八年级上学期期中考试数学试题(含答案) (6)

合集下载

运城中学2023-2024学年八年级上学期期中考试数学试卷(含解析)

运城中学2023-2024学年八年级上学期期中考试数学试卷(含解析)

2023-2024学年山西省运城中学八年级(上)期中数学试卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.(3分)下列根式是最简二次根式的是( )A.B.C.D.解析:解:A、,故此选项不符合题意;B、是最简二次根式,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意;故选:B.2.(3分)下列说法中正确的是( )A.带根号的数都是无理数B.绝对值最小的实数是0C.算术平方根等于本身的数只有1D.负数没有立方根解析:解:=2,它是有理数,则A不符合题意;绝对值最小的实数是0,则B符合题意;算术平方根等于本身的数是0和1,则C不符合题意;任意实数都有立方根,则D不符合题意;故选:B.3.(3分)信息课上,小文同学利用计算机软件绘制了美丽的蝴蝶,如图,在绘图过程中,小文建立平面直角坐标系,先画出一半图形,利用对称性画出另一半.若图中点A的坐标为(﹣3,2),则其关于y轴对称的点B的坐标为( )A.(3,2)B.(2,3)C.(3,﹣2)D.(﹣3,﹣2)解析:解:若图中点A的坐标为(﹣3,2),则其关于y轴对称的点B的坐标为(3,2).故选:A.4.(3分)已知△ABC的三边为a,b,c,下列条件不能判定△ABC为直角三角形的是( )A.∠A:∠B:∠C=3:4:5B.b2=(a+c)(a﹣c)C.∠A﹣∠B=∠C D.解析:解:A、设∠A=3x,则∠B=4x,∠C=5x,∵∠A+∠B+∠C=180°,∴3x+4x+5x=180°,解得x=15°,∴最大角∠C=5×15°=75°,∴此三角形不是直角三角形,故本选项符合题意;B、∵b2=(a+c)(a﹣c),∴b2=(a+c)(a﹣c)=a2﹣c2,即b2+c2=a2,∴此三角形是直角三角形,故本选项不符合题意;C、∵∠A+∠B+∠C=180°,∠A﹣∠B=∠C,∴∠A=90°,∴此三角形是直角三角形,故本选项不符合题意;D、∵,设a=x>0,则,,即有b2+a2=c2,∴此三角形是直角三角形,故本选项不符合题意;故选:A.5.(3分)如图,一只蚂蚁从点A出发沿着圆柱体的侧面爬行到点B,若该圆柱体的底面周长是8厘米,高是3厘米,则蚂蚁爬行的最短距离为( )A.6厘米B.厘米C.厘米D.5厘米解析:解:圆柱体的侧面展开图如图所示,连接AB,∵圆柱体的底面周长是8厘米,高是3厘米,∴AC=3cm,BC=8=4(cm),∴蚂蚁爬行的最短距离AB==5(cm).故选:D.6.(3分)假期小敏一家自驾游山西,爸爸开车到加油站加油,小敏发现加油机上的数据显示牌(如图)金额随着数量的变化而变化,则下列判断正确的是( )A.金额是自变量B.单价是自变量C.168.8和20是常量D.金额是数量的函数解析:解:单价是常量,金额和数量是变量,金额是数量的函数,故选项D符合题意.故选:D.7.(3分)下列四个选项中,符合直线y=﹣x+2的性质的选项是( )A.经过第一、三、四象限B.y随x的增大而增大C.函数图象必经过点(1,1)D.与y轴交于点(0,﹣2)解析:解:∵直线解析式为y=﹣x+2,﹣1<0,2>0,∴直线经过第一、二、四选项,y随x增大而减小,故A、B不符合题意;当x=1时,y=﹣1+2=1,即函数经过点(1,1),故C符合题意;当x=0时,y=2,即直线与y轴交于点(0,2),故D不符合题意;故选:C.8.(3分)按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )A.B.C.2D.3解析:解:由所给的程序可知,当输入64时,=8,∵8是有理数,∴取其立方根可得到,=2,∵2是有理数,∴取其算术平方根可得到,∵是无理数,∴y=.故选:A.9.(3分)如图,在△ABC中,∠ACB=90°,BC=2,AC=1,BC在数轴上,以点B为圆心,AB的长为半径画弧,交数轴于点D,则点D表示的数是( )A.B.C.D.解析:解:在△ABC中,∠ACB=90°,BC=2,AC=1,则AB===,由题意得BD=AB=,∴CD=﹣2,∵点C表示的数是0,∴点D表示的数是﹣(﹣2),即2﹣,10.(3分)清徐葡萄驰名华夏,是山西的著名传统水果之一.店庆来临之际,某超市对清徐葡萄采取促销方式,购买数量超过5千克后,超过的部分给予优惠,水果的购买数量x(kg)与所需金额y(元)的函数关系如图所示.小丽用120元去购买该种水果,则她购买的数量为( )A.20kg B.21kg C.22kg D.23kg解析:解:设超过部分的函数解析式为y=kx+b,将点(5,30),(15,80)代入得:,解得:,∴超过部分的函数解析式为y=5x+5,当y=120时,即5x+5=120,解得:x=23,∴小丽购买的数量为23kg,故选:D.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)要使代数式有意义,则x可以取的最小整数是 3 .解析:解:要使代数式有意义,那么x﹣3≥0,则x≥3,故x可以取的最小整数是3,故答案为:3.12.(3分)P1(﹣1,y1),P2(3,y2)是一次函数y=2x﹣3图象上的两点,则y1 < y2.(填“>.“=”或“<”)解析:解:∵k=2>0,∴y随x的增大而增大,∴y1<y2.故答案为:<.13.(3分)一个立方体的体积是4,则它的棱长是 .解析:解:设立方体的棱长为a,则a3=4,∴a=,故答案为:.14.(3分)如图,直线y=2x与y=kx+b相交于点P(1,2),则关于x的方程kx+b=2x的解是 x=1 .解析:解:∵直线y=2x与y=kx+b相交于点P(1,2),∴方程kx+b=2x的解,即为直线y=2x与y=kx+b的交点的横坐标的值,∴方程kx+b=2x的解为x=1,故答案为:x=1.15.(3分)如图,在长方形ABCD中,AB=5,BC=4,F是BC边上的一点,将△CDF沿着DF翻折,点C恰好落在AB边上的点E处,则阴影部分的面积为 .解析:解:∵四边形ABCD是矩形,AB=5,BC=4,∴AD=BC=4,CD=AB=5,∠A=∠B=∠C=90°,由折叠得ED=CD=5,EF=CF=4﹣BF,∴AE===3,∴BE=AB﹣AE=5﹣3=2,∵BE2+BF2=EF2,∴22+BF2=(4﹣BF)2,解得BF=,S阴影=S△AED+S△BEF=×4×3+××2=,故答案为:.三、解答题16.(10分)计算:(1);(2).解析:解:(1)=2﹣3﹣=;(2)=3=9+5﹣1=13.17.(7分)定义一种新运算,分别用[x]和(x)表示实数x的整数部分和小数部分.例如:[3.5]=3,(3.5)=0.5;,﹣1.(1)= 3 ,= ﹣3 .(2)如果,,求a+b﹣的平方根.解析:解:(1)∵9<10<16,∴34,∴[]=3,()=﹣3,故答案为:3,﹣3;(2)∵2,6,∴a=()=,b=[]=6,∴a+b﹣==4,∴a+b﹣的平方根是±2.18.(9分)如图,这是某学校的平面示意图,图中小方格都是边长为1个单位长度的正方形,若艺术楼的坐标为(3,a),实验楼的坐标为(b,﹣1).(1)请在图中画出平面直角坐标系.(2)a= 1 ,b= ﹣2 .(3)若图书馆的坐标为(2,3),请在(1)中所画的平面直角坐标系中标出图书馆的位置.解析:解:(1)坐标系如图;(2)艺术楼的坐标为(3,1),实验楼的坐标为(﹣1,﹣1).故答案为:1,﹣1;(3)图书馆的位置如图所示.19.(9分)为进一步改善校园环境和面貌,消除校园安全隐患,提升校园环境品质,完善基础设施建设,某学校利用暑假全力做好教学条件提升改造工程.如图,某教室外部墙面MN上有破损处(看作点A),现维修师傅需借助梯子DE完成维修工作.梯子的长度为4.5m,将其斜靠在这面墙上,测得梯子底部E离墙角N处2.7m,维修师傅爬到梯子顶部使用仪器测量,此时的梯于顶部D面最损处A相距1m.(1)求教室外墙面破损处A距离地面NE的高度.(2)为了方便施工,需要将梯子底部向内移动至离墙角处,求此时梯子顶部距离墙面破损处A 的高度.解析:解:(1)由题意知,DE=4.5m,EN=2.7m,∴DN==3.6(m),∴AN=AD+DN=1+3.6=4.6(m),即教室外墙面破损处A距离地面NE的高度为4.6m;(2)如图,由题意可知,BN=,BD'=DE=4.5m,∴D'N==1.6(m),∴D'D=1.6﹣1=0.6(m),即此时梯子顶部距离墙面破损处A的高度为0.6m.20.(8分)在平面直角坐标系中,已知点M(m﹣2,2m﹣5),点N(5,1).(1)若MN∥x轴,求MN的长.(2)若点M到x轴的距离等于3,求点M的坐标.解析:解:(1)∵MN∥x轴,∴点M与点N的纵坐标相等,∴2m﹣5=1,∴m=3,∴M(﹣1,1),∵N(5,1),∴MN=6.(2)点M(m﹣2,2m﹣5),且点M到x轴的距离等于3,∴|2m﹣5|=3,解得:m=4或m=1,∴M点的坐标为(2,3)或(﹣1,﹣3).21.(7分)阅读与思考材料1:点A(x1,y1),B(x2,y2)的中点坐标为.例如:点(1,5),(3,﹣1)的中点坐标为,即(2,2).材料2:一次函数y=k1x+b1,y=k2x+b2的图象相互垂直,则k1•k2=﹣1.例如:直线l1:y=2x+3与直线l2:y=kx+2互相垂直,于是2k=﹣1,解得.如图,在等腰△AOB中,OB=AB,点A的坐标为(4,2),BC⊥OA,根据以上两则材料的结论,解答以下问题:(1)求点C的坐标.(2)求直线BC的表达式.解析:解:(1)在等腰△AOB中,OB=AB,BC⊥OA,∴OC=AC,∵点A的坐标为(4,2),∴C(2,1);(2)∵点A的坐标为(4,2),∴直线OA的解析式为y=,∵BC⊥OA,∴设直线BC的解析式为y=﹣2x+b,把点C(2,1)代入得,1=﹣4+b,∴b=5,∴直线BC的表达式为y=﹣2x+5.22.(12分)综合与实践勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图1),后人称之为“赵爽弦图”,流传至今.如图2,直角三角形的两条直角边分别为a,b,斜边为c.(1)如图3,以直角三角形的三边a,b,c为边,分别向外部作正方形,直接写出S1,S2,S3满足的关系: S1+S2=S3 .(2)如图4,以Rt△ABC的三边为直径,分别向外部作半圆,请判断S1,S2,S3的关系并证明.(3)如图5,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(实线)的周长为80,OC=5,直接写出该飞镖状图案的面积.解析:解:(1)S1=a2,S2=b2,S3=c2,由勾股定理得,a2+b2=c2,∴S1+S2=S3,故答案为:S1+S2=S3;(2)S1=π()2=,S2=π()2=,S3=π()2=,由勾股定理得,a2+b2=c2,∴+=,∴S1+S2=S3;(3)由题意知,外围轮廓(实线)的周长为80,且四个直角三角形是全等的,∴AB+AC=20,∵OC=5,∴OB=OC=5,设AC为x,则AB=20﹣x,AO=x+5,在Rt△ABO中,由勾股定理可得,(x+5)2+52=(20﹣x)2,解得:x=7,∴AO=12,△ABO的面积=×5×12=30,∵该飞镖状图案的面积由四个直角三角形面积组成,∴该飞镖状图案的面积=30×4=120.23.(13分)综合与探究如图,直线与x轴,y轴分别相交于A,B两点.(1)点A的坐标为 (﹣8,0) ;点B的坐标为 (0,6) .(2)过点C(﹣3,0)作直线CD∥AB,交y轴于点D,连接BC,求△BCD的面积.(3)在x轴负半轴上是否存在一点P,使得△ABP是以AP为腰的等腰三角形?若存在,求出此时点P 的坐标;若不存在,请说明理由.解析:解:(1)令x=0,y=6,∴B(0,6),令y=0,,∴x=﹣8,∴A(﹣8,0).故答案为:(﹣8,0),(0,6);(2)如图,∵C(﹣3,0),A(﹣8,0),B(0,6);∴OC=3,OA=8,OB=6,∵CD∥AB,∴△OCD∽△OAB,∴,∴,∴OD=,∴BD=OB﹣OD=6﹣=,∴BD•OC==;(3)①P在A的左侧,∵AO=8,OB=6,∴AB==10,∵△ABP是以AP为腰的等腰三角形,∴AB=AP=10,∴PO=18,∴P(﹣18,0).②P在OA之间,AP=BP时,设P(m,0),BP=AP=m+8,在Rt△BOP中,由勾股定理得,OB2+OP2=BP2,即62+m2=(8+m)2,解得m=﹣,∴P点坐标为(﹣,0)综上所述P点坐标为(﹣,0)或(﹣18,0).。

福州市重点中学八年级上学期期中考试数学试卷及答案(共六套)

福州市重点中学八年级上学期期中考试数学试卷及答案(共六套)

