河流纳污能力计算案例分析201006

合集下载

河流纳污能力计算

河流纳污能力计算
(2)距离较远并且排污量比较小的分散排污口,可概化为非 点源入河,仅影响水域水质本底值,不参与容量优化分配计算。
3、混合区的确定
(a) 图 污水与河流的混合过程:(a)河中排放;(b)岸边排放
混合区定义
在排污口下游自排污口至功能区控制点或控制断面之间的, 使污染物得以进行初始混合与稀释后达到水域功能区水质 标准的区域称为混合区。
如果功能区没有常规性监测断面,可以选择功能区的下断面 或者重要的取水点作为控制节点。
对于高功能水域、重要水域以及距离较长的水域,根据需要, 一个功能区内应设置多个断面来控制功能区的水质,作为水 环境容量计算的约束条件。
在控制断面的选取时应注意的几个问题
(1)控制断面不能设在排污混合区内:一般的水功能区都 允许有排污口存在,排污口下游必然存在一段由排放浓度过 渡到功能区标准的排污混合区。因此,控制断面要避开混合 区或过渡区,以反映水体的客观情况。
有较大的支流汇入或河道发生分流,导致河段流量等参数发 生突变;
有较大的入河排放口汇入; 有重要的饮用水源吸水口; 计算单元长度不超过10km; 一个水功能区划分为多个计算单元时,各个计算单元的水质
目标均采用本功能区水质目标。
4、计算单元和控制节点(断面)
控制断面是指能反映水环境功能区水质,或反映污染源对水 域水质的影响,或反映功能区执行标准变化的代表性断面。
广东省水利厅
广州佛山跨市水污染综合整治方案
中山大学
鉴江水质保护规划
中山大学
练江流域水质保护规划
广东省环境监测中心站
广东省地表水环境容量核定 技术报告
华南环境科学研 河流
究所
库湖
kc 0.08~0.45
0.1 0.15 0.1~0.4 0.08~0.1 0.07~0.6 0.18 0.2 0.2 0.3~0.55 0.1~0.2 0.05~0.1

河流纳污能力计算方案及主要影响分析

河流纳污能力计算方案及主要影响分析

河流纳污能力计算方案及主要影响分析侍猛;马勇骥;崔勇【摘要】以东部某城市为例,就河流纳污能力计算方案过程及主要影响要素进行分析.结果表明,根据污染物排放与受纳水体特征,合理概化排污口及河段、正确选取水质预测模型并输入计算参数,是确保纳污能力计算成果正确有效的必备要素.【期刊名称】《江苏水利》【年(卷),期】2017(000)004【总页数】4页(P46-49)【关键词】河流;纳污能力计算;影响要素分析【作者】侍猛;马勇骥;崔勇【作者单位】江苏省水文水资源勘测局宿迁分局,江苏宿迁223800;南通市水文局,江苏南通226006;南通市水文局,江苏南通226006【正文语种】中文【中图分类】X52随着我国经济社会的高速发展,水资源开发利用的程度亦不断提升,生产生活废水排放量与日俱增,原本水资源较为充沛的华东地区出现了以水质恶化为特征的“水质型缺水”现象。

为缓解这一矛盾,科学的开展水污染防治规划显得尤为紧迫,而河流纳污能力方案计算正是以水体对污染物的承受能力为基点,从源头控制水污染物入河总量、改善水环境质量的基础性规划工作[1]。

河流纳污能力计算以水环境功能区为单位,根据河段水文特征、污染物类型及其排放特征,在既定的水环境功能区水质目标下,运用相应的水质预测模型获得水环境功能区河段纳污能力,即允许接纳的水污染物排放量,从而为环境保护行政主管部门科学制定污染物限制入河排污总量提供决策依据[2]。

影响河段纳污能力方案计算成果准确性的主要因素有以下三个方面。

(1)水质预测模型的选取一维、二维水质预测模型应用于非持久性污染物如COD、NH3-N、TN、TP的纳污能力计算。

污染物达到充分混合前的混合过程段采用二维模式,充分混合段采用一维模式[3]。

通常认为断面上任意一点的浓度与断面平均浓度差值小于5%时,污染物达到充分混合[4]。

(2)排污口与河段的概化水质预测模型的运用要求河道水体为流速、流量基本保持不变的恒定流,由于支流河道、废水排放口等外源的输入,难以保证河道始终维持恒定流。

河流纳污能力计算60页PPT

河流纳污能力计算60页PPT
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
河流纳污能力计算4、守业的最好办法就是不生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

纳污能力计算

纳污能力计算

水体纳污能力是指在设计流量条件下,满足水功能区水质目标要求和水体自然净化能力,核定的水功能区污染物最大允许负荷量。

项目取水后对河段的水体纳污能力将会产生一定影响,本次论证对项目建设前后取水影响范围内的河流纳污能力进行计算,以分析其影响程度。

溪口水库位于平江河上游,平江河属寨蒿河右岸一级支流,根据《黔东南州地表水域水环境功能区划分方案》,取水影响范围内的河流水环境功能区划见表5.3.3-1。

根据贵州黔水科研试验测试检测工程有限公司及珠江流域水环境监测中心对工程区地表水环境现状监测结果表明,坝址上游6km至榕江县取水口上游100m (三角井大坝上游30m)河段地表水为Ⅱ类水。

根据《全国水资源综合规划技术细则》,取水影响范围内的河流纳污能力计算选择CODcr、氨氮作为控制性指标。

根据《地表水环境质量标准》(GB3838-2002),CODcr、氨氮的标准限值为15mg/L 及0.5mg/L。

CODcr、氨氮现状见表5.3.3-2。

由于建库后,坝址以上河道将形成水库面积(正常蓄水位)0.569km2,回水长度6km,经水库调节后下泄流量(0.569 m3/s)比90%保证率最枯月平均流量(0.445 m3/s)大,本次选择河道影响较大的溪口水库坝址以上6km至坝址(坝址上游影响区)及坝址处至怎冷河支流汇入口段(坝址下游影响区)作为计算河段。

