激光原理答案
激光原理 复习题答案(考研可参考)
激光原理复习题第一章 电磁波1. 麦克斯韦方程中麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。
在方程组中是如何表示这一结果?答:(1)麦克斯韦方程组中头两个分别表示电场和磁场的旋度,后两个分别表示电场和磁场的散度;(2) 由方程组中的1式可知,这是由于具有旋度的随时间变化的电场(涡旋电场),它不是由电荷激发的,而是由随时间变化的磁场激发的;(3)由方程组中的2式可知,在真空中,,J =0,则有tE 00B * ;这表明了随时间变化的电场会导致一个随时间变化的磁场;相反一个空间变化的磁场会导致一个随时间变化的电场。
这种交替的不断变换会导致电磁波的产生。
2, 产生电磁波的典型实验是哪个?基于的基本原理是什么? 答:产生电磁波的典型实验是赫兹实验。
基于的基本原理:原子可视为一个偶极子,它由一个正电荷和一个负电荷中心组成,偶极矩在平衡位置以高频做周期振荡就会向周围辐射电磁波。
简单地说就是利用了振荡电偶极子产生电磁波。
3 光波是高频电磁波部分,高频电磁波的产生方法和机理与低频电磁波不同。
对于可见光范围的电磁波,它的产生是基于原子辐射方式。
那么由此原理产生的光的特点是什么?答:大量原子辐射产生的光具有方向不同,偏振方向不同,相位随机的光,它们是非相干光。
4激光的产生是基于爱因斯坦关于辐射的一般描述而提出的。
请问爱因斯坦提出了几种辐射,其中那个辐射与激光的产生有关,为什么?答:有三种:自发辐射,受激辐射,受激吸收。
其中受激辐射与激光的产生有关,因为受激辐射发出来的光子与外来光子具有相同的频率,相同的发射方向,相同的偏振态和相同的相位,是相干光。
5光与物质相互作用时,会被介质吸收或放大。
被吸收时,光强会减弱,放大时说明介质对入射光有增益。
请问增益系数是与原子相关的哪个物理量成正比?这个物理量在激光的产生过程中扮演什么角色?答:增益系数正比于反转粒子数:激光产生的必要条件之一就是原子中有反转粒子数的存在。
激光原理部分习题答案
第二章5)激发态的原子从能级E2跃迁到E1时,释放出m μλ8.0=的光子,试求这两个能级间的能量差。
若能级E1和E2上的原子数分别为N1和N2,试计算室温(T=300K )时的N2/N1值。
【参考例2-1,例2-2】 解:(1)J hcE E E 206834121098.310510310626.6---⨯=⨯⨯⨯⨯==-=∆λ (2)52320121075.63001038.11098.3exp ---∆-⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯-==T k Eb e N N10)激光在0.2m 长的增益物质中往复运动过程中,其强度增加饿了30%。
试求该物质的小信号增益系数0G .假设激光在往复运动中没有损耗。
104.0*)(0)(0m 656.03.1,3.13.014.02*2.0z 0000---=∴===+=====G e e I I me I I G z G ZzG Z ααα即且解:第三章2.CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。
求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1) 解:衍射损耗:1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ输出损耗:1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ4.分别按图(a)、(b)中的往返顺序,推导旁轴光线往返一周的光学变换矩阵⎪⎪⎭⎫ ⎝⎛D C B A ,并证明这两种情况下的)(21D A +相等。
(a )(b )解: 矩阵乘法的特点:1、只有当乘号左边的矩阵(称为左矩阵)的列数和乘号右边的矩阵(右矩阵)的行数相同时,两个矩阵才能相乘;这条可记为左列=右行才能相乘。
激光原理答案
激光原理答案测验1.11、梅曼(TheodoreH.Maiman)于1960年发明了世界上第一台激光器——红宝石激光器,其波长为694.3nm。
其频率为:A:4.74某10∧14(14是上标)HzB:4.32某10∧14(14是上标)HzC:3.0某10∧14(14是上标)Hz 您的回答:B参考答案:Bnull满分:10分得分:10分2、下列说法错误的是:A:光子的某一运动状态只能定域在一个相格中,但不能确定它在相格内部的对应位置B:微观粒子的坐标和动量不能同时准确测定C:微观粒子在相空间对应着一个点您的回答:C参考答案:Cnull满分:10分得分:10分3、为了增大光源的空间相干性,下列说法错误的是:A:采用光学滤波来减小频带宽度B:靠近光源C:缩小光源线度您的回答:B参考答案:Bnull满分:10分得分:10分4、相干光强取决于:A:所有光子的数目B:同一模式内光子的数目C:以上说法都不对您的回答:B参考答案:Bnull满分:10分得分:10分5、中国第一台激光器——红宝石激光器于1961年被发明制造出来。
其波长为A:632.8nmB:694.3nmC:650nm您的回答:B参考答案:Bnull满分:10分得分:10分6、光子的某一运动状态只能定域在一个相格中,这说明了A:光子运动的连续性B:光子运动的不连续性C:以上说法都不对您的回答:B参考答案:Bnull满分:10分得分:10分7、3-4在2cm的空腔内存在着带宽(Δλ)为1某10m、波长为0.5m的自发辐射光。
求此光的频带范围Δν。
A:120GHzB:3某10^18(18为上标)Hz您的回答:B参考答案:Anull满分:10分得分:0分8、接第7题,在此频带宽度范围内,腔内存在的模式数?A:2某10^18(18为上标)B:8某10^10(10为上标)您的回答:A参考答案:Bnull满分:10分得分:0分9、由两个全反射镜组成的稳定光学谐振腔腔长为L,腔内振荡光的中心波长为求该光的波长带宽的近似值。
激光原理部分课后习题答案
µ
上一页 回首页 下一页 回末页 回目录
练习: 思考练习题2第 题 练习: (思考练习题 第9题).