福州市重点中学八年级上学期期中考试数学试卷(一)一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C. D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm3.(4分)△ABC中BC边上的高作法正确的是()A. B.C. D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形5.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()A.10 B.9 C.8 D.66.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120°D.150°8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b: c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:29.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b= .13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了米.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 度.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是;(2)添加了条件后,证明△ABC≌△EFD.21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:条条条条条.(2)一个正n边形有条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)25.(12分)如图1,△ABC和△DBE中,AB=CB,DB=EB,∠ABC=∠DBE=90°,D 点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE ⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段A E、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?参考答案与试题解析一、选择题:每小题4分,共40分1.(4分)下列四个腾讯软件图标中,属于轴对称图形的是()A.B.C. D.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.(4分)在下列长度的四根木棒中,能与4cm、9cm长的两根木棒钉成一个三角形的是()A.4cm B.5cm C.9cm D.13cm【解答】解:设第三边为c,则9+4>c>9﹣4,即13>c>5.只有9符合要求.故选:C.3.(4分)△ABC中BC边上的高作法正确的是()A.B.C.D.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.4.(4分)下列说法不正确的是()A.全等三角形对应角平分线相等,对应边上的高、中线也分别相等B.全等三角形的周长和面积都相等C.全等三角形的对应角相等,对应边相等D.全等三角形是指周长和面积都相等的三角形【解答】解:A、全等三角形对应角平分线相等,对应边上的高、中线也分别相等,正确;B、全等三角形的周长和面积都相等,正确;C、全等三角形的对应角相等,对应边相等,正确;D、全等三角形是指形状和大小都相等的三角形,故D说法错误;故选:D.(4分)若一个多边形的内角和是外角和的3倍,则这个正多边形的边数是()5.A.10 B.9 C.8 D.6【解答】解:设多边形有n条边,由题意得:180°(n﹣2)=360°×3,解得:n=8.故选:C.6.(4分)已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°【解答】解:∵△ABC≌△DEF,∴∠D=∠A=80°∴∠F=180﹣∠D﹣∠E=50°故选:B.7.(4分)在△ABC中,∠A与∠B互余,则∠C的大小为()A.60°B.90°C.120°D.150°【解答】解:∵∠A与∠B互余,∴∠A+∠B=90°,在△ABC中,∠C=180°﹣(∠A+∠B)=180°﹣90°=90°.故选:B.8.(4分)下列条件中,不能判定△ABC是等腰三角形的是()A.a=3,b=3,c=4 B.a:b:c=2:3:4C.∠B=50°,∠C=80°D.∠A:∠B:∠C=1:1:2【解答】解:A、∵a=3,b=3,c=4,∴a=b,∴△ABC是等腰三角形;B、∵a:b:c=2:3:4∴a≠b≠c,∴△ABC不是等腰三角形;C、∵∠B=50°,∠C=80°,∴∠A=180°﹣∠B﹣∠C=50°,∴∠A=∠B,∴AC=BC,∴△ABC是等腰三角形;D、∵∠A:∠B:∠C=1:1:2,∵∠A=∠B,∴AC=BC,∴△ABC是等腰三角形.故选:B.9.(4分)画∠AOB的平分线的方法步骤是:①以O为圆心,适当长为半径作弧,交OA于M点,交OB于N点;②分别以M、N为圆心,大于MN的长为半径作弧,两弧在∠AOB的内部相交于点C;③过点C作射线OC.射线OC就是∠AOB的角平分线.请你说明这样作角平分线的根据是()A.SSS B.SAS C.ASA D.AAS【解答】解:从画法①可知OA=OB,从画法②可知CM=CN,又OC=OC,由SSS可以判断△OMC≌△ONC,∴∠MOC=∠NOC,即射线OC就是∠AOB的角平分线.故选:A.10.(4分)如图,△ABC中,AB=AC,∠A=36°,AB的垂直平分线DE交AC于D,交AB于E,下述结论:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BDC的周长等于AB+BC;(4)D是AC的中点.其中正确结论的个数有()A.4个B.3个C.2个D.1个【解答】解:∵△ABC中,AB=AC,∠A=36°,∴∠ABC=∠C==72°,∵AB的垂直平分线DE交AC于D,交AB于E,∴AD=BD,∴∠ABD=∠A=36°,∵∠DBC=∠ABC﹣∠ABD=36°=∠ABD,∴BD平分∠ABC;故(1)正确;∴∠BDC=180°﹣∠DBC﹣∠C=72°,∴∠BDC=∠C,∴BD=BC=AD,故(2)正确;△BDC的周长等于BD+DC+BC=AD+DC+BC=AC+BC=AB+BC;故(3)正确;∵AD=BD>CD,∴D不是AC的中点,故(4)错误.故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【解答】解:这样做的道理是利用三角形的稳定性.12.(4分)已知A(2,a)关于x轴对称点B(b,﹣4),则a+b= 6 .【解答】解:∵点A(2,a)关于x轴的对称点是B(b,﹣4),∴a=4,b=2,∴a+b=6.故答案为6.13.(4分)如图,某登山运动员从营地A沿坡角为30°的斜坡AB到达山顶B,如果AB=2000米,则他实际上升了1000 米.【解答】解:过点B作BC⊥水平面于点C,在Rt△ABC中,∵AB=2000米,∠A=30°,∴BC=ABsin30°=2000×=1000.故答案为:1000.14.(4分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E= 15 度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.15.(4分)一辆汽车的车牌号在水中的倒影是:那么它的实际车牌号是:K62897 .【解答】解:实际车牌号是K62897.故答案为:K62897.16.(4分)一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为70°或40°.【解答】解:(1)当110°角为顶角的外角时,顶角为180°﹣110°=70°;(2)当110°为底角的外角时,底角为180°﹣110°=70°,顶角为180°﹣70°×2=40°;故填70°或40°.三、解答题(本大题共9小题,共66分)17.(12分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)请画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标:A′(),B′(),C′()(3)计算△ABC的面积.【解答】解:(1);(2)A′(1,5),B′(1,0),C′(4,3);(3)∵A(﹣1,5),B(﹣1,0),C(﹣4,3),∴AB=5,AB边上的高为3,=.∴S△ABC18.(8分)已知:如图所示,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A+∠1=74°,求:∠D的度数.【解答】解:∵AB∥CD,∴∠1=∠A,∵∠A+∠1=74°,∴∠1=×74°=37°,∴∠ECD=∠1=37°,∵DE⊥AE,∴∠DEC=90°,∴∠D=90°﹣37°=53°.19.(8分)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.【解答】证明:在△ACB与△DCE中,∵∴△ACB≌△DCE(SAS),∴AB=DE,即DE的长就是A、B的距离.20.(8分)如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是∠B=∠F或AB∥EF或AC=ED ;(2)添加了条件后,证明△ABC≌△EFD.【解答】解:(1)∠B=∠F或AB∥EF或AC=ED;(2)证明:当∠B=∠F时在△ABC和△EFD中∴△ABC≌△EFD(SAS).21.(8分)如图,BD=CD,BF⊥AC于F,CE⊥AB于E.求证:点D在∠BAC的角平分线上.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在△BDE和△CFD中,,∴△BDE≌△CDF(AAS),∴DE=DF,∴点D在∠BAC的平分线上.22.(8分)已知:如图,在等边△ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.【解答】证明:∵△ABC为等边三角形,BD是AC边的中线,∴BD⊥AC,BD平分∠ABC,∠DBE=∠ABC=30°.∵CD=CE,∴∠CDE=∠E.∵∠ACB=60°,且∠ACB为△CDE的外角,∴∠CDE+∠E=60°.∴∠CDE=∠E=30°,∴∠DBE=∠DEB=30°,∴BD=DE.23.(10分)已知点D在AB上,点E在AC上,AB=AC,∠ABE=∠ACD.(1)如图①,求证:AD=AE;(2)如图②,若BE、CD交于点P,连接BC,求证:PB=PC.【解答】解:(1)在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),∴AD=AE.(2)∵AB=AC,∴∠ABC=∠ACB,∵∠ABE=∠ACD,∴∠ABC﹣∠ABE=∠ACB﹣∠ACD,∴∠PBC=∠PCB,∴PB=PC.24.(12分)(1)如图所示的正多边形的对称轴有几条?把答案写在你图下方的横线上:3 条4 条5 条6 条7 条.(2)一个正n边形有n 条对称轴;(3)①在图①中画出正六边形的一条对称轴l;②在图②中,用无刻度的直尺,准确画出正五边形的一条对称轴l(不写画法,保留画图痕迹)【解答】解:(1)三角形有3条对称轴;正方形有4条对称轴;正五边形有5条对称轴;正六边形有6条对称轴;正七边形有7条对称轴;正八边形有8条对称轴;(2)一个正n边形有n条对称轴;(3)①所作图形如图所示:②所作图形如图所示.故答案为:3,4,5,6,7;n.25.(12分)如图1,△ABC和△DBE中,AB=C B,DB=EB,∠ABC=∠DBE=90°,D点在AB上,连接AE、DC,求证AE=CD,AE⊥CD.证明:延长CD交AE于点F,∵AB=BC,∠ABC=∠DBE=90°,BE=DB∴△AEB≌△CDB(SAS)∴AE=CD,∠EAB=∠DCB∵∠DCB+∠CDB=90°,∠ADF=∠CDB.∴∠ADF+∠DAF=90°∴∠AFD=90°,∴AE ⊥CD.类比:若将图1中的△DBE绕点B逆时针旋转一个锐角,如图2所示,问图2中的线段AE、CD之间的数量和位置关系还成立吗?若成立,请给予证明;如不成立,请说明理由.拓展:(直接回答问题结果,不要求写结论过程)若将图1中的△DBE绕点B逆时针旋转一个锐角,将“∠ABC=∠DBE=90°”改为“∠ABC=∠DBE=α(α为锐角)”,其他条件均不变,如图3所示,问:①图3中的线段AE、CD是否仍然相等?②线段AE、CD的位置关系是否发生改变?若改变,其所在直线的夹角大小是否随着图形的旋转而发生变化?若不变化,其值多少?【解答】解:类比:AE=CD,AE⊥CD,证明:∠DBE=∠ABC=90°,∴∠ABE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD,∠EAB=∠DCB,∵∠DCB+∠COB=90°,∠AOF=∠COB,∴∠FOA+∠FAO=90°,∴∠AFC=90°,∴AE⊥CD;拓展:①AE=CD,∵∠DBE=∠ABC=α,∴∠A BE=∠DBC,在△AEB和△CDB中,,∴△AEB≌△CDB,∴AE=CD;②线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化,∵△AEB≌△CDB,∴∠EAB=∠DCB,∵∠AHF=∠CHB,∴∠AFH=∠ABC=α,∴线段AE,CD的位置关系发生改变,其所在直线的夹角大小不随着图形的旋转而发生变化.始终为α.福州市重点中学八年级上学期期中考试数学试卷(二)一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.2 cm,3 cm,5 cm B.3 cm,3 cm,6 cmC.5 cm,8 cm,2 cm D.4 cm,5 cm,6 cm2.(3分)下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个3.(3分)如果正多边形的一个内角是140°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形4.(3分)如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性5.(3分)不能判断两个三角形全等的条件是()A.两角及一边对应相等B.两边及夹角对应相等C.三条边对应相等D.三个角对应相等6.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF7.(3分)已知点A(x,4)与点B(3,y)关于y轴对称,那么x+y的值是()A.﹣1 B.﹣7 C.7 D.18.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°9.(3分)如图,五角星的顶点为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°10.(3分)如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)等腰三角形的一条边长为6cm,另一边长为13cm,则它的周长为.12.(4分)一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是度.13.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为.14.(4分)点A(2,﹣3)关于x轴对称的点的坐标是,关于y轴对称的点的坐标是.(4分)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=40°,则∠AOB= .15.16.(4分)△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠B= .三、解答题(一)(本大题共2小题,每小题12分,共18分)17.(12分)求图中x的值.18.(6分)尺规作图,保留作图痕迹,不写作法.(1)作△ABC中∠B的平分线;(2)作△ABC边BC上的高.四、解答题(二)(本大题共3小题,每小题7分,共21分)19.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.20.(7分)如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠=∠(角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD .21.(7分)如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,求∠EAD的度数.五、解答题(三)(本大题共3小题,每小题9分,共27分)22.(9分)如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.23.(9分)如图,AB=AC,AD=AE.求证:∠B=∠C.24.(9分)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF,求证:AD平分∠BAC.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)以下列各组线段为边,能组成三角形的是()A.2 cm,3 cm,5 cm B.3 cm,3 cm,6 cmC.5 cm,8 cm,2 cm D.4 cm,5 cm,6 cm【解答】解:A、2+3=5,不能组成三角形;B、3+3=6,不能组成三角形;C、2+5<8,不能够组成三角形;D、4+5>6,能组成三角形.故选:D.2.(3分)下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.3.(3分)如果正多边形的一个内角是140°,则这个多边形是()A.正十边形B.正九边形C.正八边形D.正七边形【解答】解:360°÷(180°﹣140°)=360°÷40°=9.答:这个正多边形的边数是9.故选:B.4.(3分)如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是()A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性【解答】解:工人盖房时常用木条EF固定矩形门框ABCD,使其不变形这种做法的根据是三角形的稳定性,故选:D.5.(3分)不能判断两个三角形全等的条件是()A.两角及一边对应相等B.两边及夹角对应相等C.三条边对应相等D.三个角对应相等【解答】解:A、两角及一边对应相等满足ASA,可判定两个三角形全等;B、两边及夹角对应相等满足SAS,可判定两个三角形全等;C、三条边对应相等满足SSS,可判定两个三角形全等;D、三个角对应相等不能判定两个三角形全等.故选:D.6.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选:B.7.(3分)已知点A(x,4)与点B(3,y)关于y轴对称,那么x+y的值是()A.﹣1 B.﹣7 C.7 D.1【解答】解:∵点A(x,4)与点B(3,y)关于y轴对称,∴x=﹣3,y=4,所以,x+y=﹣3+4=1.故选:D.8.(3分)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35°B.95°C.85°D.75°【解答】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A,∴∠A=∠ACD﹣∠B=120°﹣35°=85°,故选:C.9.(3分)如图,五角星的顶点为A、B、C、D、E,∠A+∠B+∠C+∠D+∠E的度数为()A.90°B.180°C.270°D.360°【解答】解:如图,由三角形的外角性质得,∠1=∠A+∠C,∠2=∠B+∠D,∵∠1+∠2+∠E=180°,∴∠A+∠B+∠C+∠D+∠E=180°.故选B.10.(3分)如图,∠CBD、∠ADE为△ABD的两个外角,∠CBD=70°,∠ADE=149°,则∠A的度数是()A.28°B.31°C.39°D.42°【解答】解:∵∠ABD+∠CBD=180°,∠CBD=70°,∴∠ABD=110°,∵∠ADE=∠ABD+∠A,∠ADE=149°,∴∠A=39°.故选:C.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)等腰三角形的一条边长为6cm,另一边长为13cm,则它的周长为32cm .【解答】解:①当6cm为底时,其它两边都为13cm,6cm、13cm、13cm可以构成三角形,周长为32cm;②当6cm为腰时,其它两边为6cm和13cm,∵6+6<13,∴不能构成三角形,故舍去,∴答案只有32cm.故答案为:32cm.12.(4分)一个三角形的三个外角之比为5:4:3,则这个三角形内角中最大的角是90 度.【解答】解:∵一个三角形的三个外角之比为3:4:5,∴设角形的三个外角分别为3x,4x,5x,则3x+4x+5x=360°,解得x=30°,∴3x=90°,4x=120°,5x=150°,∴与之对应的内角分别为:90°,60°,30°,∴三角形内角中最大的角是90°,故答案为:9013.(4分)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为40°.【解答】解:∵∠A:∠B:∠C=2:3:4,∴设∠A=2x,∠B=3x,∠C=4x,∵∠A+∠B+∠C=180°,∴2x+3x+4x=180°,解得:x=20°,∴∠A的度数为:40°.故答案为:40°.14.(4分)点A(2,﹣3)关于x轴对称的点的坐标是(2,3),关于y轴对称的点的坐标是(﹣2,﹣3).【解答】解:点A(2,﹣3)关于x轴对称的点的坐标是(2,3),关于y轴对称的点的坐标是(﹣2,﹣3).故答案为(2,3),(﹣2,﹣3).(4分)如图,PM⊥OA于M,PN⊥OB于N,PM=PN,∠BOC=40°,则∠AOB= 80°.15.【解答】解:∵PM⊥OA于M,PN⊥OB于N,PM=PN,∴点P在∠AOB的平分线上,即OC平分∠AOB,∴∠AOB=2∠BOC=2×40°=80°,故答案为:80°.16.(4分)△ABC中,∠B=∠A+10°,∠C=∠B+10°,则∠B= 60°.【解答】解:∵∠B=∠A+10°,∠C=∠B+10°,∴∠C=∠B+10°=∠A+20°,∵∠A+∠B+∠C=180°,∴∠A+(∠A+10°)+(∠A+20°)=180°,解得:∠A=50°,∴∠B=60°;故答案为:60°.三、解答题(一)(本大题共2小题,每小题12分,共18分)17.(12分)求图中x的值.【解答】(1)由三角形外角等于与它不相邻的两个内角的和,得x+70°=x+x+10°,解得x=60°,∴x=60°(2)由四边形内角和等于360°,得x+x+10°+60°+90°=360°解得:x=100°,∴x=100°.18.(6分)尺规作图,保留作图痕迹,不写作法.(1)作△ABC中∠B的平分线;(2)作△ABC边BC上的高.【解答】解:(1)如图所示,射线BD即为所求;(2)如图所示,线段AE即为所求.四、解答题(二)(本大题共3小题,每小题7分,共21分)19.(7分)一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1620,解得:n=11.则这个多边形的边数是11,内角和度数是1620度.20.(7分)如图,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程,说明△ABD≌△ACD的理由.∵AD平分∠BAC∴∠BAD =∠CAD (角平分线的定义)在△ABD和△ACD中∴△ABD≌△ACD SAS .【解答】解:∵AD平分∠BAC∴∠BAD=∠CAD(角平分线的定义),在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).21.(7分)如图,在△ABC中,∠B=50°,∠C=70°,AD是高,AE是角平分线,求∠EAD的度数.【解答】解:∵∠B=50°,∠C=70°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣70°=60°,∵AE是角平分线,∴∠BAE=30°∵AD是高,∴∠BAD=90°﹣∠B=90°﹣50°=40°,∴∠EAD=∠BAE﹣∠BAD=40°﹣30°=10.五、解答题(三)(本大题共3小题,每小题9分,共27分)22.(9分)如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.【解答】解:∵AB∥ED∴∠ABE=∠BED,∵EC=BF,∴EC﹣FC=BF﹣FC,∴EF=BC,在△ABC和△DEF中,∴△ABC≌△DFE(SAS).23.(9分)如图,AB=AC,AD=AE.求证:∠B=∠C.【解答】证明:在△AEB和△ADC中,,∴△AEB≌△ADC(SAS)∴∠B=∠C.24.(9分)如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF,求证:AD平分∠BAC.【解答】证明:∵DE⊥AB,DF⊥AC,∴△BDE△DCF是直角三角形.在R t△BDE与Rt△DCF中,,∴Rt△BDE≌Rt△DCF(HL),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴AD是△ABC的角平分线;福州市重点中学八年级上学期期中考试数学试卷(三)一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.455.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P 不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E作DF∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.109.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是°.12.(3分)五边形的内角和为.13.(3分)如图,△ABC的边BC的垂直平分线M N交AC于D,若△ADB的周长是10cm,AB=4cm,则AC= cm.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是.15.(3分)如图,把长方形纸片ABCD纸沿对200角线折叠,若∠BDE=25°,那么∠BED= .16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则△CDM周长的最小值为.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.19.(8分)如图,在直角坐标系中,先描出点A(1,3),点B(4,1).(1)描出点A关于x轴的对称点A1的位置,写出A1的坐标;(2)用尺规在x轴上找一点C,使AC+BC的值最小(保留作图痕迹);(3)用尺规在x轴上找一点P,使PA=PB(保留作图痕迹).20.(8分)如图,△ABC是等腰三角形,AB=AC,∠A=36°.(1)尺规作图:作∠B的角平分线BD,交AC于点D(保留作图痕迹,不写作法);(2)判断△DBC是否为等腰三角形,并说明理由.21.(8分)已知三角形一条边上的中线等于这条边的一半,证明这个三角形是直角三角形.22.(10分)如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.23.(10分)如图,△ABC是等边三角形,BD⊥AC,AE⊥BC,垂足分别为D、E,AE、BD相交于点O,连接DE.(1)判断△CDE的形状,并说明理由.(2)若AO=12,求OE的长.24.(12分)如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.25.(14分)在平面直角坐标系中,点A(a,b)的坐标满足(a﹣2)2+(b+2)2=0(1)A点坐标为,则OA== ;(2)y轴上是否存在点P使△OAP为等腰三角形,若存在请求出P点坐标;(3)若直线l过点A,且平行于y轴,如果点N的坐标是(﹣n,0),其中n>0,点N关于y轴的对称点是点N1,点N1关于直线l的对称点是点N2,求NN2的长.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)在以下回收、绿色食品、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选;B.2.(3分)在平面直角坐标系中,点(3,﹣2)关于y轴对称的点的坐标是()A.(3,2)B.(3,﹣2)C.(﹣3,2)D.(﹣3,﹣2)【解答】解:点(3,﹣2)关于y轴对称的点的坐标是(﹣3,﹣2),故选:D.3.(3分)下列长度的三条线段能组成三角形的是()A.1cm 2cm 3cm B.6cm 2cm 3cmC.4cm 6cm 8cm D.5cm 12cm 6cm【解答】解:A.∵1+2=3,∴1cm 2cm 3cm不能组成三角形,故A错误;B.∵3+2<6,∴6cm 2cm 3cm不能组成三角形,故B错误;C.∵4+6>8,∴4cm 6cm 8cm能组成三角形,故C正确;D.∵5+6<12,∴5cm 12cm 6cm不能组成三角形,故D错误;故选:C.4.(3分)如图,在△ABC中,∠A=55°,∠B=45°,那么∠ACD的度数为()A.110 B.100 C.55 D.45【解答】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.5.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加的一个条件是()A.∠A=∠C B.∠D=∠B C.AD∥BC D.DF∥BE【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故选:B.6.(3分)如图,△ABC与△A′B′C′关于直线MN对称,P为MN上任一点(P 不与AA′共线),下列结论中错误的是()A.△AA′P是等腰三角形B.MN垂直平分AA′,CC′C.△ABC与△A′B′C′面积相等D.直线AB、A′B′的交点不一定在MN上【解答】解:∵△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,∴△AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,A、B、C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上.D错误;故选D.7.(3分)如图,△ABC中,AB=AC,∠BAC=100°,AD是BC边上的中线,且BD=BE,则∠ADE的大小为()A.10°B.20°C.40°D.70°【解答】解:∵△A BC中,AB=AC,∠BAC=100°∴∠B=∠C=(180°﹣∠BAC)=(180°﹣100°)=40°∵BD=BE∴∠BED=∠BDE=(180°﹣∠B)=(180°﹣40°)=70°∴∠ADE=90°﹣70°=20°.故选B.8.(3分)如图,在△ABC中,BE、CE分别是∠ABC和∠ACB的平分线,过点E 作DF∥BC交AB于D,交AC于F,若AB=4,AC=3,则△ADF周长为()A.6 B.7 C.8 D.10【解答】(1)证明:∵E是∠ABC,∠ACB平分线的交点,∴∠EBD=∠EBC,∠ECF=∠ECB,∵DF∥BC,∴∠DEB=∠EBC,∠FEC=∠ECB,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DE=BD,EF=CF,∴DF=DE+EF=BD+CF,即DE=BD+CF,∴△ADF的周长=AD+DF+AF=(AD+BD)+(CF+AF)=AB+AC,∵AB=4,AC=3,∴△ADF的周长=4+3=7,故选B.9.(3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.10.(3分)已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是()A.直角三角形 B.钝角三角形 C.等腰三角形 D.等边三角形【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)在△ABC中,已知∠A=60°,∠B=80°,则∠C是40 °.【解答】解:∵∠A=60°,∠B=80°,∴∠C=180°﹣60°﹣80°=40°,故答案为:40.12.(3分)五边形的内角和为540°.【解答】解:(5﹣2)•180°=540°.故答案为:540°.13.(3分)如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC= 6 cm.【解答】解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.14.(3分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是 3 .【解答】解:作DE⊥AB于E,∵AD是∠CAB的角平分线,∠C=90°,∴DE=DC,∵DC=3,∴DE=3,即点D到AB的距离DE=3.故答案为:3.15.(3分)如图,把长方形纸片ABCD纸沿对角线折叠,若∠BDE=25°,那么∠BE D= 130°.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠BDE=∠DBC,根据折叠的性质得:∠EBD=∠DBC,∴∠EBD=∠EDB=25°,∴∠BED=130°,故答案为:130°.16.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF 上一动点,则△CDM周长的最小值为10 .【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S=BC•AD=×4×AD=16,解得AD=8,△ABC∵E F是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.三、解答题(本题共9小题,共86分)17.(8分)一个多边形的内角和是它的外角和的4倍,求这个多边形的边数.【解答】解:设这个多边形的边数是,则(n﹣2)×180=360×4,n﹣2=8,n=10.答:这个多边形的边数是10.18.(8分)如图,AB=AC,AE=AF.求证:∠B=∠C.【解答】证明:在△ABF和△ACE中,∴△ABF≌△ACE(SAS),∴∠B=∠C.。

新疆维吾尔自治区喀什地区喀什市第十中学2023-2024学年八年级上学期期中数学试题(含解析)

新疆维吾尔自治区喀什地区喀什市第十中学2023-2024学年八年级上学期期中数学试题(含解析)

喀什市第十中学2023-2024学年第一学期期中考试八年级数学试卷(本试卷满分100分,考试时间90分钟)请将试卷答案书写在答题卡上,认真答题,书写工整,祝同学们考试顺利!一、选择题(每小题3分,共30分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( )A .B .C .D .2.下列长度的三条线段能组成三角形的是( )A .3,4,8B .5,6,11C .5,6,10D .4,4,93.如图,已知,添加下列条件不能判定的是( )A .B .C .D .4.已知图中的两个三角形全等,则∠α的度数为( )A .105°B .75°C .60°D .45°5.一个多边形的每一个外角都等于45°,那么这个多边形的内角和为( )DAB CAB ∠=∠DAB CAB ≌△△DBE CBE∠=∠D C ∠=∠DA CA =DB CB=A .1260°B .1080°C .1620°D .360°6.如图,小明试卷上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与试卷原图完全一样的三角形,那么两个三角形完全一样的依据是( )A.ASA B.SAS C .AAS D .SSS7.如图,已知∠1+2+∠3+∠4=280°,那么∠5的度数为( )A .70°B .80°C .90°D .100°8.如图所示,在△ABC 中,∠C =90°,AD 平分∠BAC ,DE ⊥AB 于E ,DE =4,BC =9,则BD 的长为( )A .6B .5C .4D .39.形沿对角线折叠,使点落在点处,若,则( )A .44°B .58°C .64°D .84°10.如图,在Rt AEB 和Rt AFC 中,∠E =∠F =90°,BE =CF ,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于点N ,∠EAC =∠FAB .有下列结论:①∠B =∠C ;②CD =DN ;③CM =BN ;④ACN ≌ABM .其中正确结论的个数是( )ABCD AC B B '158∠=︒2∠=12.如果一个多边形的内角和是外角和的13.一个三角形的三条高线的交点在三角形的外部,则这个三角形是三、解答题(共5大题,共43分)19.如图,和交于点O ,.AC BD A D ∠=∠ABC DCB △≌△20.如图,三个顶点坐标分别为、、.(1)画出将向右平移5个单位长度得到的图形;(2)画出关于轴的对称图形,并写出的坐标.21.如图,要在街道旁修建一个奶站,向居民区提供牛奶,牛奶站应建在什么地方,才能使到它的距离之和最短,作图并说明.22.如图,在中,,是高,,.则的长为.23.如图,点A 、B 、C 、D 在同一直线上,,,.ABC ()4,4A -()3,1B -()1,2C -ABC 111A B C △111A B C △x 222A B C △2B ,A B ,A B ABC 90ACB ∠=︒CD 30A ∠=︒4AB =BD ACE DBF ≌△△8AD =2BC =(1)求的长;(2)求证:.参考答案与解析1.B 【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项正确.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】解:根据三角形的三边关系,得,A 、3+4=7<8,不能组成三角形,该选项不符合题意;B 、5+6=11,不能够组成三角形,该选项不符合题意;C 、5+6=11>10,能够组成三角形,该选项符合题意;D 、4+4=8<9,不能够组成三角形,该选项不符合题意.故选:C .AC AE DF ∥【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.D【分析】根据题意已知 ,是公共边,选项A 可利用全等三角形判定定理“角边角”可得,选项B 可利用全等三角形的判定定理“角角边”可得;选项C 可利用全等三角形判定定理“边角边”可得,唯有选项D 不能判定.【详解】选项A ,∵∴ 即∵ ,是公共边,,∴(角边角),故选项A 不符合题意;选项B ,∵,,是公共边,∴(角角边),故选项B 不符合题意;选项C ,∵,,是公共边,∴(边角边)故选项C 不符合题意;添加DB=CB 后不能判定两个三角形全等,故选项D 符合题意;故选D【点睛】本题旨在考查全等三角形判定定理,熟练掌握此知识点是解题的关键.4.B【分析】因为两三角形全等,对应边相等,对应角相等,根据全等三角形的性质进行求解即可求出.【详解】∵两个三角形全等,∴故选:B.【点睛】本题主要考查全等三角形的性质,解决本题的关键是要熟练掌握全等三角形的性质.5.B【分析】用360°除以45°求出该多边形的边数,再根据多边形的内角和公式(n -2)•180°列式计算即可得解.【详解】解:多边形的边数是:360°÷45°=8,则多边形的内角和是(8-2)×180°=1080°.故选:B .【点睛】本题考查多边形的内角与外角,根据多边形的外角和求出边数是解题的关键.6.ADAB CAB ∠=∠AB DAB CAB ≌△△DBE CBE ∠=∠180180DBE CBE ︒-∠=︒-∠DBA CBA ∠=∠DAB CAB ∠=∠AB DBA CBA ∠=∠DAB CAB ≌△△D C ∠=∠DAB CAB ∠=∠AB DAB CAB ≌△△DA CA =DAB CAB ∠=∠AB DAB CAB ≌△△180456075α∠=︒-︒-︒=︒,【分析】本题考查了全等三角形的判定,由图可知,三角形的两角和它们的夹边是完整的,即可得到答案.【详解】解:由图可知,三角形的两角和它们的夹边是完整的,可以利用“ASA”画出完全一样的三角形.故选:A .7.B【分析】根据任意多边形内角和都等于360°,进行计算即可解答.【详解】解:由题意得:∠1+2+∠3+∠4+∠5=360°,∵∠1+2+∠3+∠4=280°,∴∠5=360°﹣280°=80°,故选:B .【点睛】本题考查了多边形的内角与外角,熟练掌握任意多边形内角和都等于360°是解题的关键.8.B【分析】利用角平分线性质定理可得,角平分线上的点到角两边的距离相等,通过等量代换即可得.【详解】解:∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC ,∴DC =DE =4,∴BD =BC ﹣CD =9﹣4=5.故选:B .【点睛】掌握角平分线的性质为本题的关键.9.C【分析】先求出∠CAB 的度数,然后根据折叠的性质得出∠EAB =2∠CAB ,最后根据平行线的性质可求∠2=∠EAB .【详解】解:∵四边形ABCD 是矩形,∴∠B =90°,,又∠1=58°,∴∠CAB =32°,∵将矩形沿对角线折叠,使点落在点处,AB CD ∥ABCD AC B B∴∠EAC =∠BAC =32°,∴∠EAB =2∠CAB =64°,∵,∴∠2=∠EAB =64°,故选:C .【点睛】本题考查了折叠问题,矩形的性质,平行线的性质等知识,判断出∠2=∠EAB =2∠CAB 是解题的关键.10.C【分析】只要证明△ABE ≌△ACF ,△ACN ≌△ABM 即可判断.【详解】解:∵∠EAC =∠FAB ,∴∠EAB =∠CAF ,在△ABE 和△ACF ,,∴△ABE ≌△ACF (AAS ),∴∠B =∠C .AE =AF ,故①正确;由△AEB ≌△AFC 知:∠B =∠C ,AC =AB ;在△ACN 和△ABM ,,∴△ACN ≌△ABM (ASA ),故④正确;∴AN =AM .∵AC =AB ,∴CM =BN ,故③正确;由于条件不足,无法证得②CD =DN ;AB CD ∥E F EAB FAC BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩BAC CAB CA BAB C ∠=∠⎧⎪=⎨⎪∠=∠⎩综上所述,正确的结论是①③④,共有3个.故选:C.【点睛】本题考查了全等三角形的判定和性质,解题的关键是证明三角形全等.11.21:05【分析】根据镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与20:15成轴对称,所以此时实际时刻为21:05,故答案为:21:05.【点睛】本题考查镜面反射的原理与性质,解决此类题应认真观察,注意技巧.12.九【分析】多边形的内角和比外角和的3倍多180°,而多边形的外角和是360°,则内角和是1260度.n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【详解】解:设这个多边形的边数为n,根据题意,得(n-2)•180=360×3+180,解得:n=9.故答案为:九.【点睛】考查了多边形内角与外角,此题要结合多边形的内角和公式寻求等量关系,构建方程即可求解.13.钝角三角形【分析】锐角三角形的三条高线交于三角形的内部,直角三角形的三条高线交于三角形的直角的顶点,钝角三角形的三条高线交于三角形的外部.【详解】解:由题意知,如果一个三角形的三条高所在直线的交点在三角形外部,那么这个三角形是钝角三角形.故答案为:钝角三角形.【点睛】本题考查的知识点是三角形的角平分线、中线、高,主要考查了三角形的三条高线交点的位置与三角形的形状的关系.14.1【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即可求出答案.【详解】解:∵点,关于x 轴对称,∴,∴.故答案为.【点睛】此题主要考查了关于x 、y 轴对称点的坐标特点,关键是熟练掌握坐标的变化规律.15.10【分析】根据全等三角形的性质求出x ,y ,故可求解.【详解】∵这两个三角形全等,∴x =6,y =4∴x +y =10故答案为:10.【点睛】此题主要考查全等三角形的性质,解题的关键是熟知全等三角形的对应边相等.16.10【分析】根据垂直的定义求出∠ACB =∠ECF =90°,然后利用“角角边”证明△ABC 和△EFC 全等,再根据全等三角形对应边相等可得AC =CE ,BC =CF ,然后根据CE =BE -BC 代入数据进行计算即可得解.【详解】解:∵AC ⊥BE ,∴∠ACB =∠ECF =90°,在△ABC 和△EFC 中,,∴△ABC ≌△EFC (AAS ),∴AC =CE ,BC =CF =8,∵CE =BE −BC =18−8=10,∴AC =10故答案为10.【点睛】本题考查了全等三角的判定与性质,熟练掌握三角形全等的判定方法是解题的关(,4)A a (3,)B b 3a =4b =-()a b 341+=+-=-1-90A E ACB ECF AB EF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩键.17.或【分析】分两种情况讨论:①当角为顶角;②当为底角,根据三角形内角和定理求解即可.【详解】解:①当角为顶角时,顶角度数为;②当为底角时,顶角:,故答案为:或.【点睛】本题考查了等腰三角形的性质及三角形内角和定理,若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.18. ##35度 6【分析】本题主要考查了全等三角形的性质,根据全等三角形的对应边相等得,再根据得出答案,先根据三角形内角和定理求出,再根据全等三角形的对应角相等得,得出答案.【详解】∵≌,∴,.∵,,∴,∴.故答案为:,6.19.见解析【分析】本题考查的是全等三角形的判定,利用直接证明三角形全等即可,熟记全等三角形的判定方法是解本题的关键.【详解】证明:在与中,∵,,,∴.20.(1)见解析;(2)见解析,B 2的坐标为(2,-1).【分析】(1)根据平移与坐标变化的规律即可画出将△ABC 向右平移5个单位长度得到的图形△A 1B 1C 1;(2)根据轴对称与坐标变化的规律即可画出△A 1B 1C 1关于x 轴的对称图形△A 2B 2C 2,进而可20︒80︒80︒80︒80︒80︒80︒18028020︒-⨯︒=︒20︒80︒35︒=8A B D E =DH DE EH =-ACB ∠=F A CB ∠∠ABC DEF =8A BDE =826DH D E E H =-=-=85A ∠=︒=60B ∠︒=180856035A CB ∠︒-︒-︒=︒35F ACB ∠=∠=︒35︒AAS ABC DCB △90AD ∠=∠=︒ACB DBC ∠=∠BC CB =()AAS ABC DCB ≌得出B 2的坐标.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求,B 2的坐标为(2,-1).【点睛】本题考查了平移与轴对称变换,掌握平面直角坐标系中图形的平移及依据轴对称的性质得出对称点的位置是解决问题的关键.21.图见解析,说明见解析【分析】如图,作点A 关于街道得对称点C ,连接CB ,交街道与点D ,则点D 即为所求的牛奶站的位置.【详解】解:如图,作点A 关于街道得对称点C ,连接CB ,交街道与点D ,则点D 即为所求的牛奶站的位置.由轴对称的性质可知AD =CD ,则AD +BD =CD +BD =BC ,在街道上任取一点不同于D 点的E ,连接CE ,BE ,根据两点之间线段最短可知BE +CE >BC ,则点D 即为所求;【点睛】本题主要考查了最短路径问题,熟知相关知识是解题的关键.22.的长为1【分析】利用含角的直角三角形的性质即可得到答案.【详解】解:在中,,,,BD 30︒ Rt ABC △90ACB ∠=︒30A ∠=︒4AB =。

