高考数学复习点拨 正余弦函数图象和性质的应用例析

合集下载

艺术生高考数学专题讲义:考点17 三角函数的图象和性质

艺术生高考数学专题讲义:考点17 三角函数的图象和性质

考点十七 三角函数的图象和性质知识梳理1.正弦函数、余弦函数、正切函数的图象与性质2.正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).3. 三角函数的周期性正弦函数、余弦函数都是周期函数,周期均为2k π,k ∈Z ,最小正周期均为2π;正切函数也是周期函数,周期为k π,k ∈Z ,最小正周期为π.典例剖析题型一 三角函数的定义域和值域 例1 函数y =cos x -32的定义域为________. 答案 ⎣⎡⎦⎤2k π-π6,2k π+π6(k ∈Z ) 解析 ∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 变式训练 函数y =sin x -cos x 的定义域为________.答案 ⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+5π4,k ∈Z解析 要使函数有意义,必须有sin x -cos x ≥0,即sin x ≥cos x ,同一坐标系中作出y =sin x ,y =cos x ,x ∈[0,2π]的图象如图所示. 结合图象及正、余弦函数的周期是2π知,函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π+π4≤x ≤2k π+5π4,k ∈Z .例2 (1) 函数y =2sin x ⎝⎛⎭⎫π6≤x ≤2π3的值域是________.(2) 函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 答案 (1) [1,2] (2) -22解析 (1) 根据正弦函数图象,可知x =π6时,函数取到最小值1;x =π2时,函数取到最大值2.(2) ∵x ∈⎣⎡⎦⎤0,π2,∴-π4≤2x -π4≤3π4,令y =2x -π4,则sin ⎝⎛⎭⎫2x -π4=sin y 在y ∈⎣⎡⎦⎤-π4,3π4上的最小值为sin ⎝⎛⎭⎫-π4=-22. 变式训练 求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. 解析 令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22.∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫||x ≤π4的最大值为54,最小值为1-22. 解题要点 1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.2.三角函数值域的不同求法 (1)利用sin x 和cos x 的值域直接求;(2)把所给的三角函数式变换成y =A sin(ωx +φ)的形式求值域;(3)把sin x 或cos x 看作一个整体,通过换元,令t =sin x (或t =cos x ),转换成二次函数求值域;(4)利用sin x ±cos x 和sin x cos x 的关系通过换元,令t =sin x +cos x ,转换成二次函数求值域. 题型二 三角函数的单调性例3 (1)函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________. (2) 函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是____________________. 答案 (1) ⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) (2) ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) 解析 (1)由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4,得2k π≤2x -π4≤2k π+π(k ∈Z ), 故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ). (2) 由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).变式训练 若函数f (x )=-cos 2x ,则f (x )的一个递增区间为________. 答案 ⎝⎛⎭⎫0,π2 解析 由f (x )=-cos 2x 知递增区间为⎣⎡⎦⎤k π,k π+π2,k ∈Z ,故只有B 项满足. 解题要点 1.求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;2.求形如y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中ω>0)的单调区间时,要视“ωx +φ”为一个整体,通过解不等式求解.但如果ω<0,那么一定先借助诱导公式将ω化为正数,防止把单调性弄错. 题型三 三角函数的周期性例4 函数f (x )=3sin ⎝⎛⎭⎫x 2-π4,x ∈R 的最小正周期为________. 答案 4π解析 函数f (x )=3sin ⎝⎛⎭⎫x 2-π4的最小正周期为T =2π12=4π. 当堂练习1.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 答案 -22解析 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π4∈⎣⎡⎦⎤-π4,3π4,当2x -π4=-π4,即x =0时,f (x )取得最小值-22. 2.如果函数f (x )=sin(ωx +π6)(ω>0)的两个相邻零点之间的距离为π12,则ω的值为________.答案 12解析 T =π6,ω=2πT =12.3. 函数y =cos x -12的定义域为________.答案 ⎣⎡⎦⎤2k π-π3,2k π+π3,k ∈Z 解析 ∵cos x -12≥0,得cos x ≥12,∴2k π-π3≤x ≤2k π+π3,k ∈Z .4.y =sin(x -π4)的图象的一个对称中心是________.答案 (-3π4,0)解析 令x -π4=k π,k ∈Z 得x =π4+k π,k ∈Z ,于是(-3π4,0)是y =sin(x -π4)的图象的一个对称中心.5.函数f (x )=cos(2x +3π2)(x ∈R ),下面结论不正确的是________.(填序号)① 函数f (x )的最小正周期为π ② 函数f (x )的对称中心是(π2,0)③ 函数f (x )的图象关于直线x =π4对称④ 函数f (x )是偶函数 答案 ④解析 ∵f (x )=cos(2x +3π2)=sin2x (x ∈R ),∴最小正周期T =2π2=π,选项①正确;由2x =k π得x =k π2,k ∈Z ,∴函数f (x )的对称中心为(k π2,0),∴取k =1得选项②正确;由2x =k π+π2得x =k π2+π4,k ∈Z ,∴取k =0得函数f (x )的对称轴为x =π4,∴选项③正确;∵f (x )=sin2x (x ∈R ),∴f (-x )=-f (x ),f (x )为奇函数, ∴选项④不正确.课后作业一、 填空题1.若函数f (x )=sin x +φ3(φ∈[0,2π]) 是偶函数,则φ=________.答案3π2解析 ∵f (x )为偶函数,关于y 轴对称,x =0为其对称轴. ∴x +φ3=π2+k π,令x =0,φ=3k π+32π,当k =0时,φ=32π.2.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为________. 答案 π6解析 由题意得3cos ⎝⎛⎭⎫2×4π3+φ=3cos ⎝⎛⎭⎫2π3+φ+2π=3cos ⎝⎛⎭⎫2π3+φ=0, ∴2π3+φ=k π+π2,k ∈Z , ∴φ=k π-π6,k ∈Z ,取k =0,得|φ|的最小值为π6.3.函数y =cos 2x ,周期为_____,且在⎣⎡⎦⎤0,π2上是________(填“增函数”或“减函数”). 答案 π,减函数解析 因为y =cos 2x 的周期T =2π2=π,而2x ∈[0,π],所以y =cos 2x 在⎣⎡⎦⎤0,π2上为减函数. 4.函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是________. 答案 ⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z )解析 由k π-π2<2x -π3<k π+π2(k ∈Z )得,k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).5.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=________. 答案 π4解析 由题意得周期T =2⎝⎛⎭⎫54π-14π=2π,∴2π=2πω,即ω=1,∴f (x )=sin(x +φ),∴f ⎝⎛⎭⎫π4=sin ⎝⎛⎭⎫π4+φ=±1,f ⎝⎛⎭⎫5π4=sin ⎝⎛⎭⎫5π4+φ=±1.∵0<φ<π,∴π4<φ+π4<54π,∴φ+π4=π2,∴φ=π4.6.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为________. 答案 -22解析 由已知x ∈⎣⎡⎦⎤0,π2,得2x -π4∈⎣⎡⎦⎤-π4,3π4,所以sin ⎝⎛⎭⎫2x -π4∈⎣⎡⎦⎤-22,1,故函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22.7.(2015四川文)下列函数中,最小正周期为π的奇函数是________.(填序号) ①y =sin ⎝⎛⎭⎫2x +π2 ②y =cos ⎝⎛⎭⎫2x +π2 ③y =sin 2x +cos 2x ④y =sin x +cos x 答案 ②解析 ①项,y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,最小正周期为π,且为偶函数,不符合题意; ②项,y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,最小正周期为π,且为奇函数,符合题意; ③项,y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,最小正周期为π,为非奇非偶函数,不符合题意; ④项,y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,最小正周期为2π,为非奇非偶函数,不符合题意. 8.函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为________. 答案 ⎣⎡⎦⎤-32,3 解析 当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3, 即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 9.函数y =3sin(2x +π4)的最小正周期为________.答案 π 解析 T =2π2=π.10.函数f (x )=cos(2x -π4)+3在[-π2,π2]上的单调递减区间为________.答案 [-π2,-3π8]∪[π8,π2]解析 由2k π≤2x -π4≤2k π+π得k π+π8≤x ≤k π+5π8,k ∈Z .∵x ∈[-π2,π2],∴取k =0得f (x )在[-π2,π2]上的单调递减区间为[π8,π2];取k =-1得f (x )在[-π2,π2]上的单调递减区间为[-π2,-3π8].∴f (x )在[-π2,π2]上的单调递减区间为[-π2,-3π8]和[π8,π2]. 11.函数y =sin(x +π4)的对称中心为________.答案 (k π-π4,0),k ∈Z二、解答题12.已知函数f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间⎣⎡⎦⎤0,π2上的单调性. 解析 (1)f (x )=4cos ωx ·sin ⎝⎛⎭⎫ωx +π4 =22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx )+ 2 =2sin ⎝⎛⎭⎫2ωx +π4+ 2. 因为f (x )的最小正周期为π,且ω>0, 从而有2π2ω=π,故ω=1.(2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x +π4+ 2. 若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f (x )单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f (x )单调递减. 综上可知,f (x )在区间⎣⎡⎦⎤0,π8上单调递增,在区间⎣⎡⎦⎤π8,π2上单调递减.13.(2015北京文)已知函数f (x )=sin x -23sin 2x2.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解 (1)因为f (x )=sin x +3cos x - 3.=2sin ⎝⎛⎭⎫x +π3- 3. 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3时,所以π3≤x +π3≤π.当x +π3=π,即x =2π3时,f (x )取得最小值.所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。

【高三数学专题复习】三角函数图像性质(含解析)

【高三数学专题复习】三角函数图像性质(含解析)

专题2 三角函数的图象和性质【老师预测】(1) 三角函数的图象和性质是历年高考中的必考知识点,在高考中,客观题和解答题均会出现,大多以中、低档题为主,主要集中考查三角函数的周期、图象、单调性、值域或最值几个方面,解决此类问题,要求学生熟练地掌握三角函数的图象及其性质,避免失分。

(2)函数sin()y A x ωϕ=+的图象和性质是高考中的必考知识点,在高考中,主要集中考查图象之间的平移伸缩变换、由图象求函数解析式以及利用正余弦型函数解决实际问题为主,常与三角函数的性质、三角恒等变换、向量结合起来综合考查,需多加强数形结合思想的应用意识。

