制备技术。
西北工业大学
材料学院
陈铮
本科生学位课
金属材料学
14
航空发动机叶片材料
晶。
•发展的趋势是将结构一材料-工艺统一考虑,即
开发lamiloy技术,采用铸造及激光打孔工艺直按
制造发散冷却孔道。
西北工业大学 材料学院 陈铮 本科生学位课 金属材料学
16
航空发动机叶片材料
•金属间化合物与韧性金属组成的微叠层复合材料 作为叶片的“热障涂层”受到重视。
•该技术依靠耐高温金属间化合物提供高温强度和
轮温度和转速提高;
西北工业大学
2024-2025学年鲁科五四新版选择性必修3生物上册阶段测试试卷627
2024-2025学年鲁科五四新版选择性必修3生物上册阶段测试试卷627考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、为检测某药物X的抗癌活性,在细胞培养板的每个孔中加入相同数量的肝癌细胞,使其贴壁生长,实验组加入溶于二甲基亚矾的药物X,培养72小时后进行计数,比较实验组和对照组每个孔中细胞数目。
下列有关叙述错误的是()A. A、细胞培养液中通常需要加入血清等天然成分B. B、可用胰蛋白酶处理使肝癌细胞脱落下来并进行计数C. C、对照组中应加入等体积的无菌蒸馏水,其他条件一致D. D、若实验组细胞数远低于对照组,可初步判断此药物有抗癌效果2、杜泊羊以其生长速度快、肉质好等优点,被称为“钻石级”肉用绵羊。
科研工作者通过胚胎工程快速繁殖杜泊羊的流程如下图所示,相关叙述正确的是()A. A、选用的雌性杜泊羊只要有健康的体质和正常繁殖能力就行B. B、从卵巢中采集的卵母细胞都已完成减数分裂ⅡC. C、为避免代孕锦羊对植入胚胎产生排斥反应,应注射免疫抑制剂D. D、采集的精子需要进行获能处理3、下列关于转基因生物安全性的叙述,正确的是()A. A、转基因作物被动物食用后,目的基因会转入动物体细胞中B. B、转基因技术的应用解决了人类史上很多难题,是有利无害的C. C、现在很多转基因食品包装都有警示标志,就是提示潜在的安全性D. D、转基因食品比传统食品营养更丰富,因此在不久之后转基因食品会替代传统食品4、下图是制备单克隆抗体流程的简明示意图。
下列有关叙述正确的是()A. A、①是从已免疫的小鼠脾脏中获得的效应T淋巴细胞B. B、②中使用活性较强的病毒有利于杂交瘤细胞的形成C. C、③同时具有巨噬细胞和鼠骨髓瘤细胞的特性D. D、④是经筛选培养获得的能分泌特异性抗体的细胞群5、北极比目鱼中有抗冻基因,其编码的抗冻蛋白具有11个氨基酸的重复序列,该序列重复次数越多,抗冻能力越强。
金属纳米颗粒修饰的fe单原子催化剂
金属纳米颗粒修饰的fe单原子催化剂下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!金属纳米颗粒修饰的Fe单原子催化剂随着工业化进程的不断加快,对清洁能源和环境保护的需求也日益增长。
b,p原子掺杂si是替位
b,p原子掺杂si是替位原子掺杂是一种常见的改变材料性质的方法。
在材料科学领域,原子掺杂通常是通过向晶体中引入其他元素来实现的,而Si是指硅元素。
在这篇文章中,我们将重点介绍原子掺杂Si的替位现象,即将B 和P等元素掺杂到Si晶体中的替位位置,以及这种掺杂对Si材料性质的影响。
一、掺杂替位的原理原子掺杂替位是指将外来元素掺杂到晶体中的替位位置,取代晶格中原有的Si原子。
在材料科学中,掺杂常常用于调节材料的电子结构和化学反应性质。
掺杂替位的机制是通过晶格缺陷来实现的,即掺杂元素引入的空位或离子实际上会导致晶格畸变,从而影响Si材料的性能。
二、B、P原子掺杂Si的替位效果1. B原子掺杂Si的替位掺杂B原子可以将B元素引入Si晶体中,替代一部分Si原子的位置。
B原子掺杂后会引入额外的电子,这些电子会填补Si晶体中的空位,从而增加材料的载流子浓度。
因此,B原子掺杂Si可以将纯Si 材料转变为n型半导体,具有较高的电导率和导电性能。
2. P原子掺杂Si的替位相比于B原子,P原子的掺杂效果略有不同。
P原子掺杂Si时,它会替代一部分Si原子的位置,并引入额外的自由电子。
这些自由电子可以增加Si晶体中的导电性能,从而将材料转变为n型半导体。
此外,P原子掺杂还可以引入电子的轻质核,降低晶格振动,从而提高Si材料的导电性和电导率。
三、B、P原子掺杂对Si材料的影响1. 电导率提高由于B、P原子的掺杂,Si材料的导电性能得到了显著提高。
B掺杂Si和P掺杂Si均成为了n型半导体,具有较高的电导率。
这一特点使得这些材料在电子器件制造过程中得到广泛应用。
2. 材料性能调控B和P原子的掺杂可以调控Si材料的能带结构和电子密度,对其光学、磁学和热学性质产生显著影响。
这种调控特性使得B、P掺杂Si 被广泛应用于光电子领域、磁性材料制备和热电材料等方面。
总结:原子掺杂Si是一种常见的材料改性方法,其中B和P原子是常用的掺杂元素。
《元素替代对AB5型稀土系储氢合金结构及储氢性能的影响》范文
《元素替代对AB5型稀土系储氢合金结构及储氢性能的影响》篇一一、引言随着新能源汽车、智能电网等领域的快速发展,储氢材料的研究与开发已成为重要的研究方向。
其中,AB5型稀土系储氢合金因其高储氢容量、良好的充放电性能及低成本等特点,得到了广泛的关注和应用。
然而,为了提高储氢合金的性能和适用性,元素替代成为了改善其性能的重要手段。
本文旨在研究元素替代对AB5型稀土系储氢合金结构及储氢性能的影响。
二、元素替代的原理与方法元素替代是指通过将AB5型稀土系储氢合金中的部分元素替换为其他元素,以改变合金的组成和性能。
替代的元素可以是同族元素、同周期元素或其他类型的元素。
替代的方法包括固溶法、机械合金化法等。
通过元素替代,可以调整合金的电子结构、晶格参数、原子间距等,从而改变合金的物理和化学性质。
三、元素替代对AB5型稀土系储氢合金结构的影响元素替代对AB5型稀土系储氢合金的结构具有显著影响。
首先,替代元素可以改变合金的晶格类型和晶格常数,从而影响合金的晶体结构。
其次,替代元素可以改变合金的原子排列方式和键合类型,进而影响合金的原子间相互作用力。
这些变化导致合金的储氢能力、充放电性能等得到显著提升。
四、元素替代对AB5型稀土系储氢合金储氢性能的影响元素替代对AB5型稀土系储氢合金的储氢性能具有重要影响。
首先,替代元素可以改变合金的吸放氢反应动力学过程,从而提高合金的储氢速率和容量。
其次,替代元素可以调整合金的稳定性,使其在充放电过程中具有更好的循环稳定性和抗老化性能。
此外,替代元素还可以改善合金的电导率和热稳定性等性能,从而提高其在高温和低温环境下的储氢性能。
五、实验结果与讨论通过实验研究,我们发现不同元素的替代对AB5型稀土系储氢合金的结构和储氢性能具有不同的影响。
例如,某些元素的替代可以显著提高合金的储氢容量和充放电性能;而另一些元素的替代则可能改善合金的循环稳定性和抗老化性能。
此外,我们还发现,在适当的替代比例下,可以获得具有最佳结构和性能的储氢合金。
第一性原理研究Mg掺杂对LiCoO_(2)正极材料结构稳定性及其电子结构的影响
Eform = E (doped) − E (LiCoO2)
∑
∑
− E (Mgdoped) + E (host) , (1)
其中 Eform 表示形成能, E (doped)为掺杂 Mg 后体 系 的 总 能 量 , E (LiCoO2)为 纯 LiCoO2 的 总 能 量 , E (Mgdoped)为掺杂的 Mg 原子的能量, E (host)为被 替代的原子的能量.
关键词:LiCoO2, 形成能, 电子结构, 第一性原理 PACS:82.47.Aa, 71.15.Mb, 71.20.–b, 71.30.+h
DOI: 10.7498/70.20210064
1 引 言
近年来, 随着电动汽车、智能电子设备等领域 的快速发展, 作为主要动力来源的锂离子电池成为 众多科研人员的研究热点. 锂离子电池正极材料是 制约电池能量密度的关键因素, 开发高电压、高容 量的正极材料对于提升电池能量密度至关重要. 在 众多正极材料中, 作为商业化最早的锂离子电池正 极材料 LiCoO2 因具有工作电压高、比容量高、循
环性能好等优点至今仍受到人们的广泛关注 [1,2]. LiCoO2 的结构属于空间群为 R¯3m 的菱面体
(a-NaFeO2 型层状结构), 其中 Li 原子在 3a 位置, Co 原子和 O 原子分别在 3b 和 6c 位上. LiCoO2 具有 274 mAh/g 的理论比容量, 但是实际使用时 的充电截止电压为 4.2 V, 充电脱锂过程仅有 50% 的锂离子脱出. 通过增加充电截止电压可以脱出更 多的锂离子从而增加 LiCoO2 容量, 例如当充电截 止电压为 4.5 V 时, 将有高达 68% 的锂离子脱出. 然而, 当电压增加时, LiCoO2 的晶体结构变得不