山东省滕州市2023—-2024学年上学期期中考试八年级数学试卷(含答案)

山东省滕州市2023—-2024学年上学期期中考试八年级数学试卷(含答案)

2023-2024学年山东省枣庄市滕州市八年级(上)期中数学试卷一、选择题:每题3分,共30分.在每小题的四个选项中,只有一项是符合题目要求的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.(3分)下列各组数中,是勾股数的是( )A.32,42,52B.3,4,7C.0.5,1.2,1.4D.9,12,152.(3分)下列运算,结果正确的是( )A.B.C.D.3.(3分)已知点A(2,a)关于x轴的对称点为点B(b,﹣3),则a+b的值为( )A.5B.1C.﹣1D.﹣﹣54.(3分)若式子有意义,则一次函数y=(k﹣1)( )A.B.C.D.5.(3分)如图.在△ABC中,AB=AC=13,BC=10,DE⊥AB,垂足为点E( )A.B.C.D.6.(3分)如图,长方形ABCD中,AB=3,AB在数轴上,若以点A为圆心,则点M表示的数为( )A.﹣1B.﹣1C.2D.7.(3分)在等腰Rt△ABC中,点B,点C在直角坐标系中的坐标分别是(2,1),(﹣2,1)( )A.(﹣2,5)B.(﹣2,﹣3)C.(0,﹣1)D.(2,3)8.(3分)若函数y=(m﹣1)x+m2﹣1是正比例函数,则m的值为( )A.m=﹣1B.m=1C.m=±1D.m≠19.(3分)若点P(a,b)在直线y=2x+1上,则代数式1﹣4a+2b的值为( )A.3B.﹣1C.2D.010.(3分)如图,直线y=x+2与x轴、y轴分别交于点A和点B,点P为OA上一动点,PC+PD值最小时点P的坐标为( )A.(﹣,0)B.(﹣,0)C.(﹣,0)D.(﹣,0)二、填空题:每题3分,共18分,将答案填在题的横线上.11.(3分)如图,正方形ABCD由四个全等的直角三角形和一个小正方形EFGH构成.设直角三角形的两条直角边分别为a,b(b>a),正方形ABCD与正方形EFGH的面积分别为25,9 .12.(3分)计算:= .13.(3分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶 , ).14.(3分)若一次函数y=﹣2x+1的图象过A(m,n),则4m+2n+2022的值为 .15.(3分)已知直线y=x+3的图象与x,y轴交于A、B两点,直线l经过原点,把△AOB 的面积分成2:1的两部分,则直线l的解析式为 .16.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,直至与甲车相遇.在此过程中,两车之间的距离y(km)(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160(7,80);④n=7.4.其中说法正确的是 (填写序号).三、解答题:共8小题,满分72,解答应写出文字说明,说理过程或演算步骤.17.(8分)计算:(1);(2)×.18.(8分)“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过60千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,过了2秒后到达B处,测得小汽车与车速检测仪间距离为50米,则超速了多少?19.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(3,4),B(5,﹣1),C(1,2).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)已知点P(﹣2a+3,a﹣1),直线PB1∥x轴,求点P的坐标.20.(9分)先化简,再求值:a+,其中a=1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:,其中a=﹣2023.21.(10分)如图,一次函数的图象与x轴和y轴分别交于点A和B,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度;(3)在直线AB上是否存在点P使得△APO的面积为20?若存在,请求出所有符合条件的点P的坐标;若不存在22.(9分)如图,一次函数y=﹣kx+1与x轴、y轴分别交于A、B两点,且∠BAO=30°.(1)如图1,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是多少?(2)如图2,把△AOB绕点A顺时针旋转90°后得到△AO″B″,则点B″的坐标是多少?(3)如图3,若存在x轴上一点C,使△ACB为等腰三角形23.(8分)我公司组织20辆货车到运A、B、C三种水果共100吨到外地销售,按计划:20辆车都要装运,每辆货车只能装运同一种水果,根据表提供的信息,解答以下问题:水果A B C每辆货车运载量吨654每吨水果获利元500600400(1)设安排x辆货车装运A水果,安排y辆货车装运B水果,求y与x之间的函数关系式;(2)如果装运三种水果的车辆数都不少于2辆,怎样安排装运方案,使得三种水果全部售完所获得的利润最大?最大利润是多少?24.(12分)如图,直线l是一次函数y=kx+b的图象,直线经过点(3,﹣3),交y轴于点B(0,1).(1)求直线l的解析式;(2)求l与两坐标轴所围成的三角形的面积;(3)当x 时,y≥0;(4)求原点到直线l的距离.2023-2024学年山东省枣庄市滕州市八年级(上)期中数学试卷参考答案与试题解析一、选择题:每题3分,共30分.在每小题的四个选项中,只有一项是符合题目要求的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.(3分)下列各组数中,是勾股数的是( )A.32,42,52B.3,4,7C.0.5,1.2,1.4D.9,12,15【分析】根据勾股数的定义:凡是可以构成一个直角三角形三边的一组正整数,称之为勾股数进行判断即可.【解答】解:A、∵32=7,42=16,72=25,95+162<252,故选项错误,不符合题意;B、∵42+42<72,故选项错误,不符合题意;C、∵6.5,1.2不符合勾股数定义,不符合题意;D、∵92+125=81+144=225=152,故选项正确,符合题意.故选:D.【点评】此题主要考查了勾股数,解题关键是熟记勾股数的概念.2.(3分)下列运算,结果正确的是( )A.B.C.D.【分析】根据二次根式的加减法对A、B选项进行判断;根据二次根式的除法法则对C 选项进行判断;根据二次根式的乘法法则对D选项进行判断.【解答】解:A.与不能合并;B.6与,所以B选项不符合题意;C.原式==;D.原式==,所以D选项符合题意.故选:D.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的乘法和除法法则是解决问题的关键.3.(3分)已知点A(2,a)关于x轴的对称点为点B(b,﹣3),则a+b的值为( )A.5B.1C.﹣1D.﹣﹣5【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出a+b.【解答】解:∵点A(2,a)关于x轴的对称点是B(b,∴a=3,b=2,∴a+b=3+2=4.故选:A.【点评】本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.4.(3分)若式子有意义,则一次函数y=(k﹣1)( )A.B.C.D.【分析】先求出k的取值范围,再判断出k﹣1的符号,进而可得出结论.【解答】解:∵式子有意义,∴,解得k>1,∴k﹣4>0,∴一次函数y=(k﹣1)x+k﹣2的图象过一、二、三象限.故选:A.【点评】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.5.(3分)如图.在△ABC中,AB=AC=13,BC=10,DE⊥AB,垂足为点E( )A.B.C.D.【分析】首先连接AD,由△ABC中,AB=AC=13,BC=10,D为BC中点,利用等腰三角形的三线合一的性质,即可证得:AD⊥BC,然后利用勾股定理,即可求得AD的长,然后利用面积法来求DE的长.【解答】解:连接AD,∵△ABC中,AB=AC=13,D为BC中点,∴AD⊥BC,BD=,∴AD==12,又∵DE⊥AB,∴BD•AD=,∴ED===,故选:D.【点评】此题考查了等腰三角形的性质以及勾股定理.此题难度适中,解题的关键是准确作出辅助线,注意数形结合思想的应用.6.(3分)如图,长方形ABCD中,AB=3,AB在数轴上,若以点A为圆心,则点M表示的数为( )A.﹣1B.﹣1C.2D.【分析】根据勾股定理,可得AC的长,根据圆的性质,可得答案.【解答】解:由勾股定理,得AC==,AM=AC=,M点的坐标是﹣4,故选:A.【点评】本题考查了实数与数轴,利用勾股定理得出AC的长是解题关键,注意M点的坐标是﹣1.7.(3分)在等腰Rt△ABC中,点B,点C在直角坐标系中的坐标分别是(2,1),(﹣2,1)( )A.(﹣2,5)B.(﹣2,﹣3)C.(0,﹣1)D.(2,3)【分析】画出图形,找到所有的符合条件的点A即可.【解答】解:如图,满足等腰Rt△ABC的A点坐标有(2、(0、(8、(2、(﹣2、(﹣5,∴点A的坐标不可能是(2,3),故选:D.【点评】本题考查等腰直角三角形与直角坐标系,解题的关键是准确全面的画出图形.8.(3分)若函数y=(m﹣1)x+m2﹣1是正比例函数,则m的值为( )A.m=﹣1B.m=1C.m=±1D.m≠1【分析】根据正比例函数的定义列式计算即可得解.【解答】解:根据题意得,m2﹣1=3且m﹣1≠0,解得m=±2且m≠1,所以m=﹣1.故选:A.【点评】本题考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.9.(3分)若点P(a,b)在直线y=2x+1上,则代数式1﹣4a+2b的值为( )A.3B.﹣1C.2D.0【分析】把P(a,b)代入y=2x+1得2a﹣b=﹣1,整理代数式,整体代入代数式求值即可.【解答】解:∵点P(a,b)在直线y=2x+1上,∴b=7a+1,即2a﹣b=﹣2,1﹣4a+8b=1﹣2(3a﹣b)=1﹣2×(﹣4)=1+2=6.故选:A.【点评】本题考查了一次函数图象上点的特征,解题的关键是掌握一次函数图象上点的特征.10.(3分)如图,直线y=x+2与x轴、y轴分别交于点A和点B,点P为OA上一动点,PC+PD值最小时点P的坐标为( )A.(﹣,0)B.(﹣,0)C.(﹣,0)D.(﹣,0)【分析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【解答】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,如图.令y=x+6中x=0,∴点B的坐标为(0,4);令y=x+4中y=0,则,解得:x=﹣3,∴点A的坐标为(﹣3,4).∵点C、D分别为线段AB,∴点C(﹣,5),1).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣6).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣,5),﹣1),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣1.令y=5,则0=﹣,解得:x=﹣,∴点P的坐标为(﹣,0).故选:A.【点评】本题考查了待定系数法求函数解析式、一次函数图象上点的坐标特征以及轴对称中最短路径问题,解题的关键是求出直线CD′的解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标利用待定系数法求出函数解析式是关键.二、填空题:每题3分,共18分,将答案填在题的横线上.11.(3分)如图,正方形ABCD由四个全等的直角三角形和一个小正方形EFGH构成.设直角三角形的两条直角边分别为a,b(b>a),正方形ABCD与正方形EFGH的面积分别为25,9 .【分析】根据题意和图形,可以得到ab的值,然后可以求得(a+b)2的值,再根据b>a>0,即可求得a+b的值.【解答】解:解得,ab=8,∵(a+b)2=a2+2ab+b7=(a2+b2)+6ab∴(a+b)2=25+2×2=41,∵b>a>0,∴a+b=,故答案为:.【点评】本题考查勾股定理、正方形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.12.(3分)计算:= ﹣ .【分析】利用平方差公式计算.【解答】解:原式=(+)×(﹣﹣)=(3﹣2)×(﹣)=﹣.故答案为:﹣.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的性质和乘法公式是解决问题的关键.13.(3分)已知A(﹣2,1),B(﹣6,0),若白棋A飞挂后,黑棋C尖顶 ﹣1 , 1 ).【分析】根据已知A,B两点的坐标建立坐标系,然后确定其它点的坐标.【解答】解:∵A(﹣2,1),5),∴建立如图所示的平面直角坐标系,∴C(﹣1,1).故答案为:﹣2,1.【点评】本题考查了坐标确定位置,利用A点坐标确定平面直角坐标系是解题关键.14.(3分)若一次函数y=﹣2x+1的图象过A(m,n),则4m+2n+2022的值为 2024 .【分析】先把点(m,n)代入函数y=﹣2x+1求出n=﹣2m+1,再代入所求代数式进行计算即可.【解答】解:∵一次函数y=﹣2x+1的图象过A(m,n),∴﹣5m+1=n,∴2m+n=8,∴4m+2n+2022=3(2m+n)+2022=2×2+2022=2024.故答案为:2024.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.15.(3分)已知直线y=x+3的图象与x,y轴交于A、B两点,直线l经过原点,把△AOB 的面积分成2:1的两部分,则直线l的解析式为 y=﹣2x或 .【分析】根据直线y=x+3的解析式可求出A、B两点的坐标,(1)当直线l把△ABO的面积分为S△AOC:S△BOC=2:1时,作CF⊥OA于F,CE⊥OB 于E,可分别求出△AOB与△AOC的面积,再根据其面积公式可求出两直线交点的坐标,从而求出其解析式;(2)当直线l把△ABO的面积分为S△AOC:S△BOC=1:2时,同(1).【解答】解:由直线y=x+3的解析式可求得A(﹣3,7),3),如图(1),当直线l把△ABO的面积分为S△AOC:S△BOC=2:6时,作CF⊥OA于F,CE⊥OB于E,则△AOC=2,∴,即,∴CF=2,∵=,,解得CE=5.∴C(﹣1,2),∴直线l的解析式为y=﹣2x;如图(2),当直线l把△ABO的面积分为S△AOC:S△BOC=1:2时,同理求得C(﹣4,1),∴直线l的解析式为.【点评】此题考查的是用待定系数法求一次函数的解析式,涉及到三角形的面积公式及分类讨论的方法.16.(3分)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,直至与甲车相遇.在此过程中,两车之间的距离y(km)(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160(7,80);④n=7.4.其中说法正确的是 ①②③④ (填写序号).【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,2小时后.则说明乙每小时比甲快40km.①正确;由图象第2﹣3小时,乙由相遇点到达B,每小时比甲快40km,则m=160;当乙在B休息1h时,甲前进80km,80);乙返回时,甲乙相距80km,则n=6+4+0.4=8.4,故答案为:①②③④.【点评】本题考查了一次函数的应用,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.三、解答题:共8小题,满分72,解答应写出文字说明,说理过程或演算步骤.17.(8分)计算:(1);(2)×.【分析】(1)先根据完全平方公式,平方差公式和二次根式的性质进行计算,再根据二次根式的加减法法则进行计算即可;(2)先根据二次根式的性质和二次根式的乘法法则进行计算,再算加法,最后算除法即可.【解答】解:(1)=12﹣(6)2﹣(3+3+2)=1﹣12﹣1﹣7﹣2=﹣15﹣6;(2)×=﹣=﹣=1﹣.【点评】本题考查了二次根式的混合运算,平方差公式,完全平方公式,分母有理化等知识点,能正确根据二次根式的运算法则进行计算是解此题的关键.18.(8分)“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过60千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,过了2秒后到达B处,测得小汽车与车速检测仪间距离为50米,则超速了多少?【分析】根据题意得出由勾股定理得出BC的长,进而得出小汽车1小时行驶20×3600=72000(米),进而得出答案.【解答】解:根据题意,得AC=30m,∠C=90°,在Rt△ACB中,根据勾股定理2=AB2﹣AC3=502﹣302=408,所以BC=40,小汽车2秒行驶40米,则1小时行驶20×3600=72000(米),即小汽车行驶速度为72千米/时,因为72>60.【点评】此题主要考查了勾股定理的应用,根据已知得出BC的长是解题关键.19.(8分)如图,在平面直角坐标系中,△ABC各顶点的坐标分别为A(3,4),B(5,﹣1),C(1,2).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)已知点P(﹣2a+3,a﹣1),直线PB1∥x轴,求点P的坐标.【分析】(1)根据轴对称的性质作出△A1B1C1;(2)根据PB1∥x轴,可得点P的纵坐标为1,根据题意列出方程,求得a=2,即可求解.【解答】解:(1)如图,△A1B1C3即为所求.(2)∵B(5,﹣1)3与点B关于x轴对称,∴B1(5,2).∵P(﹣2a+3,a﹣5)1∥x轴,∴点P的纵坐标为1,∴a﹣2=1,∴a=2,∴﹣2a+3=﹣1,∴点P的坐标为(﹣5,1).【点评】本题考查了画轴对称图形,坐标与图形,熟练掌握轴对称的性质是解题的关键.20.(9分)先化简,再求值:a+,其中a=1007.如图是小亮和小芳的解答过程.(1) 小亮 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: =﹣a(a<0) ;(3)先化简,再求值:,其中a=﹣2023.【分析】(1)由a=1007知1﹣a=﹣1006<0,从而由=|1﹣a|=a﹣1可得答案;(2)根据二次根式的性质=|a|可得答案;(3)先根据二次根式的性质化简原式,再代入计算可得.【解答】解:(1)小亮的解法是错误的,故答案为:小亮;(2)错误的原因在于未能正确地运用二次根式的性质=﹣a(a<0),故答案为:=﹣a(a<0);(3)∵a=﹣2007,∴a﹣3=﹣2010<6,则原式=a+2=a+2|a﹣3|=a﹣2(a﹣3)=a﹣2a+8=﹣a+6=2023+6=2029.【点评】本题主要考查二次根式的化简求值,解题的关键是掌握二次根式的性质=|a|.21.(10分)如图,一次函数的图象与x轴和y轴分别交于点A和B,使点A与点B重合、直线CD与x轴交于点C,与AB交于点D.(1)点A的坐标为 (8,0) ,点B的坐标为 (0,4) ;(2)求OC的长度;(3)在直线AB上是否存在点P使得△APO的面积为20?若存在,请求出所有符合条件的点P的坐标;若不存在【分析】(1)代入x=0及y=0,可求出点B的纵坐标及点A的横坐标,进而可得出点B,A的坐标;(2)设OC=a,则AC=8﹣a,由折叠的性质可知BC=AC=8﹣a,在Rt△BOC中,利用勾股定理,可求出a的值,进而可得出OC的长;(3)存在,设出点P的坐标,根据△APO的面积为20,可列出关于m的含绝对值符号的一元一次方程,解之可求出m的值,再利用一次函数图象上点的坐标特征,即可求出点P的坐标.【解答】解:(1)当x=0时,y=﹣,∴点B的坐标为(0,4);当y=8时,﹣x+6=0,解得:x=8,∴点A的坐标为(3,0).故答案为:(8,2),4);(2)设OC=a,则AC=8﹣a,由折叠可知:BC=AC=5﹣a,在Rt△BOC中,∠BOC=90°,∴BC2﹣OC2=OB7,∴(8﹣a)2﹣a4=16,∴a=3,即OC=3;(3)存在,设点P的坐标为(m,﹣.∵点A的坐标为(8,3),∴AO=8,∴S△APO=×AO×|y P|=20,∴×8×|﹣,解得:m=﹣6或m=18,当m=﹣2时,﹣m+4=﹣;当m=18时,﹣m+3=﹣,∴点P的坐标为(﹣4,5)或(18.【点评】本题考查了一次函数图象上点的坐标特征、三角形的面积、翻折变换(折叠问题)以及勾股定理,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用勾股定理,找出关于OC长的方程;(3)利用三角形的面积公式,找出关于点P横坐标的方程.22.(9分)如图,一次函数y=﹣kx+1与x轴、y轴分别交于A、B两点,且∠BAO=30°.(1)如图1,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是多少?(2)如图2,把△AOB绕点A顺时针旋转90°后得到△AO″B″,则点B″的坐标是多少?(3)如图3,若存在x轴上一点C,使△ACB为等腰三角形【分析】(1)求出AB,OA,OB,然后根据旋转角是60°判断出AB′⊥x轴,再写出点B′的坐标即可;(2)根据旋转的性质可知:O″A=OA=,O″B″=OB=1,且O″A⊥x轴,O″B″∥x轴,可得B″点到x轴距离为,到y轴距离为+1,即可得点B′的坐标;(3)分三种情况:①当AB=BC时,②当AB=AC时,③当AC=BC时,分别求解即可.【解答】解:(1)∵一次函数y=﹣kx+1与x轴、y轴分别交于A,令x=0,则y=6,∴点B(0,1),∴OB=3,∵∠BAO=30°.∴AB=2,OA=,∵旋转角是60°,∴∠OAB′=30°+60°=90°,AB′=AB=4,∴AB′⊥x轴,∴点B′(,2);(2)∵把△AOB绕点A顺时针旋转90°后得到△AO″B″,∴O″A=OA=,O″B″=OB=1,∠AO″B″=∠AOB=90°,∴O″A⊥x轴,O″B″∥x轴,∴B″点到x轴距离为,到y轴距离为,∴点B″的坐标为(+1,);(3)如图,①当AB=BC时,∵OB⊥x轴,∴OA=OC,∴点C1的坐标为:(﹣,7);②当AB=AC时,∵AB=2,点C2(6+,0)7(﹣2;③当AC=BC时,设点C8(x,0),则﹣x=,解得:x=,∴点C3的坐标为:(,0);综上可得:点C的坐标为:(﹣,0)或(2+﹣2,0).【点评】本题是一次函数综合题,考查了坐标与图形性质,旋转的性质,一次函数图象上点的坐标特征,直角三角形的性质,等腰三角形的性质.掌握方程思想、分类讨论思想与数形结合思想的应用是解题的关键.23.(8分)我公司组织20辆货车到运A、B、C三种水果共100吨到外地销售,按计划:20辆车都要装运,每辆货车只能装运同一种水果,根据表提供的信息,解答以下问题:水果A B C每辆货车运载量吨654每吨水果获利元500600400(1)设安排x辆货车装运A水果,安排y辆货车装运B水果,求y与x之间的函数关系式;(2)如果装运三种水果的车辆数都不少于2辆,怎样安排装运方案,使得三种水果全部售完所获得的利润最大?最大利润是多少?【分析】(1)根据题意,装运C水果有20﹣x﹣y辆货车,再根据每辆货车的运载量和三种水果的总量列出x、y之间的关系式,进一步整理成y关于x的函数的形式即可;(2)根据“装运三种水果的车辆数都不少于2辆”,求得x的取值范围.列出利润关于x 的表达式,根据利润随x的变化特点,求出当利润最大时x的值.【解答】解:(1)根据题意,装运C水果有20﹣x﹣y辆货车,∴6x+5y+4(20﹣x﹣y)=100,∴y=﹣2x+20.(2)∵装运三种水果的车辆数都不少于2辆,∴x≥2,﹣2x+20≥2,∴8≤x≤9,∴x=2,4,4,5,7,7,8或3.三种水果全部售完所获得的利润m=500×6x+600×5y+400×4(20﹣x﹣y)=﹣1400x+60000,∴m=﹣1400x+60000(x=2,3,6,5,6,6,8或9).∵m随x的减小而增大,∴当x=2时,y=﹣2×2+20=16,m=﹣1400×3+60000=57200.∴安排2辆货车装运A水果,安排16辆货车装运B水果,使得三种水果全部售完所获得的利润最大.【点评】本题考查一次函数及一元一次不等式的应用,一定要注意对比总结,掌握这类题型的解答规律.24.(12分)如图,直线l是一次函数y=kx+b的图象,直线经过点(3,﹣3),交y轴于点B(0,1).(1)求直线l的解析式;(2)求l与两坐标轴所围成的三角形的面积;(3)当x ≤ 时,y≥0;(4)求原点到直线l的距离.【分析】(1)把(3,﹣3),(0,1)代入一次函数的解析式得到方程组求出方程组的解即可;(2)根据解析式求得A的坐标,然后根据三角形面积公式求得即可;(3)观察图象即可求得;(4)利用三角形面积公式即可求得.【解答】解:(1)把(3,﹣3),5)代入y=kx+b,得,解得:,∴直线l的解析式为y=﹣x+8;(2)在y=﹣x+3中,则﹣,解得x=,∴A(,0),∵B(0,6),∴OA=,OB=4,∴S△AOB==×1=,∴直线l与两坐标轴所围成的三角形的面积为;(3)∵A(,0),∴当x≤时,y≥0;故答案为:≤;(4)设原点到直线的距离为h,∵OA=,OB=1,∴AB===,∵S△AOB=AB•h,∴=×h,∴h=.故原点到直线l的距离为.【点评】本题主要考查一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积,数形结合是解此题的关键.。

