上海市长宁区2018届九年级上期末质量检测数学试题有答案-精编新版

合集下载

┃精选3套试卷┃2018届上海市九年级上学期期末学业质量检查模拟数学试题

┃精选3套试卷┃2018届上海市九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在平面直角坐标系中,点A ,C 在x 轴上,点C 的坐标为(﹣1,0),AC=1.将Rt △ABC 先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,1)B .(1,1)C .(﹣1,1)D .(1,﹣1)【答案】A 【分析】根据旋转变换的性质得到旋转变换后点A 的对应点坐标,根据平移的性质解答即可.【详解】∵点C 的坐标为(﹣1,0),AC=1,∴点A 的坐标为(﹣3,0),如图所示,将Rt △ABC 先绕点C 顺时针旋转90°,则点A′的坐标为(﹣1,1),再向右平移3个单位长度,则变换后点A′的对应点坐标为(1,1),故选A .【点睛】本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键. 2.抛物线23123y x x =-+-的顶点坐标是( )A .(2,9)B .(2,-9)C .(-2,9)D .(-2,-9)【答案】A【分析】把抛物线解析式化为顶点式即可求得答案.【详解】∵223123=3(2)9y x x x =-+---+,∴顶点坐标为(2,9).故选:A .【点睛】本题主要考查了二次函数的性质,掌握二次函数的顶点式是解答此题的关键,即在2()y a x h k =-+中,对称轴为x=h ,顶点坐标为(h ,k ).3.如图,ABCD 是矩形纸片,翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,折痕分别是CE ,AF ,则AE EB等于( )A 3B .2C .1.5D 2【答案】B 【详解】解:∵ABCD 是矩形,∴AD=BC ,∠B=90°,∵翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,∴AO=AD ,CO=BC ,∠AOE=∠COF=90°,∴AO=CO ,AC=AO+CO=AD+BC=2BC ,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=12∠ACB=30°, ∴BE=12CE , ∵AB ∥CD ,∴∠OAE=∠FCO ,在△AOE 和△COF 中,∵∠OAE=∠FCO ,AO=CO ,∠AOE=∠COF ,∴△AOE ≌△COF ,∴OE=OF ,∴EF 与AC 互相垂直平分,∴四边形AECF 为菱形,∴AE=CE ,∴BE=12AE , ∴12AE AE EB AE ==2, 故选B .【点睛】本题考查翻折变换(折叠问题).4.如图,Rt △ABC 中,∠B =90°,AB =3,BC =2,则cosA =( )A .32B .23C .21313D .3133【答案】D【分析】根据勾股定理求出AC ,根据余弦的定义计算得到答案. 【详解】由勾股定理得,AC =22AB BC +=2232+=13,则cosA =AB AC =13=31313, 故选:D .【点睛】本题考查的是锐角三角函数的定义,掌握锐角A 的邻边b 与斜边c 的比叫做∠A 的余弦是解题的关键. 5.二次函数2y ax bx c =++图象如图所示,下列结论:①240b ac ->;②20a b +=;③0abc >;④420a b c ++>;⑤230ax bx c ++-=有两个相等的实数根,其中正确的有( )A .1个B .2个C .3个D .4个【答案】D 【分析】根据图象与x 轴有两个交点可判定①;根据对称轴为12b a-=可判定②;根据开口方向、对称轴和与y 轴的交点可判定③;根据当0x =时0y >以及对称轴为1x =可判定④;利用二次函数与一元二次方程的联系可判定⑤.【详解】解:①根据图象与x 轴有两个交点可得240b ac ->,此结论正确;②对称轴为12b a-=,即2b a =-,整理可得20a b +=,此结论正确; ③抛物线开口向下,故0a <,所以20b a =->,抛物线与y 轴的交点在y 轴的正半轴,所以0c >,故0abc <,此结论错误;④当0x =时0y >,对称轴为1x =,所以当2x =时0y >,即420a b c ++>,此结论正确; ⑤当3y =时,只对应一个x 的值,即230ax bx c ++-=有两个相等的实数根,此结论正确; 综上所述,正确的有4个,故选:D .【点睛】本题考查二次函数图象与系数的关系、二次函数与一元二次方程,掌握二次函数的图象与性质是解题的关键.6.若关于x 的函数y=(3-a )x 2-x 是二次函数,则a 的取值范围( )A .a≠0B .a≠3C .a <3D .a >3 【答案】B【分析】根据二次函数的定义,二次项系数不等于0列式求解即可.【详解】根据二次函数的定义,二次项系数不等于0,3-a ≠0,则a≠3,故选B【点睛】本题考查二次函数的定义,熟记概念是解题的关键.7.已知二次函数()22y x a b =---的图象如图所示,则反比例函数ab y x=与一次函数y ax b =+的图象可能是 ( )A .B .C .D .【答案】B【分析】观察二次函数图象,找出a >0,b >0,再结合反比例函数、一次函数图象与系数的关系,即可得出结论.【详解】观察二次函数图象,发现:抛物线()22y x a b =---的顶点坐标()a b -,在第四象限,即00a b >-<,, ∴0a >,0b >. ∵反比例函数ab y x=中0ab >, ∴反比例函数图象在第一、三象限;∵一次函数0y ax b a =+>,,0b >,∴一次函数y ax b =+的图象过第一、二、三象限.故选:B .【点睛】本题考查了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出0a >,0b >.解决该题型题目时,熟记各函数图象的性质是解题的关键.8.下列事件中,属于必然事件的是( )A .明天的最高气温将达35℃B .任意购买一张动车票,座位刚好挨着窗口C .掷两次质地均匀的骰子,其中有一次正面朝上D .对顶角相等【答案】D【解析】A 、明天最高气温是随机的,故A 选项错误;B 、任意买一张动车票,座位刚好挨着窗口是随机的,故B 选项错误;C 、掷骰子两面有一次正面朝上是随机的,故C 选项错误;D 、对顶角一定相等,所以是真命题,故D 选项正确.【详解】解:“对顶角相等”是真命题,发生的可能性为100%,故选:D .【点睛】本题的考点是随机事件.解决本题需要正确理解必然事件的概念:必然事件指在一定条件下一定发生的事件.9.如果零上2℃记作+2℃,那么零下3℃记作( )A .-3℃B .-2℃C .+3℃D .+2℃【答案】A【分析】一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.故选A.10.如图是半径为2的⊙O 的内接正六边形ABCDEF ,则圆心O 到边AB 的距离是( )A.2 B.1 C.3D.3 2【答案】C【分析】过O作OH⊥AB于H,根据正六边形ABCDEF的性质得到∠AOB=3606︒=60°,根据等腰三角形的性质得到∠AOH=30°,AH=12AB=1,于是得到结论.