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
连 续 激 光 器 的 原 理
µ hν 0 f (ν 0 ) πc∆ν c I s (ν 0 ) = hν 0 σ e (ν 0 ) ⇒ I s (ν 0 ) = 2 µτ σ e (ν ) = ⇒ ∆n σ e (ν 0 )τ 2 µ f (ν 0 ) = G (ν ) = ∆nB21 hνf (ν ) π∆ν c hν 0 (2) I s (ν 0 ) = σ e (ν 0 )τ ⇒ 2 c f (ν 0 ) σ e (ν 0 ) = 2 8πν 0 µ 2τ hν 0 4π 2 hcµ 2 ∆ν I s (ν 0 ) = = = 3.213 × 10 5 W / cm 2 σ e (ν 0 )τ λ3 上一页 回首页 下一页 回末页 回目录
第 二 章
§ 2 4 非 均 匀 增 宽 型 介 质 的 增 益 系 数 和 增 益 饱 和 .
练习: 思考练习题2第 题 练习: (思考练习题 第6题). 推导均匀增宽型介质,在光强I,频率为ν的光波作 用下,增益系数的表达式(2-19)。
∆ν 2 0 ) ]G (ν ) G (ν ) 2 = G (ν ) = I f (ν ) I ∆ν 2 1+ (ν − ν 0 ) 2 + (1 + )( ) I s f (ν 0 ) Is 2
.
I ( z ) = I ( 0) e
− Az
I ( z) 1 − 0.01⋅100 ⇒ =e = = 0.368 I ( 0) e
激光原理作业答案
J / K *300K
47.99
21
n1
h c
(3)n2
e
kT
T
h c
6252.9K
n1
k ln
n2 n1
解
2:
n2
E2 E1
e kbT
其中
h*c
h*c
n1
E E2 E1
E h *c h
(1) n e e e 1 2
h*c kb *T
6.63*1034 *3*109 1.38*10 23 *300
*
8
*
3.14 * 6.63 *1034 (6*107 )3
7.71*105 s1
s
1 A21
1.297 *106 s
(3) 60nm时 A21 7.71*108 s1
(4) 0.6nm时 A21 7.71*1014 s1
(5) v
I S
10 106
105 w / m2
W 21 B21 * 1019 *105 1014 m * s3
目录
第一章 ..............................................................................................................................................2 第二章 ..............................................................................................................................................2 第三章 ..............................................................................................................................................7 第四章 ............................................................................................................................................17 第五章 ............................................................................................................................................28 第六章 ............................................................................................................................................30 第七章 ............................................................................................................................................31 第八章 ............................................................................................................................................32 第九章 ............................................................................................................................................33
激光原理习题与答案
解: 1
1
q( z) R( z) i 2 ( z)
q0
i
2 0
,q
q0
l
q(0) 0.45i,q(0.3) 0.45i 0.3
q() 0
21.已知一二氧化碳激光谐振腔由曲个凹面 镜构成,R1=l m,R2=2m,L=0.5m。如 何选样南斯束腰斑0的大小和位置才能使它 成为该谐振腔中的自再现光束?
第二章
8.今有一球面腔,Rl=1.5m,R 2=—1m,L =80cm。试证明该腔为稳定腔;求出它的等 价共焦腔的参数;在图上画出等价共焦腔的具 体位置。
13.某二氧化碳激光器,采用平—凹腔,凹面 镜的R=2m,胶长L=1m。试给出它所产生 的高斯光束的腰斑半径0的大小和位置、该 高斯束的f及0的大小。
束腰处R1右0.37mR2左边0.13m。半径为1.28mm
第四章习题解答
第五章习题
精品课件!
精品课件!