【知识精讲】一、用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫3π2,0,(2π,1). 二、正弦函数sin y x =,余弦函数cos y x =,正切函数tan y x =的图象与性质三、函数sin()y A x ωϕ=+的图象与性质 1.函数sin()y A x ωϕ=+的图象的画法与变换 (1)变换作图法由函数sin y x =的图象通过变换得到sin()y A x ωϕ=+(A >0,ω>0)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.如下图.(2)五点作图法找五个关键点,分别为使y 取得最小值、最大值的点和曲线与x 轴的交点.其步骤为: ①先确定最小正周期T =2ωπ,在一个周期内作出图象;②令=X x ωϕ+,令X 分别取0,2π,π,322ππ,,求出对应的x 值,列表如下:由此可得五个关键点;③描点画图,再利用函数的周期性把所得简图向左右分别扩展,从而得到sin()y A x ωϕ=+的简图. 2.函数sin()y A x ωϕ=+(A >0,ω>0)的性质(1)奇偶性:=k ϕπ时,函数sin()y A x ωϕ=+为奇函数;=2k ϕππ+时,函数sin()y A x ωϕ=+为偶函数.(2)周期性:sin()y A x ωϕ=+存在周期性,其最小正周期为T =2ωπ.(3)单调性:根据y =sin t 和t =x ωϕ+的单调性来研究,由+22,22k x k k ωϕππ-π≤+≤+π∈Z 得单调增区间;由+22,22k x k k ωϕπ3ππ≤+≤+π∈Z 得单调减区间. (4)对称性:利用y =sin x 的对称中心为(,0)()k k π∈Z 求解,令x k k ωϕ+=π(∈)Ζ,求得x .利用y =sin x 的对称轴为()2x k k π=π+∈Z 求解,令+2x k k ωϕπ+=π(∈)Ζ,得其对称轴. 3.函数sin()y A x ωϕ=+(A >0,ω>0)的物理意义当函数sin()y A x ωϕ=+(A >0,ω>0,[0,)x ∈+∞)表示一个简谐振动量时,则A 叫做振幅,T =2ωπ叫做周期,f =12πT ω=叫做频率,x ωϕ+叫做相位,x =0时的相位ϕ叫做初相. 【典例精练】考点一 三角函数的定义域例1.函数y =tan ⎝⎛⎭⎫2x -π4的定义域为________________. 【解析】由2x -π4≠k π+π2,k ∈Z ,得x ≠k π2+3π8,k ∈Z ,故所求定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠k π2+3π8,k ∈Z . 故答案为:⎩⎨⎧x ⎪⎪⎭⎬⎫x ≠k π2+3π8,k ∈Z 例2.求函数y =lg(sin 2x )+9-x 2的定义域.【解析】由⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3.∴-3≤x <-π2或0<x <π2.∴函数y =lg(sin 2x )+9-x 2的定义域为⎣⎡⎭⎫-3,-π2∪⎝⎛⎭⎫0,π2. 【方法点睛】(1)应用正切函数y =tan x 的定义域求函数y =A tan(ωx +φ)的定义域,要注意本身的要求; (2)求复杂函数的定义域时转化为求解简单的三角不等式. 考点二 三角函数的值域或最值例3..已知函数f (x )=sin ⎝⎛⎭⎫x +π6,其中x ∈⎣⎡⎦⎤-π3,a ,若f (x )的值域是⎣⎡⎦⎤-12,1,则实数a 的取值范围是________.【解析】由x ∈⎣⎡⎦⎤-π3,a ,知x +π6∈⎣⎡⎦⎤-π6,a +π6. ∵x +π6∈⎣⎡⎦⎤-π6,π2时,f (x )的值域为⎣⎡⎦⎤-12,1, ∴由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.故答案为:⎣⎡⎦⎤π3,π例4.求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值.【解析】令t =sin x . ∵|x |≤π4∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,当t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. 【方法点睛】三角函数值域或最值的3种求法 (1)直接法:直接利用sin x 和cos x 的值域求解;(2)化一法:把所给三角函数化为y =A sin(ωx +φ)+k 的形式,由正弦函数单调性写出函数的值域; (3)换元法:把sin x 、cos x 、sin x cos x 或sin x ±cos x 换成t ,转化为二次函数来求. 考点三 三角函数的图象与性质例5.若函数f (x )=sin ⎝⎛⎭⎫12x +θ-3cos ⎝⎛⎭⎫12x +θ⎝⎛⎭⎫|θ|<π2的图象关于原点对称,则角θ=________. 【解析】∵f (x )=2sin ⎝⎛⎭⎫12x +θ-π3,且f (x )的图象关于原点对称 ∴f (0)=2sin ⎝⎛⎭⎫θ-π3=0,即sin ⎝⎛⎭⎫θ-π3=0 ∴θ-π3=k π(k ∈Z),即θ=π3+k π(k ∈Z).又|θ|<π2∴θ=π3.故答案为:π3例6.已知f (x )=2sin ⎝⎛⎭⎫x +π4,x ∈[0,π],则f (x )的单调递增区间为________. 【解析】由-π2+2k π≤x +π4≤π2+2k π,k ∈Z ,得-3π4+2k π≤x ≤π4+2k π,k ∈Z.又∵x ∈[0,π]∴f (x )的单调递增区间为⎣⎡⎦⎤0,π4. 故答案为:⎣⎡⎦⎤0,π4 例7.若函数f (x )=sin ωx (ω>0)在区间⎣⎡⎦⎤0,π3上单调递增,在区间⎣⎡⎦⎤π3,π2上单调递减,则ω=________. 【解析】∵f (x )=sin ωx (ω>0)过原点∴当0≤ωx ≤π2,即0≤x ≤π2ω时,y =sin ωx 是增函数;当π2≤ωx ≤3π2,即π2ω≤x ≤3π2ω时,y =sin ωx 是减函数. 由f (x )=sin ωx (ω>0)在⎣⎡⎦⎤0,π3上单调递增,在⎣⎡⎦⎤π3,π2上单调递减知,π2ω=π3. ∴ω=32.故答案为:32【方法点睛】1.函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.2.求三角函数单调区间的2种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用基本三角函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间. 考点四 函数y =A sin(ωx +φ)的图象与变换例8.将函数y =sin(2x +φ)(0<φ<π)的图象沿x 轴向左平移π8个单位长度,得到函数y =f (x )的图象,若函数y =f (x )的图象过原点,则φ=________.【解析】由题意可得f (x )=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ,因为函数y =f (x )的图象过原点,所以sin ⎝⎛⎭⎫π4+φ=0,所以π4+φ=k π(k ∈Z),即φ=k π-π4(k ∈Z),又因为0<φ<π,所以φ=3π4. 故答案为:3π4.例9.将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度后,所得函数为偶函数,则φ=________.【解析】将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移φ个单位长度后,所得函数为 3sin 2()3y x πϕ⎡⎤=-+⎢⎥⎣⎦ 3sin ⎝⎛⎭⎫2x +π3-2φ. ∵所得的函数为偶函数∴π3-2φ=k π+π2(k ∈Z),解得φ=-k π2-π12(k ∈Z) ∵0<φ<π2∴k =-1,得φ=5π12.故答案为:5π12.【方法点睛】函数y =A sin(ωx +φ)(A >0,ω>0)的图象的两种作法【注】 平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 考点五 求函数y =A sin(ωx +φ)的解析式例10.已知函数f (x )=A sin(ωx +φ)的部分图象如图所示,则f ⎝⎛⎭⎫π2=________.【解析】由题图知A =1,T 2=π3-⎝⎛⎭⎫-π6=π2,所以T =π=2πω,得ω=2,又f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+φ=0,所以φ=-2π3+2k π(k ∈Z)或φ=π3+2k π(k ∈Z)(舍去,因为f (0)<0),所以f (x )=sin ⎝⎛⎭⎫2x -2π3,故f ⎝⎛⎭⎫π2=sin ⎝⎛⎭⎫π-2π3=32. 故答案为:32. 例11.设函数y =sin ⎝⎛⎭⎫ωx +π3(0<x <π),当且仅当x =π12时,y 取得最大值,则正数ω的值为______. 【解析】∵0<x <π,ω>0 ∴ωx +π3∈⎝⎛⎭⎫π3,ωπ+π3, 又∵函数当且仅当x =π12时取得最大值∴⎩⎨⎧ωπ+π3≤5π2,πω12+π3=π2,解得ω=2.故答案为:2.【方法点睛】确定y =A sin(ωx +φ)+b (A >0,ω>0)中参数的方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:作业:【名校新题】一、填空题1.(2019·常州第一中学高三月考)将函数sin 26y x π⎛⎫=+⎪⎝⎭的图象向右平移(0)2πϕϕ<<个单位后,得到函数()f x 的图像,若函数()f x 是偶函数,则ϕ的值为____. 【解析】由题意,将函数sin 26y x π⎛⎫=+⎪⎝⎭的图象向右平移(0)2πϕϕ<<个单位后,得到函数()()sin 2sin 2266f x x x ππϕϕ⎡⎤⎛⎫=-+=-+ ⎪⎢⎥⎣⎦⎝⎭的图象,若函数()f x 是偶函数,则262k ππϕπ-+=+,即26k ππϕ=--,k Z ∈,所以3πϕ=, 故答案为:3π.2.(2019·南京二模)若函数()()()2sin 0,0f x x ωϕωϕπ=+><<的图象经过点,26π⎛⎫⎪⎝⎭,且相邻两条对称轴间的距离为2π,则4f π⎛⎫⎪⎝⎭的值为______. 【解析】因为相邻两条对称轴间的距离为2π,所以2==2.ππωω∴,所以()()2sin 2f x x ϕ=+. 因为函数的图象经过点,26π⎛⎫⎪⎝⎭,所以sin(=10,36ππϕϕπϕ+<<∴=Q ),.所以()f x =2sin(2)6x π+,所以()2sin()426f πππ=+=3.(2019·高邮期初模拟)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.【解析】0x πQ ≤≤193666x πππ∴≤+≤由题可知3336262x x ,ππππ+=+=,或5362x ππ+=解得4x ,99ππ=,或79π故有3个零点. 故答案为:3.4.(2018·江苏高考真题)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是________.【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 故答案为:6π-. 5.(2019·启东中学开学考试)已知函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-,则ω的最小值等于____.【解析】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-,而x ω的取值范围是[]34ωπωπ-,,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,∴232k ωπππ-≤-+,且 242k ωπππ≥-+,k Z ∈, ∴362k ω-≤,82k ω≥-,k Z ∈, ∵0>ω, ∴ω的最小值等于32, 故答案为:32. 6.(2019·高邮开学考试)设*N ω∈且10ω≤则使函数sin y x ω=在区间,43ππ⎡⎤⎢⎥⎣⎦上不单调的ω的个数是______.【解析】由于函数在区间,43ππ⎡⎤⎢⎥⎣⎦上不单调,故在区间(,)43ππ上有对称轴,由sin y x ω=,有πππ2π,(),()2k x k k Z x k Z ωω+=+∈=∈,故ππππ2,()43k k Z ω+<<∈,由于0>ω,故有42,()332k k Z k ωω<+⎧⎪∈⎨>+⎪⎩,即3342,()0102k k k Z ωω+<<+∈<≤∴Q 1,2k =,求得5,8,9ω=. 故答案为:3.7.(2019·苏锡常第二次调研)函数()cos()(0)3f x x πωω=->的图像关于直线2x π=对称,则ω的最小值为_______.【解析】因为函数()cos (0)3f x x πωω⎛⎫=-> ⎪⎝⎭的图像关于直线2x π=对称, 所以cos 123ππω⎛⎫⨯-=± ⎪⎝⎭,所以()23k k Z ππωπ⨯-=∈. 解得:()223k k Z ω=+∈,又0>ω, 所以当0k =时,ω最小且为23.故答案为:23.8.(2019·常州期末)已知函数f(x)=sin(ωx +φ)(ω>0,φ∈R)是偶函数,点(1,0)是函数y =f(x)图象的对称中心,则ω最小值为________.【解析】∵函数f (x )=sin (ωx +φ)(ω>0,φ∈R )是偶函数, ∴φ=k 1π+π2,k 1∈Z ,∵点(1,0)是函数y =f (x )图象的对称中心 ∴sin (ω+φ)=0,可得ω+φ=k 2π,k 2∈Z , ∴ω=k 2π﹣φ=(k 2﹣k 1)π﹣π2.又ω>0,所以当k 2﹣k 1=1时,ω的最小值为π2. 故答案为:π2.9.(2019·镇江考前模拟)若函数()2sin()f x x ωϕ=+ (01ω<<,02πϕ<<)的图像过点,且关于点(2,0)-对称,则(1)f -=_______.【解析】函数()()2sin f x x ωϕ=+的图像过点( 2sin ϕ∴=sin ϕ=02πϕ<<Q 3πϕ∴=又函数图象关于点()2,0-对称 2sin 203πω⎛⎫∴-+= ⎪⎝⎭,即:23k πωπ-+=,k Z ∈ 126k πωπ∴=-+,k Z ∈01ω<<Q 6πω∴=()2sin 63f x x ππ⎛⎫∴=+⎪⎝⎭,()12sin 2sin 1636f πππ⎛⎫∴-=-+== ⎪⎝⎭故答案为:1.10.(2019·南通3月联考)已知角ϕ的终边经过点(12)P -,,函数()sin()(0)f x x ωϕω=+>图象的相邻两条对称轴之间的距离等于π3,则()π12f 的值为____.【解析】角ϕ终边经过点()1,2P -,则sin5ϕ==-,cos 5ϕ==∵()f x 两条相邻对称轴之间距离为3π∴23T π=,即223T ππω== ∴3ω=,即()()sin 3f x x ϕ=+sin sin cos cos sin 12444f ππππϕϕϕ⎛⎛⎫⎛⎫∴=+=+== ⎪ ⎪ ⎝⎭⎝⎭⎝⎭故答案为:. 11.(2019·南京一模)设函数π()sin()3f x x ω=+,其中0>ω.若函数()f x 在[]0,2π上恰有2个零点,则ω的取值范围是________.【解析】()f x 取零点时x 满足条件()3k x k Z ππωω=-+∈,当0x >时的零点从小到大依次为 123258,,333x x x πππωωω===,所以满足523823ππωππω⎧≤⎪⎪⎨⎪>⎪⎩ ,解得:54,63ω⎡⎫∈⎪⎢⎣⎭ 故答案为:54,63⎡⎫⎪⎢⎣⎭. 12.(2018·无锡期中)已知定义在区间[,]44ππ-上的函数()2sin cos (0)f x a x x b a =+<的最大值为4,最小值为52,则________.a b ⋅= 【解析】因为()()2sin cos sin2f x a x x bf x a x b =+=+,x ,44ππ⎡⎤∈-⎢⎥⎣⎦, 所以2x ,22ππ⎡⎤∈-⎢⎥⎣⎦,()[],f x a b a b ∈+-+, 从而35394.2131644a a b ab a b b ⎧=-⎧⎪+=⎪⎪∴=-⎨⎨⎪⎪-+==⎩⎪⎩, 故答案为:3916-. 13.(2019·盐城期中)若函数()sin3(01)f x x m m =-<<的所有正零点构成公差为d (d >0)的等差数列,则d =_______.【解析】设第一个正零点为0x ,则第三个正零点为02x d +,由题意得00π3(2)3π.6x d x d +-=∴= 故答案为:6π.14.(2019·徐州期中)已知函数()sin()f x x π=-223,若12()()4f x f x ⋅=-,且[]12,,x x ππ∈-,则12x x -的最大值为______.【解析】1212()()2sin(2)2sin(2)433f x f x x x ππ⋅=-⨯-=-,12sin(2)sin(2)133x x ππ-⨯-=-令1sin(2)3x π-=1,2sin(2)13x π-=-,则11(2)223x k πππ=++,21(2)223x n πππ=-+.∴12x x -=1(22)2k n πππ-+=1[2()]2k n ππ-+=1(2)2m ππ+,m ,n ,k 都是整数∵[]12,,x x ππ∈- ∴[]122,2x x ππ-∈-, ∴12x x -的最大值为13(2)22πππ+=. 故答案为:32π. 15.(2019·苏北四市期末)将函数()πsin 6f x x ω⎛⎫=- ⎪⎝⎭(0>ω)的图象向左平移π3个单位长度后,所得图象关于直线πx =对称,则ω的最小值为______.【解析】将函数f (x )=sin (ωx 6π-)(ω>0)的图象向左平移3π个单位后,可得函数y =sin (ωx 36πωπ+-)的图象,再根据所得图象关于直线x =π对称,可得ωπ36πωπ+-=k π2π+,k ∈Z , ∴当k =0时,ω取得最小值为12,故答案为:12.16.(2019·海门第二次调研)将函数f(x)=sin2x 的图像向右平移π6个单位,得到函数g(x)的图像,则函数g(x)在区间[0,π2]上的值域为_____________. 【解析】由题得y=g (x )=sin2(x −π6)=sin(2x −π3), 因为0≤x ≤π2,∴0≤2x ≤π,∴−π3≤2x −π3≤2π3,所以−√32≤sin(2x −π3)≤1.所以函数y=g(x)的值域为[−√32,1].故答案为:[−√32,1].17.(2018·江苏泰州中学高三月考)将sin 2y x =的图像向右平移ϕ单位(0ϕ>),使得平移后的图像仍过点(3π,则ϕ的最小值为__________.【解析】将sin 2y x =的图像向右平移ϕ单位(0ϕ>)得到sin 2()y x ϕ=-,代入点(3π得:2sin(2)23πϕ=- ,因为0ϕ>,所以当22=33ππϕ-时,第一个正弦值为2的角,此时6π=ϕ. 故答案为:6π. 18.(2019·常州期中)将函数f(x)=sin2x 的图象向右平移φ(0<φ<π2)个单位后得到函数g(x)的图象,若对满足|f(x 1)−g(x 2)|=2的x 1、x 2有|x 1−x 2|min =π3,则φ=______. 【解析】因为函数f(x)=sin2x 的周期为π,函数f(x)=sin2x 的图象向右平移φ(0<φ<π2)个单位后, 得到函数g(x)sin(2x −2φ)的图象.满足|f(x 1)−g(x 2)|=2的可知,f (x 1)、g(x 2)一个取最大值一个取最小值 因为x 1−x 2|min =π3, 若x 1=π4,x 2=7π12,f(x)在x 1=π4取最大值,g(x)在x 2=7π12取得最小值,sin(2×7π12−2φ)=−1, 此时φ=−π6,不合题意, x 1=3π4,x 2=5π12, f(x)在x 1=3π4取最小值,g(x)在x 2=5π12,取得最大值,sin(2×5π12−2φ)=1,此时φ=π6,满足题意.故答案为:π6.二、解答题19.(2019·扬州调研)已知函数f (x )=1+3cos 2x -2sin 2⎝⎛⎭⎫π4-x . (1)求f (x )的最小正周期和单调递减区间;(2)若方程f (x )-m =0在区间⎣⎡⎦⎤π4,π上有两个不同的实数解,求实数m 的取值范围.【解析】(1)∵f (x )=1+3cos 2x -2sin 2⎝⎛⎭⎫π4-x =3cos 2x +cos ⎝⎛⎭⎫π2-2x =3cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x +π3, ∴T =2π2=π.由π2+2k π≤2x +π3≤3π2+2k π,k ∈Z ,得π12+k π≤x ≤7π12+k π,k ∈Z. ∴f (x )的单调递减区间为⎣⎡⎦⎤π12+k π,7π12+k π(k ∈Z). (2)由题意知,函数y =f (x )在区间⎣⎡⎦⎤π4,π上的图象与直线y =m 有两个不同的交点. 由(1)知,函数f (x )在⎣⎡⎦⎤π4,7π12上单调递减,在⎣⎡⎦⎤7π12,π上单调递增, ∴f (x )min =f ⎝⎛⎭⎫7π12=-2, 又f ⎝⎛⎭⎫π4=1,f (π)=3,∴当-2<m ≤1时,函数y =f (x )在区间⎣⎡⎦⎤π4,π上的图象与直线y =m 有两个不同的交点,即方程f (x )-m =0在区间⎣⎡⎦⎤π4,π上有两个不同的实数解. ∴实数m 的取值范围为(-2,1].20.(2019·连云港调研)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的最小正周期为π,点P ⎝⎛⎭⎫π6,2为其图象上一个最高点. (1)求f (x )的解析式;(2)将函数f (x )图象上所有点都向左平移π3个单位长度,得到函数g (x )的图象,求g (x )在区间⎝⎛⎭⎫π2,π上的值域.【解析】(1)∵函数f (x )的最小正周期为π. ∴2πω=π,解得ω=2. 又点P ⎝⎛⎭⎫π6,2为其图象上一个最高点, ∴A =2,sin ⎝⎛⎭⎫π3+φ=1, 又-π2<φ<π2,所以φ=π6,∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)由题意得g (x )=f ⎝⎛⎭⎫x +π3=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3+π6=2sin ⎝⎛⎭⎫2x +5π6,当x ∈⎝⎛⎭⎫π2,π时,2x +5π6∈⎝⎛⎭⎫11π6,17π6, ∴sin ⎝⎛⎭⎫2x +5π6∈⎝⎛⎦⎤-12,1,2sin ⎝⎛⎭⎫2x +5π6∈(-1,2], 故g (x )在区间⎝⎛⎭⎫π2,π上的值域为(-1,2].。