河北省2023-2024学年高三上学期12月省级联测考试化学试题含答案
绝密★启用前2023-2024高三省级联测考试化学试卷班级______姓名______注意事项:1.答卷前,考生务必将自己的姓名、班级和考号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
可能用到的相对原子质量:H 1C 12O 16Ca 40Ti 48Co 59Zn 65Se 79Te 128一、选择题:本题共14小题,每小题3分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“挖掘文物价值,讲好河北故事”。
下列文物材质主要是硅酸盐的是()A .错金铜博山炉B .长信宫灯C .金缕玉衣D .元青花釉里红镂雕盖罐A .AB .BC .CD .D2.氮化镓是新型半导体材料。
工业制备氮化镓的常用方法是33GaCl NH GaN 3HCl ++高温。
下列叙述正确的是()A .基态Ga 原子电子排布式:[]21Ar 4s 4pB .3NH 的VSEPR 模型:C .基态N 原子价层电子的轨道表示式:D .HCl 的电子式: H [Cl ]::+-3,某小组为了测定蛋白质中氮元素的含量,设计实验如下:①将蛋白质中氮元素转化成氨气;②用一定量盐酸溶液(过量)吸收氨气;③用NaOH 标准溶液滴定吸收液中过量的盐酸。
下列有关叙述正确的是()A .实验③滴定过程中使用的主要玻璃仪器有锥形瓶、碱式滴定管B .实验③选择酚酞或甲基橙作指示剂C .若滴定前缺少“润洗”步骤,则测得结果偏高D .选择240mL 容量瓶配制标准NaOH 溶液4.多杂原子—氢键桥接电子传递途径赋予了超分子催化体系很高的光催化性能,有机物COF 和Ni 配合物形成的超分子催化体系的局部结构如图所示。
下列说法错误的是()A .与Ni 同周期且未成对电子数相同的元素还有3种B .每个配体与Ni 形成2个配位键C .①和②处氮原子杂化方式相同D .①处C N C --键夹角小于③处N N C --键夹角5.下列有关电极反应或离子方程式正确的是()A .氨水中滴加少量的4CuSO 溶液:23224Cu 2NH H OCu(OH)2NH +++⋅↓+B .以铜为电极电解饱和氯化钠溶液,阳极反应:22Cl 2e Cl ---↑C .氢碘酸溶液中加入少量磁性氧化铁:32342Fe O 8H 2Fe Fe 4H O++++++D .甲烷碱性燃料电池的负极反应:2432CH 10OH 8e CO 7H O---+-+6.前20号不同主族元素X Y Z W 、、、的原子序数依次增大,它们的原子序数之和等于35。
HEV_变速器壳体开裂失效分析
MANUFACTURING AND PROCESS | 制造与工艺近年来,随着国家战略的引导和人们生活品质提高的需要,纯电动汽车和混动汽车获得了快速发展。
而汽车重量对混动汽车燃油经济性和纯电动汽车的续航里程起着决定性作用,车重每降低100kg,油耗可减少0.7L/100km[1]。
根据业内的共识,簧下质量减重降油耗效果显著优于簧上质量,在动力底盘零件设计过程中,为了降油耗产品工程师会依据CAE分析结果,将零件尽可能减薄,譬如文中提到的将某混动车型变速器壳体的壁厚减薄,这往往带来一些新的问题。
除了优化产品结构,汽车降低能耗的途径主要是使用新型轻量化材料。
压铸铝合金因为优异的材料性能、加工的稳定性和比强度高等优点,成为汽车轻量化的热门材料。
高强韧铝合金压铸件从上世纪90年代起开始批量应用,近年来铝合金压铸件逐步替代铸铁,用量逐年增加,并广泛应用于汽车变速器壳体、发动机部件和汽车轮毂等等。
随着汽车工业技术的进步,大部分铝合金制造的汽车零部件向壁薄、高强度、高质量、高可靠性方向发展。
德国莱茵铝合金公司研究的新型压铸铝合金:Magsimal-59、Silafont-36与Castasil-37,通过控制Fe元素的含量,实现标准圆棒试样在铸态下断后延伸率达到17%,并成功应用于汽车车门制造。
王海东等对Al-Si-Mg系合金中添加微量元素Ti时,能有效细化晶粒,显著提供铝合金的抗拉强度和屈服强度,添加微量Zr或Sr元素,铝合金的力学性能显著改善,为制造铝合金汽车车身、吸能件提供了解决方案[2-3]。
目前研究和应用最广的铝合金主要是Al-Mg系、Al-Si系、Al-Si-Cu系和Al-Si-Mg四个系列。
我司的某变速器壳体属于Al-Si-Cu系的压铸铝合金,牌号是ADC12。
1 故障描述某混动车型变速器在路试测试时,壳体安装螺栓处开裂,断裂情况如下图1所示。
壳体开裂的裂纹源位于螺栓安装面下第三螺纹根部(图1,Ⅰ区箭头指向位置;CAE仿真分析显示,该处属于应力集中部位)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第28卷 第2期Vol 128 No 12材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering 总第124期Apr.2010Article ID :167322812(2010)022*******R eceived d ata :2009210214;Modif ied d ata :2009212204Found ation item :national natural science foundation of China (10904144、50701043、10774145)is gratefully acknowledged Biography :ZHAN G Jian (1982-),Ph. D.candidate ,E 2mail :zhangjian @.Corresponding author :QIN Xiao 2Y ing (1960-),Ph. D.E 2mail :xyqin @.Thermoelectric Properties of Doped CompoundsM 0.04Ti 0.96S 2(M =Ni ,Al ,Mg)ZHANG Jian ,QIN Xiao 2ying ,L I Di ,XIN H ong 2xing ,SONG Chun 2jun(K ey Laboratory of Materials Physics ,Institute of Solid State Physics ,Chinese Academy of Sciences ,H efei 230031,China)【Abstract 】 Element doped compo unds M 0.04Ti 0.96S 2(M =Ni ,Al ,Mg )were prepared by solid 2state reaction ,and t heir t ransport and t hermoelect ric p roperties were investigated f rom 5K to 310K.The result s indicated t hat elect ric resistivity ρincreased as M (=Ni ,Al ,Mg )was int roduced ,at low temperat ures ρ~T curves for M 0.04Ti 0.96S 2(M =Ni ,Al ,Mg )were found to obey t he Mott ’s two 2dimensional hopping law ln ρ~T -1/3,indicating t hat TiS 2possess 2D t ransport characteristics.The appearance of Mott ’s 2D law could originate f rom potential disorder int roduced by M substit ution for Ti in S 2Ti 2S slabs.Moreover ,it was found t hat t he absolute t hermopower |S |for Al ,Mg doped compounds increased significantly in t he wholetemperat ure range investigated ,and specifically t he |S |of Al 0.04Ti 0.96S 2is about 500μV/K ,it is ~2times as great as t hat of TiS 2at 310K.Z T of t he Mg doped compound Mg 0.04Ti 0.96S 2is ~1.6times as great as t hat of TiS 2at 310K ,indicating t hat element doping is an effective app roach to enhance t hermoelect ric performance of TiS 2.【K ey w ords 】 TiS 2;t hermoelect ric ;resistivity ;t hermal conductivityC LC number :O482.6 Document Code :A不同元素替代掺杂化合物M 0.04Ti 0.96S 2(M =Ni ,Al ,Mg)的热电性质张 建,秦晓英,李 地,辛红星,宋春军(中国科学院固体物理研究所材料物理重点实验室,安徽合肥 230031) 【摘 要】 层状结构TiS 2具有准二维结构,高热电势(室温时S ≈250μV/K )和大的热电功率因子,作为热电材料具有很好的开发和应用前景。