第七章习题
z解1 : (L
L(R2 L) R1) (L
R2 )
0.37
z2
(L
L(R1 L) R1) (L
R2 )
0.13
f
sqrt(
L(
R1 L)(R2 L)(R1
(L R1) (L R2
R2
)2ຫໍສະໝຸດ L))0.48
0
f 1.28 *103 m
解: g1g2 0.5 z1 0, z2 1, f 1
0
f 1.84 *103m
0 2
3.68 *103 rad f
激光原理练习题及答案
激光原理练习题及答案一、选择题1. 激光的产生是基于以下哪种物理现象?A. 光电效应B. 康普顿散射C. 受激辐射D. 黑体辐射答案:C2. 激光器中的“泵浦”是指什么?A. 激光器的启动过程B. 激光器的冷却过程C. 激光器的增益介质D. 激光器的输出过程答案:A3. 以下哪种激光器不是按照工作物质分类的?A. 固体激光器B. 气体激光器C. 半导体激光器D. 脉冲激光器答案:D二、填空题4. 激光的三个主要特性是________、________和________。
答案:单色性、相干性和方向性5. 激光器中的增益介质可以是________、________或________等。
答案:固体、气体或半导体三、简答题6. 简述激光与普通光源的区别。
答案:激光与普通光源的主要区别在于激光具有高度的单色性、相干性和方向性。
普通光源发出的光波长范围较宽,相位随机,方向分散,而激光则具有单一的波长,相位一致,且能沿特定方向高度集中。
7. 解释什么是激光的模式竞争,并说明其对激光性能的影响。
答案:激光的模式竞争是指在激光腔中,不同模式(横模和纵模)之间争夺增益介质提供的增益资源。
模式竞争可能导致激光输出不稳定,影响激光的质量和效率。
通过优化腔体设计和使用模式选择器可以减少模式竞争,提高激光性能。
四、计算题8. 假设一个激光器的增益介质长度为10cm,泵浦效率为80%,增益系数为0.01cm^-1。
计算在不考虑任何损耗的情况下,激光器的增益。
答案:增益 = 增益系数× 增益介质长度× 泵浦效率 = 0.01× 10× 0.8 = 0.89. 如果上述激光器的输出镜的反射率为90%,计算腔内光强每通过一次腔体增加的百分比。
答案:增益百分比 = (1 - 反射率) × 增益 = (1 - 0.9) × 0.8 = 0.08 或 8%五、论述题10. 论述激光在医学领域的应用及其原理。
激光原理习题答案1~3章
第一章 激光的基本原理习题2.如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?解:若输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则:由此可得:其中346.62610J s h -=⨯⋅为普朗克常数,8310m/s c =⨯为真空中光速。
所以,将已知数据代入可得:=10μm λ时:19-1=510s n ⨯ =500nm λ时:18-1=2.510s n ⨯ =3000MHz ν时:23-1=510s n ⨯3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为λ),能级上的粒子数密度分别为2n 和1n ,求(a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=?解:当物质处于热平衡状态时,各能级上的粒子数服从波尔兹曼统计分布:(a) 当ν=3000MHz ,T=300K 时:(b) 当λ=1μm ,T=300K 时:cP nh nh νλ==P P n h hcλν==2211()exp exp exp n E E h hc n KT KT K T νλ-⎡⎤⎛⎫⎛⎫=-=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3492231 6.62610310exp 11.3810300n n --⎛⎫⨯⨯⨯=-≈ ⎪⨯⨯⎝⎭34822361 6.62610310exp 01.381010300n n ---⎛⎫⨯⨯⨯=-≈ ⎪⨯⨯⨯⎝⎭(c) 当λ=1μm ,21/0.1n n =时:6.某一分子的能级4E 到三个较低能级1E 、2E 和3E 的自发跃迁几率分别是7-143510s A =⨯,7-142110s A =⨯和7-141310s A =⨯,试求该分子4E 能级的自发辐射寿命4τ。
激光原理(含答案)
1、试证明:由于自发辐射,原子在E2能级的平均寿命211/s A τ=。
(20分)证明:根据自发辐射的性质,可以把由高能级E2的一个原子自发地跃迁到E1的自发跃迁几率21A 表示为212121()spdn A dt n = (1)式中21()spdn 表示由于自发跃迁引起的由E2向E1跃迁的原子数因在单位时间内能级E2所减少的粒子数为221()sp dn dn dt dt =- (2)把(1)代入则有2212dn A n dt =- (3)故有22021()exp()n t n A t =- (4)自发辐射的平均寿命可定义为22001()s n t dt n τ∞=⎰ (5)式中2()n t dt为t 时刻跃迁的原子已在上能级上停留时间间隔dt 产生的总时间,因此上述广义积分为所有原子在激发态能级停留总时间,再按照激发态能级上原子总数平均,就得到自发辐射的平均寿命。