根据表5.3.3-2表明,CODcr 及氨氮在计算河段上均匀混合,河段纳污能力计算采用零维模型。

而流入和流出水库的水量平衡,水库纳污能力计算采用湖(库)均匀混合模型。

其公式为:Q C C M S ⨯-=)(0 (5-1)Q C C V C K M S S ⨯-+⨯⨯=)(0 (5-2)式中:M --水域纳污能力,g/s ;S C --水质目标浓度值,mg/L ,计算采用现状浓度值均值; 0C --水质初始浓度值,mg/L ,计算采用标准限值;Q --入流流量,m 3/s ,建库前入(出)库采用90%保证率最枯月平均流量0.445m 3/s ,建库后出库采用生态基流0.569 m 3/s ;V --湖(库)容积,m 3,计算采用死库容90.05万m 3;K --污染物综合衰减系数,(1/d ),据《西江流域水质保护规划》CODcr 为0.1,氨氮为0.07。

河流纳污能力计算

河流纳污能力计算
图 河流一维模型概化示意图
节点指河流上排污口、取水口、干支流汇合口等造成河道流量、水质发生突变的点,水量与污染物在节点前后满足物质平衡规律。 河段指河流被节点分成的若干段,每个河段内污染物的自净规律符合一阶反应定律。
一维水质模型由河段和节点两部分组成:
河流一维水质模型
图 河流一维模型概化示意图
概化后的排污口位置为: x=(Q1C1x1+Q2C2x2+····+QnCnxn)/(Q1C1+Q2C2+····+QnCn)
(2)距离较远并且排污量比较小的分散排污口,可概化为非点源入河,仅影响水域水质本底值,不参与容量优化分配计算。
上界
下界
上界
下界
1 2 3
x
3、混合区的确定
1、河流简化与模型选取
水质数学模型有零维模型、一维模型、二维模型等。 对每个水功能区,应根据其空间形态、水文、水质特征选择合适的水环境容量计算模型。
二、主要技术问题
1、河流简化与模型选取
二、主要技术问题
断面宽深比大于等于20时,简化为矩形河段; 小河可以简化为矩形平直河流; 大中河流中,当河段弯曲系数小于等于1.3时,可简化为顺直河段,否则视为弯曲河流; 河道特征和水力条件有显著变化的河段,应在显著变化处分段。
图 污水与河流的混合过程:(a)河中排放;(b)岸边排放
(a)
混合区定义
在排污口下游自排污口至功能区控制点或控制断面之间的,使污染物得以进行初始混合与稀释后达到水域功能区水质标准的区域称为混合区。 混合区是污染物自排放口至功能区控制断面达标的过渡区,是允许超标的区域。 混合区越小,意味着控制越严格,混合区消失,意味着不许排放或意味着排放口排出的水质与功能区的水质相等。

河流纳污能力计算方法比较

河流纳污能力计算方法比较
考虑 , 水域 特征 和 污染 物 降解 特 性 较 难 进 行 人 为 规 划, 但稀 释 容量 在各 个 河 段 的空 间分 配 及 污 染 物排
图 2 均 匀 排 放 河 段 排 污 1概 化 示 意 图 : 3
在 河段 内选 择一 微小 河段 d 其 位置 距 河段 段 ,
放方式则可以通过规划得 到合理设置。 目前 , 在河 流纳 污能 力计 算 中对 于 污染 物 排 放 方 式 如 何 选 取 、 水质 目标如何合理分配 , 以及管理者如何设定控制
首距 离 为 , 此 微 段 污 染 物输 运 至 :L处 的剩 则
余质量为 d 上游各微段质量降解到 =L断面处 m,
的总 质量 迭加 设 为 m, 则
d : e p 一K m (
m :
) d
() 3
jm [ e(K ]( = 1 x一 ) 4 L d 一p )

5 ・
型河 段 , 可采 用河 流一 维水 质模 型计 算纳 污 能力 , 其
计 算 公式 为 :
= Pep ox
= I Qep K ( x ( )一/ Qep 一K ) 9 x( ) () 0 2
( ) 一
( 1 )
式 中 : 为污染 物纳 污能 力 ,/ ; 为下游 断 面水 质 g sp

() 5
1一 e p 一 K ) x(
s wa e o te o iin ,s lc in fc n rlc o ss cin n d alc t n fd lto a a i e g u ltp st s ee t s o o to rs —e t s,a o ai s o i in c p ct o o o l o u y.Th o g a e su y o ru h a c t d f s

不同方法计算胶南市河流纳污能力结果的比较

不同方法计算胶南市河流纳污能力结果的比较

胶南市位于山东半岛西南部,北纬 35°35' ~ 36° 08'、东经 119°30' ~ 120°11',属低山丘陵区,境内山 峦起伏,地势西、北偏高,南、东临海处偏低,自西北 向东南倾斜。境内长 2. 5km 以上的河流( 含大河支 流) 有 125 条,其中较大的河流 10 条、独立入海的小 河流 26 条,均属典型的北方季节性山区河流,丰水 期( 7 ~ 8 月) 径流量占多年平均年径流量的 78% , 枯水期( 10 ~ 5 月) 的径流量仅占多年平均年径流量 的 13% 。由于河流源短流急,水资源开发利用难度 较大,为 缓 解 水 资 源 紧 缺 状 况,水 利 部 门 提 出 了 “拦、蓄、挖、引、节、增 ”的 治 水 方 针,不 断 提 高 水 资 源开发利用率。除建有水库外,还在 10 条主要河道 上建有拦河闸坝 18 处,在风河、巨洋河、错水河等较 大河流上建有 3 级以上梯级拦河闸,局部河段闸首 闸尾几近相接,使得河道丧失了自然水力特性而具 备水库和河道双重特性。为更加科学、合理地制定 水资源保护规划以实现水资源的高效利用和有效保 护,本文采用常规的河道纳污能力计算数学模型和 根据河道不同水力特性采用的河道纳污能力计算数 学模型,分别计算了已功能区划的 15 条河流中 11 条河流 13 个水功能区的纳污能力,并对计算结果进 行了比较分析。
大村桥 ~ 吉利河入口 吉利河入口 ~ 白马河大桥
白马河大桥 ~ 耿家岚
吉利河 吉利河饮用水源区
吉利河水库出口 ~ 吉湄村橡胶坝 吉湄村橡胶坝 ~ 白马河
源头 ~ 薛家庄拦河闸
巨洋河饮用水源区
薛家庄拦河闸 ~ 王台镇橡胶坝
巨洋河
王台镇橡胶坝 ~ 逄猛王
巨洋河农业用水区