【详解】解:过O作OH⊥AB于H,在正六边形ABCDEF中,∠AOB=3606︒=60°,∵OA=OB,∴∠AOH=30°,AH=12AB=1,∴OH=3AH=3,故选:C.【点睛】本题主要考查了正多边形和圆,等腰三角形的性质,解直角三角形,正确的作出辅助线是解题的关键.11.关于x的一元二次方程210x mx--=的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.不能确定【答案】A【分析】根据根的判别式即可求解判断.【详解】∵△=b2-4ac=m2+4>0,故方程有两个不相等的实数根,故选A.【点睛】此题主要考查一元二次方程根的判别式,解题的关键是熟知判别式的性质.12.已知关于x 的一元二次方程2x 2x a 0+-=有两个相等的实数根,则a 的值是( )A .4B .﹣4C .1D .﹣1【答案】D【详解】解:根据一元二次方程根的判别式得,△()224a 0=-⋅-=, 解得a=﹣1.故选D .二、填空题(本题包括8个小题)13.如图所示,△ABC 是⊙O 的内接三角形,若∠BAC 与∠BOC 互补,则∠BOC 的度数为_____.【答案】120°【分析】利用圆周角定理得到∠BAC =12∠BOC ,再利用∠BAC+∠BOC =180°可计算出∠BOC 的度数. 【详解】解:∵∠BAC 和∠BOC 所对的弧都是BC ,∴∠BAC =12∠BOC ∵∠BAC+∠BOC =180°, ∴12∠BOC+∠BOC =180°, ∴∠BOC =120°.故答案为:120°.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解决本题的关键.14.如图,矩形纸片ABCD 中,AB =6cm ,AD =10cm ,点E 、F 在矩形ABCD 的边AB 、AD 上运动,将△AEF 沿EF 折叠,使点A′在BC 边上,当折痕EF 移动时,点A′在BC 边上也随之移动.则A′C 的取值范围为_____.【答案】4cm≤A′C≤8cm【分析】根据矩形的性质得到∠C=90°,BC=AD=10cm,CD=AB=6cm,当折痕EF移动时,点A’在BC边上也随之移动,由此得到:点E与B重合时,A′C最小,当F与D重合时,A′C最大,据此画图解答.【详解】解:∵四边形ABCD是矩形,∴∠C=90°,BC=AD=10cm,CD=AB=6cm,当点E与B重合时,A′C最小,如图1所示:此时BA′=BA=6cm,∴A′C=BC﹣BA′=10cm﹣6cm=4cm;当F与D重合时,A′C最大,如图2所示:此时A′D=AD=10cm,∴A′C=22=8(cm);106综上所述:A′C的取值范围为4cm≤A′C≤8cm.故答案为:4cm≤A′C≤8cm.【点睛】此题考查折叠问题,利用了矩形的性质,解题中确定点E与F的位置是解题的关键.15.如图,矩形纸片ABCD中,AD=5,AB=1.若M为射线AD上的一个动点,将△ABM沿BM折叠得到△NBM.若△NBC是直角三角形.则所有符合条件的M点所对应的AM长度的和为_____.【答案】5.【分析】根据四边形ABCD为矩形以及折叠的性质得到∠A=∠MNB=90°,由M为射线AD上的一个动点可知若△NBC是直角三角形,∠NBC=90°与∠NCB=90°都不符合题意,只有∠BNC=90°.然后分 N在矩形ABCD 内部与 N在矩形ABCD外部两种情况进行讨论,利用勾股定理求得结论即可.【详解】∵四边形ABCD为矩形,∴∠BAD=90°,∵将△ABM沿BM折叠得到△NBM,∴∠MAB=∠MNB=90°.∵M为射线AD上的一个动点,△NBC是直角三角形,∴∠NBC=90°与∠NCB=90°都不符合题意,∴只有∠BNC=90°.①当∠BNC=90°,N在矩形ABCD内部,如图3.∵∠BNC=∠MNB=90°,∴M、N、C三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4.设AM =MN =x ,∵MD =5﹣x ,MC =4+x ,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(5﹣x )5=(4+x )5,解得x =3;当∠BNC =90°,N 在矩形ABCD 外部时,如图5.∵∠BNC =∠MNB =90°,∴M 、C 、N 三点共线,∵AB =BN =3,BC =5,∠BNC =90°,∴NC =4,设AM =MN =y ,∵MD =y ﹣5,MC =y ﹣4,∴在Rt △MDC 中,CD 5+MD 5=MC 5,35+(y ﹣5)5=(y ﹣4)5,解得y =9,则所有符合条件的M 点所对应的AM 和为3+9=5.故答案为5.【点睛】本题考查了翻折变换(折叠问题),矩形的性质以及勾股定理,难度适中.利用数形结合与分类讨论的数学思想是解题的关键.16.当x_____时,|x ﹣2|=2﹣x .【答案】≤2【分析】由题意可知x ﹣2为负数或0,进而解出不等式即可得出答案.【详解】解:由|x ﹣2|=2﹣x ,可得20x -≤,解得:2x ≤.故答案为:≤2.【点睛】本题考查绝对值性质和解不等式,熟练掌握绝对值性质和解不等式相关知识是解题的关键.17.在 ABC 中, 6AB = , 5AC = ,点D 在边AB 上,且 2AD = ,点E 在边AC 上,当 AE =________时,以A 、D 、E 为顶点的三角形与 ABC 相似. 【答案】51235或 【解析】当AE AB AD AC =时, ∵∠A=∠A ,∴△AED ∽△ABC ,此时AE=·621255AB AD AC ⨯==; 当AD AB AE AC =时, ∵∠A=∠A ,∴△ADE ∽△ABC ,此时AE=·52563AC AD AB ⨯==; 故答案是:12553或. 18.如图,公路互相垂直,公路的中点与点被湖隔开,若测得的长为2.4km ,则两点间的距离为______km.【答案】1.1【解析】根据直角三角形斜边上的中线等于斜边的一半,可得MC= AB=1.1km .【详解】∵在Rt △ABC 中,∠ACB=90°,M 为AB 的中点,∴MC=AB=AM=1.1(km).故答案为:1.1.【点睛】此题考查直角三角形的性质,解题关键点是熟练掌握在直角三角形中,斜边上的中线等于斜边的一半,理解题意,将实际问题转化为数学问题是解题的关键.三、解答题(本题包括8个小题)19.已知:如图,将△ADE 绕点A 顺时针旋转得到△ABC ,点E 对应点C 恰在D 的延长线上,若BC ∥AE .求证:△ABD 为等边三角形.【答案】证明见解析.【分析】由旋转的性质可得ACB E ∠=∠,AC AE =,可得E ACE ∠=∠,由平行线的性质可得180BCE E ∠+∠=︒,可得60E ∠=︒,则可求60BAD ∠=︒,可得结论.【详解】解:由旋转知:△ADE ≌△ABC ,∴∠ACB =∠E ,AC =AE ,∴∠E =∠ACE ,又BC ∥AE ,∴∠BCE+∠E =180°,即∠ACB+∠ACE+∠E =180°,∴∠E =60°,又AC =AE ,∴△ACE 为等边三角形,∴∠CAE =60°又∠BAC =∠DAE∴∠BAD =∠CAE =60°又AB =AD∴△ABD 为等边三角形.【点睛】本题考查了旋转的性质,等边三角形的性质,平行线的性质等知识,求出60CAE ∠=︒是本题的关键. 20.一个二次函数的图象经过(3,1),(0,-2),(-2,6)三点.