八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)

八年级第一学期学期中考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________注意事项:本试题共6页,满分为150分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上.答选择题时,必须使用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;答非选择题时,用0.5mm 黑色签字笔在答题卡上题号所提示的答题区域作答.答案写在试卷上无效.考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只 有一项是符合题目要求的.) 1.4的算术平方根是( )A.±2B.2C.﹣2D.±16 2.下列各数中,是无理数的是( )A.3.1415926B.√4C.√﹣83D.π 3.下列各点在第二象限的是( )A.(﹣√3,0)B.(﹣2,1)C.(0,﹣1)D.(2,﹣1) 4.下列运算正确的是( )A.√2+√3=√5B.3√3-√3=3C.√3×√5=√15D.√24+√6=45.已知点(-1,y 1),(3,y 2)在一次函数y=2x+1的图象上,则y 1,y 2的大小关系是( ) A.y 1<y 2 B.y 1=y 2 C.y 1>y 2 D.不能确定6.已知(k ,b )为第四象限内的点,则一次函数y =kx -b 的图象大致( )A. B. C. D.7.已知{x =1y =﹣1是方程x -my=3的解,那么m 的值( )A.2B.﹣2C.4D.﹣48.我国古代《算法统宗》里有这样一首诗:"我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空."诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住:如果每一间客房住9人,那么就空出一间客房,设该店有客房x 间、房客y 人,下列方程组中正确的是( ) A.{7x +7=y9(x -1)=y B.{7x +7=y 9(x +1)=y C.{7x -7=y 9(x -1)=y D.{7x -7=y9(x +1)=y9.如图,△ABC 是直角三角形,点C 在数轴上对应的数为﹣2,且AC=3,AB=1,若以点C 为圆心,CB 为半径画弧交数轴于点M ,则A 和M 两点间的距离为( )A.0.4B.√10-2C.√10-3D.√5-1(第9题图) (第10题图)10.甲、乙两车从A 城出发匀速行驶至B 城,在整个行驶过程中,甲、乙两车离开A 城的距 离y (千米)与甲车行驶的时间1(小时)之间的函数关系如图所示,则下列结论:①A 、B 两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t =54或154.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个第II 卷(非选择题共110分)二.填空题:(本大题共6个小题,每小题4分,共24分) 11.电影票上"8排5号"记作(8,5),则"6排7号"记作 . 12.。

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

八年级上册数学期中考试(时刻:90分钟总分:100分)一.选择题(36分)1.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()AB C3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2图14.如图2,AD是ABC△的中线,E,F别离是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则那个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,5ADCB图2EFCOAB图411.等腰三角形的一个角是80°,则它的底角是 ( )A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则那个等腰三角形的底角是 ( )A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)13.若是△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 若是△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“必然”或“不必然”或“必然不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB= ,∠E=∠ .若∠BAE=120°∠BAD=40°.则∠BAC= . 16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必需知足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。

湖南省长沙市2023-2024学年八年级上学期期中考试数学试卷(含答案)

湖南省长沙市2023-2024学年八年级上学期期中考试数学试卷(含答案)

八年级期中考试八年级数学试卷2023-2024学年第一学期时量:120分满分:120分一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1.下列四个手机APP图标中,是轴对称图形的是()A.B.C.D.2.下列条件中,不能得到等边三角形的是()A.有两个外角相等的等腰三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个内角是60°的三角形3.下列计算正确的是()A.B.C.D.4.下列各式中,可以用平方差公式进行计算的是()A.B.C.D.5.若,,则的值为()A.8B.11C.15D.456.如图,,点在上,与相交于点,.则的度数为()A.30°B.40°C.60°D.75°7.如图,在的正方形方格中,每个小正方形方格的边长都为1,则和的关系是()A.B.C.D.8.如图,中,,,且,则()A.10B.6C.4D.39.如图,在中,的垂直平分线分别交、于点,,连接.若,的周长为24,则的周长为()A.16B.18C.20D.2210.如图,是的角平分线,的面积为12,长为6,,分别是,上的动点,则的最小值是()A.6B.4C.3D.2二、填空题(本大题共6个小题,每小题3分,共18分)11.______.12.点关于轴对称的点的坐标是______.13.若,则的值为______.14.如图,在直角中,已知,边的垂直平分线交于点,交于点,且,,则的长为______.15.如图,将正方形放在平面直角坐标系中,为坐标原点,点的坐标为,则点的坐标为______.16.如图,是的角平分线,于点,的面积是,,,则______.三、解答题(本题共9个小题,第17、18、19题每题6分,第20、21题每题8分,第22、23每题9分,第24、25每题10分,共72分)17.计算:18.先化简,再求值:,其中.19.如图,点、、、在同一直线上,,,且,求证:(1);(2)20.如图在平面直角坐标系中,各顶点的坐标分别为,,.(1)在图中作,使和关于轴对称;(2)写出点,,的坐标;(3)求的面积.21.如图,点在的外部,点在边上,交于点,若,,.(1)求证:;(2)若,判断的形状,并说明理由.22.如图,等边三角形中,为边的中点,为的延长线上一点,过点作于点,并交于点,(1)求证:;(2)若,,求的长.23.如图,是等边三角形,点、分别在、的延长线上,且,连接并延长交于点,,交的延长线于点.(1)求证:;(2)求的度数;(3)当为等腰三角形时,求.24.完全平方公式:,适当的变形,可以解决很多的数学问题.例如:若,,求的值.解:因为,所以,即:,又因为,所以根据上面的解题思路与方法,解决下列问题:(1)若,,求的值;(2)若,求的值;(3)如图,是线段上的一点,以、为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积.25.如图,在平面直角坐标系中,已知、分别为轴和轴上一点,且,满足,过点作于点,延长至点,使得,连接、.图1 图2(1)点的坐标为______,的度数为______;(2)如图1,若点在第一象限,试判断与的数量关系与位置关系,并说明理由;(3)如图2,若点的坐标为,连接,平分,与交于点.①求点的坐标;②试判断与的数量关系,并说明理由.八年级期中考试八年级数学参考答案2023-2024学年第一学期一、选择题(在下列各题的四个选项中,只有一项是符合题意的,请在答题卡中填涂符合题意的选项,本题共10题,每小题3分,共30分)题号12345678910答案B A D B C D D C A B 二、填空题(本题共6小题,每小题3分,共18分)11.12.13.5 14.5 15.16.3三、解答题(共9个小题,第17,18,19题每小题6分,第20,21题每小题8分,第22,23题每小题9分,第24,25题每小题10分,共72分,解答应写出必要的文字说明或演算过程)17.(6分)解:原式.18.(6分)解:原式.当时,原式.19.(6分)解:(1)∵,∴.又∵,∴,,∴,在与中,,∴;(2)∵,∴.∴20.(8分)解:(1)如图,即为所求(2),,;(3).21.(8分)解:(1)∵,,,,∴,在和中,∴,∴.(2)是等边三角形.理由如下:∵,∴,∵,∴,,∴,∴∴,∴是等边三角形.22.(9分)解:(1)∵,是的中点,∴,∵,∴;(2)∵是等边三角形,边长为6,∴,,由(1)可知,,∴,,∴,∵,∴,又∵,∴,∴.23.(9分)解:(1)为等边三角形,∴,,∴,在和中,,∴;(2)∵,∴,∴;(3)当为等腰三角形时,∴,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴.∵在中,,,∴,,.24.(10分)解:(1)∵,,∴,∴;(2)∵∴;(3)设,,∵,∴,又∵,∴,由完全平方公式可得,,∴,∴,∴,答:阴影部分的面积为6.25.(10分)解:(1)∵,∴,,∴点的坐标为,点,∴,∵,∴,故答案为:,45°;(2)设与轴交于点,与交于点,∵,∴,在和中,,,∴,在和中,,∴,∴,,∴,即∴∴,即,;(3)①作轴交轴于点,轴交轴于点,∵点的坐标为,∴,,由(2)知,,∵,,∴,∵,∴,∴,,∴;②延长交于点,∵,,,∴,∴,∵平分,∴,∵,,∴,∴,即.。

江西省吉安市十校2023-2024学年八年级上学期期中考试数学试卷(含答案)

江西省吉安市十校2023-2024学年八年级上学期期中考试数学试卷(含答案)

2023—2024学年第一学期期中八年级数学试卷考试时间:120分钟全卷满分120分一、选择题(本大题共6小题,每小题3分,共18分)1.在实数,,,3.14中,无理数是()A.B.C.D.3.142.下列各组数分別为一个三角形三边的长,其中能构成直角三角形的一组是()A.1,2,3B.4,5,6C.7,24,25D.8,15,183.如图,是象棋盘的一部分,若“帅”位于点,“相”位于点上,则“炮”位于点()上.A.B.C.D.4.如图,数轴上,点为线段BC的中点,,两点对应的实数分别是和,则点所对应的实数是()A.B.C.D.5.在平面直角坐标系中,一次函数的图象的随的增大而减小,且,则它的图象大致是()A.B.C.D.6.如图,动点在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点,第2次接着运动到点,第3次接着运动到点,……,按这样的运动规律,经过第2025次运动后,动点的坐标是().A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)7.点关于轴的对称点坐标为__________.8.函数中自变量的取值范围是__________.9.程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”,根据如图的程序进行计算,当输入们值为64时,输出的值是__________.10.若直线下移后经过点,则平移后的直线解析式为__________.11.如图,将两个大小、形状完全相同的和拼在一起,其中点与点重合,点落在边AB上,连接.若,,则的长度为__________.12.在平面直角坐标系中,长方形按如图所示放疽,是AD的中点,且、、的坐标分别为,,,点是BC上的动点,当是腰长为5的等腰三角形时,则点的坐标为__________.三、解答题(本大题共5小题,每小题各6分,共30分)13.计算:(1).(2).14.已知正数的两个不同的平方根分别是和,求的立方根.15.如图,正方形网格中的每个小正方形的边长都是1,每个顶点叫做格点.图1图2(1)在图1中以格点为顶点画一个面积为10的正方形:(2)在图2中以格点为顶点画一个三角形,使三解形三边长分别为2,,.16.在第十四届全国人大一次会议召开之际,某中学举行了庄严的升旗仪式.看着着再升起的五星红旗(如图1),小乐想用刚学过的知识计算旗杆的高度.如图2,AD为旗杆AE上用来固定国旗的绳子,点D距地面的高度.将绳子AD拉至AB的位置,测得点到AE的距离,到地面的垂直高度,求旗杆AE的高度.图1图217.某城市居民用水实行阶梯收费,每户每月用水量如果未超过5吨,每吨收费2元;超过5吨时,超过的部分每吨收费3.5元,设某户每月用水量为吨,应收水费为元.(1)写出每月用水量超过5吨时,与之间的函数关系式:(2)若某户居民某月交水费17元,该户居民用水多少吨?四、(本大题共3小题,每小题各8分,共24分)18.已知,如图,Rt中,,,,以斜边AC为底边作等腰三角形ACD,腰AD刚好满足,并作腰上的高AE.19.如图,在平面直角坐标系中,已知的三个顶点的坐标分别为,,.(1)若和关于轴成轴对称,画出,点的坐标为__________;(2)在轴上求作一点,使得的值最小,请在图中画出点:(3)求的面积和最长边上的高.20.如图,在平面直角坐标系,,,,且与互为相反数.(1)求实数与的值;(2)在轴的正半轴上存在一点,使,请通过计算求出点的坐标;(3)在坐标轴的其他位詛是否存在点,使仍然成立?若存在,请直接写出符合题意的点的坐标.五、(本大题共2小题,每小题9分,共18分)21.先观察下列的计算,再完成:(1)计算:;(2)观察上面的解题过程,请直接写出的结果为__________;(3)根据你的猜想、归纳,运用规律计算:求的值22.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向C港,最终到达C港停止.设甲、乙两船行驶后,与港的距离分别为、,、与的关系则图所示.(1)B、C两港口间的距离为__________,__________;(2)甲船出发几小时追上乙船?(3)在整个过程中,什么时候甲乙两船相距?六、解答题(本大题共1小题,共12分)23.【探索发现】如图1,等腰直角三角形ABC中,,,直线DE经过点,过作于点.过作于点,则,我们称这种全等模型为“型全等”.(不需要证明)【江移应用】已知:直线的图象与轴、轴分别交于A、B两点.图1图2 图3 图4(1)如图2,当时,在第一象限构造等腰直角,;(1)直接写出__________,__________;(2)如图3,当的取值变化,点随之在轴负半轴上运动时,在轴左侧过点B作,并且,连接ON,问的面积是否发生变化?若不变,求出其值;若变,请说明理由;(3)【拓展应用】如图4,当时,直线与轴交于点,点、分别是直线和直线AB上的动点,点在轴上们坐标为,当是以CQ为斜边的等腰直角三角形时,点的坐标是__________.吉安市十校2023—2024学年第一学期联考八年级数学试卷参考答案与评分标准一、选择题(每题3分)1、C2、C3、D4、D5、A6、B二、填空题(每题3分,12题每填对一个得1分,填错一个或不填给0分)7、(-4,-1) 8、9、10、11、12、(-2,4)或(3,4)或(-3,4)三、解答题(每题6分,共30分)13、(1)解:原式=1+4-(-1)=6 .................3分(2)解:..................6分14.(1)解:正数的两个不同的平方根分别是和,,解得:,.................2分则,那么,.................4分∴a的立方根为Ő..................6分15.(1)∵正方形面积为10,∴正方形的边长为,∵,∴画图如下:.................3分(2)画图如下:.................6分16. 解:∵,∴,∵,∴,.................1分设,则,,由题意可得:,在中,,即,.................3分解得:,即,.................5分∴旗杆的高度为:..................6分17.(1)解:............3分(2)用水量刚好5吨时,应交水费为元,∵该户居民某月交水费17元,∴用水量超过5吨,则令,解得:,∴该户居民用水7吨..................6分四、解答题(每题8分,共24分)18. 解:(1)∵DA=DC,∴∠DAC=∠DCA,又AD∥BC,∴∠DAC=∠ACB,于是∠DCA=∠ACB.又∠AEC=∠B=90°,AC=AC,∴△ACE≌△ACB(AAS),∴AB=AE;.................4分(2)由(1)可知AE=AB=6,CE=CB=4,设DC=x,则DA=x,DE=x-4,由勾股定理,即,解得:..................8分19.(1)如下图,即为所求,,.................3分(2)如下图,点P即为所求..................5分(3)的面积为或最长边上的高为..................8分20、解:(1)依题意得解得;............2分(2)设M(x,0),依题意得•x•2=××[3-(-2)]×2,解得x=∴M;................5分(3)..............8分五、解答题(每题9分,共18分)21.(1)解:.................3分(2);.................5分(3).................9分22.(1)解:由图可知:、两港口间的距离为,甲船用从A港口到达B港口,A港口和B港口距离,∴甲船的速度为:,∴甲船从B港口到C港口时间为:,∴,故答案为:90,2;.................2分(2)解:由图可知,乙船用从B港口到达C港口,∴乙船的速度为:,,解得:.答:甲船出发1小时追上乙船;.................5分(3)解:①当甲船还未追上乙船时,,解得:;②当甲船追上乙船后,当未到达C港口时:,解得:;③当甲船到达C港口,乙船还未到达C港口时:,解得:;综上:当经过或或时,甲乙两船相距.(少一种情况扣一分).................9分23.(1)①,;.................2分②.................4分(2)不变,的面积为定值,.................5分理由如下:当变化时,点随之在轴负半轴上运动时,,过点作于,,,,,,,又,.,,变化时,的面积是定值,;.................8分(3)点的坐标为或.................12分。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

四川省成都市成华区2023-2024学年八年级上学期期中考试数学试卷(含解析)

四川省成都市成华区2023-2024学年八年级上学期期中考试数学试卷(含解析)