河流纳污能力计算一维模型主要参数的取值分析

河流纳污能力计算一维模型主要参数的取值分析

河流纳污能力计算一维模型主要参数的取值分析彭振华;尤爱菊;徐海波【摘要】According to the calculation criteria of watershed environmental capacity,a one dimensional model is recommended for most of medium or small rivers. The estimation of two important coefifcients in themodel,which are river flow velocity and pollutant comprehensive degeneration coefifcient,are basically unreliable due to the insufifcient data. Based on the ifeld observation and the calculation of the river environmental capacity of Yongkang city,the method to determine these two important coefifcients in the model and the range of these two coefifcients will be discussed and analyzed in this study in order to construct a one dimensional model representing the river environmental capacity of Yongkang city.%根据水域纳污能力计算规程,中小型河流纳污能力的计算推荐采用河流一维水质模型。

由于基础观测资料普遍不足,模型的河流流速、污染物综合衰减系数2个重要参数的取值往往缺少可靠依据。

河流纳污能力计算

河流纳污能力计算

QE,CE QR,CR
点细分为n个河段,由公式计算
出第i 河段的水环境容量为:
C0
x,k
CS
图 河段一维问题示意图
QEi CEi … i-1 QRi CRi C0i
QEi+
1
QEi+
2
CEi+1
CEi+2 Ci+2 i+1 … Cs
一、计算步骤
5
计算分析:以控制节点的水质目标为约束条件,(采用试算法) 对选定的水质模型进行反解(即逐步调整功能区内各入河排污口 的入河通量,直到控制节点的水质预测浓度达标为止),即可计 算出该水域的水环境容量。当计算水域内有多个入河排污口时, 试算过程应从现状入河量开始,原则上各入河口按同样的缩放系 数逐步调整其入河排污量。
在同一连续区段中,所有混合区长度总和小于对应大江大
河岸线总长的8%。
混合区浓度计算
(a) 岸边排放混合区示意图 图
图 河流污染带计算坐标示意图
采用二维混合模式:
(b)
污染带的等浓度线结构及功能分区方法
图 某排污口COD浓度场分布示意图
岸边排放,其浓度场的等浓度线沿水流方向成细长半椭圆状
狭长河道:当河流宽度小于200m时,单向河流使用一维断
面平均衰减模型,感潮河段使用潮平均一维衰减模型,感 潮河网采用一维潮平均有限分段水质模型。
大江大河:当河流宽度大于200m时,单向河流选用二维垂
向平均衰减模型,感潮河段使用潮平均二维衰减模型。
西江、东江、北江等河流的流量较大,稀释扩散能力强,
结构。 横断面分区及控制方法:即以任何一个断面(x,0)点为控 制点时,其上游为相应水质标准的污染带混合区,下游为功 能区。

多时间尺度下的渭河干流陕西段纳污能力计算

多时间尺度下的渭河干流陕西段纳污能力计算

多时间尺度下的渭河干流陕西段纳污能力计算摘要:目前,一般采用年最枯月一种时间尺度计算水功能区纳污能力,以此进行污染物总量控制是比较严格苛刻的,没有充分利用水域实际的纳污能力,对社会经济的发展将形成明显的制约影响,利用这种方法得到的年尺度下的纳污能力给实际水环境管理考核工作带来不便。

因此,以渭河干流陕西段为例,以COD为有机污染物代表,采用国家标准纳污能力计算模型,计算了不同时间尺度下90%保证率的纳污能力,结果表明:采取分期尺度计算的年纳污能力值高于以最枯月计算的年纳污能力;丰水期的纳污能力>平水期水期的纳污能力>枯水期的纳污能力;多时间尺度的纳污能力计算能反映河流的动态变化及实际的纳污能力,为渭河流域水环境综合治理提供参考。

关键词:纳污能力;水功能区;多时间尺度;标准模型Email:**************************0引言渭河流域是陕西省重要的工农业科研和生产基地,人口多,然而渭河干、支流水质日益加剧恶化,严重影响着城市居民生产、生活用水,水污染治理是当务之急。

为保证进入黄河的水质,从环保目标和管理需求出发,分析预测渭河流域各河流的水域纳污能力和进入河流污染物控制研究,对渭河水污染控制、水环境管理与水资源保护规划具有重要的意义[1]。

因此,对渭河流域水环境纳污能力计算研究和入河污染物控制研究能够为渭河流域综合治理提供依据,为关中地区提供有限的水资源,缓解水资源紧缺的现状,促进经济发展。

水环境纳污能力是指物体在其最大载荷不具有破坏性的情况下接受物体的能力。

水域纳污量计算的研究方法主要有解析法[2]、模型试错法[3]、系统分析法[4]和概率稀释模型法[5]。

制定一个能够使用于不同水体水环境容量计算的理论体系,从而推动水资源保护工作的深化,是一个重要课题。

本文主要研究以渭河干流陕西河段,研究渭河开发利用的各个二级水功能区的纳污能力,把渭河流域陕西段基于原来时间尺度即年尺度细化为水期尺度,分别进行不同水文条件下的纳污能力计算。