求这个二次函数的解析式并写出图象的顶点.【答案】二次函数为222y x x -=-,顶点(1,-3).【分析】先设该二次函数的解析式为y=ax 2+bx+c (a ≠0),利用待定系数法求a ,b ,c 的值,得到二次函数的解析式,然后化为顶点式,即可得到顶点坐标.【详解】解:∵二次函数的图象经过(0,-2),可设所求二次函数为22y ax bx =+-, 由已知,函数的图象不经过(3,1),(-2,6)两点,可得关于a 、b 的二元一次方程组9321,422 6.a b a b +-=⎧⎨--=⎩解这个方程,得1,2.a b =⎧⎨=-⎩∴二次函数为:222y x x -=-;化为顶点式得:2(1)3y x =--∴顶点为:(1,3)-.【点睛】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法以及顶点公式求法等知识,难度不大.21.将一元二次方程232=1x x --化为一般形式,并求出根的判别式的值.【答案】23210x x -+=,-8【分析】先移项,将方程化为一般式,然后算判别式的大小可得.【详解】解:将方程化为一般形式为:23210x x -+=∴a=3,b=-2,c=1∴ 根的判别式的值为224(2)4318b ac -=--⨯⨯=-.【点睛】本题考查一元二次方程的化简和求解判别式,注意此题的判别式为负数,即表示方程无实数根. 22.如图所示的双曲线是函数3(m y m x-=为常数,0x >)图象的一支若该函数的图象与一次函数1y x =+的图象在第一象限的交点为()2,A n ,求点A 的坐标及反比例函数的表达式.【答案】点A 的坐标为()2,3;反比例函数的表达式为6y x=. 【分析】先将x=2代入一次函数1y x =+中可得,点A 的坐标为()2,3,再将点A 的坐标代入3m y x -=可得反比例函数的解析式.【详解】解:点()2,A n 在一次函数1y x =+的图象上,213,n ∴=+=∴点A 的坐标为()2,3.又点A 在反比例函数3(m y m x-=为常数,0x >)的图象上,3236,m ∴-=⨯=∴反比例函数的表达式为6y x=. 【点睛】本题考查反比例函数和一次函数的交点问题和解析式,熟练掌握待定系数法是解题的关键.23.解下列方程:210252(5)x x x -+=-【答案】x 1=5,x 2=1.【解析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x 2-10x+25=2(x-5),(x-5)2-2(x-5)=0,(x-5)(x-5-2)=0,x-5=0,x-5-2=0,x 1=5,x 2=1.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.24.如图,抛物线y=ax 2 +bx+ 4与x 轴的两个交点分别为A (-4,0)、B (2,0),与y 轴交于点C ,顶点为D .E (1,2)为线段BC 的中点,BC 的垂直平分线与x 轴、y 轴分别交于F 、G .(1)求抛物线的函数解析式,并写出顶点D 的坐标;(2)在直线EF 上求一点H ,使△CDH 的周长最小,并求出最小周长;(3)若点K 在x 轴上方的抛物线上运动,当K 运动到什么位置时,△EFK 的面积最大?并求出最大面积.【答案】(1)2142y x x =--+顶点D 的坐标为(-1,92) (2)H (34,158) (2)K (-32,358) 【分析】(1)将A 、B 的坐标代入抛物线的解析式中,即可求出待定系数的值,进而可用配方法求出其顶点D 的坐标;(2)根据抛物线的解析式可求出C 点的坐标,由于CD 是定长,若△CDH 的周长最小,那么CH+DH 的值最小,由于EF 垂直平分线段BC ,那么B 、C 关于直线EF 对称,所以BD 与EF 的交点即为所求的H 点;易求得直线BC 的解析式,关键是求出直线EF 的解析式;由于E 是BC 的中点,根据B 、C 的坐标即可求出E 点的坐标;可证△CEG ∽△COB ,根据相似三角形所得的比例线段即可求出CG 、OG 的长,由此可求出G 点坐标,进而可用待定系数法求出直线EF 的解析式,由此得解;(2)过K 作x 轴的垂线,交直线EF 于N ;设出K 点的横坐标,根据抛物线和直线EF 的解析式,即可表示出K 、N 的纵坐标,也就能得到KN 的长,以KN 为底,F 、E 横坐标差的绝对值为高,可求出△KEF 的面积,由此可得到关于△KEF 的面积与K 点横坐标的函数关系式,根据所得函数的性质即可求出其面积的最大值及对应的K 点坐标.【详解】(1)由题意,得164404240a b a b -+=⎧⎨++=⎩解得12a =-,b=-1. 所以抛物线的解析式为2142y x x =--+,顶点D 的坐标为(-1,92). (2)设抛物线的对称轴与x 轴交于点M .因为EF 垂直平分BC ,即C 关于直线EG 的对称点为B ,连结BD 交于EF 于一点,则这一点为所求点H ,使DH+CH 最小,即最小为=2CD ==. ∴△CDH 的周长最小值为CD+DR+CH=2. 设直线BD 的解析式为y=k 1x+b ,则11112092k b k b +=⎧⎪⎨-+=⎪⎩解得132k =-,b 1= 2. 所以直线BD 的解析式为y=32-x+ 2. 由于Rt △CEG ∽△COB ,得CE:CO=CG:CB ,所以CG= 2.3,GO= 1.3.G (0,1.3).同理可求得直线EF 的解析式为y=12x+32. 联立直线BD 与EF 的方程,解得使△CDH 的周长最小的点H (34,158). (2)设K (t ,2142t t --+),x F <t <x E .过K 作x 轴的垂线交EF 于N . 则KN=y K -y N =2142t t --+-(12t+32)=2135222t t --+.所以S △EFK =S △KFN +S △KNE =12KN (t+ 2)+12KN (1-t )= 2KN= -t 2-2t+ 3 =-(t+32)2+294. 即当t=-32时,△EFK 的面积最大,最大面积为294,此时K (-32,358). 【点睛】 本题是二次函数的综合类试题,考查了二次函数解析式的确定、轴对称的性质、相似三角形的判定和性质、三角形面积的求法、二次函数的应用等知识,难度较大.25.如图,在平面直角坐标系中,已知ABC ∆三个顶点的坐标分别是()4,2A -, ()3,1B -,()1,2C -. (1)请画出ABC ∆关于x 轴对称的111A B C ∆;(2)以点O 为位似中心,相似比为1:2,在y 轴右侧,画出111A B C ∆放大后的222A B C ∆;【答案】(1)见解析;(2)见解析.【分析】(1)利用关于x 轴对称点的性质:横坐标相等,纵坐标互为相反数可以求出.(2)利用位似图像的性质得出对应点位置.【详解】如图所示:画出ABC ∆轴对称的111A B C ∆.画出111A B C ∆放大后的位似222A B C ∆.【点睛】本题考查了关于对称轴对称的点的性质以及位似的性质.26.