通过固相反应法,我们分别用原子量大于和小于Ti 的原子部分替代Ti 位引入替位缺陷(Ni Ti ″,Al Ti ′,Mg Ti ″),合成了不同元素替代掺杂化合物M 0.04Ti 0.96S 2(M =Ni ,Al ,Mg ),在52310K 的温度范围内研究了各化合物的电阻率、热导率及热电势率与温度的对应关系。
结果表明Ni 、Al 、Mg 三种元素的掺杂均引起了主体材料从金属性到半导体导电性质的转变,且在低温范围内呈现莫特二维变程跳跃电导规律,ln σ∝T -1/3,表明了TiS 2的二维导电机制。
值得注意的是:①Mg 、Al 的掺杂引起了热电势绝对值的显著增高,特别是Al 掺杂的化合物在310K 时热电势率为-500μV/K ,达到了纯TiS 2的200%;②Ni 掺杂也在整个研究温区引起热导率的明显下降,而Mg 、Al 的掺杂却在整个研究温区引起热导率的明显升高。
由于电阻率的增大,Ni 、Al 的掺杂均没能使得材料的ZT 值有所提高,而Mg 的掺杂明显地提高了TiS 2的ZT 值,在310K 其ZT 值是纯TiS 2的1.6倍。
这表明元素掺杂是提高材料的热电优值的有效途径之一。
【关键词】 TiS 2;热电;电阻率;热导率1 Int roductionTiS2has an anisot ropic st ruct ure wit h a t rigonal space group,P3m.It is known to exist in two polytypes(1T,2H)wit h octahedral and t rigonal p rismatic coordinations,respectively.The main difference between t he1T2TiS2and2H2TiS2layers is t he type of t he local coordination of t he metal: octahedral(1T)versus t rigonal2prismatic(2H)[1]. The most stable form of TiS2(1T2TiS2,crystallizes in a layered CdI22like st ruct ure)consist s of sheet s of face2sharing TiS6octahedra forming of S2Ti2S sandwich layers,where a Ti sheet is sandwiched between two sulf ur sheet s.Atoms wit hin S2Ti2S sheet s are bound by st rong covalent interactions; bonding between t he layers is determined by weak van der Waals forces.Alt hough t he st ruct ure of TiS2is quite simple, t he nat ure of t he elect ronic st ruct ure of layered material TiS2has been in disp ute over t he past decades.Up to now,for instance,whet her it is semico nductor or semimetal has not been clarified[2216].Through t he measurement s of t he Hall coefficient,Seebeck coefficient and resistivity as a f unction of p ressure,Klip stein and Friend[2]found t hat t he band overlap between S3p states and Ti3d states increased at a rate of 4.5meV/Kbar,and concluded t hat TiS2is a semiconductor wit h a gap of 0.18±0.06eV.And many researches reported by Greenway and Nische[3],Chen et al[4],Barry et al[5],Shep herd and Williams[6]and Allan et al[7] indicated t hat TiS2is a semiconductor.On t he cont rary,some t heoretical calculations indicate t hat TiS2is a tely Benesh et al[8]got a semimetallic ground state for TiS2by using t he L A PW met hod as a f unction of pressure.Similarly, band calculations based on t he augmented sp herical wave(ASW)met hod by Fang et al[9],t he linear2 muffin2tin2orbital(L M TO)met hod by Wu et al[10212],and t he FP2LA PW met hod[13,14]showed t hat TiS2possessed a semi2metallic ground state. Meanwhile,many experiment s[15,16]indicated t hat t he electrical resistivity of TiS2almo st exclusively exhibit s metallic behavior.So far,no semico nductor behavior in it s conductivity of TiS2has ever been observed experimentally.On t he ot her hand,layered2struct ured TiS2is well known for it s capability of intercalation by a wide range of bot h organic and inorganic materials into it s van der Waals gap[17].For instance,since Li+can easily intercalate and leave van der Waals gap of TiS2,it has been st udied as a p romising cat hode material for rechargeable lit hium2ion batteries[17219]. Besides Li[2,20,21],t ransitio n metals,such as Fe,Co and Ni[22,23],have been successf ully inserted into t he gap of TiS2,and influences of t his intercalation on t he p hysical