洋河水库流域纳污能力及消减量分析

洋河水库流域纳污能力及消减量分析

洋河水库流域纳污能力及消减量分析陈平【摘要】[Objective]The aim of the study was to analyze pollution receiving capacity and reduction for Yanghe reservoir watershed.[Method]Based on statistical analysis of the Yanghe River reservoir watershed pollutant load,according to the mathematical model of waterenvironment,combined pollution,water quality status and water quality management objectives of watershed sub basin control unit,the annual average and 50% guarantee rate and 75% guarantee rate under the condition of water pollution indexes of sub basins(TN,control unitTP,COD,NH3-N)and the reduction of pollutant carrying capacity was calculated.[Result]The pollution receiving capacity of mean annual precipitation were the largest,the water environmental capacity ofTN,TP,COD,NH3-N were respectively 428.26,144.19,1 845.28,182.56 t/a;the maximal quantity of pollutant reduction were reservoir and Xiyanghe watershed,they would be the key area for watershed pollution management.[Conclusion]The study can provide a theoretical basis for prevention and mitigation of non-point pollution in Yanghe reservoir basin.%[目的]分析洋河水库流域纳污能力及消减量.[方法]在统计分析洋河水库流域污染物负荷量的基础上,根据水环境数学模型,结合流域内各个子流域控制单元的污染状况、水质现状和水质管理目标,计算多年平均、50%保证率和75%保证率水量条件下各个子流域控制单元的主要污染指标(TN、TP、COD、NH3-N)水体纳污能力及消减量.[结果]多年平均水量条件下TN、TP、COD、NH3-N的水环境容量分别为428.26、144.19、1 845.28、182.56 t/a;库区和西洋河支流的污染物消减量最大,为今后重点污染治理的区域.[结论]该研究可为洋河水库流域面源污染防治及消减提供理论依据.【期刊名称】《安徽农业科学》【年(卷),期】2017(045)020【总页数】5页(P81-85)【关键词】污染物负荷;纳污能力;消减量;控制单元;洋河水库流域【作者】陈平【作者单位】天津大学建筑工程学院暨港口与海洋工程教育部重点实验室,天津300072;河北省水利水电勘测设计研究院,天津 300250【正文语种】中文【中图分类】X26近年来,随着我国经济社会的快速发展,出现了资源的不合理开发利用及能源过度消耗等问题,导致污染物排放量急剧增加。

基于动态规划的河流纳污能力优化计算

基于动态规划的河流纳污能力优化计算

基于动态规划的河流纳污能力优化计算张晓;罗军刚;陈晨;解建仓【摘要】[目的]将动态规划引入河流纳污能力计算,以解决传统算法中水质目标质量浓度难以确定、纳污能力可能出现负值及纳污能力难以达到最大的问题.[方法]在传统纳污能力算法的基础上,以河流纳污能力最大为目标,提出了基于动态规划的纳污能力优化算法,并以渭河干流陕西段为例进行实例检验.[结果]利用建立的基于动态规划的河流纳污能力优化算法,计算得到渭河干流陕西段的纳污能力结果为59 618.88 t/年,传统算法的结果为58 377.45 t/年,表明优化算法较传统算法可以得到更优的纳污能力,而且优化算法计算所得的纳污能力为水域纳污能力定义中所强调的“最大数量”,同时优化算法可以得到确切的水质目标质量浓度且可以避免纳污能力出现负值.[结论]基于动态规划的河流纳污能力优化算法具有一定的合理性和可行性,为纳污能力计算研究提供了一种新思路.【期刊名称】《西北农林科技大学学报(自然科学版)》【年(卷),期】2014(042)010【总页数】7页(P218-224)【关键词】河流;纳污能力;动态规划;优化算法【作者】张晓;罗军刚;陈晨;解建仓【作者单位】西安理工大学陕西省西北旱区生态水利工程重点实验室,陕西西安710048;西安理工大学陕西省西北旱区生态水利工程重点实验室,陕西西安710048;西安理工大学陕西省西北旱区生态水利工程重点实验室,陕西西安710048;西安理工大学陕西省西北旱区生态水利工程重点实验室,陕西西安710048【正文语种】中文【中图分类】TV213.4;X522水域纳污能力[1](也称水环境容量)是指在设计水文条件下,满足计算水域的水质目标要求时,该水域所能容纳的某种污染物的最大数量。

潘建波等[2]运用一维水体纳污计算模型对松花江流域的水体纳污能力进行了计算分析;刘伟等[3]提出基于MIKE11模型的河流水功能区纳污能力计算方法,并将其应用于松花江流域;周洋等[4]利用一维稳态水质模型和水环境容量模型,采用段首控制高功能区和段末控制低功能区相结合的方法计算了渭河陕西段纳污能力;徐仲翔等[5]在WASP7.3模型的基础上,提出河流纳污能力的解析公式法,并用于兰江流域COD的水体纳污能力的计算。

采用一维水质模型计算河流纳污能力中设计条件和参数的影响分析

采用一维水质模型计算河流纳污能力中设计条件和参数的影响分析

采用一维水质模型计算河流纳污能力中设计条件和参数的影响分析张文志(广东省水文局惠州分局,广东 惠州 516001)摘 要:分析采用一维水质模型计算河流纳污能力过程中,污染源概化、设计流量和流速、上游本底浓度、污染物综合衰减系数等设计条件和参数对计算结果的影响;讨论如何确定设计条件和参数,以提高计算结果的准确性和合理性。

关键词:纳污能力;一维水质模型;设计条件;参数;影响分析中图分类号:T V149.2 文献标识码:B 文章编号:100129235(2008)0120019202收稿日期:2007202205作者简介:张文志,男,湖北大悟人,主要从事水环境监测、水资源分析及评价工作。

纳污能力,是指水体在一定的规划设计条件下的最大允许纳污量。

纳污能力随规划设计目标的变化而变化,反映了特定水体水质保护目标与污染物排放量之间的动态输入响应关系。

其大小与水体特征、水质目标及污染物特性等有关,在实际计算中受污染源概化、设计流量和流速、上游本底浓度、污染物综合衰减系数等设计条件和参数的影响。

东江干流岭下至虾村河段位于东江干流惠州市境内,全长36k m,水质目标为Ⅱ类。

本文以该段河段氨氮纳污能力计算为例,分析采用一维水质模型计算纳污能力过程中设计条件和参数对计算结果的影响,并讨论如何确定设计条件和参数,以提高计算结果的准确性和合理性。

1 一维水质模型概述对于宽深比不大的河流,污染物在较短的时间内,基本上能在断面内均匀混合,污染物浓度在断面上横向变化不大,可用一维水质模型模拟污染物沿河流纵向的迁移问题来计算纳污能力。