将(4)式代入积分(5)即可得出210211exp()s A t dt A τ∞=-=⎰2、一光束通过长度为1m 的均匀激励的工作物质,如果出射光强是入射光强的两倍,试求该物质的增益系数。
(20分)解: 若介质无损耗,设在光的传播方向上z 处的光强为I(z),则增益系数可表示为()1()dI z g dz I z =故()(0)exp()I z I gz =根据题意有(1)2(0)(0)exp(1)I I I g ==⨯解得1ln(2)0.693g cm -==3、某高斯光束0 1.2,10.6.mm um ωλ==今用F=2cm 的锗透镜来聚焦,当束腰与透镜的距离为10m,1m,0时,求焦斑大小和位置,并分析结果 (30分)解:由高斯光束q 参数的变化规律有(参书P77: 图2.10.3) 在z=0 处200(0)/q q i πωλ== (1)在A 处(紧挨透镜L 的“左方”)(0)A q q l=+ (2)在B 处(紧挨透镜L 的“右方”)111B A q q F =-(3)在C 处C B Cq q l =+ (4)又高斯光束经任何光学系统变换时服从所谓ABCD 公式,由此得00C Aq Bq Cq D +=+ (5)其中1101011/101C A B l l C D F ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦ (6)则222220022222200()()()()()()()C C l F l F q l F i F l F l πωπωλλπωπωλλ--=++-+-+ (7)在像方高斯光束的腰斑处有{}Re 1/0C q =,得2202220()()0()()C l F l l F F l πωλπωλ--+=-+ (8)解得像方束腰到透镜的距离2'2220()()()C F l F l l F F l πωλ-==+-+ (9)将(9)代入(8)得出22220()()()C F l F q iF l πωλ-=-+ (10)由此求得220'222001111Im (1)()C l q F F πωπωλωλ⎧⎫=-=-+⎨⎬⎩⎭ (11。
(完整版)激光原理第一章答案
第一章 激光的基本原理1. 为使He-Ne 激光器的相干长度达到1km ,它的单色性0/λλ∆应是多少? 提示: He-Ne 激光器输出中心波长632.8o nm λ= 解: 根据c λν=得 2cd d d d ννλνλλλ=-⇒=-则 ooνλνλ∆∆=再有 c c cL c τν==∆得106.32810o o o c o c c L L λλνλνν-∆∆====⨯ 2. 如果激光器和微波激射器分别在=10μm λ、=500nm λ和=3000MHz ν输出1W 连续功率,问每秒从激光上能级向下能级跃迁的粒子数是多少?解:设输出功率为P ,单位时间内从上能级向下能级跃迁的粒子数为n ,则:由此可得:其中346.62610J s h -=⨯⋅为普朗克常数,8310m/s c =⨯为真空中光速。
所以,将已知数据代入可得:=10μm λ时: 19-1=510s n ⨯=500nm λ时:18-1=2.510s n ⨯ =3000MHz ν时:23-1=510s n ⨯3.设一对激光能级为2E 和1E (21f f =),相应的频率为ν(波长为λ),能级上的粒子数密度分别为2n 和1n ,求(a) 当ν=3000MHz ,T=300K 时,21/?n n = (b) 当λ=1μm ,T=300K 时,21/?n n = (c) 当λ=1μm ,21/0.1n n =时,温度T=?解:当物质处于热平衡状态时,各能级上的粒子数服从玻尔兹曼统计分布,则(a) 当ν=3000MHz ,T=300K 时:(b) 当λ=1μm ,T=300K 时:cP nh nh νλ==PP n h hcλν==2211()exp exp exp b b b n E E h hc n k T k T k T νλ⎡⎤⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭3492231 6.62610310exp 11.3810300n n --⎛⎫⨯⨯⨯=-≈ ⎪⨯⨯⎝⎭34822361 6.62610310exp 01.381010300n n ---⎛⎫⨯⨯⨯=-≈ ⎪⨯⨯⨯⎝⎭(c) 当λ=1μm ,21/0.1n n =时:4. 在红宝石调Q 激光器中,有可能将几乎全部3+r C 离子激发到激光上能级并产生激光巨脉冲。
激光原理作业答案
当 3000MHz 时 n
4 设一对激光能级为 E2 , E1 , f 2 f1 ,相应的频率为 ,波长为 ,能级上 的粒子数密度分别为 n2 , n1 ,求: (1)当 3000MHz ,T 300 K 时, n2 / n1 ? (2)当 1 m,T 300 K 时, n2 / n1 ? (3)当 1 m,n2 / n1 0.1 时,温度 T=?