三角函数正余弦函数图像及性质总结复习汇总

三角函数正余弦函数图像及性质总结复习汇总

[ 键入文字 ]课题三角函数的图像及性质1.借助单位圆中的三角函数线推导出引诱公式(π /2 ±α , 的 π±α 正弦、余弦、正切)2.利用单位圆中的三角函数线作出y sin x, xR 的图象,明确图象的形状;教课目的3.依据关系 cos x sin( x) ,作出 ycos x, xR 的图象;24.用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些相关问题;1、正确地用三角函数线表示随意角的三角函数值要点、难点2、作余弦函数的图象。

教课内容一、正弦函数和余弦函数的图象:y=sinxy-5-1 372222-7ox-3-2 -3 -253 4-4-12222y=cosxy-5--2137-32-4-7232x-2-3o25 422-122正弦函数 ysin x 和余弦函数 ycos x 图象的作图方法:五点法:先取横坐标分别为0,,,3, 222的五点,再用圆滑的曲线把这五点连结起来,就获得正弦曲线和余弦曲线在一个周期内的图象。

二、正弦函数y sin x(xR) 、余弦函数y cos x(xR) 的性质 :( 1)定义域 :都是 R 。

( 2)值域 :1、都是1,1 ,2、 ysin x ,当 x2kk Z时, y 取最大值 1;当 x3k Z 时, y 取最小值- 1;2k223、 ycos x ,当 x2kk Z 时, y 取最大值 1,当 x 2kkZ 时, y 取最小值- 1。

例:( 1)若函数 yabsin(3 x) 的最大值为 3,最小值为1,则 a__, b _1622(答: a1);,b 1 或 b21[ 键入文字 ]⑵ 函数 y=-2sinx+10 取最小值时,自变量x 的会合是。

( 3)周期性 :① y sin x 、 ycos x 的最小正周期都是2;② f ( x)Asin(x) 和 f ( x)A cos(x) 的最小正周期都是T2。

高考数学考点17三角函数的性质与应用试题解读与变式(new)

高考数学考点17三角函数的性质与应用试题解读与变式(new)

专题17 三角函数的性质与应用【考纲要求】(1)了解三角函数的周期性;(2)理解正弦函数、余弦函数在区间[]0,2π上的性质(如单调性、最大值和最小值以及与x 轴的交点等);(3)理解正切函数在区间,22ππ⎛⎫- ⎪⎝⎭内的单调性.【命题规律】高考对本部分内容的考查以能力为主,重点考查三角函数的性质(周期性、奇偶性、对称性、单调性、最值等),体现数形结合的思想,函数与方程的思想等的应用,均可能出现选择题、填空题与解答题中,难度中低档为主,主要有两种考查题型:(1)根据三角函数的解析式确定其性质;(2)根据三角函数的性质求相关的参数值(或取值范围).预计2018年高考对三角函数的性质的考查仍会集中在对称性、单调性、周期性和最值问题,体现整体思想的应用.【典型高考试题变式】 (一)三角函数的周期性例1 【2017山东】函数cos2y x x =+最小正周期为( ) A .π2B .2π3C .πD .2π 【答案】C【解析】∵1π2sin 2cos 22sin 2226y x x x ⎛⎫⎛⎫=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,∴2ππ2T ==,故选C . 【方法技巧归纳】求解三角函数的周期性的方法:(1)求三角函数的周期,通常应将函数式化为只有一个函数名,且角度唯一,最高次数为一次的形式,然后借助于常见三角函数的周期来求解.(2)三角函数的最小正周期的求法有:①由定义出发去探求;②公式法:化成sin()y A x ωϕ=+,或tan()y A x ωϕ=+等类型后,用基本结论2||T πω=或||T πω=来确定;③根据图象来判断.【变式1】【例题中的解析式改变了,选择题改为填空题】函数()()21cos2sin f x x x =+的最小正周期是__________. 【答案】2π 【解析】∵()()()2121cos2sin 122cos x f x x x cos x -=+=+⋅()2111cos 41cos 21222x x +⎛⎫=-=- ⎪⎝⎭=11cos 41cos 422244x x ⎛⎫-=- ⎪⎝⎭,∴函数()()21cos2sin f x x x =+的最小正周期是242T ππ==. 【变式2】【例题中的解析式改为了含有参数的解析式,求解问题改为确定参数的值】已知函数()sin 3cos f x kx kx =+的最小正周期是3π,则正数k 的值为______.【答案】6【解析】∵()2sin 3f x kx π⎛⎫=+ ⎪⎝⎭,∴263T k k ππ==⇒==. (二)三角函数的单调性例2 【2015新课标1】函数()f x =cos()x ωϕ+的部分图像如图所示,则()f x 的单调递减区间为( )A .13(,),44k k k Z ππ-+∈B .13(2,2),44k k k Z ππ-+∈ C .13(,),44k k k Z -+∈ D .13(2,2),44k k k Z -+∈ 【答案】D【方法技巧归纳】求解三角函数的单调性的方法:(1)三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.(2)已知三角函数的单调区间求参数的取值范围的三种方法:①子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解;②反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.【变式1】【例题中由图象先求解析式改为由文字条件求解析式,其它形式没改变】已知函数()()2sin 1(0,)f x x ωϕωϕπ=+-><的一个零点是3x π=,6x π=-是()y f x =的图像的一条对称轴,则ω取最小值时, ()f x 的单调增区间是( )A .713,3,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦B .513,3,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦C .212,2,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦D .112,2,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦【答案】B【变式2】【例题中由图象先求解析式改为直接给出解析式,所求改为求某指定区间上的单调区间】函数()()sin 30f x x x x π=-≤≤的单调增区间是_________.【答案】,06π⎡⎤-⎢⎥⎣⎦【解析】因为)3sin(2cos 3sin )(π-=-=x x x x f ,所以增区间为22322πππππ+≤-≤-k x k ,即65262ππππ+≤≤-k x k ,取0=k 可得656ππ≤≤-x ,又0≤≤-x π,故06≤≤-x π,应填答案,06π⎡⎤-⎢⎥⎣⎦. (三)三角函数的奇偶性例3 【2014安徽】若将函数x x x f 2cos 2sin )(+=的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是( )A .8π B.4π C .83π D .43π【答案】C【方法技巧归纳】求解三角函数的奇偶性的策略:(1)判断函数的奇偶性,应先判定函数定义域的对称性,注意偶函数的和、差、积、商仍为偶函数;复合函数在复合过程中,对每个函数而言,“同奇才奇、一偶则偶”.一般情况下,需先对函数式进行化简,再判断其奇偶性;(2)两个常见结论:①若函数()()sin f x A x ωϕ=+为奇函数,则()k k Z ϕπ=∈;若函数()()sin f x A x ωϕ=+为偶函数,则()2k k Z πϕπ=+∈;②若函数()()cos f x A x ωϕ=+为奇函数,则()2k k Z πϕπ=+∈;若函数()()cos f x A x ωϕ=+为偶函数,则()k k Z ϕπ=∈.【变式1】【命题中由先求解析式改为直接给出解析,且由偶函数改为奇函数,所求基本不变】若函数()[]()cos 0,233x f x x ϕπ⎛⎫=+∈ ⎪⎝⎭是奇函数,则ϕ=( )A .2π B .23π C .32π D .53π【答案】C【解析】因为函数()[]()cos 0,233x f x x ϕπ⎛⎫=+∈ ⎪⎝⎭是奇函数,所以()332x k k Z ϕππ+=+∈,所以0k =时,[]30,22πϕπ=∈,故选C . 【变式2】【命题中解析式变为含有初相外的另一参数的非标准正弦型函数,所求解问题没有变】使函数()()()sin f x x x ωθωθ=++,22ππθ⎛⎤∈- ⎥⎝⎦是奇函数,且最小正周期为π,则θ=___.【答案】3π-【解析】函数()()()sin 22f x x x θθ=++=2sin 23x πθ⎛⎫++ ⎪⎝⎭为奇函数,所以3k πθπ+=,即(),3k k Z πθπ=-∈.当0k =时,3πθ=-.(四)三角函数的对称性例4 【2016新课标2】若将函数y =2sin 2x 的图像向左平移12π个单位长度,则平移后图像的对称轴为( )A .x =26k ππ-(k ∈Z )B .x =26k ππ+(k ∈Z )C .x =212k ππ-(k ∈Z ) D .x =212k ππ+(k ∈Z ) 【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移π12个单位长度得函数π2sin 2()12y x =+=π2sin(2)6x +的图像,则平移后函数图像的对称轴为ππ2π,62x k k +=+∈Z ,即ππ,62k x k =+∈Z ,故选B . 【方法技巧归纳】求解三角函数对称性的方法:(1)求函数sin()y A x ωϕ=+的对称中心、对称轴问题往往转化为解方程问题:①由sin y x =的对称中心是(0)k π,,k ∈Z ,所以sin()y A x ωϕ=+的中心,由方程x k ωϕπ+=解出x即可;②因为sin y x =的对称轴是2x k ππ=+,k ∈Z ,所以可由2x k πωϕπ+=+解出x ,即为函数sin()y A x ωϕ=+的对称轴;(3)注意tan y x =的对称中心为1(,0)()2k k Z π∈;(2)对于函数sin()y A x ωϕ=+,其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线0x x =或点()0,0x 是否是函数的对称轴或对称中心时,可通过检验()0f x 的值进行判断.【变式1】【例题由正弦改为余弦,由求对称轴改为求对称中心】将函数π2cos 46y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π12个单位后,得到的图象的一个对称中心为( )A .π,04⎛⎫- ⎪⎝⎭B .π,06⎛⎫- ⎪⎝⎭C .π,03⎛⎫ ⎪⎝⎭D .5π,012⎛⎫⎪⎝⎭【答案】A【解析】将函数2cos 46y x π⎛⎫=+ ⎪⎝⎭向左平移12π个单位后,得到的2cos 42cos 42sin412636y x x x ππππ⎛⎫⎛⎫⎛⎫=++=++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的图象,令4x k π=,求得,4k x k Z π=∈,令1k =-,可得该函数的图象的一个中心对称中心为,04π⎛⎫- ⎪⎝⎭,故选A .【变式2】【由例题求函数的对称轴改为根据函数的对称性求解参数】如果函数()2sin 2y x ϕ=-的图像关于点4,03π⎛⎫⎪⎝⎭中心对称,那么ϕ的最小值为( ) A .6π B .4π C .3π D .2π 【答案】C【解析】由题意,知42sin 203πϕ⎛⎫⨯-= ⎪⎝⎭,得423k πϕπ⨯-=,()83k k Z πϕπ=-+∈,则由条件,知当3k =时,ϕ的最小值为3π,故选C . (五)三角函数的最值例5 【2017课标II 】函数23()sin 4f x x x =-([0,])2x π∈的最大值是____________.【答案】1【解析】化简三角函数的解析式,则()231cos 4f x x x =-+-=21cos 4x x -++=23(cos )12x --+,由[0,]2x π∈可得cos [0,1]x ∈,当3cos x =时,函数()f x 取得最大值1.【方法技巧归纳】求解三角函数的值域(最值)常见的题目类型及求解策略:(1)形如sin cos y a x b x k =++的三角函数化为sin()y A x k ωϕ=++的形式,再利用正弦曲线的知识求最值(值域);(2)形如2sin sin y a x b x k =++的三角函数,可先设sin x t =,化为关于t 的二次函数求值域(最值);(3)形如()sin cos sin cos y a x x b x x c =+±+的三角函数,可先设sin cos t x x =±,化为关于t 的二次函数求值域(最值)。

高三正余弦图像性质知识点

高三正余弦图像性质知识点

高三正余弦图像性质知识点正弦函数和余弦函数是高中数学中的重要内容,也是高三数学中的重点内容之一。

正弦函数和余弦函数的图像性质对于解题和理解三角函数有着至关重要的作用。

下面将介绍高三正余弦图像的性质。

1. 周期性正弦函数和余弦函数都是周期函数,其周期为2π。

这意味着当自变量增加2π时,对应的函数值会重复出现。

因此,我们可以通过观察一个周期内的图像来推导出整个函数的图像。

2. 幅值正弦函数和余弦函数的幅值都是1,即函数值的最大值和最小值之间的差为2。

在图像上表现为函数曲线的纵向长度。

3. 对称性正弦函数是奇函数,而余弦函数是偶函数。

奇函数具有关于原点对称的性质,即f(-x)=-f(x);而偶函数具有关于y轴对称的性质,即f(-x)=f(x)。

这意味着正弦函数的图像关于原点对称,而余弦函数的图像关于y轴对称。

4. 初相位初相位是指函数图像在横坐标方向上的平移。

对于正弦函数,初相位为0;而对于余弦函数,初相位为π/2。

初相位的改变会导致整个图像的平移。

5. 峰值点正弦函数的图像在(0,1)处取得峰值,即最大值;而余弦函数的图像在(0,1)处取得极小值,即最小值。

峰值点与函数值的幅值有关,真正的函数值可以通过幅值与峰值点的乘积得到。

6. 增减性在一个周期内,正弦函数和余弦函数都是多次增减的,即函数的单调性不断变化。

增减的周期为π,即每个π的区间内,函数的单调性会发生变化。

7. 渐进线正弦函数和余弦函数的图像在两个渐进线y=1和y=-1之间无限交替。

这意味着函数的值永远不会超过1和-1。

通过了解和掌握这些高三正余弦图像的性质,我们可以更好地解决和理解与正余弦函数相关的问题。

在考试中,我们可以利用这些性质来简化计算,快速得出结论,并减少失误的可能性。

因此,高三学生在学习正弦函数和余弦函数时,应该重点掌握它们的图像性质,并进行充分的练习。

通过深入理解和灵活运用这些性质,我们可以更好地应对数学考试中与正弦函数和余弦函数相关的问题,提高学习效果。

专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)

专题4.5正弦定理和余弦定理的应用(2021年高考数学一轮复习专题)