在稳态或准稳态的情况下,一维水质数学模型为:C (x )=C 0exp-kx u(1)式中 C 0———基准断面污染物的本底浓度,mg/L ;k ———污染物综合衰减系数,d-1(计算时换算为s-1);u ———断面设计流速,m /s ;x ———计算断面至基准断面的距离,m ;C (x )———计算断面污染物的浓度,mg/L 。

宽浅型河道纳污能力计算方法

宽浅型河道纳污能力计算方法

收稿日期:2001Ο03Ο20作者简介:韩龙喜(1964—),男,江苏扬州人,副教授,博士,主要从事水力学及水环境科学研究.宽浅型河道纳污能力计算方法韩龙喜1,朱党生2,姚 琪1(1.河海大学水文水资源及环境学院,江苏南京 210098;2.水利部水利水电规划设计总院,北京 100001)摘要:对于宽浅型河道,排放到水体中的污染物质在功能区相应的距离内不能达到横向均匀混合,常用的环境容量计算方法不再适用.针对这一情况,从水资源保护规划出发,对进入河段的污染源沿河长进行了概化.在此基础上,提出了纳污能力的计算方法及公式,并给出宽浅河道不同功能区组合情况下纳污能力的计算方法,为大范围水资源保护规划提供了一种简单、实用的工具.关键词:功能区划;宽浅型河道;污染源概化;纳污能力中图分类号:X522 文献标识码:A 文章编号:1000Ο1980(2001)04Ο0072Ο04对于宽浅型河道,污染物质在排放到水体中后,因宽深比较大,污染物沿流程在很长距离的河段内不能达到断面内均匀混合,污染物浓度在断面上沿横向变化较大,常用的环境容量计算公式不再适用.为考虑浓度在平面上的变化情况,可用二维水质数学模型模拟污染物沿河流纵向、横向的迁移转化规律.因此,不同功能区的纳污能力应以功能区相应的水质目标为依据,以二维水质数学模型数值解或解析解为工具,考虑功能区间的相互衔接关系进行计算.本文采用水质平面二维解析解,导得纳污能力的计算公式.1 宽浅河道二维水质解析解对宽浅型河道,若水深沿纵向、横向变化较小,在水流恒定的情况下,河道内水流可近似地看成均匀流,若排入河道的污染源源强为恒定,则在下游形成恒定的浓度场.设某宽浅河道污染源岸边排放,强度为S ,因河道较宽,可不考虑对岸反射的影响,在下游位置(x ,z )处产生的浓度为[1]C (x ,z )=S/H 4πE z ux exp -uz 24E z x -K x u (1)式中:x ———纵向坐标,代表计算点至排放口的纵向距离;z ———横向坐标,代表计算点至排放口的横向距离;H ———断面平均水深;u ———断面平均流速;K ———污染物的自净系数;E z ———横向紊动扩散系数,可用下式求解:E z =αz HU 3(2)式中:αz ———经验系数;U 3———摩阻流速.2 宽浅河道纳污能力计算方法211 宽浅河道纳污能力定义对宽浅河道,在一定的水量条件下,在保障河道水质满足功能区要求的水质标准情况下,排污口所能容纳的污染物的最大数量称为纳污能力.据此定义可知,在水流条件及水域环境功能确定的情况下,纳污能力与排污口位置有关.由于假定污染物从某一空间点排入水体,即使排污量很小,在排污口的下游水域也存在着一定范围的污染带.因此,与排污口相应的纳污能力允许存在污染带.但污染带范围大小与排污源强有关.因此,要确定纳污能力,必须首先确定允许的污染带的范围.排污口位置、污染带范围一旦给定,纳污能力也就唯一确定.设宽阔水域纳污能力为W ,从理论上讲水域中任一点的水质浓度应为两岸排污的叠加.对宽深比足够第29卷第4期2001年7月河海大学学报JOURNA L OF H OH AI UNI VERSITY V ol.29N o.4Jul.2001大的河道,因B/H 很大,一侧岸边的排污对对岸水质影响很小,功能分区及纳污能力计算可分两岸分别独立进行.212 污染源概化通常情况下,对同一个水功能区划相应的河段而言,污染物排放口不规则地分布于河流的不同断面.功能区控制断面的断面平均浓度将由所有排污口污染源在控制断面产生的浓度叠加得到.而纳污能力应是控制断面在满足水质目标的条件下,在规划准则的引导下,各排污口所能排放的污染物的最大数量.但考虑到此项工作的复杂性及水环境规划本身的要求,可将排污口在功能区内的分布加以概化,即认为污染源源强在同一功能区内沿河长均匀分布.此概化实际上体现了污染物分布的一种平均状况,对某一河段也许存在一定偏差,但从统计、规划的特点来看,却综合反映了若干河段污染物排放的一种平均状态.图1 宽浅河道污染源概化示意图Fig.1 G eneralization of Pollutant sources213 纳污能力计算如图1所示,某功能区宽浅河道长度为L ,断面平均流速为u ,其纳污能力用W 表示.假定污染物沿河岸均匀分布,此功能区的水质标准为C S ,可近似地用出口断面浓度来控制功能区水质.由二维解析解知,连续源d m 在出口断面产生的浓度:d C =2d m 4πE z u (L -x )exp -uz 24E z (L -x )-K L -x u(3)由假设得:d m =W LHd x ,令z =0,可得岸边浓度在纵向的变化d C =W H L πE z u (L -x )exp (-K L -x u )・d x (4)沿岸均匀排放的所有污染物在出口断面产生的浓度应为各微元产生的浓度的累加,数学表示为C =WH L ∫L 0exp (-K L -x u )πE z u (L -x )d x (5)该式难以求解积分,有两种处理方法:第一种方法为用有限求和代替积分.将河长L 分为N 等份,计算任一子河段排放污染源在出口产生的浓度,再进行叠加,计算公式为Δx =L N C =W H L 6N i =1exp [-K L -i Δx u ]πE z u (L -i Δx )Δx (6)令C +C 0exp (-K L u)=C S ,有W =[C S -C 0exp (-K L u )]H L 6Ni =1exp [-K L -i Δx u ]πE z u (L -i Δx )Δx ×86.4×0.365 (t/a )(7)式中C 0为入口断面浓度,取值根据上游功能区划确定.