properties of t he corresponding compounds were investigated and explored. Specially,Imai et al reported t hat TiS2has large t hermopower S and power factor(S2/ρ,ρis electrical resistivity)at room temperat ure[24], indicating t hat TiS2is a potential candidate for t hermoelect ric applications.Very recently,t he work in o ur group indicated t hat large enhancement of t hermoelect ric properties for TiS2can be realized by intercalating proper Bi into it s ven der Waals gap[25].As outlined above,in order to tailor or improve t he p hysical properties of TiS2,numerous works conducted so far concent rated mainly on intercalation of guest atoms or molecules.Alternatively,at least in principle,t he p roperties of TiS2can also be t uned by substit utional doping,such as substit ution of foreign atoms for Ti in t he S2Ti2S sheet s of TiS2. Unfort unately,to our knowledge,so far no systematic work[26229]has been reported mainly due to difficulties in materials synt hesis,which is caused by simultaneous intercalations of t he foreign atoms.The aim of present work is to synt hesize t he element doped compounds M0.04Ti0.96S2(M=Ni,Al,Mg), and to investigate t he effect s of substit utional doping wit h element M on t heir t ransport properties and t hermoelect ric performance in t he temperat ure range f rom5K to310K.Our result s showed t hat element doping could not only cause significant changes of it s t ransport p roperties,but also give rise to enhancement of t hermoelect ric performance of TiS2 when doped p roperly.・832・材料科学与工程学报2010年4月2 Experimental DetailsPolycrystals of element doped compounds M0.04 Ti0.96S2(M=Ni,Al,Mg)samples were prepared by a solid2state reaction met hod.Titanium(99.9 wt.%),sulf ur(99.999wt.%)and nickel(99.0 wt.%)or aluminum(99.0wt.%)or magnesium (99.0wt.%)powders were weighed accurately to give t he desired compo sition,which were mixed intimately to give a homogeneous mixt ure and sealed in an evacuated quartz t ube,and t hen heat2t reated in a horizontal f urnace at880K for7days wit h a fixed heating rate of0.5K/min.The bulk specimens for t ransport p roperty measurement s were obtained by hot2p ressing at673K in vacuum.The p hase st ruct ures and t he compo sitions of t he obtained samples were checked using x2ray powder diff raction(XRD)and energy dispersive spect ro scopy (EDS),respectively.XRD analysis was carried out on a Philip s diff ractometer using Cu2Kαradiation. The accurate lattice parameters were determined f rom t he d2values of t he XRD peaks using a standard least2 squares refinement met hod wit h a Si standard for calibration.The measurement s of t ransport p roperties(DC resistivity,t hermal conductivity,and t hermopower)were carried out on a p hysical p roperty measurement system(PPMS)(Quant um Design)in t he temperat ure range from5to310K.3 Result s and Discussion3.1 Phase determination and change of lattice parameters after M addition analyzed by x2ray diffractionFig.1shows XRD patterns for t he synt hesized specimens wit h different element doped compo unds M0.04Ti0.96S2(M=Ni,Al,Mg).One can see f rom Fig.1t hat all t he main peaks on t he XRD patterns match well wit h t hose for TiS2,indicating t hat t he doped specimens have t he same crystallograp hic st ruct ure as t hat of TiS2.The values of t he lattice parameters a and c for all t he samples have been calculated f rom t he XRD data,which are shown in Fig.2.It can be seen t hat t he lattice parameter c of doped compounds M0.04Ti0.96S2(c= 5.6933!, 5.6946!,5.7144!for M=Ni,Al,Mg respectively) have minor changes compared to t hat of TiS2(c= 5.7044!)except Mg0.04Ti0.96S2,may due to more Mg atoms intercalated to t he van der waals gap s of TiS2t han