2023-2024学年四川大学附中八年级(上)期中数学试卷一、选择题(本大题共8个小题,每小题4分,共32分)1. 下列各数中,为无理数的是( )A. B. C. D.【答案】C解析:解:A 、是有理数,故不符合题意;B 、是有理数,故不符合题意;C 、是无理数,故符合题意;D 、是有理数,故不符合题意.故选:C .2. 下列方程组是二元一次方程组的是( )A. B. C. D.【答案】C2个未知数;③含未知数的项的次数是1次.解析:解:A 、有3个未知数,不是二元一次方程组,故A 不符合题意;B 、有2个未知数,但是最高次数是2,不是二元一次方程组,故B 不符合题意;C 、有两个未知数,方程的次数是1次,所以是二元一次方程组,故C 符合题意;D 、有两个未知数,第二个方程不是整式方程,不是二元一次方程组,故D 不符合题意;故选:C3. 估计的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】B 解析:,,∴的值在2和3之间,故选:B .4. 下列各组数不能作为直角三角形的三边长的是( ).A. 6,8,12B. 1,2,C. 9,12,15D. 7,24,25【答案】A解析:A选项:,不能构成直角三角形,故A符合题意.B选项:,能构成直角三角形,故B不符合题意.C选项:,能构成直角三角形,故C不符合题意.D选项:,能构成直角三角形,故D不符合题意.故选A.5. 下列图象中,是一次函数其中,的图象的是()A. B.C. D.【答案】D解析:解:一次函数中,,函数图象经过一三四象限,故D正确.故选:D.6. 中国象棋是中华民族的文化瑰宝,它远流长,趣味性强,成为极其广泛的棋艺活动.如图,若在象棋盘上建立平面直角坐标系,使“帅”位于点,“马”位于点,则“兵”位于点()A. B. C. D.【答案】C解析:如图所示,根据题意可建立如图所示平面直角坐标系,则“兵”位于点.故选:C.7. 如图,直线l1:y=x+2与直线l2:y=kx+b相交于点P(m,4),则方程组的解是( )A. B. C. D.【答案】D解析:解:将(m,4)代入y=x+2得4=m+2,解得m=2,∴点P坐标为(2,4),∴方程组的解为:.故选:D.8. 如图,正方形的边长为15,,BG=DH=9,连接,则线段的长为( )A. B. C. D. 【答案】D解析:解:延长交于点E,如图:∵四边形为正方形,边长为15,,,,,,,,,即为直角三角形,则,同理:,在和中,,,,,,,,又,,,,,和中,,,,,,同理:,,,在中,,,由勾股定理得:.故选:D.二、填空题(本大题共5个小题,每小题4分,共20分)9. 计算:____________________.【答案】解析:解:;故答案.10. 平面直角坐标系中,若点A在第二象限,且到x轴的距离为3,到y轴的距离为2,则点A的坐标为___________.【答案】(-2,3)解析:解:∵点A在第二象限,且到x轴的距离为3,到y轴的距离为2,∴点A的横坐标是−2,纵坐标是3,∴点A的坐标是(−2,3).故答案为:(−2,3).11. 在平面直角坐标系中,点关于y轴对称的点的坐标是___________.【答案】解析:解:在平面直角坐标系中,点关于y轴对称的点的坐标是,故答案为:.12. 如图,圆柱的高为,底面圆的周长为,一只蚂蚁从下底面的点A处沿圆柱侧面爬到上底面与点A相对的点B处觅食,则蚂蚁爬行的最短路程为______【答案】10解析:解:如图,把圆柱体展开,连接,圆柱的高为,底面圆的周长为,,,,蚂蚁沿圆柱侧面爬行的最短路程为,故答案为:10.13. 如图,在中,,观察尺规作图的痕迹,若,则的长是______.【答案】解析:解:∵,∴,由作图知于点E,∴,∴,故答案为:.三、解答题(本大题共5个小题,共48分)14. (1)计算:.(2)解方程组:.【答案】(1);(2)解析:解:(1)原式;(2)得:,解得:,把代入①得:,解得:,∴原方程组解为.15. 已知,,求的值【答案】解析:∵;把,代入,∴.16. 如图,平面直角坐标系中,每个小方格都是边长为1个单位的正方形,的顶点均在格点上.(1)画关于y轴的对称图形;(2)试判断的形状,说明理由;(3)在y轴上求作一点P,使得最小,并求出这个最小值.【答案】(1)见解析(2)为等腰直角三角形,理由见解析(3)【解析】【小问1】解:如图,为所作,解:为等腰直角三角形.理由如下:,,,,,∴为等腰直角三角形,.【小问3】解:连接交轴于点,连接,则根据轴对称的性质可知的最小值就是线段的长,∴.17. 如图所示,在平面直角坐标系中,过点的直线与直线交于点A,.(1)求直线的表达式;(2)在y轴上找一点P,使,求P点的坐标.【答案】(1)(2)或【解析】【小问1】解:∵,∴,∵在中,,∴,∴,∴点C的坐标为,设直线的解析式为,∴,∴,∴直线的解析式为;【小问2】解:设点P的坐标为,∴,联立,解得,∴点A的坐标为,∵,∴,∴,∴,∴点P的坐标为或.18. 如图,在平面有角坐标系中,已知、分别在坐标轴的正半轴上.(1)如图1.若a、b满足,以B为直角顶点,AB为直角边在第一象限内作等腰直角三角形,则点C的坐标是;(2)如图2,若,点D是延长线上一点,以D为直角顶点,为直角边在第一象限作等腰直角,连接,求证:;(3)如图3,设的平分线过点,请问的值是否为定值,请说明理由.【答案】(1)(2)证明见解析(3),理由见解析【小问1】∵,,∴,∴,∴,∴,过点作轴于点,∵为等腰直角三角形,∴,∴,∵,∴,在和中,,∴,∴,∴,∴点C的坐标是,故答案为:;【小问2】证明:过点E作轴于点M,∵为等腰直角三角形,∴,,∴,∵,∴,在和中,,∴,∴,,又∵,即,∴,,∴,∴,又∵,设与相交于点N,∴在和中,,,∴;【小问3】解:,理由如下:作轴于H,轴于H,交的延长线于K,则,∵平分轴,,∴,∵,,,∴,∴,在和中,,∴∴,∴,∴,∴.四、填空题(本大题共5个小题,每小题4分,共20分)19. 若式子有意义,则k取值范围是______.【答案】且解析:解:由二次根式有意义的条件得,∴,由0次幂有意义的条件得,∴,综合得且,故答案为:且.20. 已知a2=16,=2,且ab<0,则=_____.【答案】2解析:解:由题意可知:a=±4,b=8.∵ab<0,∴a=﹣4,b=8,∴==2.故答案为2.21. 已知:如图,化简代数式______【答案】解析:解:由数轴得,∴,,∴,故答案为:.22. 对于平面直角坐标系中的点与图形,给出如下定义:点到图形上的各点的最小距离为,点到图形上各点的最小距离为,当时,称点为图形与图形的“等长点”.如:点,,中,点就是点与点的“等长点”,已知点,,,连接,若点既是点与点的“等长点”,也是线段与线段的“等长点”,则点的坐标为____________.【答案】或##或解析:解:如图:根据题意:或符合题意,故答案为:或.23. 如图,在平面直角坐标系中,点A的坐标为,点B为x轴上一动点,以为边在直线的右侧作等边三角形.若点P为的中点,连接,则的长的最小值为____________.【答案】9解析:解:如图所示,在x轴上取,连接,∴,∴,∵,∴,∴,同理可得,∴,∴是等边三角形,∴,∴,∵是等边三角形,∴,∴,∴,∴,∴,∴点C的运动轨迹为直线(该直线经过点F且与直线的夹角为60度),设点C的运动轨迹所在的直线交y轴于H,过点P作交直线于,∴当点C运动到点时,的长有最小值,∵,∴,∴,∴,∵点P为的中点,∴,∴,∵,∴,∴的最小值为9,故答案为:9.五、解答题(本大题共3个小题,共30分)24. M,N两地相距,甲、乙两人沿同一条路从M地到N地.与分别表示甲、乙两人离开M 地的距离与时间之间的关系,根据图象解答下列问题:(1)分别求出甲、乙两人离开M地的距离y与时间x之间的函数关系式;(2)当时,求两人相距时的时间.【答案】(1),(2)两人相距的时间为或【小问1】解:设线段的表达式为,∵点在函数的图象上,∴,解得:,∴,设线段的表达式为,∵点,在函数的图象上,∴,解得:,∴;【小问2】当时,由题知:,即:,解得:或,∴当时,两人相距的时间为或.25. 如图1,在中,已知是边上高,过点B作于点E,交于点F,且,,.(1)求的长;(2)求证:;(3)如图2,在(2)的条件下,在的延长线上取一点G,使,请猜想与的数量关系,并说明理由.【答案】(1)10 (2)见解析(3)DG=2DE【小问1】解:在直角△ADC中,∵,∴;【小问2】解:直角△BCE中,,∴,∵∠BFD=∠AFE,∠AEF=∠BDF=90°,∴∠EAF=∠EBC,在△AEF和△BEC中,,∴△AEF≌△BEC(ASA),∴AF=BC;【小问3】解:如图所示,过点B作BT⊥EG于T,过点E作EM⊥AD于M,EN⊥BC于N,∵BE=BG,BT⊥GE,∴GT=ET,∵,∴,∴EM=EN,∴DE平分∠ADC,∴∠CDE=∠BDT=45°,∴BT=DT,∵,即,∴,∴,∴,,∴DG=2DE;26. 已知,如图1,直线,分别交平面直角坐标系于A,B两点,直线与坐标轴交于C,D两点,两直线交于点;(1)求点E的坐标和k的值;(2)如图2,点M是y轴上一动点,连接,将沿翻折,当A点对应点刚好落在x轴上时,求所在直线解析式;(3)在直线上是否存在点,使得,若存在,请求出P点坐标,若不存在请说明理由.【答案】(1)点E的坐标为,k的值是2(2)所在直线解析式为或(3)存在,P的坐标为或【小问1】解:把代入得:,解得,,把代入得:,解得,点的坐标为,的值是2;【小问2】解:①当的对应点在轴负半轴时,过作轴于,如图:由(1)知,直线解析式为,在中,令得,,,,∴,,,∴,,设,则,,在中,,,解得,,设直线解析式为,把代入得:,解得,直线解析式为;②当的对应点在轴正半轴时,如图:,,与重合,即,此时的解析式为;综上所述,所在直线解析式为或;【小问3】解:在直线上存在点,使得,理由如下:当在右侧时,过作于,过作轴,过作于,过作于,如图:,是等腰直角三角形,,,,∴,,,设,,,,,,,,解得,,由,可得直线解析式为,解得,;当在左侧时,过作于,过作轴,过作于,过作于,如图:同理可得,由,可得解析式为,解得,;综上所述,的坐标为或.。

湖南省永州市江华县2023-2024学年八年级上学期期中考试数学试卷(含答案)

湖南省永州市江华县2023-2024学年八年级上学期期中考试数学试卷(含答案)

2023年上期期中考试八年级数学(试题卷)温馨提示:1. 本试卷包括试题卷和答题卡。

考生作答时,选择题和非选择题均须作答在答题卡上, 在本试题卷上作答无效。

考生在答题卡上按答题卡中注意事项的要求答题。

2. 考试结束后,将本试题卷和答题卡一并交回。

3. 本试卷满分120分,考试时间120分钟。

本试卷共三道大题,25个小题。

如有缺页,考生须声明。

亲爱的同学,请你沉着应考,细心审题,揣摩题意,应用技巧,准确作答。

祝你成功!一、选择题(本大题共10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将你认为正确的选项填涂到答题卡上)1.下列计算正确的是A.B .C .D.2.代数式 25x ,1π,2x 2+4,x 2―23,1x ,x +1x +2中,属于分式的有.A .2个B .3个C .4个D .5个3.若分式有意义,则x 的取值范围是A. x ≠﹣1B. x ≠1C. x =﹣1D. x =14.已知三角形的两边分别为4和10,则此三角形的第三边可能是A .4B .5C .9D .145.下列分式中,属于最简分式的是.A.B .C .D.6.下列命题是真命题的是A. 对应角相等的三角形全等 B. 相等的角是对顶角C. 等腰三角形的两底角相等 D. 若,则7. 如图,和相交于点,若,用“”证明△ABC △≌DOC 还需添加条件A.B .C .D.8.如图,等腰△ABC 中,AB=AC ,∠A =40°.线段AB 的垂直平分线交AB 于D ,交AC 于E ,连接BE ,则∠CBE 等于A. 50° B. 40°C. 30°D. 20°9.,两地相距48千米,一艘轮船从地顺流航行至地,又立即从地逆流返回地,共用去9小第7题图第8题图第10题图时,已知水流速度为4千米时,若设该轮船在静水中的速度为千米时,则可列方程A.B .C .D.10.如图,在△ABC 中,按以下步骤作图:①分别以点A 、C 为圆心,以大于12AC 的长为半径画弧,两弧交于P 、Q 两点;②作直线PQ 交BC 于点D ,交AC 于点E ;③连接AD.若BC =20cm ,AB =12cm ,则△ABC 的周长为A.12cmB.22cmC.24cmD.32cm二、填空题(本大题共6个小题,每小题3分,共18分。

郑州外国语学校2023-2024学年八年级上学期期中考试数学试卷(含解析)

郑州外国语学校2023-2024学年八年级上学期期中考试数学试卷(含解析)

河南省郑州市中原区郑州外国语中学2023-2024学年八年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若一个三角形的两边长分别为3和7,则第三边可能为()A.2B.3C.5D.112.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A.B.C.D.3.三条线段a=5,b=3,c的值为整数,由a、b、c为边可组成三角形( )A.1个B.3个C.5个D.无数个4.多边形每一个内角都等于,则从该多边形一个顶点出发可引出对角线的条数是()A.条B.条C.条D.条5.一次函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.若正比例函数的图象经过点(,2),则这个图象必经过点().A.(1,2)B.(,)C.(2,)D.(1,)7.如图,在中,的平分线交于点若则点到的距离是()A.B.C.D.8.如图,在中,,高与相交于点从,则的长为()A.B.C.D.9.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个10.AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是()A.B.C.D.11.如图,中,与的平分线交于点F,过点F作交于点D,交于点E,那么下列结论:①和都是等腰三角形;②;③的周长等于与的和;④.其中正确的有()A.①B.①②C.①②③D.①②③④12.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为( )A.13B.15C.17D.1913.下列命题正确的是()A.两条直角边对应相等的两个直角三角形全等;B.一条边和一个锐角对应相等的两个直角三角形全等C.有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等D.有两条边对应相等的两个直角三角形全等14.将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y轴对称的点的坐标是()A.(﹣3,2)B.(﹣1,2)C.(1,2)D.(1,﹣2)15.如图,△ABC是等边三角形,AQ=PQ,PR⊥AB于点R,PS⊥AC于点S,PR=PS.下列结论:①点P 在∠A的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有()A.1个B.2个C.3个D.4个二、解答题16.如图,(1)写出△ABC的各顶点坐标;(2)画出△ABC关于y轴的对称图形△A1B1C1;(3)写出△ABC关于x轴对称的三角形的各顶点坐标.17.已知一个n边形的每一个内角都等于150°.(1)求n;(2)求这个n边形的内角和;(3)从这个n边形的一个顶点出发,可以画出几条对角线?18.如图,已知AC=AE,∠BAD=∠CAE,∠B=∠ADE,求证:BC=DE.19.如图,在中,,,求和的度数.20.在△ABC中,AB=CB,∠ABC=90°,E为CB延长线上一点,点F在AB上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=60°,求∠ACF的度数.21.如图,在等腰三角形中,,分别以和为直角边向上作等腰直角三角形和,与相交于点,连接并延长交于点.求证:垂直平分.22.如图,在等边中,点F是边上一点,延长到点D,使,若,求证:(1)点F为的中点;(2)过点F作,垂足为点E,请画出图形并证明.23.如图,在等腰中,,为的中点,,垂足为,过点作交的延长线于点,连接、.(1)求证:;(2)连接,试判断的形状,并说明理由.24.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形,BE交AC于F,AD交CE 于H.(1)求证:△BCE≌△ACD;(2)求证:FH//BD.参考答案1.C解析:设第三条边长为x,根据三角形三边之间关系得即A,B,C,D四个选项中只有C选项符合,故选:C2.D解析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.3.C解析:根据三角形的三边关系可得5-3<c<5+3,即2<c<8,因c的值为整数,所以c为3、4、5、6、7,即可得由a,b,c为边可组成三角形的个数为5个,故选C4.C解:设这个多边形是n边形,由题意得,,解得,∴这个多边形为十二边形∴此多边形从一个顶点出发的对角线共有条,故选C.5.B解:∵,∴一次函数的图象经过第一、三、四象限,不经过第二象限;故选:B.6.D解析:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(-1,2),所以2=-k,解得:k=-2,所以y=-2x,把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,所以这个图象必经过点(1,-2).故选:D.7.A解析:如图所示:过点D作DE⊥AB于点E,∵∠C=90°,DE⊥AB,AD为∠CAB的角平分线,∴DE=DC,又∵BC=35,DC:DB=2:5,∴DC=10,∴DE=10,则为D到AB的距离为10.故选:A.8.D解析:∵高BE与AE相交于H,∠C=60°,∴∠HBD=∠EBD=30°,∴DC=AC=1,∵∠BAC=75°,∴∠BAD=45°,∴△BAD是等腰直角三角形,在△BDH与△ADC中,,∴△BDH≌△ADC(ASA),∴DH=DC=1,故选:D.9.D解析:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②③正确;故选D.10.C解析:如图,△ABC中,AD是BC边上的中线,延长AD到点E使ED=AD,连接CE,∵BD=CD,∠CDE=BCDA,DE=AD,∴△CDE≌△BDA,∴CE=AB=4,∵在△ACE中,AC+CE>AE,AC-CE<AE,∴6+4>2AD,6-4<2AD,∴1<AD<5.故选C.11.C解:∵,∴,,∵是的平分线,是的平分线,∴,,∵,,∴,都是等腰三角形.故①正确;∴,,即有,故②正确;∴的周长=,故③正确;∵不一定等于,∴不一定等于,∴与不一定相等,故④错误;①②③正确,故选:C.12.B解:∵DE垂直平分AC,∴AD=CD,AC=2EC=8,∵C△ABC=AC+BC+AB=23,∴AB+BC=23-8=15,∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.故选B.13.A解析:选项A,两条直角边对应相等的两个直角三角形全等,利用SAS定理能判定全等;选项B,一条边和一个锐角对应相等的两个直角三角形不一定全等,一条边可能是一条直角边和斜边相等;选项C,有两边和其中一边的对角(此角为钝角)对应相等的两个三角形不一定全等;选项D,有两条边对应相等的两个直角三角形不一定全等(有可能直角边与直角边、直角边与斜边对应相等).故选A.14.C解析:根据坐标的平移变化的规律,左右平移只改变点的横坐标,左减右加.上下平移只改变点的纵坐标,下减上加,因此,将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′的坐标为(-1,2).关于y轴对称的点的坐标特征是纵坐标不变,横坐标互为相反数,从而点A′(-1,2)关于y轴对称的点的坐标是(1,2).故选C.15.D解析:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,故①正确;由①可知,PB=PC,PS=PR,∴Rt△BPR≌Rt△CPS,∴BR=AR∴AS=AR,故②正确;∵AQ=PQ,∴∠APQ=∠PAC,∠CQP=2∠APQ=60°=∠BAC,∴PQ∥AR,故③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,故④也正确,∵①②③④都正确,故选D.16.解:(1)A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1);(2)如图所示:(3)△ABC关于x轴对称的三角形的各顶点坐标(﹣3,﹣2)、B(﹣4,3)、C(﹣1,1).17.(1)∵每一个内角都等于150°,∴每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=12;(2)内角和:12×150°=1800°;(3)从一个顶点出发可做对角线的条数:12﹣3=9.18.证明:∵∠BAD=∠CAE,∴∠BAD+∠DAC=∠CAE+∠DAC.即∠BAC=∠DAE,在△ABC和△ADE中,∴△ABC≌△ADE(AAS).∴BC=DE.19.解:∵AB=AD,∴∠B=∠ADB=×(180°﹣26°)=77°,∵AD=DC,∴∠C=∠DAC,∴∠C=∠ADB=×77°=.20.(1)证明:在Rt△ABE和Rt△CBF中,∵,∴Rt△ABE≌Rt△CBF(HL);(2)如图,∵在△ABC中,AB=CB,∠ABC=90°,∴∠ACB=∠CAB=45°,∴∠BAE=∠CAE﹣∠CAB=15°.又由(1)知,Rt△ABE≌Rt△CBF,∴∠BAE=∠BCF=15°,∴∠ACF=∠ACB﹣∠BCF=30°.即∠ACF的度数是30°.考点:全等三角形的判定与性质.21.证明:和为等腰直角三角形,,,,在和中,,,,(三线合一),即垂直平分.22.(1)解:∵为等边三角形,∴,∵,∴,∴,即,∵,∴,∴平分,∴,即点F为的中点;(2)解:如图,∵,,∴,∴在中,,∵,∴,∵在等边中,点F为的中点,∴,∴,在中,,∴,∴,∴.23.(1)证明:如图,∵在等腰中,,∴,∵,∴,∴,∵,∴,∴,∴,∴,∵D为的中点,∴,∴,∵在和中,,,,∴,∴,又∵,∴,即;(2)是等腰三角形,理由如下:由(1)知:,∴,又∵,,∴,∴垂直平分,∴,∴,∴是等腰三角形.24.(1)∵△ABC和△CDE都是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠BCE=∠ACD,∵在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);(2)由(1)知△BCE≌△ACD,∴∠CBF=∠CAH,BC=AC,又∵△ABC和△CDE都是等边三角形,且点B、C、D在同一条直线上,∴∠ACH=180°-∠ACB-∠HCD=60°=∠BCF,∴在△BCF和△ACH中,,∴△BCF≌△ACH (ASA)∴CF=CH,又∵∠FCH=60°,∴△CHF为等边三角形,∴∠FHC=∠HCD=60°,∴FH∥BD.。

陕西省西安市西安高新一中2024-2025学年八年级上学期期中考试数学试题(含答案)

陕西省西安市西安高新一中2024-2025学年八年级上学期期中考试数学试题(含答案)

2024-2025学年度第一学期期中考试试题八年级数学一、选择题(每小题3分,共30分)1.下列是二元一次方程的是( )A .B .C .D .2.已知点在第二象限,则点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.物理课上小新学习了利用排水法测量物体的体积(即物块的体积等于排出的水的体积).如图,他将一个正方体物块悬挂后完全浸入盛满水的圆柱形小桶中(绳子的体积忽略不计),水溢出至一个量简中,测得溢出的水的体积为.由此,可估计该正方体物块的棱长位于哪两个相邻的整数之间( )第3题图A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.利用加减消元法解方程组,小致说:要消去,可以将①②;小远说:要消去,可以将①②.关于小致和小远的说法,下列判断正确的是( )A .小致对,小远不对B .小致不对,小远对C .小致和小远都对D .小致和小远都不对5.若一个正比例函数的图象经过点,则这个图象一定也经过点( )A .B .C .D .6.如图,在平面直角坐标系中,直线:与直线:交于点,则关于、的方程组的解为()3xy =21x y +=23x y +=215x -=(),4A x (),4B x --350cm 34165633x y x y -=⎧⎨+=⎩①②x 3⨯-5⨯y 3⨯+2⨯()4,5-()5,4-4,15⎛⎫-⎪⎝⎭5,14⎛⎫-⎪⎝⎭()5,4-1l 4y x =+2l y kx b =+(),3A a x y4y x y kx b =+⎧⎨=+⎩第6题图A .B .C .D .7.如图,在平面直角坐标系中,,,,点是线段上一点,直线解析式为,当随增大而增大时,点的坐标可以是( )第7题图A .B .C .D .8.如果表中给出的每一对,的值都是二元一次方程的解,则表中的值为( )012531A .B .C .0D .79.《九章算术》是人类科学史上应用数学的“算经之首”,书中有这样一个问题:若2人坐一辆车,则9人需要步行,若“……”.问:人与车各多少?小高同学设有辆车,人数为,根据题意的列方程组为,根据已有信息,题中用“……”表示的缺失条件应补为( )A .三人坐一辆车,有一车少坐2人B .三人坐一辆车,则2人需要步行C .三人坐一辆车,则有两辆空车D .三人坐一辆车,则还缺两辆车10.如图,在一场篮球比赛中,某队甲、乙两队员的位置分别在、两点处,队员甲抢到篮板后,迅速将球抛向对方半场,队员乙看到后同时快跑到点处恰好接住了球,则图中分别表示球、乙队员离点的距离(单位:米)与甲队员抛球后的时间(单位:秒)关系的大致图象是( )A .B .C .D .二、填空题(每小题3分,共21分)31x y =⎧⎨=-⎩14x y =-⎧⎨=⎩13x y =-⎧⎨=⎩13x y =-⎧⎨=-⎩()1,1A -()3,1B ()2,3P M AB PM y kx b =+y x M ()2,1-()0,1()2,1()3,1x y 3ax by -=m x y1-m7-3-x y ()2932y x y x =+⎧⎨=-⎩A B C A y x11.若是同类二次根式,请写出一个符合条件的最简二次根式为________.12.如图,是一只蝴蝶标本,已知表示蝴蝶两“翅膀尾部”,两点的坐标分别为,,则表示蝴蝶“翅膀顶端”点的坐标为________.第12题图13.将直线向左平移2个单位,再向下平移6个单位后,正好经过点,则的值为________.14.如果某个二元一次方程组的解中两个未知数的值互为相反数,我们称这个方程组为“和谐方程组”.若关于,的方程组是“和谐方程组”,则的值为________.15.若一次函数的图象不经过第一象限,则的取值范围是________.16.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图①;小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图②那样的正方形,中间还留下了一个洞,恰好是面积为的小正方形,则每个小长方形的面积为________.图①图②17.如图,在平面直角坐标系中,点,点,点为轴上一点,连接,将绕点逆时针旋转得,连接,得到等腰直角,且为直角,连接,请写出当最大时点的坐标为________.第17题图a a A B ()3,1--()3,1-C 2y kx =-()2,4k x y 343x y ax y a+=+⎧⎨-=⎩a 25y kx k =++k 225mm 2mm ()1,5B ()3,0D A y AB AB B BC AC ABC △ABC ∠CD CB CD -C三、解答题(共8小题,共69分)18.(本题满分8分)计算:(1);(2.19.(本解满分8分)解方程组:(1);(2).20.(本题满分7分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,点的坐标为.(1)将先向右平移5个单位,再关于轴对称,得到,请画出;(2)直接写出,,三点的坐标分别为________,________,________;(3)的面积为________.21.(本题满分7分)定义:若两个二次根式,满足,且是有理数,则称与是关于的“友好二次根式”。

安徽省安庆市第四中学2022-2023学年八年级上学期数学期中考试试卷(沪科版、含答案)

安徽省安庆市第四中学2022-2023学年八年级上学期数学期中考试试卷(沪科版、含答案)