W 21 B21 * 1019 *10 5 1014 m * s 3
9 解: (1) I (z) I 0 * e (G ) z
0
0.99 * I 0 I 0 * e(G y * I 0 I 0 * e(G
0
0
)*0.001
ln0.99 (G 0 ) * 0.001
c 8h( )3 c3
8h
3
B21=
A10 3 106 (100 10 9 ) 3 6 1016 J 1 m 3 s 2 34 8h 8 3.14 6.63 10
(2) W 4A 4 106 W10 B10 =4 A10 10 10 6.7 10 11 J m 3 s 16 B10 B10 6 10
s
1 1.297 *10 6 s A21
(3) 60 nm时 A 21 7.71*108 s 1 (4) 0.6nm时 A 21 7.71*1014 s 1 (5) v
I 10 6 10 5 w / m 2 S 10
s 1.297 *10 9 s s 1.297 *10 15 s
激光原理(陈玉清)答案
习题一> ※<习题一 习题一 为使氦氖激光器的相干长度达到1km,它的单色性Δλ/λ 为使氦氖激光器的相干长度达到 ,它的单色性Δ 应是多少? 应是多少? 习题二> ※<习题二 习题二 (1)一质地均匀的材料对光的吸收为 )一质地均匀的材料对光的吸收为0.01mm-1,光通过 10cm长的该材料后,出射光强为入射光强的百分之几?( ) 长的该材料后, ?(2) 长的该材料后 出射光强为入射光强的百分之几?( 一光束通过长度为1m的均匀激活的工作物质 的均匀激活的工作物质, 一光束通过长度为 的均匀激活的工作物质,如果出射光强是 入射光强的两倍,试求该物质的增益系数. 入射光强的两倍,试求该物质的增益系数. ※<习题三 习题三> 习题三 如果激光器和微波激射器分别在= 如果激光器和微波激射器分别在=10um,λ=5×10-1um和ν , = × 和 输出1W连续功率 连续功率, =3000MHz输出 连续功率,试问每秒钟从激光上能级向下 输出 能级跃迁的粒子数是多少? 能级跃迁的粒子数是多少? 习题四> ※<习题四 习题四 设一光子的波长= × 设一光子的波长=5×10-1um,单色性 =10-7,试求光子位 , 若光子的波长变为5× 射线) 置的不确定量 Δx.若光子的波长变为 ×10-4um(x射线)和 ( 射线 5×10-18um(射线),则相应的 Δx又是多少? ),则相应的 又是多少? × (射线),
习题二> ※<习题二 习题二
(1)一质地均匀的材料对光的吸收为0.01mm-1,光通 )一质地均匀的材料对光的吸收为 长的该材料后, 过10cm长的该材料后,出射光强为入射光强的百分之几? 长的该材料后 出射光强为入射光强的百分之几? 的均匀激活的工作物质, (2)一光束通过长度为 的均匀激活的工作物质,如果 )一光束通过长度为1m的均匀激活的工作物质 出射光强是入射光强的两倍, 出射光强是入射光强的两倍,试求该物质的增益系
激光原理——课后习题解答
因为 与 相比很大,这表示粒子在 能级上停留的时间很短,因此可以认为 能级上的粒子数 ,因此有 。这样做实际上是将三能级问题简化为二能级问题来求解。
由(I)式可得:
代入式(V)得:
由于
所以
红宝石对波长为694.3nm的光透明,意思是在能量密度为 的入射光的作用下,红宝石介质内虽然有受激吸收和受激辐射,但是出射光的能量密度仍然是 。而要使入射光的能量密度等于出射光的能量密度,必须有 为常数,即 ,这样式(VI)变为:
第四章电磁场和物质的共振相互作用
习题
2.设有一台迈克尔逊干涉仪,其光源波长为 。试用多普勒原理证明,当可动反射镜移动距离L时,接收屏上的干涉光强周期地变化 次。
证明:如右图所示,光源S发出频率为 的光,从M上反射的光为 ,它被 反射并且透过M,由图中的I所标记;透过M的光记为 ,它被 反射后又被M反射,此光记为II。由于M和 均为固定镜,所以I光的频率不变,仍为 。将 看作光接收器,由于它以速度v运动,故它感受到的光的频率为:
解:入射高斯光束的共焦参数
根据 ,可得
束腰处的q参数为:
与束腰相距30cm处的q参数为:
与束腰相距无穷远处的q参数为:
16.某高斯光束 =1.2mm, 。今用F=2cm的锗透镜来聚焦,当束腰与透镜的距离为10m、1m、10cm、0时,求焦斑的大小和位置,并分析所得的结果。
解:入射高斯光束的共焦参数
又已知 ,根据
解: 气体在室温(300K)下的多普勒线宽 为
气体的碰撞线宽系数 为实验测得,其值为
气体的碰撞线宽与气压p的关系近似为
当 时,其气压为
所以,当气压小于 的时候以多普勒加宽为主,当气压高于 的时候,变为以均匀加宽为主。
激光 原理课后习题答案
激光原理复习题第一章电磁波1、麦克斯韦方程中麦克斯韦方程最重要的贡献之一是揭示了电磁场的内在矛盾和运动;不仅电荷和电流可以激发电磁场,而且变化的电场和磁场也可以相互激发。
在方程组中是如何表示这一结果?答:每个方程的意义:1)第一个方程为法拉第电磁感应定律,揭示了变化的磁场能产生电场。
2)第二个方程则为Maxwell的位移电流假设。
这组方程描述了电荷和电流激发电磁场、以及变化的电场与变化的磁场互相激发转化的普遍规律。
第二个方程是全电流安培环路定理,描述了变化的电场激发磁场的规律,表示传导电流和位移电流(即变化的电场)都可以产生磁场。
第二个方程意味着磁场只能是由一对磁偶极子激发,不能存在单独的磁荷(至少目前没有发现单极磁荷)3)第三个方程静电场的高斯定理:描述了电荷可以产生电场的性质。
在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。
4)第四个方程是稳恒磁场的高斯定理,也称为磁通连续原理。
2、产生电磁波的典型实验是哪个?基于的基本原理是什么?答:赫兹根据电容器经由电火花隙会产生振荡原理设计的电磁波发生器实验。
(赫兹将一感应线圈的两端接于产生器二铜棒上。
当感应线圈的电流突然中断时,其感应高电压使电火花隙之间产生火花。
瞬间后,电荷便经由电火花隙在锌板间振荡,频率高达数百万周。