Ni or Al t hat can be verified by t hat t he resistivity value of Mg0.04Ti0.96S2has decreased compared wit h t hat of p ure TiS2as t he resistivity value of Ni or Al doped compounds increased. Moreover,t he lattice parameter a is found to decrease f rom 3.4098!to 3.4054!, 3.4038!, 3.4039!for M=Al,Mg,Ni respectively.Many investigations showed t hat[28230]lattice parameter a of t he intercalated compounds A y TiS2(here A stands for intercalated element s)was always found to increase wit h increasing content of intercalated element s(For example,lattice parameter a changed f rom3.4083! to3.4156!in Bi y TiS2[28]wit h y increasing f rom0to 0.25;and t he parameter a of Li y TiS2[29]and Ti1+y S2[30]also increased wit h increasing y).Therefore, t he decrease of parameter a reflect s t hat substit ution of M(for Ti)has occurred after M addition,for atomic radius of M is smaller t han t hat of Ti(atomic radius R Ti=2.00!,R Al=1.82!,R Mg=1.72!, R Ni= 1.62!),if M atoms replace Ti atoms to int roduce defect s(Ni Ti″,Al Ti′,Mg Ti″),which are smaller t han Ti Ti×in size,and form covalent bonds[31]t he lattice of M0.04Ti0.96S2will shrink as compared wit h t hat of TiS2.Fig.1 XRD patterns of doped compoundsM0.04Ti0.96S2(M=Ni,Al,Mg).3.2 The effect of M doping on DC resistivityThe temperat ure dependences of t he elect rical resistivity for specimens wit h different element substit utions are shown in Fig.3.One can see t hat・932・第28卷第2期张 建,等.不同元素替代掺杂化合物M0.04Ti0.96S2(M=Ni,Al,Mg)的热电性质 Fig.2 Lattice parameters a and c for doped compoundsM0.04Ti0.96S2(M=Ni,Al,Mg).t heρ2T curve for p ure TiS2sample(x=0)shows a metal2like behavior(i.e.,dρ/d T>0)in t he whole temperat ure range investigated.Fitting t he resistivity to a power law,(ρ(T)-ρ0)∝Tγ,givesγ=2.2,in agreement wit h p revious result s reported by Klip stein et al[32].In cont rast,t heρ2T curves for t he substit uted compounds Ni0.04Ti0.96S2show a semico nductor2like behavior(i.e.,dρ/d T<0)in whole investigated temperat ure range,and M0.04Ti0.96 S2(M=Al,Mg)also show a semiconductor2like behavior as temperat ure decreases to a critical temperat ure T c(=52.3K,104.3K for M=Al,Mg, respectively),alt hough t hey still exhibit metal2like behavior in high temperat ure regions.This is quite cont rary to t hat for p urely intercalated compo unds A y TiS2,who se metallic behavior enhances wit h increasing intercalated element s[33,34],In addition, t he elect rical resistivity of doped compounds M0.04 Ti0.96S2(M=Ni,Al,Mg)is greater t han t hat of p ure TiS2(in whole investigated temperat ure range for Ni or Al substit ution,below184K for Mg substit ution),which is also cont rary to t he p heno mena in p urely intercalated TiS2where it s resistivity always decreased,as has been observed in Bi y TiS2[25]and Li y TiS2[33,34].These result s indicated f urt her t hat substit ution instead of intercalation of M took place mainly in t he compounds,for as M(Ni2+, Al3+or Mg2+)substit uted for Ti4+,acceptors (Ni Ti″,Al Ti′,Mg Ti″)will be int roduced and elect ron concentration in t he compounds will decrease due to compensation effect,giving rise to increase in resistivity.Nevert heless,one notices t hat t he electrical resistivity of compound Mg0.04Ti0.96S2is smaller t han t hat of doped compounds M0.04Ti0.96S2 (M=Ni,Al)(comparing curve(b)wit h curves(c)and(d)in Fig.3).This p henomenon indicated t hat t here were more Mg2+intercalation into t he van der Waals gap s t han Ni2+or Al3+,for intercalation of M would result in charge t ransfer f rom t he guest atoms to TiS2host,giving rising to increase in elect ron concentration.One can notice t hat t he resistivity of Ni doped compound Ni0.04Ti0.96S2is far larger t han t hat of Mg(or