专题 正弦定理和余弦定理的应用一、题型全归纳题型一 利用正弦、余弦定理解三角形【题型要点】(1)正、余弦定理的选用①利用正弦定理可解决两类三角形问题:一是已知两角和一角的对边,求其他边或角;二是已知两边和一边的对角,求其他边或角;①利用余弦定理可解决两类三角形问题:一是已知两边和它们的夹角,求其他边或角;二是已知三边求角.由于这两种情形下的三角形是唯一确定的,所以其解也是唯一的. (2)三角形解的个数的判断已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.【例1】 (2020·广西五市联考)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =1,b =3,A =30°,B 为锐角,那么A ①B ①C 为( ) A .1①1①3 B .1①2①3 C .1①3①2D .1①4①1【解析】:法一:由正弦定理a sin A =b sin B ,得sin B =b sin A a =32.因为B 为锐角,所以B =60°,则C =90°,故A ①B ①C =1①2①3,选B.法二:由a 2=b 2+c 2-2bc cos A ,得c 2-3c +2=0,解得c =1或c =2.当c =1时,①ABC 为等腰三角形,B =120°,与已知矛盾,当c =2时,a <b <c ,则A <B <C ,排除选项A ,C ,D ,故选B.【例2】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a sin A -b sin B =4c sin C ,cos A =-14,则bc =( )A .6B .5C .4D .3【解析】选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc =-14,得bc=6.故选A. 【例3】(2020·济南市学习质量评估)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且2c +a =2b cos A . ①求角B 的大小;①若a =5,c =3,边AC 的中点为D ,求BD 的长.【解析】 (1)选A.由题意及正弦定理得,b 2-a 2=-4c 2,所以由余弦定理得,cos A =b 2+c 2-a 22bc =-3c 22bc=-14,得bc=6.故选A. (2)①由2c +a =2b cos A 及正弦定理,得2sin C +sin A =2sin B cos A , 又sin C =sin(A +B )=sin A cos B +cos A sin B ,所以2sin A cos B +sin A =0, 因为sin A ≠0,所以cos B =-12,因为0<B <π,所以B =2π3.①由余弦定理得b 2=a 2+c 2-2a ·c cos①ABC =52+32+5×3=49,所以b =7,所以AD =72.因为cos①BAC =b 2+c 2-a 22bc =49+9-252×7×3=1114,所以BD 2=AB 2+AD 2-2·AB ·AD cos①BAC =9+494-2×3×72×1114=194,所以BD =192.题型二 判断三角形的形状【题型要点】判定三角形形状的两种常用途径【易错提醒】“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.【例1】(2020·蓉城名校第一次联考)设①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B=a sin A ,则①ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .不确定【解析】 (1)法一:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a 即sin A =1,故A =π2,因此①ABC 是直角三角形.法二:因为b cos C +c cos B =a sin A ,所以sin B cos C +sin C cos B =sin 2 A ,即sin(B +C )=sin 2 A ,所以sin A =sin 2 A ,故sin A =1,即A =π2,因此①ABC 是直角三角形.【例2】在①ABC 中,若c -a cos B =(2a -b )cos A ,则①ABC 的形状为 .【解析】因为c -a cos B =(2a -b )cos A ,所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A , 所以sin(A +B )-sin A cos B =2sin A cos A -sin B cos A ,故cos A (sin B -sin A )=0, 所以cos A =0或sin A =sin B ,A =π2或A =B ,故①ABC 为等腰或直角三角形.题型三 与三角形面积有关的问题命题角度一 计算三角形的面积【题型要点】1.①ABC 的面积公式(1)S ①ABC =12a ·h (h 表示边a 上的高).(2)S ①ABC =12ab sin C =12ac sin B =12bc sin A .(3)S ①ABC =12r (a +b +c )(r 为内切圆半径).2.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.【例1】(2019·高考全国卷Ⅰ)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b =6,a =2c ,B =π3,则①ABC的面积为 .【解析】 (1)法一:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以①ABC 的面积S =12ac sin B =12×43×23×sin π3=6 3.法二:因为a =2c ,b =6,B =π3,所以由余弦定理b 2=a 2+c 2-2ac cos B ,得62=(2c )2+c 2-2×2c ×c cos π3,得c =23,所以a =43,所以a 2=b 2+c 2,所以A =π2,所以①ABC 的面积S =12×23×6=6 3.【例2】(2020·福建五校第二次联考)在①ABC 中,A ,B ,C 所对的边分别为a ,b ,c ,已知a 2+b 2-c 2=3ab ,且ac sin B =23sin C ,则①ABC 的面积为 .【解析】因为a 2+b 2-c 2=3ab ,所以由余弦定理得cos C =a 2+b 2-c 22ab =3ab 2ab =32,又0<C <π,所以C =π6.因为ac sin B =23sin C ,所以结合正弦定理可得abc =23c ,所以ab =2 3.故S ①ABC =12ab sin C=12×23sin π6=32. 命题角度二 已知三角形的面积解三角形【题型要点】已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解.【提示】正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用. 【例3】(2020·湖南五市十校共同体联考改编)已知a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,(3b -a )cos C =c cos A ,c 是a ,b 的等比中项,且①ABC 的面积为32,则ab = ,a +b = . 【解析】 因为(3b -a )cos C =c cos A ,所以利用正弦定理可得3sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sinB .又因为sin B ≠0,所以cos C =13,则C 为锐角,所以sin C =223.由①ABC 的面积为32,可得12ab sin C =32,所以ab =9.由c 是a ,b 的等比中项可得c 2=ab ,由余弦定理可得c 2=a 2+b 2-2ab cos C ,所以(a +b )2=113ab =33,所以a +b =33.【例4】(2020·长沙市统一模拟考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a sin(A +B )=c sin B +C2.(1)求A ;(2)若①ABC 的面积为3,周长为8,求a .【解析】:(1)由题设得a sin C =c cos A 2,由正弦定理得sin A sin C =sin C cos A 2,所以sin A =cos A2,所以2sin A 2cos A 2=cos A 2,所以sin A 2=12,所以A =60°.(2)由题设得12bc sin A =3,从而bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=(b +c )2-12.又a +b +c =8,所以a 2=(8-a )2-12,解得a =134.题型四 三角形面积或周长的最值(范围)问题【题型要点】求有关三角形面积或周长的最值(范围)问题在解决求有关三角形面积或周长的最值(范围)问题时,一般将其转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.【例1】(2020·福州市质量检测)①ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若角A ,B ,C 成等差数列,且b =32. (1)求①ABC 外接圆的直径;(2)求a +c 的取值范围.【解析】:(1)因为角A ,B ,C 成等差数列,所以2B =A +C ,又因为A +B +C =π,所以B =π3.根据正弦定理得,①ABC 的外接圆直径2R =bsin B =32sin π3=1.(2)法一:由B =π3,知A +C =2π3,可得0<A <2π3.由(1)知①ABC 的外接圆直径为1,根据正弦定理得,a sin A =b sin B =c sin C=1, 所以a +c =sin A +sin C =sin A +sin ⎪⎭⎫⎝⎛A -32π=3⎪⎪⎭⎫ ⎝⎛+A A cos 21sin 23=3sin ⎪⎭⎫ ⎝⎛+6πA . 因为0<A <2π3,所以π6<A +π6<5π6.所以12<sin ⎪⎭⎫ ⎝⎛+6πA ≤1,从而32<3sin ⎪⎭⎫ ⎝⎛+6πA ≤3,所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 法二:由(1)知,B =π3,b 2=a 2+c 2-2ac cos B =(a +c )2-3ac ≥(a +c )2-322⎪⎭⎫ ⎝⎛+c a =14(a +c )2(当且仅当a =c 时,取等号),因为b =32,所以(a +c )2≤3,即a +c ≤3,又三角形两边之和大于第三边,所以32<a +c ≤3, 所以a +c 的取值范围是⎥⎦⎤⎝⎛323, 题型五 解三角形与三角函数的综合应用【题型要点】标注条件,合理建模解决三角函数的应用问题,无论是实际应用问题还是三角函数与解三角形相结合的问题,关键是准确找出题中的条件并在三角形中进行准确标注,然后根据条件和所求建立相应的数学模型,转化为可利用正弦定理或余弦定理解决的问题.【例1】 (2020·湖南省五市十校联考)已知向量m =(cos x ,sin x ),n =(cos x ,3cos x ),x ①R ,设函数f (x )=m ·n +12.(1)求函数f (x )的解析式及单调递增区间;(2)设a ,b ,c 分别为①ABC 的内角A ,B ,C 的对边,若f (A )=2,b +c =22,①ABC 的面积为12,求a 的值.【解析】 (1)由题意知,f (x )=cos 2x +3sin x cos x +12=sin ⎪⎭⎫ ⎝⎛+62πx +1.令2x +π6①⎥⎦⎤⎢⎣⎡++ππππk k 22,22-,k ①Z ,解得x ①⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z ,所以函数f (x )的单调递增区间为⎥⎦⎤⎢⎣⎡++ππππk k 6,3-,k ①Z .(2)因为f (A )=sin ⎪⎭⎫⎝⎛+62πA +1=2,所以sin ⎪⎭⎫ ⎝⎛+62πA =1. 因为0<A <π,所以π6<2A +π6<13π6,所以2A +π6=π2,即A =π6.由①ABC 的面积S =12bc sin A =12,得bc =2,又b +c =22,所以a 2=b 2+c 2-2bc cos A =(b +c )2-2bc (1+cos A ),解得a =3-1. 【例2】①ABC 中的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2a -2c cos B . (1)求角C 的大小;(2)求3cos A +sin ⎪⎭⎫⎝⎛+3πB 的最大值,并求出取得最大值时角A ,B 的值. 【解析】:(1)法一:在①ABC 中,由正弦定理可知sin B =2sin A -2sin C cos B ,又A +B +C =π,则sin A =sin(π-(B +C ))=sin(B +C ),于是有sin B =2sin(B +C )-2sin C cos B =2sin B cos C +2cos B sin C -2sin C cos B ,整理得sin B =2sin B cos C ,又sin B ≠0,则cos C =12,因为0<C <π,则C =π3.法二:由题可得b =2a -2c ·a 2+c 2-b 22ac ,整理得a 2+b 2-c 2=ab ,即cos C =12,因为0<C <π,则C =π3.(2)由(1)知C =π3,则B +π3=π-A ,3cos A +sin ⎪⎭⎫⎝⎛+3πB =3cos A +sin(π-A )=3cos A +sin A =2sin ⎪⎭⎫⎝⎛+3πA , 因为A =2π3-B ,所以0<A <2π3,所以π3<A +π3<π,故当A =π6时,2sin ⎪⎭⎫ ⎝⎛+3πA 的最大值为2,此时B =π2.二、高效训练突破 一、选择题1.(2020·广西桂林阳朔三校调研)在①ABC 中,a ①b ①c =3①5①7,那么①ABC 是( ) A .直角三角形 B .钝角三角形 C .锐角三角形D .非钝角三角形【解析】:因为a ①b ①c =3①5①7,所以可设a =3t ,b =5t ,c =7t ,由余弦定理可得cos C =9t 2+25t 2-49t 22×3t ×5t =-12,所以C =120°,①ABC 是钝角三角形,故选B. 2.(2020·河北衡水中学三调)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc ,若sin B sin C =sin 2A ,则①ABC 的形状是( ) A .等腰三角形 B .直角三角形 C .等边三角形D .等腰直角三角形【解析】:在①ABC 中,因为b 2+c 2=a 2+bc ,所以cos A =b 2+c 2-a 22bc =bc 2bc =12,因为A ①(0,π),所以A =π3,因为sin B sin C =sin 2A ,所以bc =a 2,代入b 2+c 2=a 2+bc ,得(b -c )2=0,解得b =c ,所以①ABC 的形状是等边三角形,故选C.3.(2020·河南南阳四校联考)在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b =8,c =3,A =60°,则此三角形外接圆的半径R =( ) A.823 B.1433 C.73D .733【解析】:因为b =8,c =3,A =60°,所以a 2=b 2+c 2-2bc cos A =64+9-2×8×3×12=49,所以a =7,所以此三角形外接圆的直径2R =a sin A =732=1433,所以R =733,故选D. 4.(2020·湖南省湘东六校联考)在①ABC 中,A ,B ,C 的对边分别为a ,b ,c ,其中b 2=ac ,且sin C =2sinB ,则其最小内角的余弦值为( )A .-24 B.24 C.528D .34【解析】:由sin C =2sin B 及正弦定理,得c =2b .又b 2=ac ,所以b =2a ,所以c =2a ,所以A 为①ABC 的最小内角.由余弦定理,知cos A =b 2+c 2-a 22bc =(2a )2+(2a )2-a 22·2a ·2a=528,故选C.5.(2020·长春市质量监测(一))在①ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若b =a cos C +12c ,则角A 等于( ) A .60°B .120°C .45°D .135°【解析】:法一:由b =a cos C +12c 及正弦定理,可得sin B =sin A cos C +12sin C ,即sin(A +C )=sin A cos C+12sin C ,即sin A cos C +cos A sin C =sin A cos C +12sin C ,所以cos A sin C =12sin C ,又在①ABC 中,sin C ≠0,所以cos A =12,所以A =60°,故选A.法二:由b =a cos C +12c 及余弦定理,可得b =a ·b 2+a 2-c 22ab +12c ,即2b 2=b 2+a 2-c 2+bc ,整理得b 2+c 2-a 2=bc ,于是cos A =b 2+c 2-a 22bc =12,所以A =60°,故选A.6.(2020·河南三市联考)已知a ,b ,c 分别为①ABC 三个内角A ,B ,C 的对边,sin A ①sin B =1①3,c =2cos C =3,则①ABC 的周长为( ) A .3+3 3 B .23 C .3+2 3D .3+3【解析】:因为sin A ①sin B =1①3,所以b =3a , 由余弦定理得cos C =a 2+b 2-c 22ab =a 2+(3a )2-c 22a ×3a=32,又c =3,所以a =3,b =3,所以①ABC 的周长为3+23,故选C.7.(2020·湖南师大附中4月模拟)若①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b =2,c =5,①ABC的面积S =52cos A ,则a =( ) A .1 B.5 C.13D .17【解析】:因为b =2,c =5,S =52cos A =12bc sin A =5sin A ,所以sin A =12cos A . 所以sin 2A +cos 2A =14cos 2A +cos 2A =54cos 2A =1.易得cos A =255.所以a 2=b 2+c 2-2bc cos A =4+5-2×2×5×255=9-8=1,所以a =1.故选A. 8.(2020·开封市定位考试)已知①ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,①ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( ) A .10 B .12 C .8+ 3D .8+23【解析】:因为①ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a =2c ,所以由正弦定理得2sin B cosA +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以①ABC 为正三角形,所以①ABC 的周长为3×4=12.故选B.9.(2020·昆明市诊断测试)在平面四边形ABCD 中,①D =90°,①BAD =120°,AD =1,AC =2,AB =3,则BC =( )A. 5B.6C.7D .22【解析】:如图,在①ACD 中,①D =90°,AD =1,AC =2,所以①CAD =60°.又①BAD =120°,所以①BAC =①BAD -①CAD =60°.在①ABC 中,由余弦定理得BC 2=AB 2+AC 2-2AB ·AC cos①BAC =7,所以BC =7.故选C.10.(2020·广州市调研测试)已知①ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,且sin 2A +sin 2B -sin 2Cc =sin A sin Ba cos B +b cos A ,若a +b =4,则c 的取值范围为( )A .(0,4)B .[2,4)C .[1,4)D .(2,4]【解析】:根据正弦定理可得sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin A cos B +cos A sin B ,即sin 2A +sin 2B -sin 2C sin C =sin A sin Bsin (A +B ),由三角形内角和定理可得sin(A +B )=sin C ,所以sin 2A +sin 2B -sin 2C =sin A sin B ,再根据正弦定理可得a 2+b 2-c 2=ab .因为a +b =4,a +b ≥2ab ,所以ab ≤4,(a +b )2=16,得a 2+b 2=16-2ab ,所以16-2ab -c 2=ab ,所以16-c 2=3ab ,故16-c 2≤12,c 2≥4,c ≥2,故2≤c <4,故选B.二、填空题1.在①ABC 中,角A ,B ,C 满足sin A cos C -sin B cos C =0,则三角形的形状为 . 【解析】:由已知得cos C (sin A -sin B )=0,所以有cos C =0或sin A =sin B ,解得C =90°或A =B . 2.(2020·天津模拟)在①ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a ,3c sin B =4a sin C ,则cos B = .【解析】:在①ABC 中,由正弦定理b sin B =c sin C ,得b sin C =c sin B ,又由3c sin B =4a sin C ,得3b sin C =4a sinC ,即3b =4a .因为b +c =2a ,得到b =43a ,c =23a .由余弦定理可得cos B =a 2+c 2-b 22ac =a 2+49a 2-169a 22·a ·23a=-14.3.(2020·河南期末改编)在①ABC 中,B =π3,AC =3,且cos 2C -cos 2A -sin 2B =-2sin B sin C ,则C = ,BC = .【解析】:由cos 2C -cos 2A -sin 2B =-2sin B sin C ,可得1-sin 2C -(1-sin 2A )-sin 2B =-2sin B sin C ,即sin 2A -sin 2C -sin 2B =-2sin B sin C .结合正弦定理得BC 2-AB 2-AC 2=-2·AC ·AB ,所以cos A =22,A =π4,则C =π-A -B =5π12.由AC sin B =BC sin A,解得BC = 2.4.在①ABC 中,A =π4,b 2sin C =42sin B ,则①ABC 的面积为 .【解析】:因为b 2sin C =42sin B ,所以b 2c =42b ,所以bc =42,S ①ABC =12bc sin A =12×42×22=2.5.(2020·江西赣州五校协作体期中改编)在①ABC 中,A =π3,b =4,a =23,则B = ,①ABC 的面积等于 .【解析】:①ABC 中,由正弦定理得sin B =b sin A a =4×sinπ323=1.又B 为三角形的内角,所以B =π2,所以c =b 2-a 2=42-(23)2=2,所以S ①ABC =12×2×23=2 3.6.在①ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,且B 为锐角,若sin A sin B =5c 2b ,sin B =74,S ①ABC =574,则b 的值为 .【解析】:由sin A sin B =5c 2b ①a b =5c 2b ①a =52c ,①由S ①ABC =12ac sin B =574且sin B =74得12ac =5,①联立①,①得a =5,且c =2.由sin B =74且B 为锐角知cos B =34, 由余弦定理知b 2=25+4-2×5×2×34=14,b =14.三 解答题1.(2020·兰州模拟)已知在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a sin B +b cos A =0. (1)求角A 的大小;(2)若a =25,b =2,求边c 的长.【解析】:(1)因为a sin B +b cos A =0,所以sin A sin B +sin B cos A =0,即sin B (sin A +cos A )=0,由于B 为三角形的内角,所以sin A +cos A =0,所以2sin ⎪⎭⎫⎝⎛+4πA =0,而A 为三角形的内角,所以A =3π4. (2)在①ABC 中,a 2=c 2+b 2-2cb cos A ,即20=c 2+4-4c ⎪⎪⎭⎫⎝⎛22-,解得c =-42(舍去)或c =2 2. 2.在①ABC 中,角A ,B ,C 的对边分别为a ,b ,c .(1)若a =3c ,b =2,cos B =23,求c 的值;(2)若sin A a =cos B2b ,求cos B 的值.【解析】:(1)因为a =3c ,b =2,cos B =23,由余弦定理cos B =a 2+c 2-b 22ac ,得23=(3c )2+c 2-(2)22×3c ×c ,即c 2=13.所以c =33.(2)因为sin A a =cos B 2b ,由正弦定理a sin A =b sin B ,得cos B 2b =sin Bb ,所以cos B =2sin B .从而cos 2B =(2sin B )2,即cos 2B =4(1-cos 2B ),故cos 2B =45.因为sin B >0,所以cos B =2sin B >0,从而cos B =255.3.(2020·福建五校第二次联考)在①ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A . (1)求角A 的大小;(2)若a =2,求①ABC 面积的最大值.【解析】:(1)由正弦定理可得,3sin A cos C =2sin B cos A -3sin C cos A , 从而3sin(A +C )=2sin B cos A ,即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0,于是cos A =32,又A 为三角形的内角,所以A =π6. (2)由余弦定理a 2=b 2+c 2-2bc cos A ,得4=b 2+c 2-2bc ×32≥2bc -3bc , 所以bc ≤4(2+3),所以S ①ABC =12bc sin A ≤2+3,故①ABC 面积的最大值为2+ 3.4.(2020·广东佛山顺德第二次质检)在①ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,2b sin C cos A +a sin A =2c sin B .(1)证明:①ABC 为等腰三角形;(2)若D 为BC 边上的点,BD =2DC ,且①ADB =2①ACD ,a =3,求b 的值.【解析】:(1)证明:因为2b sin C cos A +a sin A =2c sin B ,所以由正弦定理得2bc cos A +a 2=2cb ,由余弦定理得2bc ·b 2+c 2-a 22bc +a 2=2bc ,化简得b 2+c 2=2bc ,所以(b -c )2=0,即b =c .故①ABC 为等腰三角形.(2)法一:由已知得BD =2,DC =1,因为①ADB =2①ACD =①ACD +①DAC , 所以①ACD =①DAC ,所以AD =CD =1.又因为cos①ADB =-cos①ADC ,所以AD 2+BD 2-AB 22AD ·BD =-AD 2+CD 2-AC 22AD ·CD ,即12+22-c 22×1×2=-12+12-b 22×1×1,得2b 2+c 2=9,由(1)可知b =c ,得b = 3.法二:由已知可得CD =13a =1,由(1)知,AB =AC ,所以①B =①C ,又因为①DAC =①ADB -①C =2①C -①C =①C =①B , 所以①CAB ①①CDA ,所以CB CA =CA CD ,即3b =b1,所以b = 3.5.(2020·重庆市学业质量调研)①ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知①ABC 的面积为32ac cos B ,且sin A =3sin C .(1)求角B 的大小;(2)若c =2,AC 的中点为D ,求BD 的长.【解析】:(1)因为S ①ABC =12ac sin B =32ac cos B ,所以tan B = 3.又0<B <π,所以B =π3.(2)sin A =3sin C ,由正弦定理得,a =3c ,所以a =6.由余弦定理得,b 2=62+22-2×2×6×cos 60°=28,所以b =27. 所以cos A =b 2+c 2-a 22bc =(27)2+22-622×2×27=-714.因为D 是AC 的中点,所以AD =7.所以BD 2=AB 2+AD 2-2AB ·AD cos A =22+(7)2-2×2×7×⎪⎪⎭⎫⎝⎛147-=13.所以BD =13.。