有麦克斯韦理论,此火花应产生电磁波,于是赫兹设计了一简单的检波器来探测此电磁波。
他将一小段导线弯成圆形,线的两端点间留有小电火花隙。
因电磁波应在此小线圈上产生感应电压,而使电火花隙产生火花。
所以他坐在一暗室内,检波器距振荡器10米远,结果他发现检波器的电火花隙间确有小火花产生。
赫兹在暗室远端的墙壁上覆有可反射电波的锌板,入射波与反射波重叠应产生驻波,他也以检波器在距振荡器不同距离处侦测加以证实。
赫兹先求出振荡器的频率,又以检波器量得驻波的波长,二者乘积即电磁波的传播速度。
激光原理答案
《激光原理》习题解答第一章习题解答1为了使氦氖激光器的相干长度达到 1KM ,它的单色性丸0应为多少?解答:设相干时间为.,则相干长度为光速与相干时间的乘积,即L c = c由以上各关系及数据可以得到如下形式: 解答完毕。
2如果激光器和微波激射器分别在10 gm> 500nm 和f =3000MH Z输出1瓦连续功率,问每秒钟从激光上能级向下能级跃迁的粒子数是多少。
解答:功率是单位时间内输出的能量,因此,我们设在 dt 时间内输出的能量为dE ,则功率=dE/dt激光或微波激射器输岀的能量就是电磁波与普朗克常数的乘积,即d E nh 、..,其中n 为dt 时间内输出的光子数目,这些光子数就等于腔内处在高能级的激发粒子在 dt 时间辐射跃迁到低能级的数目(能级间的频率为 v )。
由以上分析可以得到如下的形式:n 妙-功―hv每秒钟发射的光子数目为:N=n/dt,带入上式,得到:每秒钟发射的光子数二N 」二功率 J sdt h 、. 6.626 10 J s •根据题中给岀的数据可知:c 3汉 108ms*“13「163 10 H z、10 10》m c3IO 8ms' (15)291.5 10 H z■2500 10 m把三个数据带入,得到如下结果:N 1=5.031 1019,N 2=2.5 1018,N^ 5.031 10233设一对激光能级为 E1和E2 (f1=f2 ),相应的频率为 v (波长为入),能级上的粒子数密度分别为 n2和n1,求 (a) 当v =3000兆赫兹,T=300K 的时候,n2/n 仁? (b) 当 入=1卩m T=300K 的时候,n2/n 仁? (c) 当入=1 卩 m n2/n1=0.1 时,温度 T=?解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:,. —6.626汉10亠(」_h 21exp 23 1 1.38 101.38062 10 J k T根据相干时间和谱线宽度的关系L c又因为Av■ 0 = 632.8nm单色性= Av632^m=6.328 10-10L c 1 1012 nmn2 _ exp n 1f 1其中k b =1.38062 10 - h exp • 0.99 2—小=exp _(E ^E 1) k b T(统计权重f 1 =n 2(a) exp K b T^3 JK 4为波尔兹曼常数,T 为热力学温度。
激光原理部分习题答案
第二章5)激发态的原子从能级E2跃迁到E1时,释放出m μλ8.0=的光子,试求这两个能级间的能量差。
若能级E1和E2上的原子数分别为N1和N2,试计算室温(T=300K )时的N2/N1值。
【参考例2-1,例2-2】 解:(1)J hcE E E 206834121098.310510310626.6---⨯=⨯⨯⨯⨯==-=∆λ (2)52320121075.63001038.11098.3exp ---∆-⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯⨯-==T k Eb e N N10)激光在0.2m 长的增益物质中往复运动过程中,其强度增加饿了30%。
试求该物质的小信号增益系数0G .假设激光在往复运动中没有损耗。
104.0*)(0)(0m 656.03.1,3.13.014.02*2.0z 0000---=∴===+=====G e e I I me I I G z G ZzG Z ααα即且解:第三章2.CO 2激光器的腔长L=100cm ,反射镜直径D=1.5cm ,两镜的光强反射系数分别为r 1=0.985,r 2=0.8。
求由衍射损耗及输出损耗分别引起的δ、τc 、Q 、∆νc (设n=1) 解:衍射损耗:1880107501106102262.).(.a L =⨯⨯⨯=λ=δ-- s ..c L c 881075110318801-⨯=⨯⨯=δ=τ输出损耗:1190809850502121.)..ln(.r r ln =⨯⨯-=-=δ s ..c L c 881078210311901-⨯=⨯⨯=δ=τ4.分别按图(a)、(b)中的往返顺序,推导旁轴光线往返一周的光学变换矩阵⎪⎪⎭⎫ ⎝⎛D C B A ,并证明这两种情况下的)(21D A +相等。
(a )(b )解: 矩阵乘法的特点:1、只有当乘号左边的矩阵(称为左矩阵)的列数和乘号右边的矩阵(右矩阵)的行数相同时,两个矩阵才能相乘;这条可记为左列=右行才能相乘。
激光原理习题解答完整版-周炳琨
E τ = 2
s
A21
E E E 证明:自发辐射,一个原子由高能级 自发跃迁到 ,单位时间内能级 减少的粒子
2
1
2
数为:
dn2 =−( dn21) dt dt
sp
dn2 dt
=
−
A21
n2
,
1 因此 τ s = A 21
,
自发跃迁几率
A21
=(
dn21) dt
1 n2
sp
t
n =n e ≡ n e (t)
(2) n=
1W *500nm 6.626*10−34 Js*3*108
ms−1
≈
2.52*1018个
(3) n=
1W 6.626*10−34 Js*3000MHz
≈5.03*1023个
E E f = f υ λ 3.设一对激光能级为 和 (
2
1
2
),相应频率为 (波长为 ),能级上的粒
1
n n 子数密度分别为 和 ,求:
2
1
υ (a)当 = 3000MHz ,T=300K 时, n2 n1= ?