Al)doped compound Mg0.04Ti0.96S2 (or M0.04Ti0.96S2),which may due to Ni substit ution is more p ure t han Mg(or Al)substit ution in t he dopedcompounds.Fig.3 Dependence of t he electrical resistivityρon temperature for doped compounds M0.04Ti0.96S2(M=Ni,Al,Mg).Fig.4 Plot s of lnσversus1/T1/3for doped compoundsM0.04Ti0.96S2(M=Ni,Al,Mg). On t he ot her hand,co nsidering t hat M substit ution for Ti in S2Ti2S conduction planes may give rise to potential disorder,which would be strong enough to lead to considerable localized states,at very low temperat ures p honon assisted t unneling or hopping may dominate t he conductio n process.By best fitting t he experimental data to Mott’s variable range hopping(V R H)law,we find t hat t he conductivity data of M0.04Ti0.96S2(M=Ni,Al,Mg) in corresponding temperat ure ranges are in good agreement wit h Mott’s two2dimensional(2D)VR H law,i.e.:・42・材料科学与工程学报2010年4月σ=σ0exp-T0T1/3(1)where T0=8/(πkN(E F)l2v)is t he hopping barrier, andσ0is a co nstant.Figure4shows t he plot s of lnσversus T-1/3for t hree doped specimens.It can be seen t hat t here are good linear relations between lnσand T-1/3at lower temperat ure range,suggesting t hat TiS2has2D t ransport characteristics.The fitted values of T0are3892K,0.05K and2.5K for M=Ni, Al,Mg,respectively.3.3 The effect of M doping on thermal conductivityThe temperat ure dependences of total t hermal conductivityκfor M0.04Ti0.96S2(M=Ni,Al,Mg)are shown in Fig.5.It can be seen t hat M substit ution for Ti causes increase in t he t hermal conductivity (t here is an exception as M=Ni).Similar to t hat of TiS2,t he t hermal conductivityκof t he doped compounds shows weak temperat ure dependence above60K,below whichκof all t he compo unds increases rapidly and approximately linearly wit h increasing temperat ure.The total t hermal conductivityκcan be expressed by t he sum of lattice component(κl)and elect ronic compo nent(κe)asκ=κl+κe.Theκe values can be estimated f rom Wiedemann2Franz’s law asκe=L T/ρ(here L is t he Lorentz number,and L=2.44×10-8V2K-2for free electrons).Co nsequently,κL can be estimated f romκandκe,as shown in Fig. 6.It can be seen by comparing Fig.6wit h Fig.7t hat t he values and temperat ure dependences of lattice conductivityκl are similar to t ho se of t he total t hermal conductivityκ. This result indicates t hat t hermal conductivity of M0.04Ti0.96S2come mainly fro m t heir lattice conductivity.One can notice t hat M(=Al,Mg) doping causes increase in t he lattice conductivity of M0.04Ti0.96S2compared wit h t hat of p ure TiS2,but t he lattice conductivity decreases as M=Ni.This increase of lattice t hermal conductivityκL of Mg0.04 Ti0.96S2or Al0.04Ti0.96S2may originate f rom increase in acoustic velocity caused by lighter weight of Mg or Al atoms(t han t hat of Ti atoms),and t he decease ofκL of Ni0.04Ti0.96S2may originate f rom decrease in acoustic velocity caused by heavier weight of Ni ato ms(t han t hat of Ti atoms).3.4 The effect of M doping on thermopow erFig.5 Plot s of t hermal conductivityκversus temperature for doped compounds M0.04Ti0.96S2(M=Ni,Al,Mg).Fig.6 Plot s of lattice t hermal conductivityκversus temperature for doped compounds M0.04Ti0.96S2(M=Ni,Al,Mg).Fig.7 Variation of t hermopower S wit h temperature for doped compounds M0.04Ti0.96S2(M=Ni,Al,Mg). The variations of t he Seebeck coefficient(S)for M0.04Ti0.96S2(M=Ni,Al,Mg)wit h temperat ure are shown in Fig.7.The negative values of t he Seebeck coefficient fo und for all of t he specimens over t he entire temperat ure range show t hat t he major charge carriers in M0.04Ti0.96S2are elect rons.Moreover,one can see f rom Fig.7t hat t he Seebeck coefficient of all t he doped compounds M0.04Ti0.96S2(M=Al,Mg)is larger t han t hat of p ure TiS2.At310K,|S|= 300μV/K of Mg0.04Ti0.96S2,which is about21% larger t han t hat(248μV/K)of TiS2,and more obviously,|S|=505μV/K of Al0.04Ti0.96S2at310K, which is about104%larger t han t hat(248μV/K)of TiS2.However,for Ni substit uted compound,|S|・142・第28卷第2期张 建,等.