高考数学必修4总复习《三角函数:三角函数的图像与性质》

高考数学必修4总复习《三角函数:三角函数的图像与性质》

∴y=sin2x+52π为偶函数.
答案:B
4. (教材改编题)函数 f(x)=tanx+π4的单调递增区间为(
)
A. kπ-2π,kπ+π2(k∈Z)
B. (kπ,(k+1)π)(k∈Z)
C. kπ-34π,kπ+4π(k∈Z)
D. kπ-π4,kπ+34π(k∈Z)
(2)求满足 f(x)=0 的 x 的取值;
(3)求函数 f(x)的单调递减区间.
解 (1) 2sin2x-3π>0⇒
sin2x-π3>0⇒2kπ<2x-π3<2kπ+π,
k

Z



π 6
<x<kπ

2 3
π

k

Z.








kπ+π6,kπ+23π,k∈Z.
(2)∵f(x)=0,∴sin 2x-3π =
第五节 三角函数的图像与性质
1. 理解正弦函数、余弦函数、正切函数的图像和性质,会用 “五点法”画正弦函数、余弦函数的简图. 2. 了解周期函数与最小正周期的意义.
1. 周期函数
(1)周期函数的定义
对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值
时,都有 f(x+T)=f(x,) 那么函数f(x)就叫做周期函数. 非零常数T 叫做这个函数
2 2
⇒2x-
π 3
=2kπ+
π 4
或2kπ+
3 4
π,k∈Z⇒x=kπ+
7 24
π或x=kπ+
13 24
π,k∈Z,故x的取值是
x|x=kπ+274π或x=kπ+1234π,k∈Z. (3)令2kπ+π2≤2x-π3<2kπ+π,k∈Z⇒2kπ+56π≤2x<2kπ+43π,

高考数学复习知识点讲解教案第25讲 三角函数的图象与性质

高考数学复习知识点讲解教案第25讲 三角函数的图象与性质

π
− 或0
2
<<
π

2
∴ 函数 = lg sin 2 + 9 −
π
2 的定义域为[−3, − )
2

π
0,
2
.
探究点二 三角函数的值域或最值
例2(1)
[2024·天津和平区期中] 函数 = sin + 3cos
最小值为(
C
π
在区间[0, ]上的
2
)
A. 3
B. 2
C.1
D.2
1.用五点法作正弦函数和余弦函数的简图
(1)
π
,
1
在函数 = sin , ∈ [0,2π]的图象中,五个关键点是: 0,0 ,_______,
2

,
−1
π, 0 ,___________,
2π, 0 .
2
(2)
π
,
0
在函数 = cos , ∈ [0,2π]的图象中,五个关键点是: 0,1 ,_______,
π
2
所以 = − + 2π , ∈ ,
所以cos = cos
π
2
− + 2π = sin =
2 5

5
∈ ,故选A.
(2) 已知函数
3
+
2
___________.
= sin + cos + 2sin cos + 2,则 的最大值为A.π ቚπ−
6
C.
π
ቚ2π−
6
< < π +

,∈

余弦函数图像及性质

余弦函数图像及性质
信号处理
在信号处理领域,余弦函数可以作为基函数用于信号的分解与合成, 如傅里叶变换中的余弦级数展开。
经济学
在经济学中,余弦函数可以用于描述经济周期波动、季节性变化等 现象,为经济政策制定提供理论依据。
05 拓展:复合余弦函数及其 图像性质
复合余弦函数形式
一般形式
y = A·cos(ωx + φ) + k,其中 A、ω、φ、 k 均为常数,且 A ≠ 0,ω > 0。
与正弦函数图像比较
余弦函数与正弦函数的图像形状相似,但相位相差π/2。这意味着余弦函 数的图像相对于正弦函数图像向左或向右移动了π/2个单位。
在同一周期内,正弦函数和余弦函数的波峰和波谷位置互换。具体来说, 正弦函数在π/2处达到波峰,在3π/2处达到波谷;而余弦函数在0处达到 波峰,在π处达到波谷。
有界性
复合余弦函数的值域为 [k - A, k + A]。
单调性
在每个周期内,复合余弦函数 在特定区间内单调递增或单调
递减。
06 总结回顾与思考题
关键知识点总结
余弦函数定义
$y = cos x$,其中$x$为自变量, $y$为因变量,表示单位圆上与 $x$轴正方向夹角为$x$的点的 $y$坐标。
正弦函数和余弦函数的周期性相同,均为2π。因此,它们的图像在长度 上相等,只是相位上有所差异。
03 余弦函数性质分析
值域与定义域
值域
余弦函数的值域为[-1, 1],即函数的 所有取值都落在这个区间内。
定义域
余弦函数的定义域为全体实数,即R。
单调性
余弦函数在整个定义域上不具备 单调性。
在[π, 2π]区间内,余弦函数是单 调递增的。