安庆四中2022—2023学年度第一学期八年级数学期中考试试卷一.选择题(本大题共10小题,每小题4分,满分40分)1. 已知点在第二象限,则点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 下列式子中,能表示y是x的函数的是( )A. B. C. D.3. 已知等腰三角形的周长为20cm,则底边长y(cm)与腰长x(cm)的函数关系式是( )A. y=20﹣2x(5<x<10)B. y=2x﹣20(5<x<10)C. y=10x(x<10)D. y x﹣10(5<x)4. 对于一次函数,下列说法不正确的是()A. 图象与的图象平行B. 图象不经过第三象限C. 图象与坐标轴围成的面积是2D. 当时,5. 已知一次函数y=mnx与y=mx+n(m,n为常数,且mn≠0),则它们在同一平面直角坐标系内的图象可能为()A. B.C. D.6. 下列四个图形中,线段BE是的高的图形是( )A. B. C. D.7. 若函数,则当函数值y=8时,自变量x的值是( )A. ±B. 4C. ±或4D. 4或-8. 有下列四个命题:①相等的角是对顶角;②同位角相等;③若一个角的两边与另一个角的两边互相平行,则这两个角一定相等;④有两个角是锐角的三角形是直角三角形.其中是真命题的个数有()A3个 B. 2个 C. 1个 D. 0个9. 如图,将一张三角形纸片ABC的一角折叠,使点A落在外的处,折痕为DE.如果,那么下列式子中正确的是( )A. B. C. D.10. 如图,在平面直角坐标系上有点A(1,0),点A第一次跳动至点A1(﹣1,1),第二次向右跳动3个单位至点A2(2,1),第三次跳动至点A3(﹣2,2),第四次向右跳动5个单位至点A4(3,2),…,以此规律跳动下去,点A第2020次跳动至点A2020的坐标是( )A. (1012,1011)B. (1009,1008)C. (1010,1009)D. (1011,1010)二.填空题(本大题共4小题,每小题5分,满分20分)11. 函数中自变量的取值范围是__________.12. 已知点在第2象限,且到x轴的距离为3,到y轴的距离等于5,则点P的坐标是________.13. 在,已知点D、E、F分别是边BC、AD、CE上的中点,且,则的值为_____cm2.14. 火车匀速通过隧道时,火车在隧道内的长度(米)与火车行驶时间(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是_____.(把你认为正确结论的序号都填上)三.解答题(本大题共2小题,每小题8分,满分16分)15. 已知y+5与3x+4成正比例,当x=1时,y=2.求:(1)y与x之间的函数表达式;(2)当x=-1时,求y值.16. 如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2),(1)请画出上述平移后的△A1B1C1,并写出点A、C、A1、C1的坐标;(2)求线段AC扫过的面积.四.解答题(本大题共2小题,每小题8分,满分16分)17. 在中,.(1)求a的取值范围;(2)若为等腰三角形,求周长.18. 如图,在中,D是边上一点,,,,求的度数?五.解答题(本大题共2小题,每小题10分,满分20分)19. 已知一次函数的图象与x轴交于点,与y轴交于点,且与正比例函数的图象交于点C.(1)求一次函数的表达式;(2)求点C的坐标;(3)直接写出不等式的解.20. 中,是的角平分线,是的高.(1)如图1,若,请说明的度数;(2)如图2(),试说明的数量关系.六.解答题(本题12分)21. 如图,直线与坐标轴交于点A、B两点,直线与直线相交于点P,交x轴于点C,且面积为.(1)则A点的坐标为 ;a= ;(2)求直线解析式;(3)若点D是线段上一动点,过点D作轴交直线于点E,若,求点D的坐标.22. 某工厂生产A、B两种产品共1000件,其中A产品个数不少于B产品个数,生产总成本不超过18000元,已知两种产品单个成本和零售价如下表,设该工厂生产A产品x件.产品成本(元/个)零售价(元/个).A2025B1012(1)该厂把这1000件产品以零售价全部售出,求该厂能获得的最大利润:(2)受疫情影响,A产品的成本比原来增加m(m>0)元/个;该厂在不调整零售价情况下,将1000件产品全部出售获得的最低利润是3000元,求m的值.23. 已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上(A、B不与O 点重合),点C在射线ON上且OC=2,过点C作直线l//PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B 运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.参考答案与解析一.选择题(本大题共10小题,每小题4分,满分40分)1-5DCADD 6-10ADDAD二.填空题(本大题共4小题,每小题5分,满分20分)11. 且12.(-5,3)13.##15##14.②③④三.解答题(本大题共2小题,每小题8分,满分16分)15.解:(1)∵y+5与3x+4成正比例,∴设y+5=k(3x+4)(k≠0).又∵当x=1时,y=2,∴2+5=k(3×1+4),即k=1.∴y与x之间的函数表达式为y=3x-1.(2)当x=-1时,y=3×(-1)-1=-4.16. 解:(1)如图,各点的坐标为:A(﹣3,2)、C(﹣2,0)、A1(3,4)、C1(4,2);(2)如图,连接AA1、CC1;∴;;∴四边形ACC1A1的面积为7+7=14.答:线段AC扫过的面积为14.四.解答题(本大题共2小题,每小题8分,满分16分)17.解:(1)由题意可知,即,解得:;(2)∵为等腰三角形,故可分类讨论:①当时,即,解得:,∵,∴此情况不合题意,舍;②当时,即,解得:,∵,∴此情况符合题意.综上可知,∴的周长.18.解:设,则.∵,∴,即,∴,∴.五.解答题(本大题共2小题,每小题10分,满分20分)19.解:(1)把,代入得:,解得∴一次函数的表达式为;(2)由得∴点C的坐标为;(3)根据函数图像可得不等式的解为:.20. 解:(1)∵,,∴,∵是的角平分线,∴,∵是的高,∴,∵,∴,∴;(2)∵,∴,∵是的角平分线,∴,∵是的高,∴,∴,∴,即.六.解答题(本题12分)21.解:(1)当时,,当时,,解得:,∴点A的坐标为.故答案为:;;(2)过点P作\轴,垂足为H,如图:由(1)得:,∴,即,∴,∴,∴点C的坐标为.设直线的解析式为,将点、代入得:,解得:,∴直线PC的解析式为;(3)如图:设点D坐标为,∵轴交直线PC于点E,,∴点E的坐标为,代入直线的解析式为得,,解得,当时,,∴点D坐标为.七.解答题(本题12分)22.解:(1)设利润为w,由题意可得:,∵A产品个数不少于B产品个数,生产总成本不超过18000元,∴,解得:,∵在中,3>0,∴当x=800时,w最大,且为4400元,∴该厂能获得的最大利润为4400元;(2)由题意可得:,其中,当0<m<3时,3-m>0,此时当x=500时,获得最小利润为:500(3-m)+2000=3000,解得:m=1;当m=3时,w=2000≠3000,不成立;当m>3时,3-m<0,此时当x=800时,获得最小利润为:800(3-m)+2000=3000,解得:m=1.75,不合题意,∴m的值为1.八.解答题(本题14分)23.解:(1)根据平行线间的距离处处相等,得到底边上的高为2,∴.(2)如图②,∵,∴∴∵直线直线∴∵∴∵是的平分线,∴∴;(3)不变,值为如图③∵直线,∴,∵∴,∵,∴,∵,∴∵是的平分线,∴,∴,∴.。

湖北省武汉市武昌区多校2023-2024学年八年级上学期期中考试数学试卷(含答案)

湖北省武汉市武昌区多校2023-2024学年八年级上学期期中考试数学试卷(含答案)

武昌区多校2023-2024学年上学期期中联考八年级数学试题一、单选题(每小题3分,共30分)1.已知一个三角形的两边长分别为4和1,则这个三角形的第三边长可能是()A.3B.4C.5D.62.“甲骨文”,是中国的一种古老文字,又称“契文”、“殷墟文字”,下列甲骨文中,不是轴对称图形的是()A. B. C. D.3.一个多边形内角和是540°,则这个多边形是()A.四边形B.五边形C.六边形D.七边形4.下列说法正确的是()A.三角形的一个外角等于任意两个内角的和B.三角形的一个外角小于它的一个内角C.三角形的一个外角大于它的相邻的内角D.三角形的一个外角大于任何一个与它不相邻的内角5.已知图中的两个三角形全等,则1∠的度数是()A.50°B.54°C.60°D.76°6.如图,点E ,F 在BC 上,BE FC =,B C ∠=∠.添加下列条件不能使得ABF DCE △≌△的是()A.AB DC =B.A D ∠=∠C.AFB DEC ∠=∠D.AF DE=7.如图,在ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,若15BC =,且:3:2BD CD =,则点D 到AB 的距离为()A.5B.6C.8D.98.如图,AC AB BD ==,AB BD ⊥,10BC =,则BCD △的面积为()A.15B.25C.20D.509.如图,A 、B 是5×6网格中的格点,网格中的每个小正方形边长都为1,以A 、B 、C 为顶点的三角形是等腰三角形的格点C 的位置有()A.8个B.11个C.12个D.14个10.如图,ABM △和CDM △均为等边三角形,直线BC 交AD 于点F ,点E 、N 分别为AD 、BC 的中点,下列结论:①AD BC =;②ME CB ⊥;③AF BF MF -=;④MNE △为等边三角形;⑤MF 平分BME ∠,其中一定成立的有()个A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.点()1,3A -关于x 轴的对称点A '的坐标为__________.12.在ABC △中::1:2:3A B C ∠∠∠=,则C ∠的度数为___________.13.如图,在ABC △和DCB △中,AB DC =.若不添加任何字母与辅助线,要使ABC DCB △≌△,则可以添加一个角相等的条件是_______________.14.如图,在AOB ∠的边OA 、OB 上取点M 、N ,连接MN ,MP 平分AMN ∠,NP 平分MNB ∠,若1MN =,PMN △的面积是1,OMN △的面积是4,则OM ON +的长是______________.15.多边形的一个内角的外角与其他内角的度数和为600°,则此多边形的边数为____________.16.如图120MON =︒∠,点A 为ON 上一点,且3OA =B 为直线OM 上的一动点,以AB 为边作等边ABC △,连接OC ,当BC 最小时,此时OC =______________.三、解答题(共8小题,共72分)17.(本题满分8分)用一条长为20cm 的细绳围成一个等腰三角形,能围成一边长是6cm 的等腰三角形吗?为什么?18.(本题满分8分)如图,在四边形ABCD 中,E 是BC 的中点,延长AE 、DC 相交于点F ,BEF B F =∠+∠∠.求证:AB CF =.19.(本题满分8分)如图,点D 、E 在ABC △的边BC 上,AB AC =,AD AE =,求证:BD CE =.20.(本题满分8分)如图,在四边形ABCD 中,AB CD ∥,E 为AD 的中点,连接CE 并延长交BA 的延长线于点F .(1)求证:CDE FAE △≌△.(2)连接BE ,当BE GF ⊥时,3CD =,2AB =,求BC 的长.21.(本题满分8分)如图,在5×5的正方形网格中,请仅用无刻度直尺完成下列画图问题(画图过程用虚线表示,画图结果用实线表示).(1)在图1中,画出线段AB 的中点M .(2)在图2中,线段AC 与第3条,第5条水平网格线分别相交于D 、E 两点,在直线上画一点P ,连接PD 和PE ,使得PD PE +最小.(3)在图3中的直线上画一点F ,使45CAF ∠=︒.(4)在图4中,线段AC 与第3条水平网格线相交于D 点,过D 点画DH AG ⊥于H 点.22.(本题满分10分)定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在ABC △中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC △的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在ABC △中,30B ∠=︒,AD 和DE 是ABC △的三分线,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请直接写出C ∠所有可能的值_________________.23.(本题满分10分)ABE △和ACF △始终有公共角A ∠,连接BC ,EF ,BE ,CF 相交于点O .(1)如图1,若ABE ACF =∠∠,BE CF =,求证:ABE ACF △≌△.(2)如图2,若ABE ACF α=∠=∠,且CE CF =,求CBE ∠的度数(用含α的式子表示)(3)如图3,若BE CF =,过点C 作CD AB ∥且CD AB =,连接DO 并延长交AC 于点G ,过点G 作GH CF ⊥于点H ,请直接写出OGH ∠与COE ∠的关系为:__________________.24.(本题满分12分)如图1,ABC △是等腰直角三角形,点B 是y 轴上的一点,边AC 交y 轴于点D .(1)若点()1,1C -,直接写出点B 的坐标__________.(2)如图2,将ABC △沿y 轴负方向平移一定单位后,使AB 边交y 轴于点E .过点B 作BG y ⊥轴且BG OB =,连接OG .过点G 作GF x ⊥轴交BC 于点F ,连接EF ,求证:FG OE EF =+.(3)如图3,在(1)的条件下,若点M 坐标为()2,0,点P 在第一象限内,连接PM ,过点P 作PH PM ⊥交y 轴于点H ,在PH 上截取PN PM =,连接BN ,过点P 作45OPQ ∠=︒交BN 于点Q ,试探究点Q 在BN 上的位置关系,并说明理由.参考答案1.B2.A3.B4.D5.A6.D7.B8.B9.C 10.C二、填空题11.()1,312.90°13.ABC DCB ∠=∠14.515.5或6(注:对1个给1分,全对3分)16.32三、解答题17.【解析】分两种情况讨论:①当6cm 为腰长时,设底边长为cm x ,6220x ⨯+=,8x =,∴三边长分别为6cm ,6cm ,8cm②当6cm 为底边长时,设底边长为cm y ,6220y +=,7y =,∴三边长分别为6cm ,7cm ,7cm18.【解析】∵BEF F ECF ∠=∠+∠,BEF B F ∠=∠+∠,∴B ECF ∠=∠∵点E 是BC 中点,∴CE BE=在ABE △和FCE △中B ECF BE CE AEB FEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA ABE FCE △≌△,∴AB CF =.19.【解析】证明:过点A 作AH BC ⊥于点H (辅助线交代不清扣1分)∵AB AC =,AH BC ⊥,∴BH CH=∵AD AE =,AH DE ⊥,∴DH EH=∴BH DH CH EH -=-即BD CE=20.【解析】(1)证明:∵AB CD ∥∴DCE F ∠=∠,∵点E 是AD 中点,∴DE AE =,在CDE △和FAE △中DCE F CED FEA DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CDE FAE ≌△△(2)由(1)知CDE FAE ≌△△,∴CE FE =,CD AF=∵BE GF ⊥,∴BE 垂直平分CF∴BC BF =,∵3CD =,2AB =∴3AF CD ==,∴325BC BF AF AB ==+=+=21.【解析】22.【解析】(1)设=A x ∠,∵AB BD BC==∴ABD A x ∠=∠=,2C BDC x x x∠=∠=+=∵AB AC =,∴2ABD C x∠=∠=在ABC △中,22180x x x ++=︒,36x =︒∴36A ∠=︒(2)(画对和度数表明即可,两个图每个各给2分)(3)20°或40°(写对1个给2分)23.【解析】(1)在ABE △和ACF △中A A ABE ACF BE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS ABE ACF ≌△△(2)过点C 作CM BE ⊥于M ,作CN AB ⊥的延长线于N∵BOC BFC ABE BEC ACF ∠=∠+∠=∠+∠,ABE ACF∠=∠∴BFC BEC ∠=∠,即NFC MEC∠=∠∵CM BE ⊥,CN AB ⊥,∴90CNF CME ∠=∠=︒在CNF △和CNB △中NFC MEC CNF CME CF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CNF CME ≌△△,∴CN CM =,又CM BE ⊥,CN AB ⊥,∴BC 平分EBN∠∴EBC NBC ∠=∠,∵ABE α∠=∴1809022EBC αα︒-∠==︒-(3)2COE OGH ∠=∠或12OGH COE ∠=∠24.【解析】(1)()0,2B (2)在GF 上截取GR OE =,连接BR (或过点B 作BR BA ⊥交于GF 于R )∵BG y ⊥轴,BR x ⊥轴∴90OBG BGR BOE∠=∠=︒=∠在BGR △和BOE △中BG BO BOE BGR GR OE =⎧⎪∠=∠⎨⎪=⎩∴()SAS BGR BOE ≌△△,∴BR BE =,GBR OBE ∠=∠∵90GBR OBR ∠+∠=︒,∴90OBE OBR ∠+∠=︒,即90ABR ∠=︒∵ABC △是等腰直角三角形∴45ABC ∠=︒,∴904545RBF EBF∠=︒-︒=︒=∠在BFR △和BFE △中BR BE RBF EBF BC BC =⎧⎪∠=∠⎨⎪=⎩∴()SAS BFR BFE ≌△△,∴RF EF=∴FG RF GR EF OE=+=+(3)过点O 作OR OP ⊥交PQ 的延长线于点R ,连接BR ∵45OPQ ∠=︒,OR OP ⊥,∴904545ORP ∠=︒-︒=︒∴OPR △是等腰直角三角形∴OP OR =,90POR ∠=︒∵90BOM ∠=︒可证BOR MOP ∠=∠,再可证()SAS BOR MOP ≌△△∴BR PM PN ==,BRO MPO ∠=∠设=OPH x ∠,则90OPM ORB x ∠=∠=︒-∵45OPQ ∠=︒,∴45NPQ x ∠=︒-,904545BRQ x x ∠=︒--︒=︒-得NPQ BRQ ∠=∠,再证()AAS PNQ RBQ ≌△△得BQ NQ =,即点Q 为BN 的中点。

湖北省湖北省知名教联体2024-2025学年八年级上学期11月期中考试数学试题[含答案]

湖北省湖北省知名教联体2024-2025学年八年级上学期11月期中考试数学试题[含答案]