不同元素替代掺杂化合物M0.04Ti0.96S2(M=Ni,Al,Mg)的热电性质 became smaller t han t hat of p ure TiS2.The temperat ure behavior of Seebeck coefficient for t he doped compounds M0.04Ti0.96S2(M=Ni,Al, Mg)is more or less similar to t hat of p ure TiS2:t he absolute t hermopower|S|for every compound is found to increase continuously wit h increasing temperat ure in t he whole temperat ure range investigated.The small valley observed at t he temperat ure around60K for each of t hem in t he plot of S vs.T could be ascribed to t he p honon2drag effect[28].At t he temperat ures above150K t he t hermopower for M0.04Ti0.96S2(M=Ni,Al,Mg)has approximately linear relationship to temperat ure. The diff usive part of t hermopower(T2linear t hermopower)can be described by formula[27]:S=π2k2Te E F(2)where k and e are Boltzmann constant and elect ron charge,respectively.This formula indicates t hat t he slope of t he plot S vs.T is inversely proportional to Fermi level.Best fit of t he data to formula(2)yields estimation of t he Fermi level E F for all t he compounds,as listed in table1.One can see t hat E F =0.237eV,0.119eV,0.045eV for M=Ni,Mg,Al respectively,E F of Al0.04Ti0.96S2is obviously smaller t han t hat of Mg0.04Ti0.96S2or Ni0.04Ti0.96S2,t his agrees wit h t hat t he|S|of Al0.04Ti0.96S2is largest in t he t hree doped specimens.T able1 Slope of the plot S vs.T and E F calculatedfrom the formula(2)M Ni Al MgSlop/μV-1・K-2-0.3100-0.6190-1.6408E F/eV0.2370.1190.0453.5 The effects of doping M on thermoelectric propertiesFig.8shows t he temperat ure dependence of dimensionless figure of merit Z T(=T S2/ρκ)for TiS2and t he doped compo unds M0.04Ti0.96S2(M=Ni, Al,Mg).The Z T values for all t he specimens increase wit h increasing temperat ure.However,t he Z T of all t he doped compounds M0.04Ti0.96S2(M=Ni, Al)is smaller t han t hat of p ure TiS2almost over whole temperat ure range,because t heir larger t hermal conductivity and resistivity.It is to be observed t hat Z T of Mg0.04Ti0.96S2reaches0.027at 310K,which is abo ut60%larger t han t hat of TiS2, exhibiting a spectacular improvement of it s t hermoelect ric performance after proper elementdoping.Fig.8 Variation of ZT wit h temperature for doped compoundsM0.04Ti0.96S2(M=Ni,Al,Mg).4 ConclusionsWe have st udied t he transport and t hermoelect ric properties of element doped compounds M0.04Ti0.96S2(M=Ni,Al,Mg)in t he range of5K to310K.The result s indicated t hat electric resistivityρincreased as M(=Ni,Al,Mg) int roduced,at low temperat uresρ~T curves for M0.04Ti0.96S2(M=Ni,Al,Mg)were found to obey t he Mott’s two2dimensional hopping law lnρ~T-1/3,indicating t hat TiS2possess2D t ransport characteristics.The appearance of Mott’s2D law could originate from potential disorder introduced by M substit ution for Ti in S2Ti2S slabs.Moreover,it was found t hat t he absolute t hermopower|S|for Al, Mg doped compounds increased significantly in t he whole temperat ure range investigated,and specifically t he|S|of Al0.04Ti0.96S2is about500μV/ K,it is~2times as great as t hat of TiS2at310K, which could be explained by lower Fermi level(E F= 0.045eV)of Al0.04Ti0.96S2.The increase ofρand|S| can be ascribed to decrease in electron concent ration due to M substit ution for Ti.Z T of t he Mg doped compound Mg0.04Ti0.96S2is~1.6times as great as t hat of TiS2at310K,indicating t hat element substit ution is an effective app roach to enhance t hermoelect ric performance of TiS2.