解方程:(1)2x 2+3x ﹣1=0(2)1122 xx x-=+-【答案】(1)x1=3174-+,x2=3174--;(2)x=23【分析】(1)将方程化为一般形式a x2+bx+c=0确定a,b,c的值,然后检验方程是否有解,若有解,代入公式即可求解;(2)最简公分母是(x+2)(x﹣2),去分母,转化为整式方程求解,需检验结果是否为原方程的解;【详解】解:(1)∵a=2,b=3,c=-1,∴∆=b2﹣4ac=32﹣4×2×(﹣1)=17>0,∴x=-b-317=±∆±,∴x1=3174-+,x2=3174--;(2)方程两边都乘以(x+2)(x﹣2)得:x(x﹣2)﹣(x+2)(x﹣2)=x+2,解得:x=23,检验:当x=23时,(x+2)(x﹣2)≠0,所以x=23是原方程的解;【点睛】本题主要考查了解一元二次方程-公式法,解分式方程,掌握解一元二次方程-公式法,解分式方程是解题的关键.27.公司经销的一种产品,按要求必须在15天内完成销售任务.已知该产品的销售价为62元/件,推销员小李第x天的销售数量为y件,y与x满足如下关系:y=8(05)510(515) x xx x⎧⎨+<⎩(1)小李第几天销售的产品数量为70件?(2)设第x天销售的产品成本为m元/件,m与x的函数图象如图,小李第x天销售的利润为w元,求w与x的函数关系式,并求出第几天时利润最大,最大利润是多少?【答案】(1)小李第1天销售的产品数量为70件;(2)第5天时利润最大,最大利润为880元.【分析】(1)根据y和x的关系式,分别列出方程并求解,去掉不符合情况的解后,即可得到答案;(2)根据m 与x 的函数图象,列出m 与x 的关系式并求解系数;然后结合利润等于售价减去成本后再乘以销售数量的关系,利用一元一次函数和一元二次函数的性质,计算得到答案.【详解】(1)如果8x =70得x =354>5,不符合题意; 如果5x+10=70得x =1.故小李第1天销售的产品数量为70件;(2)由函数图象可知:当0≤x≤5,m =40当5<x≤15时,设m =kx+b将(5,40)(15,60)代入,得5401560k b k b +=⎧⎨+=⎩∴2k =且b=30∴m =2x+30①当0≤x≤5时w =(62﹣40)•8x =176x∵w 随x 的增大而增大∴当x =5时,w 最大为880;②当5<x≤15时w =(62﹣2x ﹣30)(5x+10)=﹣10x 2+140x+320∴当x =7时,w 最大为810∵880>810∴当x =5时,w 取得最大值为880元故第5天时利润最大,最大利润为880元.【点睛】本题考察了从图像获取信息、一元一次函数、一元二次函数的知识;求解本题的关键为熟练掌握一元一次和一元二次函数的性质,并结合图像计算得到答案.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )A .B .C .D .【答案】B【分析】根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B .【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.2.如图, 抛物线2y ax bx c =++与x 轴交于点A (-1,0),顶点坐标(1,n )与y 轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①30a b +<;②213a -≤≤-;③对于任意实数m ,a+b≥am 2+bm 总成立;④关于x 的方程21ax bx c n ++=-有两个不相等的实数根.其中结论正确的个数为( )A .1 个B .2 个C .3 个D .4 个【答案】D 【解析】利用抛物线开口方向得到a <0,再由抛物线的对称轴方程得到b=-2a ,则3a+b=a ,于是可对①进行判断;利用2≤c≤3和c=-3a 可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax 2+bx+c 与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a <0,而抛物线的对称轴为直线x=-b2a=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-23,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.3.二次函数y=ax1+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y=ax1+bx+c有最小值,最小值为﹣3;(1)当﹣12<x<1时,y<0;(3)已知点A(x1,y1)、B(x1,y1)在函数的图象上,则当﹣1<x1<0,3<x1<4时,y1>y1.上述结论中正确的结论个数为()A.0 B.1 C.1 D.3【答案】B【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(1)从表格可以看出,当﹣12<x <1时,y <0,符合题意; (3)﹣1<x 1<0,3<x 1<4时,x 1离对称轴远,故错误,不符合题意; 故选择:B . 【点睛】本题考查了二次函数的最值,抛物线与x 轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.4.点P(-6,1)在双曲线ky x=上,则k 的值为( ) A .-6 B .6C .16-D .16【答案】A【分析】根据反比例函数图象上点的坐标特征可直接得到答案. 【详解】解:∵点P (61-,)在双曲线ky x=上, ∴616k =-⨯=-; 故选:A. 【点睛】此题主要考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 5.下列各组图形中,两个图形不一定是相似形的是( ) A .两个等边三角形 B .有一个角是100︒的两个等腰三角形 C .两个矩形 D .两个正方形【答案】C【分析】根据相似图形的定义,以及等边三角形,等腰三角形,矩形,正方形的性质对各选项分析判断后利用排除法求解.【详解】解:A 、两个等边三角形,对应边的比相等,角都是60°,相等,所以一定相似,故A 正确; B 、有一个角是100°的两个等腰三角形,100°的角只能是顶角,夹顶角的两边成比例,所以一定相似,故B 正确;C 、两个矩形,四个角都是直角,但四条边不一定对应成比例,不一定相似,故C 错误;D 、两个正方形,对应边的比相等,角都是90°,相等,所以一定相似,故D 正确. 故选:C . 【点睛】本题考查了相似图形的判断,严格按照定义,对应边成比例,对应角相等进行判断即可,另外,熟悉等腰三角形,等边三角形,正方形的性质对解题也很关键.6.如图,PA 是⊙O 的切线,OP 交⊙O 于点B ,如果1sin 2P =,OB=1,那么BP 的长是( )A .4B .2C .1D .3【答案】C【分析】根据题意连接OA 由切线定义可知OA 垂直AP 且OA 为半径,以此进行分析求解即可. 【详解】解:连接OA ,已知PA 是⊙O 的切线,OP 交⊙O 于点B ,可知OA 垂直AP 且OA 为半径,所以三角形OAP 为直角三角形,∵1sin 2P =,OB=1, ∴1sin 2OA P OP ==,OA=OB=1, ∴OP=2,BP=OP-OB=2-1=1. 故选C. 【点睛】本题结合圆的切线定义考查解直角三角形,熟练掌握圆的切线定义以及解直角三角形相关概念是解题关键.7.已知函数ky x=的图象经过点(2, 3 ),下列说法正确的是( ) A .y 随x 的增大而增大 B .函数的图象只在第一象限 C .当x<0时,必y<0 D .