2024年秋季八年级期中质量检测数学试题(考试时间:120分钟 满分:120分)温馨提醒:1.答卷前,请将自己的姓名、班级、考号等信息准确填写在指定位置。

2.请保持卷面的整洁,书写工整、美观。

3.请认真审题,仔细答题,诚信应考,乐观自信,相信你一定会取得满意的成绩!一、选择题(共10小题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.一个三角形的两边长分别是12和5,第三边的长恰好是7的整数倍,那么第三边的长是( )A .7B .14C .21D .14或213.若点()1,1A m n +-与点()3,2B 关于y 轴对称,则m n +的值是( )A .5-B .3-C .3D .14.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( )A .50°B .80°C .65°或50°D .50°或80°5.如图,在ABC V 和DEF V 中,已知AB DE =,A D Ð=Ð,再添加一个条件,如果仍不能证明ABC DEF ≌△△成立,则添加的条件是( )A .AC DF ∥B .BC EF =C .AC DF =D .ACB F Ð=Ð6.如图,小益将平放在桌面上的正五边形磁力片和正六边形磁力片拼在一起(一边重合),则形成的1Ð的度数是( )A .118°B .122°C .128°D .132°7.如图,ABC V 中,AD 为ABC V 的角平分线,BE 为ABC V 的高,70C Ð=°,48ABC Ð=°,那么3Ð是( )A .59°B .60°C .56°D .22°8.如图,ABC DEC ≌△△,AF CD ^.若65BCE Ð=°,CAF Ð的度数为( )A .30°B .25°C .20°D .15°9.如图,ABC DCB △≌△,若96AC BE ==,,则DE 的长为( )A .3B .6C .2D .410.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,AB 的垂直平分线交BC 于点D ,连接AD ,则△ACD 的周长是( )A .7B .8C .9D .10二、填空题(共5小题,每题3分,共15分)11.已知一个n 边形的内角和是900°,则n = .12.如图,,30,80ABE FDC FCD A Ð=°Ð=°△≌△,则ABE Ð的度数是 °.13.在平面直角坐标系中,点()3,4A ,(),B a b 关于x 轴对称,则()2024a b +的值为 .14.在ABC V 中,50B Ð=°,35C Ð=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD Ð的度数为 .15.在ABC V 中,150CA CB ACB =Ð=°,,将一块足够大的直角三角尺()9030PMN M MPN Ð=°Ð=°、按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB a Ð=,斜边PN 交AC 于点D .在点P 的滑动过程中,若PCD △是等腰三角形,则夹角α的大小是 .三、解答题(共9题,共75分,解答应写出文字说明,证明过程或演算步骤)16.已知一个多边形的边数为n .(1)若8n =,求这个多边形的内角和.(2)若这个多边形的每个内角都比与它相邻外角的3倍还多20°,求n 的值.17.如图,已知90A D Ð=Ð=°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC BE CF ==,.求证:B C Ð=Ð.18.如图,在单位长度为1的方格纸中画有一个ABC V .(1)画出ABC V 关于y 轴对称的A B C ¢¢¢V ;(2)写出点A ¢、B ¢的坐标;(3)求ABC V 的面积.19.如图,DE AB ^于E ,DF AC ^于F ,若BD CD BE CF ==,.(1)求证:AD 平分BAC Ð;(2)已知 10AC =,2BE =,求AB 的长.20.(1)等腰三角形的两边长满足|a -4|+(b -9)2=0,求这个等腰三角形的周长.(2)已知a ,b ,c 是△ABC 的三边,化简:|a +b -c|+|b -a -c|-|c +b -a|.21.如图,在ABC V 中,90B Ð=°,直线CD BC ^于点,C CE 平分ACD Ð交BA 延长线于点,E EF EC ^,交CD 于点F .(1)试判断AB 与CD 的位置关系,并说明理由;(2)若34EFC BAC ÐÐ=,求AEC Ð的度数.22.如图,在ABC V 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D . 连接DE .(1)若ABC V 的周长为19,DEC V 的周长为7,求AB 的长;(2)若30ABC Ð=°,45C Ð=°,求EAC Ð的度数.23.已知,ABC V 中,CA CB =,90ACB Ð=°,一直线过顶点C ,过A ,B 分别作其垂线,垂足分别为E ,F .(1)如图1,求证:EF AE BF =+;(2)如图2,请直接写出EF ,AE ,BF 之间的数量关系 ;(3)在(2)的条件下,若3BF AE =,4EF =,求BFC △的面积.24.如图所示,在平面直角坐标系中,()4,4P ,(1)点A 在x 的正半轴运动,点B 在y 的正半轴上,且PA PB =,①求证:PA PB ^:②求OA OB +的值;(2)点A 在x 的正半轴运动,点B 在y 的负半轴上,且PA PB =,求OA OB -的值.1.A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A .是轴对称图形,故A 符合题意;B .不是轴对称图形,故B 不符合题意;C .不是轴对称图形,故C 不符合题意;D .不是轴对称图形,故D 不符合题意.故选:A .【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】本题考查三角形的三边关系,根据三角形的三边关系确定第三边的取值范围,再根据第三边的长恰好是7的整数倍,进行判断即可.【详解】解:∵三角形的两边长分别是12和5,设第三边长为x ,∴125125x -<<+,即:717x <<,∵第三边的长恰好是7的整数倍,∴第三边的长是14;故选B .3.A【分析】根据关于y 轴对称的点的坐标特点可得1312m n +=-ìí-=î,解方程即可得到答案.【详解】解:∵点()1,1A m n +-与点()3,2B 关于y 轴对称,∴1312m n +=-ìí-=î,∴41m n =-ìí=-î,∴()415m n +=-+-=-,故选A .【点睛】本题主要考查了坐标与图形变化—轴对称,熟知关于y 轴对称的点横坐标互为相反数,纵坐标相同是解题的关键.4.D【分析】本题主要考查了等腰三角形的性质和三角形内角和定理,根据等腰三角形的性质分类讨论是解答本题的关键.根据等腰三角形的性质,分已知角是顶角和底角两种情况分别即可.【详解】解:∵已知三角形是等腰三角形,∴当50°是底角时,顶角()180505080=°-°+°=°;当50°是顶角时,符合题意;综上所述,等腰三角形的顶角度数为50°或80°.故选D .5.B【分析】利用三角形全等的判定定理逐一推理即可.【详解】解:∵AC DF ∥,∴ACB F Ð=Ð,∴ACB F A D AB DE Ð=ÐìïÐ=Ðíï=î,∴ABC DEF ≌△△,故A ,D 都正确,不符合题意;∵AC DF A D AB DE =ìïÐ=Ðíï=î,∴ABC DEF ≌△△,故C 正确,不符合题意;当添加BC EF =时,不符合任何一个判定定理,无法判定ABC DEF ≌△△,故B 符合题意,故选:B .【点睛】本题考查了添加条件判定全等,熟练掌握三角形全等的判定定理是解题的关键.6.D【分析】本题考查正多边形的内角和问题,根据多边形内角和公式及正多边形的性质求出2,3ÐÐ的度数,再根据123360Ð+Ð+Ð=°即可解答.【详解】解:如图,()()62180521802120,310865-´°-´°Ð==°Ð==°Q ,Q 123360Ð+Ð+Ð=°,1132\Ð=°,故选:D .7.A【分析】本题考查了三角形内角和定理,三角形的高,角平分线,对顶角相等,解题的关键是掌握这些知识点.根据三角形内角和定理得62CAB Ð=°,根据角平分线得112312CAB Ð=Ð=Ð=°,根据高得90AEB Ð=°,可得59EFA Ð=°,根据对顶角相等即可得.【详解】解:∵70C Ð=°,48ABC Ð=°,∴180170486802C A B BC CA Ð-Ð=°-°=°Ð=°-°-,∵AD 为ABC V 的角平分线,∴112312CAB Ð=Ð=Ð=°,∵BE 为ABC V 的高,∴90AEB Ð=°,∴1801180319059EFA AEB Ð=°-Ð-Ð=°-°-°=°∴359EFA Ð=Ð=°,故选:A .8.B【分析】本题考查了全等三角形的判定和性质,垂直的定义,直角三角形的性质,由全等三角形的性质可得ACB DCE Ð=Ð,即可得BCE DCA Ð=Ð,得到65ACF Ð=°,再根据直角三角形的的性质即可求解,掌握全等三角形的性质是解题的关键.【详解】解:∵ABC DEC ≌△△,∴ACB DCE Ð=Ð,∴ACB ACE DCE ACE Ð-Ð=Ð-Ð,即BCE DCA Ð=Ð,∵65BCE Ð=°,∴65DCA Ð=°,即65ACF Ð=°,∵AF CD ^,∴90AFC Ð=°,∴906525CAF Ð=°-°=°,故选:B .9.A【分析】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等”是解题的关键.根据全等三角形的性质及线段的和差求解即可.【详解】解:ABC DCB QV V ≌,9AC =,9BD AC \==,BD BE DE =+Q ,6BE =,3DE \=,故选:A .10.A【分析】先根据线段垂直平分线的性质得出AD=BD ,然后求周长即可.【详解】解:∵AB 的垂直平分线交BC 于D ,∴AD=BD ,∵AC=3,BC=4∴△ACD 的周长为:AC+CD+AD=AC+BC=7.故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.7【分析】本题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键;根据n 边形的内角和为180(2)n °-列出关于n 的方程,解方程即可求出边数n 的值.【详解】解:根据题意,得180(2)900n °-=°,解得7n =,故答案为:7.12.70【分析】本题考查了全等三角形的性质,掌握这性质是关键.根据三角形全等的性质,得出30E FCD Ð=Ð=°,然后求出18070ABE A E Ð=°-Ð-Ð=°即可.【详解】解:∵ABE FDC V V ≌,∴30E FCD Ð=Ð=°,∵80A Ð=°,∴18070ABE A E Ð=°-Ð-Ð=°.故答案为:70.13.1【解析】略14.60°##60度【分析】本题主要考查基本作图,线段垂直平分线的性质是解题的关键.由线段垂直平分线的性质可得AD DC =,根据等边对等角得到35DAC C Ð=Ð=°,根据内角和定理求得18095BAC B C Ð=°-Ð-Ð=°,最后根据角度的和差关系即可得到答案.【详解】解:由作图可知:MN 为线段AC 的垂线平分线,∴AD DC =,∴35DAC C Ð=Ð=°,在ABC V 中,50B Ð=°,35C Ð=°,∴18095BAC B C Ð=°-Ð-Ð=°,∴60BAD BAC DAC Ð=Ð-Ð=°,故答案为:60°.15.30°或75°或120°【分析】本题考查了等腰三角形的性质,三角形的内角和定理,用分类讨论的思想解决问题是解本题的关键.分三种情况考虑:当PC PD PD CD PC CD ===;;,分别求出夹角a 的大小即可.【详解】解:∵PCD △是等腰三角形,15030PCD CPD a Ð=°-Ð=°,,①当PC PD =时,∴18030752PCD PDC °-°Ð=Ð==°,即15075a °-=°, ∴75a =°; ②当PD CD =时,PCD △是等腰三角形,∴30PCD CPD Ð=Ð=°,即15030a °-=°,∴120a =°;③当PC CD =时,PCD △是等腰三角形,∴30CDP CPD Ð=Ð=°,∴180230120PCD Ð=-´=°°°, 即150120a °-=°,∴30a =°, 此时点P 与点B 重合,点D 和A 重合,综合所述:当PCD △是等腰三角形时,a =30°或75°或120°.故答案为:30°或75°或120°.16.(1)1080°(2)9【分析】本题考查多边形的内角和与外角的综合应用:(1)直接根据内角和公式进行计算即可;(2)设每个外角的度数为a ,根据题意,列出方程求出a ,再根据多边形的外角和为360度,求解即可.【详解】(1)解:()821801080-´°=°;(2)设每个外角的度数为a ,则每个内角的度数为320a +°,∴320180a a ++=°,∴40a =°,∴360940n ==.17.见解析【分析】本题主要考查了全等三角形的性质与判定,由BE CF =,得BF CE =,即可用HL 证明Rt Rt ABF DCE ≌△△,即可证明B C Ð=Ð.【详解】证明:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,在Rt ABF V 和Rt DCE V 中,AB DC BF CE=ìí=î,∴()Rt Rt HL ABF DCE ≌△△,∴B C Ð=Ð.18.(1)见解析(2)点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-(3)132【分析】(1)找到ABC V 中三个顶点的对称点,连接即可;(2)根据点在直角坐标系中得位置,写出坐标即可;(3)利用添补法用长方形面积减去三个三角形面积即可.【详解】(1)解:如图所示,A B C ¢¢¢V 即为所求.(2)解:由图可知点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-;(3)解:ABC V 的面积为11113352315232222´-´´-´´-´´=.【点睛】本题考查了直角坐标系,相关知识带你有:图形的轴对称、割补法求三角形面积等,熟练运用直角坐标系的知识点是解题关键.19.(1)见解析(2)6【分析】(1)求出90E DFC Ð=Ð=°,根据全等三角形的判定定理得出Rt Rt BED CFD ≌△△,推出DE DF =,根据角平分线性质得出即可.(2)根据全等三角形的性质得出AE AF =,由线段的和差关系求出答案.【详解】(1)证明:DE AB ∵⊥,DF AC ^,90E DFC \Ð=Ð=°,在Rt BDE △与Rt CDF △中,BD CD BE CF =ìí=î,()Rt Rt HL BDE CDF \≌V V ,DE DF \=,又DE AB ∵⊥,DF AC ^,AD \平分BAC Ð.(2)解:Rt Rt BDE CDF ≌Q V V ,2BE =,2CF BE \==,10AC =Q ,1028AF AC CF \=-=-=,在Rt ADE V 与Rt ADF V 中,AD AD DE DF=ìí=î,()Rt Rt HL ADE ADF \≌V V ,8AE AF \==,826AB AE BE \=-=-=.【点睛】本题考查了全等三角形的性质和判定、角平分线的判定,熟练掌握全等三角形的判定及性质和角平分线的判定是解题的关键.20.(1)22;(2)22a c -.【分析】(1)根据非负数的性质求出a 、b ,再根据三角形三边关系分情况讨论求解.(2)三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:(1)∵()240,90a b -³-³,且()2490a b -+-=,∴40,90a b -=-=,解得:4,9a b ==,①4是腰长时,三角形的三边分别是4、4、9,∵449+<,∴不能组成三角形.②4是底边时,三角形的三边分别是4、9、9,能组成三角形,周长99422=++=,综上所述,等腰三角形的周长是22.(2)ABC D Q 的三边长分别是a 、b 、c ,0a b c \+->,()0b a c b a c --=-+<,0c b a +->,原式[()]()a b c b a c c b a =+-+----+-a b c b a c c b a =+--++--+22a c =-.【点睛】此题主要考查了三角形三边关系与绝对值的性质.解此题的关键是根据三角形三边的关系来判定是否能构成三角形或绝对值内式子的正负.21.(1)AB CD ∥,理由见解析(2)36AEC Ð=°【分析】本题主要考查了平行线的性质和判定,角平分线的定义,解题的关键是熟练掌握平行线的判定和性质.(1)根据同旁内角互补两直线平行进行判断即可;(2)设4BAC x Ð=,则3EFC x Ð=,根据平行线的性质得出4ACD BAC x Ð=Ð=,根据角平分线的定义得出2ACE DCE x Ð=Ð=,根据平行线的性质得出2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,即3290x x +=°,求出18x =°,即可得出答案.【详解】(1)解:AB CD ∥,理由如下:∵CD BC ^,90B Ð=°,∴90BCD B Ð=Ð=°,∴180BCD B Ð+Ð=°,∴AB CD ∥.(2)解:设4BAC x Ð=,则3EFC x Ð=.∵AB CD ∥,∴4ACD BAC x Ð=Ð=,∵CE 平分ACD Ð,∴2ACE DCE x Ð=Ð=,∵AB CD ∥,∴2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,∵EF EC ^,∴90CEF Ð=°,∴1809090CFE CEB Ð+Ð=°-°=°,∴3290x x +=°,解得:18x =°,∴21836AEC Ð=´°=°.22.(1)6AB =(2)30°【分析】本题考查的是线段的垂直平分线的性质,等边对等角,三角形的内角和定理的应用,三角形的外角的性质,掌握以上基础知识是解本题的关键.(1)先证明AB BE =,AD DE =,结合ABC V 的周长为19,DEC V 的周长为7,可得19712AB BE +=-=,从而可得答案;(2)先求解1803045105BAC Ð=°-°-°=°,然后利用等边对等角和三角形内角和定理得到()1180752BAE BEA ABC Ð=Ð=°-Ð=°,进而求解即可.【详解】(1)解:∵BD 是线段AE 的垂直平分线,∴AB BE =,AD DE =,∵ABC V 的周长为19,DEC V 的周长为7,∴19AB BE CE CD AD ++++=,7CD EC DE CD CE AD ++=++=,∴19712AB BE +=-=,∴6AB BE ==;(2)解:∵30ABC Ð=°,45C Ð=°,∴1803045105BAC Ð=°-°-°=°,∵AB BE=∴()1180752BAE BEA ABC Ð=Ð=°-Ð=°∴30EAC BAC BAE Ð=Ð-Ð=°.23.(1)见解析(2)EF BF AE =-,理由见解析(3)6【分析】本题考查了全等三角形的判定和性质,三角形的面积,余角的性质.熟练掌握全等三角形的判定和性质定理是解题的关键.(1)根据垂直的定义和余角的性质得到FCB EAC Ð=Ð,根据全等三角形的性质得到AE CF =,CE BF =,等量代换得到结论;(2)根据余角的性质得到CAE BCF Ð=Ð根据全等三角形的性质得到CE BF =,AE CF =,等量代换得到结论;(3)由(2)得EF AE BF =+且3BF AE =,求得3CE AE =,得到24EF AE ==,根据三角形的面积公式即可得到结论.【详解】(1)证明:90ACB Ð=°Q ,90ECA FCB \Ð+Ð=°,又AE EF ^Q ,BF EF ^,90AEF BFC \Ð=Ð=°,90ECA EAC \Ð+Ð=°,FCB EAC \Ð=Ð,在ACE △和CBF V 中,AEC BFC EAC FCB AC BC Ð=ÐìïÐ=Ðíï=î,(AAS)ACE CBF \△≌△,AE CF ∴=,CE BF =,EF EC CF =+Q ,EF AE BF \=+;(2)解:EF BF AE =-,理由如下:90AEC CFB Ð=Ð=°Q ,90ACB Ð=°,90ACE CAE ACE BCF \Ð+Ð=Ð+Ð=°,CAE BCF\Ð=Ð又AC BC =Q ,(AAS)CAE BCF \V V ≌,CE BF \=,AE CF =,EF CE CF BF AE \=-=-,即EF BF AE =-;(3)解:由(2)得EF BF AE =-且3BF AE =,3CE AE \=,CF AE =Q ,24EF AE \==,2AE CF \==,6BF =,BFC \△的面积1126622CF BF =×=´´=.24.(1)①见解析;②8OA OB +=(2)8OA OB -=【分析】本题是三角形综合题,考查了全等三角形的判定与性质、坐标与图形性质,本题综合性强,熟练掌握全等三角形的判定与性质,正确作出辅助线,构造全等三角形是解题的关键,属于中考常考题型.(1)①过点P 作PE x ^轴于E ,作PF y ^轴于F ,根据点P 的坐标可得4PE PF ==,然后利用“HL”证明Rt APE V 和Rt BPF V 全等,根据全等三角形对应角相等可得APE BPF Ð=Ð,然后求出90APB EPF Ð=Ð=°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解;(2)根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解.【详解】(1)①证明:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,∴PE PF ^,∵()4,4P ,∴4PE PF ==,在Rt APE V 和Rt BPF V ,PA PB PE PF=ìí=î,∴()Rt Rt HL APE BPF V V ≌,∴APE BPF Ð=Ð,∴90APB APE BPE BPF BPE EPF Ð=Ð+Ð=Ð+Ð=Ð=°,∴PA PB ^;②解:∵()Rt Rt HL APE BPF V V ≌,∴BF AE =,∵,OA OE AE OB OF BF =+=-,∴448OA OB OE AE OF BF OE OF +=++-=+=+=;(2)解:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,同理得()Rt Rt HL APE BPF V V ≌,∴AE BF =,∵4,4AE OA OE OA BF OB OF OB =-=-=+=+,∴44OA OB -=+,∴8OA OB -=.。

江西省上饶市余干县2023-2024学年八年级上学期期中考试数学试卷(含解析)

江西省上饶市余干县2023-2024学年八年级上学期期中考试数学试卷(含解析)

余干县2023-2024学年第一学期期中考试八年级数学考试时间:120分钟满分:120分一、选择题(每小题3分,共18分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.下列长度的三条线段,能组成三角形的是()A.1,2,3B.3,4,8C.4,4,9D.4,6,73.如图,已知,,那么判定的依据是()A.B.C.D.4.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE的大小为( )A.44°B.40°C.39°D.38°5.如图,将长方形纸片沿向上折叠,使点落在边上的点处,若周长为16,周长为6,则下列说法正确的是()A.长方形面积为24B.C.长方形周长为22D.周长为106.如图,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是()A.①②③B.①②④C.②③④D.①③④二、填空题(每小题3分,共18分)7.一个多边形的内角和为,则这个多边形的边数为.8.如图,在中,的垂直平分线交于点,若,,则的度数为.9.已知点与点关于轴对称,则.10.如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则BCD的面积为.11.如图,等边的边长为6,为边上一点,过点作于,过点作于,若,则.12.如图已知为射线上一动点(不与重合),,,当以,,三个点中的某两个点与点为顶点的三角形是等腰三角形时,的度数为.三、(本大题共四小题,每小题6分,共24分)13.如图,,,求证:.14.如图,六边形的每个内角都相等,连接.(1)求六边形每个内角的度数;(2)求证:.15.如图,中,为边上一点,,,求的度数.16.如图,在中,利用尺规作图作出的中线.不写作法,但要保留作图痕迹.四、(本大题共两小题,每题8分,共16分)17.如图,,,分别为线段上的两点,于,于,且,交于点.(1)求证:;(2)若,求的长.18.已知,平面直角坐标系中,点,,,直线与轴垂直且经过点.(1)画出关于直线的轴对称的,并写出各顶点坐标.(2)在轴上找到一点,使点到点、点的距离之和最短.五、(本大题共两小题,每小题10分,共20分)19.如图,为等边三角形,平分交于点,且交于点.(1)求证:为等边三角形;(2)求证:为的中点.20.在学习完课本53页数学活动2:用全等三角形研究“筝形”后,小明同学得知:如图,四边形中,,,像这样两组邻边分别相等的四边形叫做“筝形”,课后小明认真思考得出了下列结论:①对角线平分一组对角和;②对角线平分一组对角和;③垂直平分;④垂直平分;⑤四边形的面积;⑥任意一个对角线互相垂直的四边形面积等于对角线乘积的一半.(1)你认为正确的结论有________;(只需填序号)(2)请你任选一个你认为正确的结论进行证明.六、(本大题共两小题,每题12分,共24分)21.在学习完第十二章后,老师让同学们独立完成课本56页第12题:如图1,在中,是它的角平分线.求证:.(1)请你完成这道题;(2)第二天,老师又给这道题,添加了一个已知条件,即在中,是它的角平分线,且,如图2,请同学们去探究线段、、三者的数量关系,爱动脑的小李同学,发现:,请你帮他完成证明过程.22.已知:等腰中,,,现将一块足够大的直角三角尺(,)按如图1位置放置,顶点在线段上滑动,三角尺的直角边始终经过点,与的夹角,斜边交于点.(1)如图1,当时,为________三角形,并说明理由;(2)如图2,滑动过程中,当时,求证:;(3)点在滑动过程中,的形状可以是等腰三角形吗?若可以,请直接写出夹角的度数;若不可以,请说明理由.答案与解析1.D解析:解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.D解析:解:A、不能组成三角形,故此选项错误;B、,不能组成三角形,故此选项错误;C、,不能组成三角形,故此选项错误;D、,能组成三角形,故此选项正确;故选:D.3.C解析:解:∵,∴,在和中,,∴;故选C.4.C解析:∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于点D,∴∠DCB=×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故选C.5.C解析:解:∵长方形纸片,∴,∵折叠,∴,,∵的周长为,的周长为,∴,即:长方形周长为22;条件不足,无法求出长方形的面积,的周长,;故选C.6.D解析:①中,作任意一底角的角平分线即可;②中,不能;③中,作底边上的高即可;④中,在BC边上截取CD=CA即可.故答案选D.7.七解析:解:设这个多边形的边数为n,根据多边形内角和定理得,解得.故答案为:七.8.解析:解:在中,∵,,∴,∵是线段的垂直平分线,∴,∴,∴.故答案为:.解析:解:∵点与点关于y轴对称,∴,∴,.故答案为:1.10.7.5##解析:解:如图,过点D作DE⊥BC于点E,∵∠A=90°,∴AD⊥AB,∵BD平分∠ABC,DE⊥BC,AD⊥AB,∴AD=DE=3,又∵BC=5,∴S△BCD=BC•DE=×5×3=7.5.故答案为7.5.11.2解析:解:∵是等边三角形,∴∵,,∴又,∴∴,∴∵∴,∴,∴∴∴故答案为:2.12.或或解析:解:分为以下5种情况:①,∵,∴;②,∵,∴∴;③,∵,∴,∴;④,∵,∴,∴;⑤,∵,∴,∴,∴;所以当或或时,以A、O、B中的任意两点和P点为顶点的三角形是等腰三角形,故答案为:或或.13.见解析解析:证明:在和中,∴,∴,∵,∴,∴,即.在和中,,∴14.(1)(2)见解析解析:(1)解:由题意,得:六边形每个内角的度数为;(2)∵,,∴,∵,∴,∴,∴.15.解析:解:设,∵,∴,∴∵∴,∵,∴解得,,∴.16.图见解析解析:解:如图,直线即为所求;17.(1)见解析(2)3解析:(1)∵,∴,即在和中,∴∴;(2)∵,,∴,在和中,∴∴∴18.(1)图见解析,(2)见解析解析:(1)如图,即为所作,点的坐标为,点的坐标为,点的坐标为;(2)如图,点D即为所作.19.(1)见解析(2)见解析解析:(1)∵为等边三角形,∴.∵,∴.∴是等边三角形.(2)∵为等边三角形,∴.∵平分,∴.∵是等边三角形,∴.∴,即为的中点.20.(1)①③⑤⑥(2)见解析解析:(1)解:正确的有①③⑤⑥;故答案为:①③⑤⑥.(2)证明:对于③:∵,,∴点在线段的中垂线上,∴垂直平分,对于①:∵,,垂直平分,∴平分,平分,∴对角线平分一组对角和;对于⑤:∵四边形的面积;对于⑥:同⑤法可得:任意一个对角线互相垂直的四边形面积等于对角线乘积的一半.21.(1)见解析(2)见解析解析:(1)证明:作,,垂足为E、F,∵平分,∴,∴.(2)在上截取,连接,如图,∵平分,∴又,∴,∴,又,且,∴,∴,∴,,即22.(1)直角三角形(2)见解析(3)当或或时,是等腰三角形解析:(1)是直角三角形,理由:在中,,,∴当时,,又∴又又∵,∴,∴是直角三角形;(2)∵,∴,∵,∴∴∴又∴∴;(3)的形状可以是等腰三角形,①当时,是等腰三角形,∵,∴;②当时,是等腰三角形,∴;③当时,是等腰三角形,∴,∴,此时点P与点B重合,点D和A重合,综合所述:当或或时,是等腰三角形.。

甘肃省兰州市第五十三中学2023-2024学年八年级上学期期中考试数学试卷(含解析)

甘肃省兰州市第五十三中学2023-2024学年八年级上学期期中考试数学试卷(含解析)