第二种方法是将污染源简化处理,为此近似地认为均匀排放的污染物在出流断面产生的浓度效应与同样的排污量在河段中部岸边排放产生的效应相当,即将区划内各排污口产生的浓度用河段中部集中排放产生的浓度代替,以此计算纳污能力:C 0・exp (-K L u )+W H πE z uL/2exp [-K L/2u ]=C S (8)37第29卷第4期韩龙喜,等 宽浅型河道纳污能力计算方法W =C S -C 0・exp (-KL u )exp [-K L/2u ]H πE z uL/2×86.4×0.365 (t/a )(9)图2 某宽浅河道功能区分布示意图Fig.2 Distribution of functional regions 214 计算方法及步骤图2所示为某宽浅型微弯天然河道功能区分布情况,该河道设计流量为Q ,设计水位为Z.下面给出纳污能力的计算流程及计算方法.各功能区中,饮用水源区、景观区有明确的定义.排污控制区指没有明确水环境功能、水质目标的水域,而过渡区通常设立在低功能区向高功能区过渡段之间,在过渡区内,上游的低功能水体完成向下游高功能水体的过渡,在过渡区的出口断面,水质达到下游高功能区的水质目标.纳污能力的计算流程如图3.图3 纳污能力的计算流程Fig.3 F low ch art of calculation of w ater environment cap acity以第二种算法为例,计算步骤如下:a.确定水力参数Q 和Z ,推求断面面积A ,u ,E z ;b.由C S 景、过渡区实际排污S 过推求排污控制区允许最大出流浓度C 排max .因C 排max exp (-K L 过u )+S 过H πE z u L 过/2exp (-K L 过2u )=C S 景,故C 排max =C S 景-S 过H πE z uL 过/2exp (-K L 过2u )exp (-K L 过u )(10) 特别地,若过渡区无排污,则令S 过=0.c.由C S 饮和C 排max 推求排污控制区纳污能力W 排.排污控制区入流浓度即饮用水源区的水质标准,因C S 饮exp (-K L 排u )+W 排H πE z uL 排/2exp (-K L 排2u )=C 排max 有W 排=C 排max -C S 饮exp (-KL 排u )exp (-K L 排2u )H πE z uL 排/2×86.4×0.365 (t/a )(11) d.由饮用水源区入流浓度C 饮入和C S 饮推求饮用水源区纳污能力W 饮.C 饮入取值由上游功能区、饮用水源区水质目标的相互关系确定,对C OD 类的污染因子,有C 饮入=47河 海 大 学 学 报2001年7月min (C SX ,C S 饮),则W 饮=C S 饮-C 饮入exp (-KL 饮u )exp (-K L 饮2u )H πE z uL 饮/2×86.4×0.365 (t/a )(12)若采用第一种方法计算纳污能力,可利用公式(7),采用相同的思路进行求解.2 算 例表1 纳污能力计算值T able 1 C alculated w ater environment cap acity污染源分布纳污能力/(t ・a -1)均匀分布32.3集中分布35.3 某宽浅型河段长2000m ,水面宽400m ,水深1m ,流量为20m 3/s ,功能区划为Ⅲ类水,相应的C OD 水质标准为8mg/L ,上游为饮用水功能区,相应的C OD 水质标准为6mg/L ,下游为农业用水区,C OD 的自净系数为0.1d -1,分别用污染源均匀分布、集中分布两种方法计算纳污能力.污染源概化为均匀分布计算时,河段分为10个子河段.横向分散系数由谢才公式求得水力坡度,再求得摩阻流速,最后由经验公式得到.两种方法所得纳污能力见表1.由表可知,两者结果相当.由此可知,污染源集中分布虽对污染源分布进行了简化处理,但却基本反映了原分布对环境水体的影响.3 结 论a.对宽浅型河流,本文提出了纳污能力的两种计算方法及计算公式,并给出不同功能区组合情况下的纳污能力计算方法,可用于水资源保护规划、水环境管理.b.对不同功能区相互衔接的情况,计算纳污能力时关键在于入、出流断面浓度的取值.对一般功能区,出流断面浓度即本功能区水质标准;对过渡区,出流断面浓度应满足下游功能区水质标准;对排污控制区,无出水水质标准,但其纳污能力通过其下游的过渡区而间接受到过渡区下游功能区的制约.入流断面浓度,受制于本功能区与上游功能区的相互关系,取上游功能区出水水质浓度.参考文献:[1]张书农.环境水力学[M].南京:河海大学出版社,1998.86~87.W ater E nvironment C apacity C alculating Methodfor Shallow 2Broad RiversHAN Long 2xi 1,ZHU Dang 2shen 2,YAO Q i 1(1.College o f Water Resources and Environment ,Hohai Univ.,Nanjing 210098,China ;2.Water Power Planning and Design Institute o f the Ministry o f Water Resources ,Beijing 100011,China )Abstract :When waste water is discharged into a shallow 2broad river ,pollutants cannot be mixed uniformly in the lateral direction ,and only the 2D water quality m odel can be used to calculate pollutant concentration.In this paper ,based on the 2D theoretical s olution ,a formula for the calculation of water environment capacity of shallow 2broad rivers is proposed.K ey w ords :functional regionalization ;shallow 2broad river ;generalization of pollution s ources ;water environment capacity57第29卷第4期韩龙喜,等 宽浅型河道纳污能力计算方法。