点(-2, -3)不在此函数的图象上【答案】C【解析】∵图象经过点(2,3),∴k=2×3=6>0,∴图象在第一、三象限.∴只有C 正确.故选C . 8.若角αβ,都是锐角,以下结论:①若αβ<,则sin sin αβ<;②若αβ<,则cos cos αβ<;③若αβ<,则tan tan αβ<;④若90αβ+=,则sin cos αβ=.其中正确的是( ) A .①② B .①②③C .①③④D .①②③④【答案】C【分析】根据锐角范围内sin α 、cos α 、tan α 的增减性以及互余两锐角的正余弦函数间的关系可得. 【详解】①∵sin α随α 的增大而增大,正确; ②∵cos α随α 的增大而减小,错误; ③∵tan α随α 的增大而增大,正确;④若90αβ+=,根据互余两锐角的正余弦函数间的关系可得sin cos αβ=,正确; 综上所述,①③④正确 故答案为:C . 【点睛】本题考查了锐角的正余弦函数,掌握锐角的正余弦函数的增减性以及互余锐角的正余弦函数间的关系是解题的关键.9.某反比例函数的图象经过点(-2,3),则此函数图象也经过( ) A .(2,-3) B .(-3,3)C .(2,3)D .(-4,6)【答案】A【分析】设反比例函数y=kx(k 为常数,k≠0),由于反比例函数的图象经过点(-2,3),则k=-6,然后根据反比例函数图象上点的坐标特征分别进行判断. 【详解】设反比例函数y=kx(k 为常数,k≠0), ∵反比例函数的图象经过点(-2,3), ∴k=-2×3=-6,而2×(-3)=-6,(-3)×(-3)=9,2×3=6,-4×6=-24, ∴点(2,-3)在反比例函数y=-6x的图象上. 故选A . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=kx(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 10.如图,ABC ∆中,//,2,3DE BC AD BD ==,则DE AEBC AC=的值为( )A .2:3B .1:2C .3:5D .2:5【答案】D【解析】根据相似三角形的判定和性质,即可得到答案. 【详解】解:∵//DE BC , ∴ADE ∆∽ABC ∆, ∴22235DE AE AD AD BC AC AB AD DB =====++; 故选:D. 【点睛】本题考查了相似三角形的判定和性质,解题的关键是掌握相似三角形的判定和性质.11.如图,已知BD 是⊙O 直径,点A 、C 在⊙O 上,AB BC =,∠AOB=60°,则∠BDC 的度数是( )A .20°B .25°C .30°D .40°【答案】C【详解】∵AB BC =,∠AOB=60°, ∴∠BDC=12∠AOB=30°. 故选C .12.口袋中有14个红球和若干个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,记下颜色后放回,多次实验后发现摸到白球的频率稳定在0.3,则白球的个数是( ) A .5 B .6C .7D .8【答案】B【分析】设白球的个数为x ,利用概率公式即可求得. 【详解】设白球的个数为x ,由题意得,从14个红球和x 个白球中,随机摸出一个球是白球的概率为0.3, 则利用概率公式得:0.314xx=+,解得:6x =,经检验,x=6是原方程的根, 故选:B. 【点睛】本题考查了等可能下概率的计算,理解题意利用概率公式列出等式是解题关键.二、填空题(本题包括8个小题)13.用一个圆心角为120︒的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为_____. 【答案】12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可. 【详解】设这个圆锥的母线长为l , 依题意,有:12024180lππ⨯⨯=, 解得:12l =, 故答案为:12. 【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.14.若12y x =,则y x x +=___________.【答案】32【分析】把所求比例形式进行变形,然后整体代入求值即可. 【详解】=1y x y x x ++,12y x =,13=+1=22y x x +∴;故答案为32. 【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键.15.将二次函数y=x 2﹣1的图象向上平移3个单位长度,得到的图象所对应的函数表达式是_____. 【答案】y=x 1+1【解析】分析:先确定二次函数y=x 1﹣1的顶点坐标为(0,﹣1),再根据点平移的规律得到点(0,﹣1)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线解析式.详解:二次函数y=x 1﹣1的顶点坐标为(0,﹣1),把点(0,﹣1)向上平移3个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线解析式为y=x 1+1. 故答案为y=x 1+1.点睛:本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式. 16.点A ()12,y -,B ()21,y -都在反比例函数3y x=-图象上,则1y _____2y .(填写<,>,=号) 【答案】<.【分析】根据反比例函数的增减性即可得出结论.。

《试卷3份集锦》上海市长宁区2017-2018年九年级上学期数学期末检测试题

《试卷3份集锦》上海市长宁区2017-2018年九年级上学期数学期末检测试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.抛物线y =(x ﹣4)2﹣5的顶点坐标和开口方向分别是( ) A .(4,﹣5),开口向上 B .(4,﹣5),开口向下 C .(﹣4,﹣5),开口向上 D .(﹣4,﹣5),开口向下【答案】A【解析】根据y =a (x ﹣h )2+k ,a >0时图象开口向上,a <0时图象开口向下,顶点坐标是(h ,k ),对称轴是x =h ,可得答案. 【详解】由y =(x ﹣4)2﹣5,得 开口方向向上, 顶点坐标(4,﹣5). 故选:A . 【点睛】本题考查了二次函数的性质,利用y =a (x ﹣h )2+k ,a >0时图象开口向上,在对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;a <0时图象开口向下,在对称轴的左侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小,顶点坐标是(h ,k ),对称轴是x =h.2.某厂2017年产值3500万元,2019年增加到5300万元.设平均每年增长率为x ,则下面所列方程正确的是( )A .()350015300x +=B .()530013500x +=C .()2530013500x += D .()2350015300x +=【答案】D【分析】由题意设每年的增长率为x ,那么第一年的产值为3500(1+x )万元,第二年的产值3500(1+x )(1+x )万元,然后根据今年上升到5300万元即可列出方程. 