・242・材料科学与工程学报2010年4月R eferences[1] V.V.Ivanovskaya,G.Seifert.[J].Solid State Commun,2004,130:175~180.[2] P. C.Klipstein,R.H.Friend.[J].J.Phys.C,1984,17:2713.[3] D.L.Greenawa,R.Nit sche.[J].J.Phys.Chem.Solids,1965,26:1445.[4] C.H.Chen,W.Fabian,F. C.Brown,et al.[J].Phys.Rev.B,1980,21:615[5] Barry.J.J,Hughes.H.P,et al.[J].J.Phys.C,1983,16:393.[6] Shepherd. F.R,Williams.P.M.[J].J.Phys.C,1974,7:4416.[7] D.R.Allan,A. A.Kelsey,S.J.Clark,R.J.Angel,G.J.Ackland.[J].Phys.Rev.B,1998,57:5106.[8] G. A.Benesh,A.M.Woolley,C.Umrigar.[J].J.Phys.C,1985,13:1595.[9] C.M.Fang,R. A.de Groot,C.Haas.[J].Phys.Rev.B,1997,56:4455.[10] Z.Y.Wu,G.Ouvrard,S.Lemaux,P.Moreau,P.Gressier,F.Lemoigno.[J].Phys.Rev.Lett.,1996,77:2101.[11] Z.Y.Wu,F.Lemoigno,P.Gressier,et al.[J].Phys.Rev.B54,19996,R:11009.[12] Z.Y.Wu,G.Ouvrard,P.Moreau,C.R.Natoli.[J].Rev.B,1997,55:9508.[13] Sangeeta.Sharma,Tashi.Nautiyal,G.S.Singh,S.Auluck.[J].Phys.Rev.B,1999,59:14833.[14] Ali.Hussian.Reshak,S.Auluck.[J].Phys.Rev.B,2003,68:245113.[15] Abbott EE,K olis J W,Lowhorn ND,Sams W,Tritt TM.[J].Mater Res Soc Symp P,2004,793:295.[16] Carl A.Kukkonen,W.J.Kaiser, E.M.Logot hetis,et al.[J].Phys.Rev.B,1981,24:1691.[17] M.S.Whittingham.[J].Prog.Solid State Chem.,1978,12:41.[18] Z.Mao,R. E.White.[J].J.Power Sources,1993,43:181.[19] P.G.Bruce,M.Y.Saidi.[J].J.Electroanal.Chem.,1992,322:93.[20] A.H.Thompson.[J].Phys.Rev.L,1978,40:1511.[21] C.M.J ulien.[J].Mater.Sci.Eng.R,2003,40:47.[22] Kazuya Suzuki,Osamu Nakamura,Tet suo K ondo,ToshiakiEnoki.[J].J.Phys.Chem.Solids,1996,57:1133.[23] H.Martinez,S. F.Matar,C.Auriel,M.Loudet,G.Pfister2Guillouzo.[J]pd.,1996,245:30.[24] H.Imai,Y.Shimakaua,Y.Kubo.[J].Phys.Rev.B,2001,64:241104.[25] D.Li,X.Y.Qin,J.Zhang,L.Wang,H.J.Li.[J].SolidState Commun,2005,135:237.[26] X.Y.Qin,J.Zhang,D.Li,H.Z.Dong,L.Wang.[J].J.Appl.Phys.,2007,102:073703.[27] J.Zhang,X.Y.Qin,D.Li,H.X.Xin,L.Pan,K.X.Zhang.[J].Journal of Alloys and Compounds,2009,479:816~820.[28] D.Li,X.Y.Qin,J.Liu,H.S.Yang.[J].Phys.Lett.A,2004,328:493.[29] E.W.Ong,M.J.Mc Kelvy,G.Ouvrard,W.S.G launsinger.[J].Chem.Mater,1992,4:14.[30] H.K obayashi,K.Sakashita,M.Sato,T.Nozue,T.Suzuki,T.Kamimura.[J].Physica B,1997,169~171:237.[31] A.N Titov,A.V.Kuranov,V.G.Pleschev.[J].Phys.Rev.B,2001,63:035106.[32] P.C.Klipstein,A.G.Bagnall,W.Y.Liang,et al.[J].J.Phys.C:Solid State Phys.,1981,14:4067.[33] P.C.K lipsteint,R.H.Friend.[J].J.Phys.C:Solid StatePhys.,1987,20:4169.[34] C.J ulien,I.Samaras.[J].Phys.Rev.B,1992,45:13390.(上接第247页)[2] Hongxing Xin,Xiaoying Qin,J unhui Jia,Chunjun Song,Kuanxin Zhang,JianZhang.Thermoelectric properties of Nanocrystalline(Mg12x Zn x)3Sb2fabricated by mechanical alloying [J].Journal of Physics D:Applied Physics,2009,42(90): 165403.[3] Kuanxin Zhang,Xiaoying Qin,Hongxing Xin,Haijin Li,JianZhang.Transport and t hermoelect ric properties of nanocrystal substitutional semiconductor alloys(Mg12x Cd x)3Sb2doped wit h Ag[J].Journal of Alloys and Compounds,2009,484(122):498~504.[4] John H.Slowik.Core excitons in amorphous magnesium alloys[J].Physics Reviews B,1974,10(2):416~431.[5] C.Suryanarayana.Mechanical alloying and milling[J].Progressin Materials Science,2001,46(122):1~184.[6] Brian H.Toby,EXP GU I.a graphical user interface for GSAS[J].Journal of Applied Crystallography,2001,34(2):210~213.[7] rson,R. B.Von Dreele.“General Structure AnalysisSystem(GSAS)”[R].Los Alamos National Laboratory Report LAU R,2004,86~748.[8] Chong Zheng,Roald Hoff mann,Reinhard Nesper,Hans2Georgvon Schnering.Site preferences and bond lengt h differences in CaAl2Si22type Zintl compounds[J].Journal of t he American Chemical Society,1986,108(8):1876~1884.・342・第28卷第2期张 建,等.不同元素替代掺杂化合物M0.04Ti0.96S2(M=Ni,Al,Mg)的热电性质 。