北方季节性河流纳污能力及限制排污总量分析

北方季节性河流纳污能力及限制排污总量分析

引言
胶南市位于山东半岛西南部,北纬350 35’,36。08’,
东经1190 307~120。1l’之间,属低山丘陵区,境内山峦起 伏,地势西、北偏高,南、东临海处偏低,自西北向东南倾斜入 海。境内2.5km长以上的河流(含大河支流)有1 25条。其中较 大的河流lO条,独立人海的小河流26条,均属典型的北方季 节性山区河流。 众所周知,北方河流季节性非常明显,径流年内分布极 不均匀。根据1956—2000年水文资料分析,汛期(6~9月) 的径流量占多年平均年径流量的87%,多年平均7—8月 径流量占多年平均年径流量的78%,枯水期(10—5月)的 径流量仅占多年平均年径流量的13%。由于河流源短流 急,水资源开发利用难度较大,为缓解水资源紧缺状况,水 利部门为了提高水资源开发利用率,除建有部分中小型水 库外,还在10条主要河道上建有拦河闸坝18处,在风河、 巨洋河、错水河等较大河流上建有3级以上梯级拦河闸,使 得天然河道丧失了自然水力特性而与水库水力特性相似。 显然,继续采用常规的河道纳污能力数学模型计算纳污能 力,计算结果将产生较大误差。本文以胶南市为研究对象, 针对青岛地区季节性河流特点,分别采用河口一维模型,均 匀混合模型、河流一维模型,分别计算河口感潮河段、拦河 闸及一般天然河道纳污能力,使得计算结果更加符合实际。
以选择的比值近似作为设计蓄水量(vn=a xvn)。 2.2.3断面设计流速 河道断面流速与断面流量具有正相关关系u=aQ“,选取 了红旗水文站53组涵盖计算河段设计流量范围的实测流 量流速资料进行相关分析,取得了红旗水文站流量流速相 关关系,u--O.3427Qo-““(相关系数R=O.97 o对没有实测流 量流速资料的河段,根据式u=aQ“推求设计流速。 2.2.4综合衰减系数K 本文模型中采用的综合衰减系数系淮河流域水保局分 析的相关关系,经青岛市大沽河部分实测资料综合而得。综 合结果为:COD综合降解系数k--O.050+0.68u;氨氮综合降 解系数k=O.061+0.551u。拦河闸COD和氨氮综合衰减系数 采用实测综合法确定。 2.2.5纵向离散系数Ex 河口感潮河段纵向离散系数采用爱尔德公式计算: Ex=5.93HV'gHJ~
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根据西江、北江、东江流域水质保护规划的研究成果,混
合区的确定如下:
确定某入河排放口的混合区长度时,以不影响邻近功能区
(控制断面)和对岸水质达标为原则,并留有有足够的安 全距离,且不得超过河宽的1/3;
对工业排放口,混合区长度控制在500~1000m; 对城市污水处理厂排放口,混合区长度控制在3000m内;
上界
1 2 3 下界
1#
上界
x
下界
概化后的排污口位置为:
x=(Q1C1x1+Q2C2x2+·· nCnxn)/(Q1C1+Q2C2+·· nCn) ·+Q · ·+Q ·
(2)距离较远并且排污量比较小的分散排污口,可概化为非 点源入河,仅影响水域水质本底值,不参与容量优化分配计算。
3、混合区的确定
有较大的支流汇入或河道发生分流,导致河段流量等参数
发生突变; 有较大的入河排放口汇入; 有重要的饮用水源吸水口; 计算单元长度不超过10km; 一个水功能区划分为多个计算单元时,各个计算单元的水 质目标均采用本功能区水质目标。
4、计算单元和控制节点(断面)
控制断面是指能反映水环境功能区水质,或反映污染源
河流纳污能力计算案例分析
江 涛
中山大学水资源与环境系 2010年6月
主要内容