【详解】解:设每年的增长率为x ,依题意得 3500(1+x )(1+x )=5300, 即()2350015300x +=. 故选:D . 【点睛】本题考查列出解决问题的方程,解题的关键是正确理解“利润每月平均增长率为x ”的含义以及找到题目中的等量关系.3.下列事件中,属于必然事件的是( ) A .明天太阳从北边升起B .实心铅球投入水中会下沉C .篮球队员在罚球线投篮一次,投中D .抛出一枚硬币,落地后正面向上【答案】B【解析】必然事件就是一定会发生的事件,依据定义即可判断. 【详解】A 、明天太阳从北边升起是不可能事件,错误; B 、实心铅球投入水中会下沉是必然事件,正确; C 、篮球队员在罚球线投篮一次,投中是随机事件,错误; D 、抛出一枚硬币,落地后正面向上是随机事件,错误; 故选B . 【点睛】考查的是必然事件、不可能事件、随机事件的概念,必然事件是指在一定条件下,一定发生的事件. 4.矩形的周长为12cm ,设其一边长为xcm ,面积为ycm 2,则y 与x 的函数关系式及其自变量x 的取值范围均正确的是( ) A .y=﹣x 2+6x (3<x <6) B .y=﹣x 2+12x (0<x <12) C .y=﹣x 2+12x (6<x <12) D .y=﹣x 2+6x (0<x <6)【答案】D【分析】已知一边长为xcm ,则另一边长为(6-x )cm ,根据矩形的面积公式即可解答. 【详解】解:已知一边长为xcm ,则另一边长为(6-x )cm . 则y=x (6-x )化简可得y=-x 2+6x ,(0<x <6), 故选:D . 【点睛】此题主要考查了根据实际问题列二次函数关系式的知识,解题的关键是用x 表示出矩形的另一边,此题难度一般.5.如图,点A ,B ,C 都在O 上,若34C ∠=︒,则AOB ∠为( )A .34︒B .56︒C .60︒D .68︒【答案】D【分析】直接根据圆周角定理求解. 【详解】∵∠C=34°, ∴∠AOB=2∠C=68°.故选:D . 【点睛】此题考查圆周角定理,解题关键在于掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 6.若一元二次方程220x mx ++=有两个相等的实数根,则m 的值是( ) A .2 B .2±C .8±D .22±【答案】D【分析】根据一元二次方程根的判别式0∆=,即可得到答案 【详解】解:∵一元二次方程220x mx ++=有两个相等的实数根, ∴24120m ∆=-⨯⨯=, 解得:22m =±; 故选择:D. 【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练掌握利用根的判别式求参数的值. 7.下列图形中,不是轴对称图形的是( )A .B .C .D .【答案】A【分析】根据轴对称图形概念进行解答即可. 【详解】解:A 、不是轴对称图形,符合题意; B 、是轴对称图形,不合题意; C 、是轴对称图形,不合题意; D 、是轴对称图形,不合题意; 故选:A . 【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形. 8.抛物线y=-2(x+3)2-4的顶点坐标是: A .(3,-4) B .(-3,4) C .(-3,-4) D .(-4,3)【答案】C【解析】试题分析:抛物线22(3)4y x =-+-的顶点坐标是(-3,-4).故选C .考点:二次函数的性质.9.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米【答案】A【解析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【答案】C【分析】根据中心对称图形和轴对称图形的定义逐项进行判断即可.【详解】A、是中心对称图形,但不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、既是中心对称图形,又是轴对称图形,符合题意;D、既不是中心对称图形,也不是轴对称图形,故不符合题意.故选:C.【点睛】本题考查中心对称图形和轴对称图形的定义,熟练掌握定义是关键.11.如果△ABC∽△DEF,且对应边的AB与DE的长分别为2、3,则△ABC与△DEF的面积之比为()A.4:9 B.2:3 C.3:2 D.9:4【答案】A【分析】根据相似三角形的面积的比等于相似比的平方进行计算.【详解】∵△ABC∽△DEF,∴△ABC与△DEF的面积之比等于(ABDE)2=(23)2=49.故选:A.【点睛】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比等于相似比;相似三角形的面积的比等于相似比的平方.12.如图,O是矩形ABCD对角线AC的中点,M是AD的中点,若BC=8,OB=5,则OM的长为()A.1 B.2 C.3 D.4【答案】C【分析】由O是矩形ABCD对角线AC的中点,可求得AC的长,然后运用勾股定理求得AB、CD的长,又由M是AD的中点,可得OM是△ACD的中位线,即可解答.【详解】解:∵O是矩形ABCD对角线AC的中点,OB=5,∴AC=2OB=10,∴CD=AB22AC BC-22108-6,∵M 是AD 的中点, ∴OM =12CD =1. 故答案为C . 【点睛】本题考查了矩形的性质、直角三角形的性质以及三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键. 二、填空题(本题包括8个小题)13.阅读材料:一元二次方程260x x --=的两个根是-2,3,画出二次函数26y x x =--的图象如图,位于x 轴上方的图象上点的纵坐标y 满足0y >,所以不等式0y <点的横坐标的取值范围是23x -<<,则不等式260x x --<解是23x -<<.仿照例子,运用上面的方法解不等式2430x x -+->的解是___________.【答案】13x <<【分析】根据题意可先求出一元二次方程243=0x x -+-的两个根是1,3,画出二次函数243y x x =-+-的图象,位于x 轴上方的图象上点的纵坐标y 满足0y >,即可得解.【详解】解:根据题意可得出一元二次方程243=0x x -+-的两个根是1,3,画出二次函数243y x x =-+-的图象如下图,因此,不等式2430x x -+->的解是13x <<. 故答案为:13x <<. 【点睛】本题考查的知识点是二次函数与不等式的解,理解题意,找出求解的步骤是解此题的关键.14.如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P .若OP=10,则k 的值为________.【答案】3【分析】已知直线y=x+2与反比例函数y=kx的图象在第一象限交于点P ,设点P 的坐标为(m,m+2),根据10,列出关于m 的等式,即可求出m ,得出点P 坐标,且点P 在反比例函数图象上,所以点P 满足反比例函数解析式,即可求出k 值. 【详解】∵直线y=x+2与反比例函数y=kx的图象在第一象限交于点P ∴设点P 的坐标为(m,m+2) ∵1022(2)10m m ++=解得m 1=1,m 2=-3 ∵点P 在第一象限 ∴m=1∴点P 的坐标为(1,3) ∵点P 在反比例函数y=kx图象上 ∴31k =解得k=3 故答案为:3 【点睛】本题考查了一次函数与反比例函数交点问题,交点坐标同时满足一次函数和反比例函数解析式,根据直角坐标系中点坐标的性质,可利用勾股定理求解.15.