第7节 余弦定理、正弦定理应用举例--2025年高考数学复习讲义及练习解析

第7节  余弦定理、正弦定理应用举例--2025年高考数学复习讲义及练习解析

第七节余弦定理、正弦定理应用举例测量中的几个有关术语术语名称术语意义图形表示仰角与俯角在目标视线与水平视线(两者在同一铅垂平面内)所成的角中,目标视线在水平视线01上方的叫做仰角,目标视线在水平视线02下方的叫做俯角方位角从某点的指北方向线起按顺时针方向到目标方向线之间的夹角叫做方位角.方位角θ的范围是0°≤θ<360°方向角正北或正南方向线与目标方向线所成的锐角,通常表达为北(南)偏东(西)α(1)北偏东α:(2)南偏西α:坡角与坡比坡面与水平面所成的锐二面角叫坡角(θ为坡角);坡面的垂直高度与水平长度之比叫坡比(坡度),即i =hl=tan θ解三角形应用问题的步骤:1.概念辨析(正确的打“√”,错误的打“×”)(1)东南方向与南偏东45°方向相同.()(2)若从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α=β.()(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.()(4)俯角是铅垂线与目标视线所成的角,其范围为0,π2.()(5)在方向角中,始边一定是南或北,旋转方向一定是顺时针.()答案(1)√(2)√(3)√(4)×(5)×2.小题热身(1)如图所示,设A ,B 两点在河的两岸,一测量者在A 所在的同侧河岸边选定一点C ,测出AC的距离为50m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点间的距离为()A.502m B.503m C.252m D.2522m 答案A解析在△ABC中,由正弦定理得ABsin∠ACB=ACsin∠CBA,又∠CBA=180°-45°-105°=30°,所以AB=AC sin∠ACBsin∠CBA=50×2212=502(m).故选A.(2)(人教A必修第二册6.4.3例10改编)如图所示,为测量某树的高度,在地面上选取A,B两点,从A,B两点分别测得树尖的仰角为30°,45°,且A,B两点之间的距离为60m,则树的高度为()A.(303+30)m B.(153+30)m C.(303+15)m D.(153+15)m 答案A解析在△ABP中,∠APB=45°-30°,所以sin∠APB=sin(45°-30°)=22×32-22×12=6-24,由正弦定理得PB=AB sin30°sin∠APB=60×126-24=30(6+2),所以该树的高度为30(6+2)sin45°=303+30(m).故选A.(3)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2min,从D沿着DC走到C用了3min.若此人步行的速度为每分钟50m,则该扇形的半径为________m.答案507解析连接OC ,在△OCD 中,OD =100,CD =150,∠CDO =60°,由余弦定理可得OC 2=1002+1502-2×100×150×12=17500,解得OC =507.则该扇形的半径为507m.考点探究——提素养考点一测量距离问题例1(2024·重庆模拟)一个骑行爱好者从A 地出发,向西骑行了2km 到达B 地,然后再由B地向北偏西60°骑行了23km 到达C 地,再从C 地向南偏西30°骑行了5km 到达D 地,则A 地到D 地的直线距离是()A .8kmB .37kmC .33kmD .5km答案B解析如图,在△ABC 中,∠ABC =150°,AB =2,BC =23,依题意,∠BCD =90°,在△ABC中,由余弦定理得AC =AB 2+BC 2-2AB ·BC cos ∠ABC =4+12+83×32=27,由正弦定理得sin ∠ACB =AB sin ∠ABC AC=714,在△ACD 中,cos ∠ACD =cos(90°+∠ACB )=-sin ∠ACB =-714,由余弦定理得AD =AC 2+CD 2-2AC ·CD cos ∠ACD =28+25+2×27×5×714=37.所以A 地到D 地的直线距离是37km.故选B.【通性通法】距离问题的类型及解法(1)类型:①两点间既不可达也不可视;②两点间可视但不可达;③两点都不可达.(2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长问题,从而利用正、余弦定理求解.【巩固迁移】1.已知某渔船在渔港O的南偏东60°方向,距离渔港约160海里的B处出现险情,此时在渔港的正上方恰好有一架海事巡逻飞机A接到渔船的求救信号,海事巡逻飞机迅速将情况通知了在C处的渔政船并要求其迅速赶往出事地点施救.若海事巡逻飞机测得渔船B的俯角为68.20°,测得渔政船C的俯角为63.43°,且渔政船位于渔船的北偏东60°方向上.(1)计算渔政船C与渔港O的距离;(2)若渔政船以每小时25海里的速度直线行驶,能否在3小时内赶到出事地点?(参考数据:sin68.20°≈0.93,tan68.20°≈2.50,sin63.43°≈0.89,tan63.43°≈2.00,11≈3.32,13≈3.61)解(1)∵AO⊥OB,∠OBA=68.20°,OB=160,∴AO=OB tan∠OBA≈160×2.50=400,∵AO⊥OC,∠OCA=63.43°,∴OC=OAtan63.43°≈4002.00=200.即渔政船C与渔港O的距离为200海里.(2)由题意知∠OBC=60°+60°=120°,在△OBC中,由余弦定理得OC2=OB2+BC2-2OB·BC cos∠OBC,即40000=25600+BC2+160BC,解得BC=-80-4013(舍去)或BC=-80+4013,即BC≈-80+40×3.61=64.4,∵64.425=2.576<3,∴渔政船以每小时25海里的速度直线行驶,能在3小时内赶到出事地点.考点二测量高度问题例2(1)(2024·江苏南通调研)湖北宜昌三峡大瀑布是国家4A 级景区,也是神农架探秘的必经之地,为了测量湖北宜昌三峡大瀑布的某一处实际高度,李华同学设计了如下测量方案:有一段水平山道,且山道与瀑布不在同一平面内,瀑布底端与山道在同一平面内,可粗略认为瀑布与该水平山道所在平面垂直,在水平山道上A 点位置测得瀑布顶端仰角的正切值为32,沿山道继续走20m ,抵达B 点位置测得瀑布顶端的仰角为π3.已知该同学沿山道行进的方向与他第一次望向瀑布底端的方向所成的角为π3,则该瀑布的高度约为()A .60mB .90mC .108mD .120m答案A解析根据题意作出示意图,其中tan α=32,β=θ=π3,AB =20,在Rt △AOH 中,tan α=OHOA,所以OA =23OH .在Rt △BOH 中,tan β=OH OB ,所以OB =33OH .在△AOB 中,由余弦定理,得OB 2=OA 2+AB 2-2OA ·AB cos θ,即13OH 2=49OH 2+202-2×23OH ×20×12,解得OH =60.所以该瀑布的高度约为60m .故选A.(2)(2023·辽宁协作校联考)山东省滨州市的黄河楼位于蒲湖水面内东南方向的东关岛上,渤海五路以西,南环路以北.整个黄河楼颜色质感为灰红,意味黄河楼气势恢宏,更在气势上体现黄河的宏壮.如图,小张为了测量黄河楼的实际高度AB ,选取了与楼底B 在同一水平面内的两个测量基点C ,D ,现测得∠BCD =30°,∠BDC =95°,CD =116m ,在点D 处测得黄河楼顶A 的仰角为45°,求黄河楼的实际高度.(结果精确到0.1m ,取sin55°=0.82)解由题知,∠CBD =180°-∠BCD -∠BDC =55°,在△BCD 中,由正弦定理得BD sin ∠BCD =CDsin ∠CBD ,则BD =CD sin ∠BCD sin ∠CBD=116×sin30°sin55°=580.82≈70.7m ,在△ABD 中,AB ⊥BD ,∠ADB =45°,所以AB =BD tan ∠ADB =BD ≈70.7m.故黄河楼的实际高度约为70.7m.【通性通法】(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角.(2)在实际问题中,若遇到空间与平面(地面)同时研究的问题,最好画两个图形,一个空间图形,一个平面图形.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题.(4)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.【巩固迁移】2.(2023·安徽蚌埠模拟)圭表是我国古代通过观察记录正午时影子长度的长短变化来确定季节变化的一种天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”).当正午阳光照射在表上时,影子就会落在圭面上,圭面上影子长度最长的那一天定为冬至,影子长度最短的那一天定为夏至.如图是根据蚌埠市(北纬32.92°)的地理位置设计的圭表的示意图,已知蚌埠市冬至正午太阳高度角(即∠ABC )约为33.65°,夏至正午太阳高度角(即∠ADC )约为80.51°.圭面上冬至线和夏至线之间的距离(即BD 的长)为7米,则表高(即AC 的长)约为()A .cos80.51°7tan46.86°B .7tan46.86°sin33.65°C .7sin33.65°sin80.51°sin46.86°D .sin33.65°7sin80.51°答案C解析由图可知∠BAD =∠ADC -∠ABC =80.51°-33.65°=46.86°.在△ABD 中,BDsin ∠BAD=AD sin ∠ABC ,得AD =7sin33.65°sin46.86°.在△ACD 中,AC =AD sin ∠ADC =7sin33.65°sin80.51°sin46.86°.故选C.考点三测量角度问题例3已知在岛A 南偏西38°方向,距岛A 3海里的B 处有一艘缉私艇.岛A 处的一艘走私船正以10海里/小时的速度向岛A 北偏西22°方向行驶,问缉私艇朝何方向以多大速度行驶,恰好用0.5sin38°≈5314,解如图,设缉私艇在C 处截住走私船,D 为岛A 正南方向上一点,缉私艇的速度为x 海里/小时,则BC =0.5x ,AC =5,依题意,∠BAC =180°-38°-22°=120°,由余弦定理可得BC 2=AB 2+AC 2-2AB ·AC cos120°,所以BC 2=49,所以BC =0.5x =7,解得x =14.又由正弦定理得sin ∠ABC =AC sin ∠BAC BC =5×327=5314,所以∠ABC =38°,又∠BAD =38°,所以BC ∥AD .故缉私艇以14海里/小时的速度向正北方向行驶,恰好用0.5小时截住该走私船.【通性通法】(1)测量角度问题的关键是在弄清题意的基础上,画出表示实际问题的图形,并在图形中标出有关的角和距离,再用正弦定理或余弦定理解三角形,最后将解得的结果转化为实际问题的解.(2)方向角是相对于某点而言的,因此在确定方向角时,必须先弄清楚是哪一个点的方向角.【巩固迁移】3.如图所示,在坡度一定的山坡A 处测得山顶上一建筑物CD 的顶端C 对于山坡的斜度为15°,向山顶前进100m 到达B 处,又测得C 对于山坡的斜度为45°,若CD =50m ,山坡对于地平面的坡角为θ,则cos θ=()A .33B .6-2C .3-1D .2-1答案C解析由题意知,∠CAD =15°,∠CBD =45°,所以∠ACB =30°,∠ABC =135°.在△ABC 中,由正弦定理,得AB sin30°=ACsin135°,又AB =100m ,所以AC =1002m .在△ADC 中,∠ADC =90°+θ,CD =50m ,由正弦定理,得AC sin (θ+90°)=CDsin15°,所以cos θ=sin(θ+90°)=AC sin15°CD=3-1.故选C.课时作业一、单项选择题1.如图,两座相距60m 的建筑物AB ,CD 的高度分别为20m ,50m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角为()A .30°B .45°C .60°D .75°答案B解析由已知,得AD =2010m ,AC =305m ,又CD =50m ,所以在△ACD 中,由余弦定理得cos ∠CAD =AC 2+AD 2-CD 22AC ·AD=(305)2+(2010)2-5022×305×2010=600060002=22,又0°<∠CAD <180°,所以∠CAD =45°,所以从顶端A 看建筑物CD 的张角为45°.故选B.2.如图,设A ,B 两点在河的两岸,在A 所在河岸边选一定点C ,测量AC 的距离为50m ,∠ACB =30°,∠CAB =105°,则A ,B 两点间的距离是()A .252mB .502mC .253mD .503m答案A解析在△ABC 中,∠ACB =30°,∠CAB =105°,所以∠ABC =180°-30°-105°=45°,由正弦定理AC sin ∠ABC =AB sin ∠ACB ,得AB =AC sin ∠ACB sin ∠ABC =50sin30°sin45°=50×1222=252(m).故选A.3.(2023·山东济南模拟)如图,一架飞机从A 地飞往B 地,两地相距500km.飞行员为了避开某一区域的雷雨云层,从A 点起飞以后,就沿与原来的飞行方向AB 成12°角的方向飞行,飞行到中途C 点,再沿与原来的飞行方向AB 成18°角的方向继续飞行到终点B 点.这样飞机的飞行路程比原来的路程500km 大约多飞了(sin12°≈0.21,sin18°≈0.31)()A .10kmB .20kmC .30kmD .40km 答案B 解析在△ABC 中,由A =12°,B =18°,得C =150°,由正弦定理,得500sin150°=BC sin12°=AC sin18°,所以50012≈BC 0.21≈AC 0.31,所以AC ≈310km ,BC ≈210km ,所以AC +BC -AB ≈20(km).故选B.4.(2023·安徽六安一中校考模拟预测)《孔雀东南飞》中曾叙“十三能织素,十四学裁衣,十五弹箜篌,十六诵诗书.”箜篌历史悠久、源远流长,音域宽广、音色柔美清澈,表现力强.如图是箜篌的一种常见的形制,对其进行绘制,发现近似一扇形,在圆弧的两个端点A ,B 处分别作切线相交于点C ,测得AC =100cm ,BC =100cm ,AB =180cm ,根据测量数据可估算出该圆弧所对圆心角的余弦值为()A .0.62B .0.56C .-0.56D .-0.62答案A 解析如图所示,设弧AB 对应的圆心是O ,根据题意可知,OA ⊥AC ,OB ⊥BC ,则∠AOB+∠ACB =π,因为AC =100,BC =100,AB =180,则在△ACB 中,cos ∠ACB =AC 2+BC 2-AB 22AC ·BC =1002+1002-18022×100×100=-0.62,所以cos ∠AOB =cos(π-∠ACB )=-cos ∠ACB =0.62.故选A.5.(2023·山西太原模拟)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75°,30°,若河流的宽度BC 为60m ,则此时气球的高度为()A .15(3-1)mB .15(3+1)mC .30(3-1)mD .30(3+1)m 答案B 解析在△ABC 中,∠ACB =30°,∠BAC =75°-30°=45°,BC =60m ,则∠ABC =180°-45°-30°=105°.又sin105°=sin(60°+45°)=32×22+12×22=6+24,BC sin ∠BAC =AC sin ∠ABC ,所以AC =60×6+2422=30(3+1)m ,所以气球的高度为AC sin ∠ACB =30(3+1)×12=15(3+1)m .故选B.6.(2023·福州模拟)我国无人机技术处于世界领先水平,并广泛用于抢险救灾、视频拍摄、环保监测等领域.如图,有一个从地面A 处垂直上升的无人机P ,对地面B ,C 两受灾点的视角为∠BPC ,且tan ∠BPC =13.已知地面上三处受灾点B ,C ,D 共线,且∠ADB =90°,BC =CD =DA =1km ,则无人机P 到地面受灾点D 处的遥测距离PD 的长度是()A .2kmB .2kmC .3kmD .4km 答案B 解析解法一:由题意得BD ⊥平面PAD ,∴BD ⊥PD .设PD =x ,∠PBD =α,∠PCD =β,则tanα=x2,tanβ=x,∴tan∠BPC=tan(β-α)=x-x21+x·x2=xx2+2=13,解得x=1或x=2,又在Rt△PDA中有x>1,∴x=2.故选B.解法二:由题意知BD⊥平面PAD,∴BD⊥PD.设PA=x,则PB2=x2+5,PC2=x2+2.由tan∠BPC=13,可得cos∠BPC=31010,在△PBC中,由余弦定理得x2+5+x2+2-1=2x2+5·x2+2·31010,解得x2=3,进而PD=x2+1=2.故选B.7.大型城雕“商”字坐落在商丘市睢阳区神火大道与南京路交汇处,“商”字城雕有着厚重悠久的历史和文化,它时刻撬动着人们认识商丘、走进商丘的欲望.吴斌同学在今年国庆期间到商丘去旅游,经过“商”字城雕时,他想利用解三角形的知识测量一下该雕塑的高度(即图中线段AB的长度).他在该雕塑塔的正东C处沿着南偏西60°的方向前进72米后到达D处(A,C,D三点在同一个水平面内),测得图中线段AB在东北方向,且测得点B的仰角为71.565°,则该雕塑的高度大约是(参考数据:tan71.565°≈3)()A.19米B.20米C.21米D.22米答案C解析在△ACD中,∠CAD=135°,∠ACD=30°,CD=72,由正弦定理得ADsin∠ACD=CDsin∠CAD,所以AD=CD sin∠ACDsin∠CAD=7(米),在Rt△ABD中,∠BDA=71.565°,所以AB=AD tan71.565°≈7×3=21(米).故选C.8.(2023·泸州模拟)如图,航空测量的飞机航线和山顶在同一铅直平面内,已知飞机飞行的海拔高度为10000m,速度为50m/s.某一时刻飞机看山顶的俯角为15°,经过420s后看山顶的俯角为45°,则山顶的海拔高度大约为(2≈1.4,3≈1.7)()A.7350m B.2650mC.3650m D.4650m答案B解析如图,设飞机的初始位置为点A,经过420s后的位置为点B,山顶为点C,作CD⊥AB于点D,则∠BAC=15°,∠CBD=45°,所以∠ACB=30°,在△ABC中,AB=50×420=21000(m),由正弦定理得ABsin∠ACB=BCsin∠BAC,则BC=2100012×sin15°=10500(6-2)(m),因为CD⊥AB,所以CD=BC sin45°=10500(6-2)×22=10500(3-1)≈7350(m),所以山顶的海拔高度大约为10000-7350=2650(m).故选B.二、多项选择题9.某人向正东走了x km后向右转了150°,然后沿新方向走了3km,结果离出发点恰好3km,那么x的值是()A.3B.23C.3D.6答案AB解析如图,AB=x,BC=3,AC=3,∠ABC=30°.由余弦定理,得3=x2+9-2×3×x×cos30°,解得x=23或x= 3.故选AB.10.某货轮在A处看灯塔B在货轮的北偏东75°,距离为126n mile;在A处看灯塔C在货轮的北偏西30°,距离为83n mile.货轮由A处向正北航行到D处时,再看灯塔B在南偏东60°,则下列说法正确的是()A.A处与D处之间的距离是24n mileB .灯塔C 与D 处之间的距离是83n mileC .灯塔C 在D 处的南偏西30°D .D 处在灯塔B 的北偏西30°答案ABC 解析在△ABD 中,由已知,得∠ADB =60°,∠DAB =75°,则∠B =45°.由正弦定理,得AD=AB sin B sin ∠ADB =126×2232=24,所以A 处与D 处之间的距离为24n mile ,故A 正确;在△ADC中,由余弦定理,得CD 2=AD 2+AC 2-2AD ·AC cos30°,又AC =83,所以CD =8 3.所以灯塔C 与D 处之间的距离为83n mile ,故B 正确;因为AC =CD =83,所以∠CDA =∠CAD =30°,所以灯塔C 在D 处的南偏西30°,故C正确;因为灯塔B 在D 处的南偏东60°,所以D 处在灯塔B 的北偏西60°,故D 错误.故选ABC.三、填空题11.神舟载人飞船返回舱成功着陆,标志着返回任务取得圆满成功.假设返回舱D 垂直下落于点C ,某时刻地面上A ,B 两个观测点,观测到点D 的仰角分别为45°,75°,若点A ,B间的距离为10千米(其中向量CA →与CB →同向),估算该时刻返回舱距离地面的距离CD 约为________千米.(结果保留整数,参考数据:3≈1.732)答案14解析在△ABD 中,A =45°,∠ABD =180°-75°=105°,∠ADB =30°,由正弦定理得AB sin30°=AD sin105°,AD =20sin105°=20sin(60°+45°)=5(6+2),所以CD =AD sin A =5(6+2)×22=53+5≈14(千米).12.魏晋南北朝时期,数学在测量学取得了长足进展.刘徽提出重差术,应用中国传统的出入相补原理,通过多次观测,测量山高谷深等数值,进而使中国的测量学达到登峰造极的地步.关于重差术的注文在唐代成书,因其第一题为测量海岛的高和远的问题,故将《重差》更名为《海岛算经》.受此启发,小明同学依照此法测量泾阳县崇文塔的高度(示意图如图所示),测得以下数据(单位:米):前表却行DG =1,表高CD =EF =2,后表却行FH =3,表间DF =85.则塔高AB =________米.答案87解析由题意可知,△EFH ∽△ABH ,△CDG ∽△ABG ,所以EF AB =FH BH ,CD AB =DG BG,又EF =CD =2,DG =1,FH =3,DF =85,所以2AB =3BD +88,2AB =1BD +1,则3BD +88=1BD +1,解得BD =852,所以AB =2BD +2=87.13.海面上有相距10n mile 的A ,B 两个小岛,从A 岛望C 岛,和B 岛成60°的视角,从B 岛望C 岛,和A 岛成75°的视角,则B ,C 间的距离为________n mile.答案56解析由题意,知C =45°,A =60°,AB =10.由BC sin A =AB sin C,得BC =56n mile.14.山东省科技馆新馆目前成为济南科教新地标(如图1),其主体建筑采用与地形吻合的矩形设计,将数学符号“∞”完美嵌入其中,寓意无限未知、无限发展、无限可能和无限的科技创新.如图2,为了测量科技馆最高点A 与其附近一建筑物楼顶B 之间的距离,无人机在点C 测得点A 和点B 的俯角分别为75°,30°,随后无人机沿水平方向飞行600米到点D ,此时测得点A 和点B 的俯角分别为45°,60°(A ,B ,C ,D 在同一铅垂面内),则A ,B 两点之间的距离为________米.答案10015解析由题意,∠DCB =30°,∠CDB =60°,所以∠CBD =90°,所以在Rt △CBD 中,BD =12CD =300,BC =32CD =3003,又∠DCA =75°,∠CDA =45°,所以∠CAD =60°,在△ACD 中,由正弦定理,得AC sin45°=CD sin60°,所以AC =60032×22=2006,在△ABC 中,∠ACB =∠ACD -∠BCD =75°-30°=45°,由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB =(2006)2+(3003)2-2×2006×3003×22=150000,所以AB =10015.四、解答题15.某市广场有一块不规则的绿地,如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC ,△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若不考虑其他因素,小李、小王谁的设计使建造费用更低(请说明理由)?解(1)在△ABC 中,由余弦定理得cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,①在△ABD 中,由余弦定理得cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7.②由∠C =∠D 得cos C =cos D ,解得AB =7,所以AB 的长度为7米.(2)小李的设计使建造费用更低.理由如下:易知S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,且∠C =∠D ,所以S △ABD >S △ABC .故选择△ABC 的形状建造环境标志费用更低.16.一颗人造地球卫星在地球上空1600km 处沿着圆形的轨道运行,每2h 沿轨道绕地球旋转一圈.假设卫星于中午12点正通过卫星跟踪站点A 的正上空,地球半径约为6400km.(1)求人造卫星与卫星跟踪站在12:03时相隔的距离;(2)如果此时卫星跟踪站天线指向人造卫星,那么天线瞄准的方向与水平线的夹角的余弦值是多少?(参考数据:cos9°≈0.988,sin9°≈0.156)解(1)如图所示,设人造卫星在12:03时位于点C ,其中∠AOC =β,则β=360°×3120=9°,在△ACO 中,OA =6400km ,OC =6400+1600=8000(km),β=9°,由余弦定理得AC 2=64002+80002-2×6400×8000cos9°≈3.79×106,解得AC ≈1.95×103,因此在12:03时,人造卫星与卫星跟踪站相距约1950km.(2)如图所示,设此时天线瞄准的方向与水平线的夹角为γ,则∠CAO =γ+90°,由正弦定理得1950sin9°=8000sin (γ+90°),故sin(γ+90°)=80001950·sin9°≈0.64,即cos γ≈0.64,因此,天线瞄准的方向与水平线的夹角的余弦值约为0.64.17.近年来临夏州深入实施生态环境保护和流域综合治理,城区面貌焕然一新.某片水域,如图,OA ,OB 为直线型岸线,OA =200米,OB =400米,∠AOB =π3,该水域的水面边界是某圆的一段弧AB ︵,过弧AB ︵上一点P 按线段PA 和PB 修建垃圾过滤网,已知∠APB =3π4(1)求岸线上点A 与点B 之间的距离;(2)如果线段PA 上的垃圾过滤网每米可为环卫公司节约50元的经济效益,线段PB 上的垃圾过滤网每米可为环卫公司节约402元的经济效益,则这两段垃圾过滤网可为环卫公司节约的经济总效益最高约为多少元?(参考数据:102≈10.1,170≈13.04)解(1)由题意,OA =200米,OB =400米,∠AOB =π3,故AB =OA 2+OB 2-2OA ·OB cos ∠AOB=2002+4002-2×200×400×12=2003(米).(2)设∠PAB =θ,θ则在△PAB 中,ABsin ∠APB =PA =PB sin θ,即2003sin 3π4=PA =PB sin θ,故PA =2006sin PB =2006sin θ,设这两段垃圾过滤网可为环卫公司节约的经济总效益为y 元,则y =50PA +402PB =100006160003sin θ=100006θ-22sin 160003sin θ=60003sin θ+100003cos θ=20003(3sin θ+5cos θ)=2000102sin(θ+φ),其中φ为辅助角,不妨取其为锐角,tan φ=53<3,则φ当θ+φ=π2,即θ=π2-φ时,y 取到最大值2000102,故经济总效益的最大值为2000102≈2000×10.1=20200(元),即这两段垃圾过滤网可为环卫公司节约的经济总效益最高约为20200元.18.如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 处沿直线步行到C 处,另一种是先从A 处沿索道乘缆车到B 处,然后从B 处沿直线步行到C 处.现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50m/min ,在甲出发2min 后,乙从A 处乘缆车到B 处,在B 处停留1min 后,再从B 处匀速步行到C 处.假设缆车匀速直线运行的速度为130m/min ,山路AC 的长为1260m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?解(1)在△ABC 中,因为cos A =1213,cos C =35,所以sin A =513,sin C =45,从而sin B =sin[π-(A +C )]=sin(A +C )=sin A cos C +cos A sin C =513×35+1213×45=6365.由正弦定理得AB =AC sin B ·sin C =12606365×45=1040(m),所以索道AB 的长为1040m.(2)假设乙出发t min 后,甲、乙两游客的距离为d m ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2-70t +50)=+6251369.因为0≤t ≤1040130,即0≤t ≤8,所以当t =3537时,甲、乙两游客距离最短,即乙出发3537min 后,乙在缆车上与甲的距离最短.。