二 三 计算步骤 主要技术问题
案例分析
一、计算步骤
1
水域概化:将天然水域(河流、水库)概化成计算水域,例天然 河道可概化成顺直河道,动态水流简化为稳态水流等。水域经适
当概化后,才能够利用数学模型来描述其水质变化规律。同时,
水文 参数 河道 参数
河段长度 x 河段平均宽度 B 河段平均水深 H 污染物衰减系数k 允许混合区纵向范围 Xs 允许混合区横向向范围 Ys 允许混合区边界的水质目标 C(Xs,Ys) 污水流量QE 污水水质浓度 CE
与设计流量对应的数据
水质 参数
污染源 数据
5、参数的确定
国内外对BOD的衰减系数研究较多,对COD降解系数 kc和氨氮降解系数kn的研究成果并不多见。原则上,COD
(a)
(b) 图 污水与河流的混合过程:(a)河中排放;(b)岸边排放
混合区定义
在排污口下游自排污口至功能区控制点或控制断面之间的,
使污染物得以进行初始混合与稀释后达到水域功能区水质 标准的区域称为混合区。
混合区是污染物自排放口至功能区控制断面达标的过渡区,
是允许超标的区域。
混合区越小,意味着控制越严格,混合区消失,意味着不
支流、排污口、取水口等影响水环境的因素也要进行相应概化, 若排污口距离较近,可把多个排污口简化成一个集中的排污口。
2
水文资料调查及设计水文条件的确定:收集研究水域水下地形、 水文站的水文资料(河宽、水深、流速、流量、坡度和弯曲系数
)等,明确每一个河段或水库的水文设计条件。对没有资料的河
段,采取水文比拟等方法确定其水文条件。
1、河流简化与模型选取
1 断面宽深比大于等于20时,简化为矩形河段。 2 河段弯曲系数小于等于1.3时,简化为顺直河段。 3 河道特征和水力条件有显著变化的河段,应在显著变化处分段。 小河可以简化为矩形平直河流;
断面宽深比大于等于20时,简化为矩形河段;
大中河流中,当河段弯曲系数小于等于1.3时,可简化为
对水域水质的影响,或反映功能区执行标准变化的代表 性断面。
各控制断面以水功能区划以及广东省跨市河流水质达标
管理办法规定的水质标准上限值为容量计算的依据。
4、计算单元和控制节点(断面)
一般情况下,可以直接将水功能区内的常规监测断面或下
游边界作为纳污能力计算的控制节点。
如果某一功能区内存在多个常规性监测断面,可以选取最
三、案例分析 案例1:单一河道水功能区纳污能力计算
如只划分了一个河段,排污口与控制断面之间水域的纳 污能力:
假设某水功能区被(n-1)个节
QE,CE QR,CR
点细分为n个河段,由公式计算
出第i 河段的水环境容量为:
C0
x,k
CS
图 河段一维问题示意图
QEi CEi … i-1 QRi CRi C0i
只要水质标准和控制点确定之后,其混合区、功能区和等浓度 线即随之确定,应当指出所谓功能区和混合区是针对某一水质
标准相对而言的概念。
4、计算单元和控制节点(断面)
原则上以水功能区为基本单元; 由于容量计算模型中河道流量、流速等参数都是取常数,
而天然河流的中上述参数是沿程变化的;
如果河流的长度较大,当以控制断面达标为约束条件反
许排放或意味着排放口排出的水质与功能区的水质相等。
混合区的三要素 (1) 位置:重要的功能区均应加以保护,其范围内不允许 混合区存在。 (2) 大小:排污口所在水域形成的混合区不应影响邻近功 能区水质;河流混合区范围不允许超过1~2km2。 (3)形状:河流混合区一般为岸边窄长水域距下游控制断 面有足够的安全距离,且不超过河宽的1/3;河流混合 区长度不允许超过1200~1500m。 整个河段的封闭性混合区是不允许的
的降解系数约为BOD的60~70%。
表 广东省部分河流COD、氨氮降解系数 单位:1/d
项目名称 珠江三角洲水环境容量与水质规划 西江流域水质保护规划 韩江流域水质保护规划 东江流域水污染综合防治研究 北江流域水质保护规划 珠江流域水环境管理对策研究 广东省水资源保护规划要点 广州佛山跨市水污染综合整治方案 鉴江水质保护规划 练江流域水质保护规划 广东省地表水环境容量核定 技术报告 承担单位 华南环境科学研究所 华南环境科学研究所 华南环境科学研究所 华南环境科学研究所 华南环境科学研究所 华南环境科学研究所 广东省水利厅 中山大学 中山大学 广东省环境监测中心站 华南环境科学研 河流 究所 库湖 kc 0.08~0.45 0.1 0.15 0.1~0.4 0.08~0.1 0.07~0.6 0.18 0.2 0.2 0.3~0.55 0.1~0.2 0.05~0.1 kn 0.07~0.15 0.07 0.1 0.06~0.2 0.1~0.15 0.03~0.3 无 0.05~0.1 0.1 0.1~0.35 0.05~0.1 0.05
QEi+
1
QEi+
2
CEi+1
CEi+2 Ci+2 i+1 … Cs
Ci+1 i
图 单一河道排污口分布示意图
对排污口节点i有: 对第i个河段有: 按照上述方法沿程计算整个功能区的沿程污染物浓度变化 规律。
(3)控制断面要保证出境水质达标:除了保证本水功能区
的水质达标外,还应保证出境提供给下游地区的水质达到功 能区要求。
5、模型参数 模型参数清单
类别 数 据 流速 u 流入边界水质浓度 C平均流量 Q 流量Q 横向扩散系数 Ey 河流比降 J或糙率 n
R
注释 感潮河段应分别取涨潮期 和退潮期的平均值,可由 潮汐河网动态水动力模型 提供
向平均衰减模型,感潮河段使用潮平均二维衰减模型。
西江、东江、北江等河流的流量较大,稀释扩散能力强,
虽然平均水质良好,但由于靠近岸边水流相对平缓,在排 污口下游一定范围内形成污染带,宜采用二维污染带模型 来计算控制排放量。
河流一维水质模型 一维水质模型由河段和节点两部分组成:
节点指河流上排污口、取水口、干支流汇合口等造成河
条件,按照一级降解公式计算到下一个节点前的污染物 浓度。
图 河流一维模型概化示意图
考虑干流、支流、取水口、排污口均在同一节点的最复 杂情况,水量平衡方程为: Q干流混合后=Q干流混合前+Q支流+Q排污口-Q取水口 污染物平衡方程为:

图 河流一维模型概化示意图
对河段:
图 河流一维模型概化示意图
2、排污口概化 对有排污口的水功能区或河段,污水排放流量较大的排污 口作为独立的排污口处理;其他排污口,可进行适当简化: (1)若排污口距离较近,可把多个排污口简化成一个集中的 排污口。
在控制断面的选取时应注意的几个问题
(1)控制断面不能设在排污混合区内:一般的水功能区都 允许有排污口存在,排污口下游必然存在一段由排放浓度过 渡到功能区标准的排污混合区。因此,控制断面要避开混合 区或过渡区,以反映水体的客观情况。
(2)控制断面要反映敏感点的水质:大部分水功能区内都
有饮用水取水口或鱼类索饵、产卵活动区存在,控制断面设 置应考虑这些敏感点的水质保护,以保证功能区真正达标。
6
成果合理性分析:在水环境容量模型计算的基础上,结合上下游 关系、左右岸关系、水质评价和污染源调查结果、混合区范围等 因素,进行合理性分析。此外,应结合水功能区水质评价和污染 源调查分析,建立污染源与水质目标之间的输入响应关系,进行 参数的校核和反馈调整,核定控制单元内允许纳污量。
二、主要技术问题
一、计算步骤
5
计算分析:以控制节点的水质目标为约束条件,(采用试算法) 对选定的水质模型进行反解(即逐步调整功能区内各入河排污口 的入河通量,直到控制节点的水质预测浓度达标为止),即可计 算出该水域的水环境容量。当计算水域内有多个入河排污口时, 试算过程应从现状入河量开始,原则上各入河口按同样的缩放系 数逐步调整其入河排污量。
结构。 横断面分区及控制方法:即以任何一个断面(x,0)点为控 制点时,其上游为相应水质标准的污染带混合区,下游为功 能区。
污染带的等浓度线结构及功能分区方法
纵向断面分区及控制方法:
图 某排污口COD浓度场分布示意图
如果由于某种需要规定在 B′的水质达到指定标准Cs, 根据污染带浓度变化规律 可以确定BB′区域是污染带 混合区,BB′以外的区域是 水功能控制区。
选择合适的水环境容量计算模型。
相关文档
最新文档