(b)当 λ =1µm
n ,T=300K 时, 2 n =1
?
(c)当 λ =1µm , n2 n1=0.1 时,温度 T=?
解:
n2 n1
=
f f
2 e−
E2− kT
E1
=e−
hυ kT
1
n (a) 2 n = e ≈e ≈1 1
果出射光强是入射光强的两倍,试求该物质的增益系数。
解:(1) I (z)=I 0e−αz
I (z) I 0 =e−αz =e−0.01*100 ≈36.8%
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 在红宝石调 Q 激光器中,有可能将几乎全部 C r 宝石棒直径为 1cm,长度为 7.5cm, C r
3
3
离子激发到激光上能级并产生激光巨脉冲。设红
19
离子浓度为 2 10
cm 3 ,巨脉冲宽度为 10ns,求激光的最大
能量输出和脉冲功率。 解答: 红宝石调 Q 激光器在反转能级间可产生两个频率的受激跃迁, 这两个跃迁几率分别是 47%和 53%, 其中几率占 53%的跃迁在竞争中可以形成 694.3nm 的激光,因此,我们可以把激发到高能级上的粒子数看 成是整个激发到高能级的 C r 为 ,则 C r
根据题中给出的数据可知: 1
n 功率 1J s s 1 34 dt h 6.626 10 J s 3 10 8 ms 1 3 1013 H z 6 10 10 m 3 10 8 ms 1 1.5 1015 H z 9 500 10 m
c
1
c
2
2
3 3000 10 6 H z
把三个数据带入,得到如下结果: N 1
5.031 1019 , N 2 2.5 1018 , N 3 5.031 10 23
3 设一对激光能级为 E1 和 E2(f1=f2) ,相应的频率为ν(波长为λ) ,能级上的粒子数密度分别为 n2 和 n1,求 (a)当ν=3000 兆赫兹,T=300K 的时候,n2/n1=? (b)当λ=1μm,T=300K 的时候,n2/n1=? (c)当λ=1μm,n2/n1=0.1 时,温度 T=? 解答:在热平衡下,能级的粒子数按波尔兹曼统计分布,即:
N nLd 2 h h 2 8 E
脉冲功率是单位时间内输出的能量,即
P
nLd 2 h 解答完毕。 8
3
5 试证明,由于自发辐射,原子在 E 2 能级的平均寿命为 s
1 A21
。
证明如下:根据自发辐射的定义可以知道,高能级上单位时间粒子数减少的量,等于低能级在单位时 间内粒子数的增加。即:
按照能级寿命的定义, 当 6 某一分子的能级 E4 到三个较低能级 E1 E2 和 E3 的自发跃迁几率分别为 A43=5*10 s , A42=1*10 s , 7 -1 -7 -9 -8 A41=3*10 s ,试求该分子 E4 能级的自发辐射寿命τ4。若τ1=5*10 s,τ2=6*10 s,τ3=1*10 s,在对 E4 连续 激发且达到稳态时,试求相应能级上的粒子数比值 n1/n4, n2/n4 和 n3/n4,并说明这时候在哪两个能级间实现 了集居数 解: (1)由题意可知 E4 上的粒子向低能级自发跃迁几率 A4 为:
3 3
粒子数的一半(事实上红宝石激光器只有一半的激发粒子对激光有贡献) 。
3
设红宝石棒长为 L,直径为 d,体积为 V,
粒子的浓度为 n,巨脉冲的时间宽度
N n V n E
d 2 L
4
根据前面分析部分,只有 N/2 个粒子能发射激光,因此,整个发出的脉冲能量为:
A21
得到:
,把
dn21 A21 n2 代入①式, dt sp
dn2 A21 n2 dt
对时间进行积分,得到: n 2 具有的粒子数。 )
n20 exp A21t
(其中 n 2 随时间变化, n 20 为开始时候的高能级
n2 e 1 时, 定义能量减少到这个程度的时间为能级寿命, 用字母 s 表示。 n20 1 因此, A21 s 1 ,即: 证明完毕 s A21
《激光原理》习题解答第一章习题解答 1 为了使氦氖激光器的相干长度达到 1KM,它的单色性 解答:设相干时间为 ,则相干长度为光速与相干时间的乘积,即
0 应为多少?