高考数学重难点解析 三角函数的图像及性质

高考数学重难点解析 三角函数的图像及性质

三角函数的图像与性质【考纲说明】1.能画出y=sin x, y=cos x, y=tan x 的图像,了解三角函数的周期性;2.借助图像理解正弦函数、余弦函数在[0,2π],正切函数在(-π/2,π/2)上的性质(如单调性、最大和最 小值、周期性、图像与x 轴交点等);3.结合具体实例,了解)sin(ϕω+=x y 的实际意义;【知识梳理】一、三角函数的图像与性质1 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min 1y =-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性 奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦在[]()2,2k k k πππ-∈Z 上在,22k k ππππ⎛⎫-+⎪⎝⎭函 数性 质2、函数B x A y ++=)sin(ϕω),(其中00>>ωA 的性质振幅:A ;最大值是B A +,最小值是A B -,周期是ωπ2=T ,频率是πω2=f ,相位是ϕω+x ,初相是ϕ; 其图象的对称轴是直线)(2Z k k x ∈+=+ππϕω,凡是该图象与直线B y =的交点都是该图象的对称中心。

二、三角函数图像的变换1、五点法作y=Asin (ωx+ϕ)的简图: 五点取法是设t=ωx+ϕ,由t 取0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图。

五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).2、三角函数的图像变换三角函数的图象变换有振幅变换、周期变换和相位变换等. 由y =sinx 的图象利用图象变换作函数y =Asin (ωx +φ)(A >0,ω>0)(x ∈R )的图象。

高考数学复习点拨 正弦函数图象的两种作图法

高考数学复习点拨 正弦函数图象的两种作图法

正弦函数图象的两种作图法一、根据正弦线画正弦函数的图象现在我们利用正弦线画出正弦函数的图象.在直角坐标系的x轴上任意取一点O1,以O1为圆心作单位圆(图4-19),从⊙O1与x轴的交点A起把⊙O1分成12等份(份数宜取6的倍数,份数越多,画出的图象越精确).过⊙O1上的各分点作x轴的垂线,的点).把角x的正弦线向右平移,使它的起点与x轴上的点x重合(例如,线把这些正弦线的终点连结起来,就得到了函数y=sinx,x∈[0,2π]的图象(图1).图1 因为终边相同的角有相同的三角函数值,所以函数y=sinx,x∈[2kπ,2(k+1)π),k∈Z且k≠0的图象,与函数y=sinx,x∈[0,2π)的图象的形状完全一样,只是位置不同.于是我们只要将函数y=sinx,x∈[0,2π)的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x∈R的图象(图4-20).正弦函数的图象叫做正弦曲线.二、“五点(画图)法”由图可以看出,在函数y=sinx,x∈[0,2π]的图象上,起着关键作用的点有以下五个:事实上,描出这五个点后,函数y=sinx,x∈[0,2π]的图象的形状就基本上确定了.因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑曲线将它们连结起来,就得到函数的简图.今后,我们将经常使用这种近似的“五点(画图)法”.图2三、余弦函数图象的画法下面我们看余弦函数图象的一种画法.先设法找到函数y=cosx,x∈R与正弦函数的关系:y=cosx由此可以看出:余弦函数y=cosx,x∈R与函数个单位长度而得到(图2).余弦函数的图象叫做余弦曲线.由图2还可以看出,在函数y=cosx,x∈[0,2π]的图象上,起着关键作用的点是以下五个:与画函数y=sinx,x∈[0,2π]的简图类似,通过这五个点,可以画出函数y=cosx,x ∈[0,2π]的简图.例1画出下列函数的简图:(1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π].解:(1)按五个关键点列表:利用正弦函数的性质描点画图(图3):图3(2)按五个关键点列表:利用余弦函数的性质描点画图(图4):图4注(1)第(1)小题中的函数与函数y=sinx,x∈6[0,2π]有什么关系呢?我们把后者的图象用虚线画在图4-21中,可见函数y=1+sin x,x∈[0,2π]的图象可通过把函数y=sin x,x∈[0,2π]的图象上的每一点向上平行移动1个单位长度而得到.(2)第(2)小题中的函数与函数y=cosx,x∈[0,2π]有什么关系呢?我们把后者的图象用虚线画在图4-22中,可见函数y=-cosx,x∈[0,2π]的图象与函数y=cosx,x∈[0,2π]的图象关于X轴对称.。

2020年高考数学一轮复习专题19三角函数的图像与性质(含解析)

2020年高考数学一轮复习专题19三角函数的图像与性质(含解析)

专题19 三角函数的图像与性质一、【知识精讲】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )π[微点提醒] 1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是14个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.要注意求函数y =A sin(ωx +φ)的单调区间时A 和ω的符号,尽量化成ω>0时情况,避免出现增减区间的混淆.3.对于y =tan x 不能认为其在定义域上为增函数,而是在每个区间⎝ ⎛⎭⎪⎫k π-π2,k π+π2(k ∈Z )内为增函数. 二、【典例精练】考点一 三角函数的定义域、值域(最值) 【例1】 (1)函数y =lg(sin x )+cos x -12的定义域为________.(2(2016·全国Ⅱ卷)函数f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x 的最大值为( ) A.4B.5C.6D.7【答案】(1)⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z (2)B【解析】 (1)函数有意义,则⎩⎪⎨⎪⎧sin x >0,cos x -12≥0,即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π (k ∈Z ),-π3+2k π≤x ≤π3+2k π (k ∈Z ), 所以2k π<x ≤π3+2k π(k ∈Z ),所以函数的定义域为⎩⎨⎧⎭⎬⎫x |2k π<x ≤π3+2k π,k ∈Z .(2)由f (x )=cos 2x +6cos ⎝ ⎛⎭⎪⎫π2-x =1-2sin 2x +6sin x =-2⎝ ⎛⎭⎪⎫sin x -322+112,又sin x ∈[-1,1],所以当sin x =1时,函数f (x )的最大值为5.【解法小结】 1.求三角函数的定义域其实质是解简单的三角不等式,常借助三角函数线或三角函数的图象求解.2.求解三角函数的值域(最值)常见三种类型:(1)形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+c 的形式,再求值域(最值); (2)形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值); (3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).考点二 三角函数的单调性 角度1 求三角函数的单调性【例2-1】 已知函数f (x )=sin 2x -cos 2x -23sin x cos x (x ∈R ).(1)求f ⎝⎛⎭⎪⎫2π3的值;(2)求f (x )的最小正周期及单调递增区间. 【解析】 (1)由sin 2π3=32,cos 2π3=-12,f ⎝ ⎛⎭⎪⎫2π3=(32)2-⎝ ⎛⎭⎪⎫-122-23×32×⎝ ⎛⎭⎪⎫-12,得f ⎝⎛⎭⎪⎫2π3=2. (2)由cos 2x =cos 2x -sin 2x 与sin 2x =2sin x cos x , 得f (x )=-cos 2x -3sin 2x =-2sin ⎝ ⎛⎭⎪⎫2x +π6, 所以f (x )的最小正周期是π. 由π2+2k π≤2x +π6≤3π2+2k π(k ∈Z ), 解得π6+k π≤x ≤2π3+k π(k ∈Z ).所以,f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π(k ∈Z ).角度2 已知单调性求参数【例2-2】 (2018·全国Ⅱ卷)若f (x )=cos x -sin x 在[-a ,a ]是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π【答案】A【解析】 f (x )=cos x -sin x =2cos ⎝⎛⎭⎪⎫x +π4, 由题意得a >0,故-a +π4<π4,因为f (x )=2cos ⎝⎛⎭⎪⎫x +π4在[-a ,a ]是减函数,所以⎩⎪⎨⎪⎧-a +π4≥0,a +π4≤π,a >0,解得0<a ≤π4,所以a 的最大值是π4.【解法小结】 1.求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数.。

三角函数的图象与性质-高考数学复习

三角函数的图象与性质-高考数学复习
= ,
3
6
2
2−1

∴ω=4 k -2,又0<ω<6,∴ω=2.
目录
是:
(0,1) ,
π
,0
2

(π,-1) ,

,0
2

(2π,1).
提醒
函数 y = sin x , x ∈[0,2π], y = cos x , x ∈[0,2π]
的五个关键点的横坐标是零点和极值点(最值点).
目录
高中总复习·数学
2. 正弦、余弦、正切函数的图象与性质(表中 k ∈Z)
函数
y = sin x
A. T =π, A =1
B. T =2π, A =1
C. T =π, A =2
D. T =2π, A =2
解析:


T = =π, A =2-1=1,故选A.
2
目录
高中总复习·数学
3. 函数 y =4 sin (2 x +π)的图象关于(
A. x 轴对称

B. 原点对称
C. y 轴对称
解析: 记 f ( x )=4 sin (2 x +π)=-4 sin 2 x ,所以 f (-
2. 已知函数 f ( x )=2 sin
经过点
π
,2
6

π
(ω x +φ)(0<ω<6,|φ|< )的图象
2

, −2
3
,则ω=
2
.