若点P (m ,-2)与点Q (3,n )关于原点对称,则2019()m n +=______. 【答案】-1【分析】根据坐标的对称性求出m,n 的值,故可求解. 【详解】依题意得m=-3,n=2 ∴2019()m n +=2019)1(1-=-故填:-1.【点睛】此题主要考查代数式求值,解题的关键是熟知直角坐标系的坐标特点.16.已知y是x的反比例函数,当x>0时,y随x的增大而减小.请写出一个满足以上条件的函数表达式.【答案】y=(x>0)【解析】试题解析:只要使反比例系数大于0即可.如y=1x(x>0),答案不唯一.考点:反比例函数的性质.17.在比例尺为1:40000的地图上,某条道路的长为7cm,则该道路的实际长度是_____km.【答案】2.1【解析】试题分析:设这条道路的实际长度为x,则:1740000x=,解得x=210000cm=2.1km,∴这条道路的实际长度为2.1km.故答案为2.1.考点:比例线段.18.如果一元二次方程2230x x m++=有两个相等的实数根,那么是实数m的取值为________.【答案】9 8【分析】根据一元二次方程有两个相等的实数根,得知其判别式的值为0,即∆=32-4×2×m=0,解得m 即可.【详解】解:根据题意得,∆=32-4×2×m=0,解得m=98.故答案为:98.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与∆=b2-4ac有如下关系:当∆>0时,方程有两个不相等的实数根;当∆=0时,方程有两个相等的实数根;当∆<0时,方程无实数根.三、解答题(本题包括8个小题)19.2013年,东营市某楼盘以每平方米6500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)【答案】(1)平均每年下调的百分率为10% ;(2)张强的愿望可以实现.【解析】试题分析:(1)设平均每年下调的百分率为x,则2014年的均价为6500(1-x),2015年的均价为6500(1-x)(1-x),即6500(1-x)2,根据题意,得:6500(1-x)2=5265,解方程即可;(2)计算出2016年的均价,算出总房款,即可知道能否实现.试题解析:(1)设平均每年下调的百分率为x,根据题意,得:6500(1-x)2=5265,解得:x1=0.1=10%,x2=1.9(不合题意,舍去),答:平均每年下调的百分率为10% ;(2)如果下调的百分率相同,2016年的房价为:5265×(1-10%)=4738.5(元/m2),则100平方米的住房的总房款为100×4738.5=473850(元)=47.385(万元),∵20+30>47.385∴张强的愿望可以实现.考点:一元二次方程的应用.20.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.【答案】(1)P(抽到数字2)=12;(2)游戏不公平,图表见解析.【详解】试题分析:(1)根据概率公式即可求解;(2)利用列表法,求得小贝胜与小晶胜的概率,比较即可游戏是否公平.试题解析:(1)P(抽到数字2)=21 = 42;(2)公平.列表:2 23 62 (2,2)(2,2)(2,3)(2,6)2(2,2) (2,2) (2,3) (2,6) 3 (3,2) (3,2) (3,3) (3,6) 6(6,2)(6,2)(6,3)(6,6)由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过32的结果有10种. 所以P (小贝胜)=58,P (小晶胜)=38.所以游戏不公平.考点:游戏公平性.21.已知:如图,四边形ABCD 的对角线AC 、BD 相交于点O ,AOD BOC S S =△△.(1)求证:DO COOB OA=; (2)设OAB 的面积为S ,CD k AB=,求证:S 四边形ABCD ()21k S =+. 【答案】(1)证明见解析;(2)证明见解析【分析】(1)由S △AOD =S △BOC 易得S △ADB =S △ACB ,根据三角形面积公式得到点D 和点C 到AB 的距离相等,则CD ∥AB ,于是可判断△DOC ∽△BOA ,然后利用相似比即可得到结论; (2)利用相似三角形的性质可得结论. 【详解】(1)∵S △AOD =S △BOC ,∴S △AOD +S △AOB =S △BOC +S △AOB ,即S △ADB =S △ACB , ∴CD ∥AB , ∴△DOC ∽△BOA , ∴DO COOB OA= ; (2)∵△DOC ∽△BOA ∴CD DO COAB BO AO== =k ,CODAOBS CD S AB ⎛⎫ ⎪⎝⎭=2=k 2,∴DO=kOB,CO=kAO,S△COD=k2S,∴S△AOD=kS△OAB=kS,S△COB=kS△OAB=kS,∴S四边形ABCD=S+kS+kS+k2S=(k+1)2S.【点睛】此题考查相似三角形的判定和性质,证明△DOC∽△BOA是解题的关键.22。

2018届长宁区中考数学一模及答案

2018届长宁区中考数学一模及答案

2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bb a +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.第2题图AB CDE 第6题图O ABCD9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”) 15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.第18题图A B CDBCDA 第17题图第15题图D AG20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值;(2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DEBF ⋅=⋅. 24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;F EDABC第23题图第20题图FAD E 第21题图(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DCBA DCBA F EP D CB A 第25题图长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:b EC 52= (2分)又∵→+=CF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分) ∵045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分) ∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。

〖汇总3套试卷〗上海市长宁区2018年九年级上学期数学期末经典试题