Lc c
根据相干时间和谱线宽度的关系
c
1
c Lc
又因为
0
0
, 0
0
, 0
632.8nm
由以上各关系及数据可以得到如下形式: 单色性=
0
0
=
0
Lc
=
632.8nm 6.328 10 10 12 1 10 nm 3000 MH Z 输出 1 瓦连续功率,问每秒钟
解答完毕。 2 如果激光器和微波激射器分别在 10μm、500nm 和 从激光上能级向下能级跃迁的粒子数是多少。 解答:功率是单位时间内输出的能量,因此,我们设在 dt 时间内输出的能量为 dE,则 功率=dE/dt 激光或微波激射器输出的能量就是电磁波与普朗克常数的乘积,即
n2 f ( E 2 E1 ) h 2 exp exp n1 f1 k bT K bT
其中 k b (a)
(统计权重
f1 f 2 )
1.38062 10 23 JK 1 为波尔兹曼常数,T 为热力学温度。
n2 h 6.626 10 34 J s exp exp 0.99 n1 k bT 1.38062 10 23 J k 1 T c 6.626 10 34 J s n2 h 1.38 10 21 (b) exp exp 23 1 n1 k bT 1.38062 10 J k T c 6.626 10 34 J s h 6.26 10 3 K (c) T n2 n2 k b ln k b ln n1 n1
激光的其它特性: 激光有很多特性:首先,激光是单色的,或者说是单频的。有一些激光器可以同时产生 不同频率的激光,但是这些激光是互相隔离的,使用时也是分开的。其次,激光是相干光。 相干光的特征是其所有的光波都是同步的,整束光就好像一个“波列”。再次,激光是高度集 中的,也就是说它要走很长的一段距离才会出现分散或者收敛的现象。 激光(LASER)是上实际 60 年代发明的一种光源。LASER 是英文的“受激放射光放大”
1
的首字母缩写。激光器有很多种,尺寸大至几个足球场,小至一粒稻谷或盐粒。气体激光器 有氦-氖激光器和氩激光器;固体激光器有红宝石激光器;半导体激光器有激光二极管,像 CD 机、DVD 机和 CD-ROM 里的那些。每一种激光器都有自己独特的产生激光的方法。 激光技术 激光具有单色性好、方向性强、亮度高等特点。现已发现的激光工作物质有几千种,波长范 围从软 X 射线到远红外。 激光技术的核心是激光器,激光器的种类很多,可按工作物质、 激励方式、运转方式、工作波长等不同方法分类。根据不同的使用要求,采取一些专门的技 术提高输出激光的光束质量和单项技术指标,比较广泛应用的单元技术有共振腔设计与选 模、倍频、调谐、Q 开关、锁模、稳频和放大技术等。 为了满足军事应用的需要,主要发展了以下 5 项激光技术:①激光测距技术。它是在军事上 最先得到实际应用的激光技术。 20 世纪 60 年代末, 激光测距仪开始装备部队,现已研制生产 出多种类型,大都采用钇铝石榴石激光器,测距精度为±5 米左右。由于它能迅速准确地测出 目标距离,广泛用于侦察测量和武器火控系统。②激光制导技术。激光制导武器精度高、 结 构比较简单、不易受电磁干扰,在精确制导武器中占有重要地位。70 年代初,美国研制的 激光制导航空炸弹在越南战场首次使用。80 年代以来,激光制导导弹和激光制导炮弹的生 产和装备数量也日渐增多。③激光通信技术。激光通信容量大、保密性好、抗电磁干扰能力 强。光纤通信已成为通信系统的发展重点。机载、星载的激光通信系统和对潜艇的激光通信 系统也在研究发展中。④强激光技术。用高功率激光器制成的战术激光武器,可使人眼致盲 和使光电探测器失效。利用高能激光束可能摧毁飞机、导弹、卫星等军事目标。用于致盲、 防空等的战术激光武器,已接近实用阶段。用于反卫星、反洲际弹道导弹的战略激光武器, 尚处于探索阶段。⑤激光模拟训练技术。用激光模拟器材进行军事训练和作战演习,不消耗 弹药,训练安全,效果逼真。现已研制生产了多种激光模拟训练系统,在各种武器的射击训 练和作战演习中广泛应用。此外,激光核聚变研究取得了重要进展,激光分离同位素进入试 生产阶段,激光引信、激光陀螺已得到实际应用。