数学试卷一、选择题(本题共计12小题,每题3分,共计36分)1.(3分)下列计算错误的是( )A.20140=1B.()﹣1=5C.24=16D.=±9解答:解:A、20140=1,计算正确;B、()﹣1=5,计算正确;C、24=16,计算正确;D、=9,故原题计算错误;故选:D.2.(3分)二次根式的值是( )A.﹣3B.3或﹣3C.9D.3解答:解:=﹣(﹣3)=3.故选:D.3.(3分)已知△ABC在直角坐标系中的位置如图所示,如果△A′B′C′与△ABC关于y轴对称,则点A的对应点A′的坐标是( )A.(﹣3,2)B.(3,2)C.(﹣3,﹣2)D.(3,﹣2)解答:解:∵A的坐标为(﹣3,2),∴A关于y轴的对应点的坐标为(3,2).故选:B.4.(3分)如图,一长为5m,宽为2m的长方形木板,现要在长边上截去长为xm的一部分,则剩余木板的面积(空白部分)y(m2)与x(m)的函数关系式为(0≤x<5)( )A.y=10﹣x B.y=5x C.y=2x D.y=﹣2x+10解答:解:由题意可得:y=2(5﹣x)=10﹣2x.故选:D.5.(3分)Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )A.8B.4C.6D.无法计算解答:解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选:A.6.(3分)下列二次根式中:,,,,,属于最简二次根式的个数有( )A.1个B.2个C.3个D.4个解答:解:、是最简二次根式,==|x﹣1|,=,=12不是最简二次根式,故选:B.7.(3分)下列函数中,一定经过(0,1)的是( )A.B.C.y=3x﹣2D.y=x2﹣2x+1解答:解:A、把(0,1)代入关系式,关系式左右不相等,故此点不在此函数中;B、把(0,1)代入关系式,关系式左右不相等,故此点不在此函数中;C、把(0,1)代入关系式,关系式左右不相等,故此点不在此函数中;D、把(0,1)代入关系式,关系式左右相等,故此点在此函数中;故选:D.8.(3分)一次函数y=﹣2x﹣3不经过( )A.第一象限B.第二象限C.第三象限D.第四象限解答:解:∵一次函数y=﹣2x﹣3,∴该函数图象经过第二、三、四象限,不经过第一象限,故选:A.9.(3分)以下列数组为边长的三角形,恰好是直角三角形的是( )A.4,6,8B.4,8,10C.6,8,10D.8,10,12解答:解:A、∵42+62≠82,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;B、∵42+82≠102,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;C、∵62+82=102,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确;D、∵82+102≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误;故选:C.10.(3分)下列式子中成立的是( )A.﹣6=﹣B.﹣10=C.=•D.a=﹣(a<0)解答:解:A、﹣6=﹣6=﹣6×=﹣3,错误;B、﹣10=﹣=﹣,错误;C、原式成立的条件为m≥0且m﹣3≥0,即m≥3;当m<3时,原式不成立;只有D正确,故本题选D.11.(3分)函数y=中自变量x的取值范围是( )A.x≥B.x>C.x≠D.全体实数解答:解:根据二次根式的意义可知:5x﹣2≥0,解得x≥,故选A.12.(3分)正比例函数y=﹣2x的大致图象是( )A.B.C.D.解答:解:∵k=﹣2<0,∴正比例函数y=﹣2x的图象经过二、四象限.故选:C.二、填空题(本题共分4小题,每题3分,共计12分)13.(3分)甲、乙两同学在某地分手后,甲向北走了300米,乙向东走了400米,此时两人相距 500 米.解答:解:∵正北与正东互相垂直,∴根据勾股定理得:此时两人相距==500,故答案为:500.14.(3分)如图,一圆柱高8cm,底面半径为cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是 10 cm.解答:解:底面圆周长为2πr,底面半圆弧长为πr,即半圆弧长为:×2π×=6(cm),展开得:∵BC=8cm,AC=6cm,根据勾股定理得:AB==10(cm).故答案为:10.15.(3分)(+1)2009(﹣1)2010= ﹣1 .解答:解:原式=[(+1)(﹣1)]2009•(﹣1)=(2﹣1)2009•(﹣1)=﹣1.故答案为﹣1.16.(3分)在,π﹣1,,0.3151151115,中,无理数有 2 个.解答:解:无理数有π﹣1,,故答案为:2三、解答题(本题共计12小题,每题6分,共计32分)17.(6分)计算:(1)|﹣2|+(﹣3)2﹣;(2)(2x﹣1)2=25.解答:解:(1)原式=2+9﹣2=9;(2)由题意可得:2x﹣1=±5,解得:x=3或﹣2.18.(6分)如图,在平面直角坐标系中,(1)写出点A,B,C,D,E的坐标;(2)描出点P(﹣2,﹣1),Q(3,﹣2),S(2,5),T(﹣4,3),分别指出各点所在的象限.解答:解:(1)A(3,3),B(﹣5,2),C(﹣4,﹣3),D(4,﹣3),E(5,0);(2)如图所示:点P在第三象限,点Q在第四象限,点S在第一象限,点T在第二象限.19.(6分)小明家在下白石,他很想一个人去穆阳白云山玩,不过他要先到赛岐停留下,然后在接着去穆阳白云山,他把一天的时间做了一个规划,下面是小明一天从0点到15点的离家距离的情况.(1)小明什么时候从家出发?(2)小明在赛岐停留了多久,赛岐距离小明家多远?(3)点A,B分别表示什么意思?(4)小明在什么时间范围内,从白云山回到家?(5)这次出游,小明从出发到回到家,一共用时多长?解答:解:(1)由图可得,小明早上9点从家出发;(2)根据图象得,速度为15千米每小时,20千米走了1小时20分钟,十一点出发,则停留40分钟,赛岐距离小明家20千米;(3)A点表示10点时离家15千米,B点表示12点时离家30千米;(4)根据图象得小明在13点到15点,从白云山回到家;(5)15﹣9=6(小时),这次出游,小明从出发到回到家,一共用时6个小时.20.(6分)已知一次函数y=3﹣2x.(1)求图象与两条坐标轴的交点坐标,并在如图的直角坐标系中画出它的图象;(2)从图象看,y随着x的增大而增大,还是随x的增大而减小?(3)x取何值时,y>0.解答:解:(1)根据一次函数的解析式y=3﹣2x,得到当y=0,x=;当x=0时,y=3.所以与x轴的交点坐标(,0),与y轴的交点坐标(0,3).函数图象为:(2)由图象可知,y随着x的增大而减小;(3)当y>0时,即3﹣2x>0,解得,x<.21.(6分)若一个正数的两个平方根为a+1和2a﹣7,则这个正数是什么?解答:解:一个正数的两个平方根为a+1和2a﹣7,a+1+2a﹣7=0,a=2,a+1=3(a+1)2=32=9,答:这个正数是9.22.(6分)坐标平面内有4个点:A(0,2),B(﹣1,0),C(1,﹣1),D(3,0).(1)建立坐标系,描出这4个点,顺次连接A,B,C,D,组成四边形ABCD;(2)求四边形ABCD的面积.解答:解:(1)如图所示,(2)解:四边形ABCD的面积等于S△AOB+S△AOD+S△BCD==1+3+2=6.23.(6分)下表是某同学做的“观察水的沸腾”实验时所记录的数据:时间(分)01234567891011温度(℃)2030405060708090100100100100(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表格,你认为12分钟、13分钟时,水的温度是多少?(3)为了节约能,你认为烧开水的时候应该在大约几分钟关闭煤气?解答:解:(1)上表反映了水的温度与时间的关系,时间是自变量,水的温度是因变量;(2)根据表格,可以得:时间为12分钟和13分钟时,水的温度是100℃;(3)为了节约能,烧开水的时候应该在大约8分钟关闭煤气.24.(6分)已知函数y=(3﹣2m)x﹣m+2,(1)当m为何值时,该函数图象经过原点;(2)若该函数图象与y轴交点在x轴上方,求m的取值范围;(3)若该函数图象经过一、二、四象限,求m的取值范围.解答:解:(1)∵函数y=(3﹣2m)x﹣m+2的图象经过原点,∴﹣m+2=0,解得:m=2.∴当m为2时,该函数图象经过原点;(2)∵函数y=(3﹣2m)x﹣m+2的图象与y轴交点在x轴上方,∴,解得:m<2且m≠.∴若该函数图象与y轴交点在x轴上方,m的取值范围为m<2m≠;(3)∵函数y=(3﹣2m)x﹣m+2的图象经过一、二、四象限,∴,解得:<m<2.∴若该函数图象经过一、二、四象限,m的取值范围为<m<2.25.(6分)(1)已知x=2,求x2﹣(2+3)x﹣5的值.(2)若的整数部分是a,小数部分是b,求a2+b2.解答:解:(1)∵x=2﹣3,∴原式=(2﹣3)2﹣(2+3)(2﹣3)﹣5=12﹣12+9﹣(12﹣9)﹣5=12﹣12+9﹣3﹣5=13﹣12;(2)∵2<<3,∴的整数部分a=2,小数部分b=﹣2,则a2+b2=22+(﹣2)2=4+5﹣4+4=13﹣4.26.(6分)已知点M(2a﹣b,5+a),N(2b﹣1,﹣a+b).(1)若M、N关于x轴对称,试求a,b的值;(2)若M、N关于y轴对称,试求(b+2a)2009的值.解答:解:(1)∵M、N关于x轴对称,∴,解得a=﹣8,b=﹣5;(2)∵M、N关于y轴对称,∴,解得:a=﹣1,b=3,(b+2a)2009=1.27.(6分)写出下列各题中y关于x的函数关系式,并判断y是否为x的一次函数,是否为正比例函数.(1)长方形的面积为3,长方形的长y与宽x之间的关系;(2)刚上市时西瓜每千克3.6元,买西瓜的总价y元与所买西瓜x千克之间的关系;(3)仓库内有粉笔400盒,如果每个星期领出36盒,仓库内余下的粉笔盒数y与星期数x之间的关系;(4)小林的爸爸为小林存了一份教育储蓄,首次存入10000元,以后每个月存入500元,存入总数y元与月数x之间的关系.解答:解:(1)y=,y是x反比例函数,不是一次函数,也不是正比例函数;(2)y=3.6x,y是x的一次函数,也是正比例函数;(3)y=400﹣36x,y是x的一次函数,不是正比例函数;(4)y=10000+500x,y是x的一次函数,不是正比例函数.28.(6分)已知一次函数y=kx+3的图象与两坐标轴围成的三角形面积为6,求图象与x轴的交点坐标.解答:解:当x=0时,y=k×0+3=3,∴一次函数y=kx+3的图象与y轴交于点(0,3).设一次函数y=kx+3的图象与x轴交于点(m,0),根据题意得:×3×|m|=6,解得:m=±4,∴一次函数y=kx+3的图象与x轴的交点坐标为(﹣4,0)或(4,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级(上)期中数学试卷一.选择题(每小题3分,共24分)1.在实数,3.1415926,,1.010010001,中,无理数有()A.1个B.2个C.3个D.4个2.下列计算正确的是()A.2a+3b=5ab B.(a2)3=a5C.(2a)2=4a D.a4•a3=a73.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)4.下列命题中,为真命题的是()A.同位角相等B.若a>b,则﹣2a>﹣2bC.若a2=b2,则a=b D.对顶角相等5.下列选项中的整数,与最接近的是()A.3B.4C.5D.66.已知=0,则(a+b)2019的值为()A.0B.﹣2019C.﹣1D.17.已知2a=3,8b=4,23a﹣3b+1的值为()A.25B.﹣2C.﹣1D.8.已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0B.1C.2D.3二.填空题(每小题3分,共24分)把答案填在答题卷相应的横线上.9.的平方根为.10.若有意义,则a的取值范围为11.若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为.12.若x2+kx+16是完全平方式,则k的值为.13.把命题“等角的余角相等”写成“如果…,那么….”的形式为.14.规定一种新运算“⊗”,则有a⊗b=a2÷b,当x=﹣1时,代数式(3x2﹣x)⊗x2=.15.月球距地球的距离大约3.84×105千米,一架飞船的速度为6×102千米/小时,则乘坐飞船大约需要的时间为小时.16.某同学在计算3(4+1)(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=(42)2﹣12=256﹣1=255.请借鉴该同学的方法计算(2+1)(22+1)(24+1)(28+1)…(22048+1)=三、解答题(共8个小题,共72分)解答题应在答题卷相应位置写出演算步骤.17.(16分)计算:(1)﹣(﹣1)2018﹣|1﹣|(2)(﹣2x2)3•(﹣xy)÷(2x)(3)(2y﹣x)(x+2y)﹣2(x+2y)2(4)20182﹣2017×201918.(16分)把下列多项式分解因式:(1)27xy2﹣3x(2)x2+xy+y2(3)a2﹣b2﹣1+2b(4)x2+3x﹣419.(6分)先化简,再求值[(xy+2)(xy﹣2)﹣2x2y2+4]÷xy,其中x=4,y=﹣.20.(6分)已知a+b=5,ab=2,求a﹣b的值.21.(6分)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.22.(6分)已知:如图,AB=AE,∠1=∠2,AD=AC求证:BC=ED.23.(6分)小明在计算一个多项式乘﹣2x2+x﹣1时,因看错运算符号,变成了加上﹣2x2+x﹣1,得到的结果为4x2﹣2x﹣1,那么正确的计算结果为多少?24.(10分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:;方法②:;(2)根据(1)写出一个等式:;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.八年级(上)期中数学试卷参考答案与试题解析一.选择题(每小题3分,共24分)1.在实数,3.1415926,,1.010010001,中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可求解.【解答】解:∵=﹣4,∴在实数,3.1415926,,1.010010001,中,无理数有.故选:A.【点评】此题主要考查了无理数的定义,初中范围内常见的无理数有三类:①π类,如2π,等;②开方开不尽的数,如,等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.2.下列计算正确的是()A.2a+3b=5ab B.(a2)3=a5C.(2a)2=4a D.a4•a3=a7【分析】直接利用合并同类项法则以及积的乘方运算法则和同底数幂的乘法运算法则分别计算得出答案.【解答】解:A、2a+3b,无法计算,故此选项错误;B、(a2)3=a6,故此选项错误;C、(2a)2=4a2,故此选项错误;D、a4•a3=a7,正确;故选:D.【点评】此题主要考查了合并同类项以及积的乘方运算和同底数幂的乘法运算,正确掌握相关运算法则是解题关键.3.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=x(x+2)﹣1B.(a+b)(a﹣b)=a2﹣b2C.x2+4x+4=(x+2)2D.ax2﹣a=a(x2﹣1)【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、符合因式分解的定义,故本选项正确;D、右边分解不彻底,不是因式分解,故本选项错误;故选:C.【点评】本题考查了因式分解的意义,解答本题的关键是掌握因式分解的意义即因式分解后右边是整式积的形式,且每一个因式都要分解彻底.4.下列命题中,为真命题的是()A.同位角相等B.若a>b,则﹣2a>﹣2bC.若a2=b2,则a=b D.对顶角相等【分析】分别判断四个选项的正确与否即可确定真命题.【解答】解:A、两直线平行,同位角相等,故为假命题;B、若a>b,则﹣2a<﹣2b,故为假命题;C、a2=b2,则a=±b,故为假命题;D、对顶角相等为真命题;故选:D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.下列选项中的整数,与最接近的是()A.3B.4C.5D.6【分析】依据被开方数越大对应的算术平方根越大进行解答即可.【解答】解:∵16<17<20.25,∴4<<4.5,∴与最接近的是4.故选:B.【点评】本题主要考查的是估算无理数的大小,掌握算术平方根的性质是解题的关键.6.已知=0,则(a+b)2019的值为()A.0B.﹣2019C.﹣1D.1【分析】直接利用互为相反数的定义结合绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵=0,∴a﹣2=0,b+3=0,解得:a=2,b=﹣3,∴(a+b)2019=(a+b)2019=﹣1.故选:C.【点评】此题主要考查了非负数的性质,正确应用绝对值的性质是解题关键.7.已知2a=3,8b=4,23a﹣3b+1的值为()A.25B.﹣2C.﹣1D.【分析】直接利用同底数幂的乘除运算法则将原式变形计算得出答案.【解答】解:∵2a=3,8b=4,∴23a﹣3b+1=(2a)3÷(8b)×2=33÷4×2=.故选:D.【点评】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.8.已知a2﹣2a﹣1=0,则a4﹣2a3﹣2a+1等于()A.0B.1C.2D.3【分析】由a2﹣2a﹣1=0,得出a2﹣2a=1,逐步分解代入求得答案即可.【解答】解:∵a2﹣2a﹣1=0,∴a2﹣2a=1,∴a4﹣2a3﹣2a+1=a2(a2﹣2a)﹣2a+1=a2﹣2a+1=1+1=2.故选:C.【点评】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键.二.填空题(每小题3分,共24分)把答案填在答题卷相应的横线上.9.的平方根为±3.【分析】根据平方根的定义即可得出答案.【解答】解:8l的平方根为±3.故答案为:±3.【点评】此题考查了平方根的知识,属于基础题,掌握定义是关键.10.若有意义,则a的取值范围为a≤4且a≠﹣2【分析】二次根式的被开方数是非负数且分式的分母不等于零.【解答】解:依题意得:4﹣a≥0且a+2≠0,解得a≤4且a≠﹣2.故答案是:a≤4且a≠﹣2.【点评】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.11.若(ax+2y)(x﹣y)展开式中,不含xy项,则a的值为2.【分析】将(ax+2y)(x﹣y)展开,然后合并同类项,得到含xy的项系数,根据题意列出关于a 的方程,求解即可.【解答】解:(ax+2y)(x﹣y)=ax2+(2﹣a)xy﹣2y2,含xy的项系数是2﹣a.∵展开式中不含xy的项,∴2﹣a=0,解得a=2.故答案为:2.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.12.若x2+kx+16是完全平方式,则k的值为±8.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.13.把命题“等角的余角相等”写成“如果…,那么….”的形式为如果两个角是相等角的余角,那么这两个角相等.【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【解答】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为如果两个角是相等角的余角,那么这两个角相等.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.14.规定一种新运算“⊗”,则有a⊗b=a2÷b,当x=﹣1时,代数式(3x2﹣x)⊗x2=16.【分析】根据“⊗”的运算方法对题目整理,再根据有理数的混合运算求解即可.【解答】解:当x=﹣1时,(3x2﹣x)⊗x2=4⊗1=42÷1=16,故答案为:16.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.15.月球距地球的距离大约3.84×105千米,一架飞船的速度为6×102千米/小时,则乘坐飞船大约需要的时间为 6.4×102小时.【分析】根据时间=路程÷速度,可得单项式的除法,再根据单项式除以单项式的法则计算.【解答】解:(3.84×105)÷(6×102)=6.4×102小时.故乘坐飞船大约需要的时间为6.4×102小时.故答案为:6.4×102.【点评】本题考查了单项式除以单项式,科学记数法的运算实际上可以利用单项式的相关运算计算,最后结果要用科学记数法表示.16.某同学在计算3(4+1)(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式计算:3(4+1)(42+1)=(4﹣1)(4+1)(42+1)=(42﹣1)(42+1)=(42)2﹣12=256﹣1=255.请借鉴该同学的方法计算(2+1)(22+1)(24+1)(28+1)…(22048+1)=24096﹣1【分析】先乘以(2﹣1),再依次根据平方差公式求出即可.【解答】解:(2+1)(22+1)(24+1)(28+1)…(22048+1)=(2+1)(2+1)(22+1)(24+1)(28+1)…(22048+1)=(22﹣1)(22+1)(24+1)(28+1)…(22048+1)=(24﹣1)(24+1)(28+1)…(22048+1)=(28﹣1)(28+1)…(22048+1)=(22048﹣1)(22048+1)=24096﹣1,故答案为:24096﹣1.【点评】本题考查了平方差公式,能熟记平方差公式的内容是解此题的关键,注意:平方差公式为:(a+b)(a﹣b)=a2﹣b2.三、解答题(共8个小题,共72分)解答题应在答题卷相应位置写出演算步骤.17.(16分)计算:(1)﹣(﹣1)2018﹣|1﹣|(2)(﹣2x2)3•(﹣xy)÷(2x)(3)(2y﹣x)(x+2y)﹣2(x+2y)2(4)20182﹣2017×2019【分析】(1)直接利用二次根式以及立方根的性质、绝对值的性质化简进而得出答案;(2)直接利用整式的乘除运算法则计算得出答案;(3)直接利用乘法公式化简,进而得出答案;(4)直接利用乘法公式将原式变形,进而得出答案.【解答】解:(1)﹣(﹣1)2018﹣|1﹣|=5﹣3+1﹣1﹣(﹣1)=5﹣3+1﹣1﹣+1=3﹣;(2)(﹣2x2)3•(﹣xy)÷(2x)=﹣8x6•(﹣xy)÷(2x)=8x7y÷2x=4x6y;(3)(2y﹣x)(x+2y)﹣2(x+2y)2=4y2﹣x2﹣2x2﹣8y2﹣8xy=﹣4y2﹣3x2﹣8xy;(4)20182﹣2017×2019=20182﹣(2018﹣1)×(2018+1)=20182﹣(20182﹣1)=1.【点评】此题主要考查了实数运算以及整式的混合运算,正确化简各式是解题关键.18.(16分)把下列多项式分解因式:(1)27xy2﹣3x(2)x2+xy+y2(3)a2﹣b2﹣1+2b(4)x2+3x﹣4【分析】(1)先提取公因式,再根据平方差公式分解即可;(2)先提取公因式,再根据完全平方公式分解即可;(3)先分组,再根据完全平方公式进行变形,最后根据平方差公式分解即可;(4)根据十字相乘法分解即可.【解答】解:(1)27xy2﹣3x=3x(9y2﹣1)=3x(3y+1)(3y﹣1);(2)x2+xy+y2=(x2+2xy+y2)=(x+y)2;(3)a2﹣b2﹣1+2b=a2﹣(b2﹣2b+1)=a2﹣(b﹣1)2=(a+b﹣1)(a﹣b+1);(4)x2+3x﹣4=(x+4)(x﹣1).【点评】本题考查了分解因式,能选择适当的方法分解因式是解此题的关键.19.(6分)先化简,再求值[(xy+2)(xy﹣2)﹣2x2y2+4]÷xy,其中x=4,y=﹣.【分析】先根据整式的混合运算顺序和法则化简原式,再代入求值可得.【解答】解:原式=(x2y2﹣4+2x2y2+4)÷xy=3x2y2÷xy=3xy,当x=4,y=﹣时,原式=3×4×(﹣)=﹣6【点评】本题主要考查整式的混合运算,解题的关键是熟练掌握整式的混合运算顺序和法则.20.(6分)已知a+b=5,ab=2,求a﹣b的值.【分析】根据完全平方公式可得(a﹣b)2=(a+b)2﹣4ab,将a+b=5,ab=2代入求出(a﹣b)2的值,再开平方即可.【解答】解:∵a+b=5,ab=2,∴(a﹣b)2=(a+b)2﹣4ab=25﹣4×2=17,∴a﹣b=±.【点评】本题考查的是完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.熟记完全平方公式是解答此题的关键.21.(6分)已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.【分析】求出BC=FE,∠ACB=∠DFE,根据SAS推出全等即可.【解答】证明:∵BF=CE,∴BF+FC=CE+FC,∴BC=FE,∵AC∥DF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定定理的应用,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.22.(6分)已知:如图,AB=AE,∠1=∠2,AD=AC求证:BC=ED.【分析】根据题干中条件易证∠CAB=∠EAD,即可证明△ACB≌△ADE,可得BC=DE.【解答】证明:∵∠1=∠2,∴∠1+∠DAC=∠2+∠DAC,即∠CAB=∠EAD,在△ACB和△ADE中,,∴△ACB≌△ADE(SAS),∴BC=DE.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证三角形全等是解题的关键.23.(6分)小明在计算一个多项式乘﹣2x2+x﹣1时,因看错运算符号,变成了加上﹣2x2+x﹣1,得到的结果为4x2﹣2x﹣1,那么正确的计算结果为多少?【分析】根据整式的加减混合运算求出原多项式,根据多项式乘多项式法则求出正确的结果.【解答】解:原多项式为:(4x2﹣2x﹣1)﹣(﹣2x2+x﹣1)=4x2﹣2x﹣1+2x2﹣x+1=6x2﹣3x(6x2﹣3x)(﹣2x2+x﹣1)=﹣12x4+6x3﹣6x2+6x3﹣3x2+3x=﹣12x4+12x3﹣9x2+3x.【点评】本题考查的是多项式乘多项式,整式的加减混合运算,多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.24.(10分)(1)请用两种不同的方法列代数式表示图1中阴影部分的面积.方法①:(m+n)2﹣4mn;方法②:(m﹣n)2;(2)根据(1)写出一个等式:(m+n)2﹣4mn=(m﹣n)2;(3)若x+y=8,xy=3.75,利用(2)中的结论,求x,y;(4)有许多代数恒等式可以用图形的面积来表示.如图2,它表示了(2m+n)(m+n)=2m2+3mn+n2.试画出一个几何图形,使它的面积能表示(2m+n)(m+2n)=2m2+5mn+2n2.【分析】(1)第一种方法为:大正方形面积﹣4个小长方形面积,第二种表示方法为:阴影部分为小正方形的面积;(2)依据大正方形面积﹣4个小长方形面积=阴影部分为小正方形的面积,即可得到等式;(3)利用(x﹣y)2=(x+y)2﹣4xy,再求x﹣y,即可解答;(4)根据多项式画出长方形,即可解答.【解答】解:(1)方法①:(m+n)2﹣4mn,方法②:(m﹣n)2;故答案为:(m+n)2﹣4mn,(m﹣n)2;(2)由①可得:(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)由②可得:(x﹣y)2=(x+y)2﹣4xy,∵x+y=﹣8,xy=3.75,∴(x﹣y)2=64﹣15=49,∴x﹣y=±7;又∵x+y=8,∴或;(4)如图,表示(2m+n)(m+2n)=2m2+5mn+2n2:【点评】本题考查了完全平分公式的几何背景,解决问题的关键是读懂题意,找到所求的量的等量关系.本题更需注意要根据所找到的规律做题.。

相关文档
最新文档