π

π

解析:∵ 和 是函数 f ( x )的极值点,则 x = , x = 是对称
6
3
6
3

正、余弦函数图象和性质_典型题型讲解

正、余弦函数图象和性质_典型题型讲解

4
11.关于函数 f ( x) 3 sin( 2 x

3
), x R 有下列命题:
① f ( x) 的表达式可以改写为 y 3 cos( 2 x ③ f ( x) 的图象关于点 ( 其中正确命题的序号是

6
) ;② f ( x) 的最小正周期为 2 ;
④ f ( x) 的图象关于直线 x


时, y max 1 时, y min 1
是周期函数,最小正周期 T 奇函数,图象关于 在[

对称
是周期函数,最小正周期 T 偶函数,图象关于 在[ 在[

对称
],(k Z ) 上
], (k Z ) 上是增函数 ], (k Z ) 上是减函数
单调性
是增函数 在[
], (k Z ) 上是减函数
的 2 倍(纵坐标不变) ,则所得到的图象的解析式为( A. y sin(2 x C. y sin(
x )( x R) 2 12
5 )( x R) 12
B. y sin(
x 5 )( x R ) 2 12 x 5 )( x R ) D. y sin( 2 24
3 4 sin(2 x ); 2 3
(2) y 6sin(2.5 x 2) 2
变式 1:已知函数 f ( x) 2sin x( 0) 在区间 (A)
上的最小值是 2 ,则 的最小值等于( , 3 4
(D)3

2 3
(B)
3 2
D. cos 2 x
3.若函数 y cos( x A.

3
) ( 0) 的图象相邻两条对称轴间距离为

高中数学高考三角函数复习专题

高中数学高考三角函数复习专题

高中数学高考三角函数复习专题三角函数复专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:函数性质:y=sinx y=cosx y=tanx图象定义域 R R R\{kπ+π/2|k∈Z}值域 [-1,1] [-1,1] R最值y_max=1 (when x=2kπ) y_max=1 (when x=2kπ+π/2) 无最大值y_min=-1 (when x=2kπ-π) y_min=-1 (when x=2kπ) 无最小值周期性2π 2π π奇偶性奇函数偶函数奇函数单调性在[2kπ-π/2,2kπ+π/2](k∈Z)上是增函数;在[2kπ+π/2,2kπ+3π/2](k∈Z)上是减函数。

在[kπ,kπ+π](k∈Z)上是减函数。

在[kπ-π/2,kπ+π/2](k∈Z)上是增函数;在[kπ+π/2,kπ+3π/2](k∈Z)上是减函数。

对称中心(kπ,0)(k∈Z) 对称中心(kπ+π/2,0)(k∈Z) 无对称中心对称性奇对称偶对称无对称轴对称轴x=kπ+π/2 (k∈Z) 对称轴x=kπ (k∈Z) 无对称轴2.正、余弦定理:在△ABC中有:①正弦定理:a/sinA=b/sinB=c/sinC=2R(R为△ABC外接圆半径)注意变形应用:sinA=2R/asinB=2R/bsinC=2R/c②面积公式:S△ABC=1/2absinC=1/2acsinB=1/2bcsinA ③余弦定理:b²=c²+a²-2accosBc²=a²+b²-2abcosCa²=b²+c²-2bccosA三、例题集锦:考点一:三角函数的概念1.如图,设A是单位圆和x轴正半轴的交点,P、Q是单位圆上的两点,O是坐标原点,∠AOP=π/6,∠AOQ=α,α∈[0,π)。

若Q(√3/2,y),求cos(α-π/6)。

超实用新高考理科数学复习:专题五 三角函数与解三角形 第四讲 三角函数的图像,性质及应用(核心课件)

超实用新高考理科数学复习:专题五 三角函数与解三角形 第四讲 三角函数的图像,性质及应用(核心课件)

(4)正切曲线相邻的两个对称中心之间距离的2倍是一个周期.
(5)不能认为 y tan x 在定义域上为增函数,
应在区间
k
2
,
k
2
(k
Z)
内为增函数.
[典型例题]
1. 设函数 f (x) cos(2x π) ,则下列结论正确的是( B ) 6
A. f (x) 的一个周期为 π 2
B. f (x) 的图象关于直线对称 x π 12
[解析]
易知
f (x) 2cos2 x sin2 x 2 3cos2 x 1 3 2cos2 x 1 3 1 3 cos 2x 5 ,
2
22
2
则 f (x) 的最小正周期为 π,
当 x kπ(k Z) 时, f (x) 取得最大值,最大值为 4. 故选 B.
.
[典型例题]
2.已知 f x a sin 2x b cos 2x ,其中 a,bR,ab 0 .

f x
f
π 6
对一切的 xR 恒成立,且
f
π 2
0

则 f x 的单调递增区间是( B )
A.

π 3
,

π 6
(k
Z)
B.

π 6
,

2π 3
(k
Z)
C.
kπ,

π 2
(k
Z)
.
(2)余弦函数 y cos x, x [0,2] 的图像中,
五个关键点:
(0,1),
2
,
0
,(,
1)

3 2
,
0
, (2,1)

高三数学-高考复习讲义-正余弦函数图像及其性质讲义资料(Word版)

高三数学-高考复习讲义-正余弦函数图像及其性质讲义资料(Word版)

高三数学-高考复习讲义-正弦、余弦函数的图像与性质1.正弦函数sin y x =.正弦函数 sin y x =图象O yx2π32ππππ2π232π-2π-11性质定义域 R 值域 [11]-, 最小正周期 2π对称性对称轴 直线()ππ 2x k k =+∈Z 对称中心()()π0 k k ∈Z ,奇偶性奇函数 单调性单调增区间()ππ2π2π22k k k ⎡⎤-++∈⎢⎥⎣⎦Z , 单调减区间()π3π2π2π22k k k ⎡⎤++∈⎢⎥⎣⎦Z ,2.余弦函数cos y x =.余弦函数 cos y x =图象O y x2π32ππππ2π232π-2π-11性质定义域R 值域 [1,1]- 最小正周期2π对称性 对称轴直线()π x k k =∈Z对称中心()ππ0 2k k ⎛⎫+∈ ⎪⎝⎭Z ,奇偶性 偶函数单调性单调增区间 []()π2π2πk k k -+∈Z ,单调减区间 []()2ππ2πk k k +∈Z ,3、周期函数一般地,对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有)()(x f T x f =+,那么函数)(x f 就叫做周期函数,非零常数T 叫做这个函数的周期由此可知)0(2,,4,2,2,4,≠∈--k z k k 且πππππ 都是这两个函数的周期对于一个周期函数)(x f ,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期根据上述定义,可知:正弦函数、余弦函数都是周期函数,)0(2≠∈k z k k 且π都是它的周期,最小正周期是π2【概念理解】1.为什么T 是非零常数?若T 可以等于0,则任何函数都是周期函数了.若T 不是常数,而是变量的话,则体现不出周期函数周而复始的特点.2.为什么)()(x f T x f =+要在定义域内恒成立?)()(x f T x f =+在定义域内恒成立体现了经历了一定的间隔之后,函数值会重复再现.问题:由sin sin 424πππ⎛⎫+=⎪⎝⎭,能否得出2π是函数()sin f x x =的周期?解答:不能.因为sin sin 424πππ⎛⎫+= ⎪⎝⎭是偶然现象,sin sin 2x x π⎛⎫+= ⎪⎝⎭并不对任意实数都成立.若周期函数的正周期有最小值,则此最小值叫做周期函数的最小正周期.3.对于)(s in )2(s in Z k x x k ∈=+π,当0≠k 时,πk 2是x x f sin )(=的周期,π2是不是x x f sin )(=的最小正周期呢?假设存在T ,满足π20<<T ,且是函数x x f sin )(=的周期,即)()(x f T x f =+, 令2x π=,得 1sinsin cos 22T T ππ⎛⎫==+= ⎪⎝⎭,与02T π<<时,cos 1T <矛盾.问题:是否周期函数必有最小正周期呢?解答:不一定,例如Dirichlet 函数⎩⎨⎧∈∈=Q x Q x x D R C ,,01)(.任何非零有理数都是Dirichlet 函数的周期,但是Dirichlet 函数并没有最小正周期.函数性质回顾与探究:1、奇偶性:∵ 根据诱导公式,对R x ∈∀,有x x sin )(sin -=-,x x cos )(cos =-, ∴ )(s i n R x x y ∈=是奇函数,)(cos R x x y ∈=是偶函数.思考:(1)求证:|sin |)(x x f =是偶函数.(2)研究函数x x x f cos sin )(+=的奇偶性.2.函数图像(1)分别画出正弦函数与余弦函数的图像; (2)结合图像研究函数的性质.1、利用“五点法”作正余弦函数图像 【例1】画出下列函数在[0,2]π上的图象(1)1sin y x =+ (2)cos y x =-【例2】用五点法分别作出下列各函数的图像,并说明这些函数的图像和sin y x =图像的区别:(1)2sin 1y x =-.12sin 2y x =.【巩固训练】1.作出函数x x y cos sin +=在]20[π,上的图像2、有关三角函数性质问题【例3】求下列函数的定义域(1))25lg(2sin 2x x y -+= (2)1lg[cos()]32y x π=-+ (3)21sin 16y x x=+-【例4】求下列函数的值域 (1)x x y 2cos 2sin +=; (2)sin 3cos ,,62y x x x ππ⎡⎫=-∈-⎪⎢⎣⎭ (3)2cos sin ,,44y x x x ππ⎡⎤=+∈-⎢⎥⎣⎦ (4)1cos 3cos xy x-=+【例5】求下列函数的最值,及取得相应最值的x 值:(1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭. (2)23cos 4sin 2y x x =--.(3)2π2π2sin 3sin 133y x x x ⎡⎤=-+∈⎢⎥⎣⎦,,.【例5】 判断下列函数的奇偶性 (1)1sin cos ()1sin cos x x f x x x+-=++ (2)44()sin cos cos 2f x x x x =-+【例6】求下列函数的最小正周期(1)cos3y x =,x R ∈ (2)|sin |y x =【例7】求下列函数的单调增区间 (1)cos 2y x = (2)2sin()4y x π=- (3)12sin()243x y π=-(4)π|sin()|4y x =-+.【例8】比较大小:(1)8sin7π与7sin 6π;(2)8cos 9π与39cos 8π.【例9】已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.【巩固训练】1、函数223sin 4cos 4,[,]33y x x x ππ=--+∈的最大值 ,此时x 的值是2、求下列函数的最值,及取得相应最值的x 值: (1)π32sin 3y x ⎛⎫=-- ⎪⎝⎭. (2)23cos 4sin 2y x x =--.3、已知函数)722sin(21)(π+=ax x f 的最小正周期为π4,则正实数a = . 4、函数()1sin 1sin f x x x =--+的奇偶性为 . 5、已知函数2()=sin(2+)+sin(2)+2cos 133f x x x x ππ--, x R ∈.(1)求函数()f x 的最小正周期; (2)当[,]44x ππ∈-时,求函数()f x 的值域以及函数()f x 的单调区间.6.定义函数sin , sin cos ()cos , sin cos x x xf x x x x≤⎧=⎨>⎩,根据函数的图像与性质填空:(1) 该函数的值域为_______________;(2) 当且仅当________________时,该函数取得最大值; (3) 该函数是以________为最小正周期的周期函数;(4) 当且仅当______________时,()0f x >.3、其他综合问题【例9】利用正弦函数和余弦函数的图像,求满足下列条件的x 的集合:1(1)sin 2x ≥1(2)cos 2x ≤【例10】求5sin 2π2y x ⎛⎫=+ ⎪⎝⎭的图像的对称轴方程与对称中心的坐标.【例11】(1)求函数2()sin sin f x a x x =-的最大值()g a ,并画出()g a 的图像.(2)若函数2()cos sin f x x a x b =-+的最大值为0,最小值为-4,实数0a >,求a b ,的值.【综合训练】1.判断下列函数的奇偶性,并求最小正周期: (1)()sin sin 2f x x x =+. (2)()sin f x x x =. (3)()πsin πf x x =. (4)2()sin sin 2f x x x =+.(5)ππ()cos cos 33f x x x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭.(6)22()sin 2sin cos 3cos f x x x x x =++.2.观察正弦曲线和余弦曲线,写出满足下列条件的区间: (1)sin 0x >. (2)cos 0x <. (3)1sin 2x >. (4)2cos 2x <-.3.求下列函数的单调区间:(1)x y cos 1-=; (2)x x y cos sin -=; (3))(sin 23π+=x y ; (4))2(cos 4π+=x y ; (5)x y sin 5.0=; (6))cos (lg x y =.4.求下列函数的最值:(1)1sin 2-=x y ; (2)12cos +=x y ; (3)x x y 2sin 2cos +=; (4)1sin sin 2++=x x y . (5))0(sin ≠+=a b x a y ; (6)x x y 44cos sin +=; (7)xy cos 2=; (8))sin (lg x y =;(9)1|cos |cos 22+-=x x y ; (10)|cos ||sin |x x y +=.5.关于函数π()4sin 23f x x ⎛⎫=+ ⎪⎝⎭有下列命题,其中正确的命题的序号是___________.⑴ 由12()0()0f x f x ==,,可得12x x -是π的整数倍;⑵()f x 的表达式可以改写成π4cos 26y x ⎛⎫=- ⎪⎝⎭;⑶ ()y f x =的图像关于点π,06⎛⎫- ⎪⎝⎭对称;⑷ ()y f x =的图像关于直线π6x =-对称.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正余弦函数图象和性质的应用例析
1.比较大小的选择题 例1、已知 ,那么下列命题成立的是 ( )
A .若 、 是第一象限角,则
B .若 、 是第二象限角,则
C .若、是第三象限角,则
D .若

是第四象限角,则
分析:取特值排除.对于A ,取 ,排除A ;对于B ,

,排除B ;对于C ,取
,排除C .故选D .
点评:本题主要考查三角函数的单调性.特殊值法可以回避对三角函数性质的研究. 2.打制烟筒弯脖
例2、铁匠师傅在打制烟筒弯脖时,为确保对接成直角,在铁板上的下剪线正好是余弦曲线:
的一个周期的图像如图,问,弯脖的直径为12cm 时,
应是多少cm ?
分析:几何与代数相结合的题目,将几何图形知识转化为代数表达式,利用余弦函数的周期求解.
解:∵弯脖直径为12cm ,
∴周长为 cm ,周长正是函数y=acos
α
x
的一个周期
即 ∴ (cm )
点评:本题的关键是认识清楚弯脖的周长正是函数y=acos α
x
的一个周期,从而建立
等式.使此题得解.
3.根据不等式确定角的范围
例3、,则()
A.B.C.D.
分析:比较同角三角函数的大小,可以借助三角函数图象的性质,也可以借助于三角函数线比较.
解:法1 若,则由正弦曲线和正切曲线在内的图像如图所示可知
时且正切,余切值小于0,
∴,
∴或(舍).
∴.
法2 由,结合单位圆中的有向线段表示三角函数可知,.利用特殊值检验,取或.可见符合条件故选B.
点评:此题主要考查了三角函数的图像和性质.若结合正弦线,正切线的意义及特殊值检验,则解法简捷.
4.根据函数解析式判断图象的形状
例4、函数的部分图像是()
分析:对于函数的图象不熟悉,可以分析函数的性质,利用排除法求解.解:由易知函数是奇函数,从而排除A,C;由知当且
时,且.排除B,故选D.
点评:这是一道图像信息选择题,需要对图像提供的信息进行剪辑.是考查能力的一道好题.
5.化简解析式求函数的单调区间
例5、求函数的单调减区间.
分析:容易想到将函数转化为,换元令,进而转化为.
解:.
令,则.
由正弦函数的单调性,知
当()时,函数递减,
即(),
∴().
∴函数的单调减区间是.
点评:本题通过换元,将函数化为,充分体现了转化的数学思想.
卡盟排行榜 崦孞尛。

相关文档
最新文档