〖汇总3套试卷〗上海市长宁区2018年九年级上学期数学期末经典试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知二次函数y =ax 2+bx+c (a ≠0)的图象如图所示,给出以下结论:①a+b+c <0;②b 2﹣4ac >0;③b >0;④4a ﹣2b+c <0;⑤a+c <23,其中正确结论的个数是( )A .②③④B .①②⑤C .①②④D .②③⑤【答案】B 【分析】令x =1,代入抛物线判断出①正确;根据抛物线与x 轴的交点判断出②正确;根据抛物线的对称轴为直线x =﹣1列式求解即可判断③错误;令x =﹣2,代入抛物线即可判断出④错误,根据与y 轴的交点判断出c =1,然后求出⑤正确.【详解】解:由图可知,x =1时,a+b+c <0,故①正确;∵抛物线与x 轴有两个交点,∴△=24b ac ->0,故②正确;∵抛物线开口向下,∴a <0,∵抛物线对称轴为直线x =2b a-=﹣1, ∴b =2a <0,故③错误;由图可知,x =﹣2时,4a ﹣2b+c >0,故④错误;当x =0时,y =c =1,∵a+b+c <0,b =2a ,∴3a+1<0, ∴a <13-∴a+c <23,故⑤正确; 综上所述,结论正确的是①②⑤.故选:B .【点睛】本题主要考查二次函数的图像与性质,关键是根据题意及图像得到二次函数系数之间的关系,熟记知识点是前提.2.已知点A(2,y1)、B(4,y2)都在反比例函数kyx(k<0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【答案】B【详解】试题分析:∵当k<0时,y=kx在每个象限内,y随x的增大而增大,∴y1<y2,故选B.考点:反比例函数增减性.3.二次函数y=ax2+bx+c的部分对应值如下表利用二次函数的图象可知,当函数值y>0时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.﹣1<x<3 D.x<﹣1或x>3【答案】C【分析】函数值y=1对应的自变量值是:-1、3,在它们之间的函数值都是正数.由此可得y>1时,x的取值范围.【详解】从表格可以看出,二次函数的对称轴为直线x=1,故当x=﹣1或3时,y=1;因此当﹣1<x<3时,y>1.故选C.【点睛】本题主要考查了二次函数与x轴的交点、二次函数的性质等知识, 解题的关键是要认真观察,利用表格中的信息解决问题.4.抛物线y=﹣(x﹣1)2﹣2 的顶点坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,﹣2)【答案】D【解析】根据顶点式解析式写出顶点坐标即可.【详解】抛物线y=﹣(x﹣1)2﹣2的顶点坐标是(1,﹣2).故选D.【点睛】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.5.下列说法中错误的是()A.成中心对称的两个图形全等B.成中心对称的两个图形中,对称点的连线被对称轴平分D .中心对称图形绕对称中心旋转180°后,都能与自身重合【答案】B【解析】试题分析:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称中心对称,中心对称图形的对称中心是对称点连线的交点,根据中心对称图形的定义和性质可知A 、C 、D 正确,B 错误.故选B .考点:中心对称.6.如图是抛物线y 1=ax 2+bx +c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y 2=mx +n(m≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;②abc>0;③方程ax 2+bx +c =3有两个相等的实数根;④抛物线与x 轴的另一个交点是(-1,0);⑤当1<x<4时,有y 2<y 1,其中正确的是( )A .①④⑤B .①③④⑤C .①③⑤D .①②③【答案】C 【分析】①根据对称轴x=1,确定a ,b 的关系,然后判定即可;②根据图象确定a 、b 、c 的符号,即可判定;③方程ax 2+bx+c=3的根,就y=3的图象与抛物线交点的横坐标判定即可;④根据对称性判断即可;⑤由图象可得,当1<x<4时,抛物线总在直线的上面,则y 2<y 1.【详解】解:①∵对称轴为:x=1, ∴12b a-= 则a=-2b,即2a+b=0,故①正确; ∵抛物线开口向下∴a <0∵对称轴在y 轴右侧,∴b >0∵抛物线与y 轴交于正半轴∴c >0∴abc<0,故②不正确;∴方程ax2+bx+c=3有两个相等的实数根是x=1,故③正确;∵抛物线对称轴是:x=1,B(4,0),∴抛物线与x轴的另一个交点是(-2,0)故④错误;由图象得:当1<x<4时,有y2<y1;故⑤正确.故答案为C.【点睛】本题考查了二次函数的图像,考查知识点较多,解答的关键在于掌握并灵活应用二次函数知识.7.下列四个图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形与中心对称图形的概念,并结合图形的特点求解.【详解】解:A、不是轴对称图形,是中心对称图形,故选项错误;B、不是轴对称图形,是中心对称图形,故选项错误;C、是轴对称图形,不是中心对称图形,故选项错误;D、是轴对称图形,是中心对称图形,故选项正确.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形关键是要寻找对称中心,图形旋转180°后与原图重合.8.在Rt△ABC中,∠C=90°,3A的度数是( )A.30°B.45°C.60°D.90°【答案】C【解析】试题分析:根据特殊角的三角函数值可得:∠A=60°.9.在Rt△ABC中,∠C=90°,若BC=3,AC=4,则sinB的值为()A.45B.35C.34D.43【答案】A【分析】根据三角函数的定义解决问题即可.【详解】解:如图,在Rt△ABC中,∵∠C =90°,BC =3,AC =4,∴AB 2222435AB BC +=+=, ∴sinB =AC AB =45故选:A .【点睛】本题考查解直角三角形的应用,解题的关键是熟练掌握基本知识,属于中考常考题型.10.下列数是无理数的是( )A .32B .0C .3πD .0.2-【答案】C【分析】根据无理数的定义进行判断即可.【详解】A. 32,有理数; B. 0,有理数; C. 3π,无理数; D. 0.2-,有理数;故答案为:C .【点睛】本题考查了无理数的问题,掌握无理数的定义是解题的关键.11.对于函数4y x=,下列说法错误的是( ) A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小【答案】C【解析】试题分析:根据反比例函数的图像与性质,可由题意知k=4>0,其图像在一三象限,且在每个象限y 随x 增大而减小,它的图像即是轴对称图形又是中心对称图形.点睛:反比例函数k y x =的图像与性质: 1、当k >0时,图像在一、三象限,在每个象限内,y 随x 增大而减小;2、当k <0时,图像在二、四象限,在每个象限内,y 随x 增大而增大.3、反比例函数的图像即是轴对称图形又是中心对称图形. 12.姜老师给出一个函数表达式,甲、乙、丙三位同学分别正确指出了这个函数的一个性质.甲:函数图像经过第一象限;乙:函数图像经过第三象限;丙:在每一个象限内,y 值随x 值的增大而减小.根据他们的描述,姜老师给出的这个函数表达式可能是()A .3y x =B .3y x =C .1y x =-D .2y x【答案】B【解析】y=3x 的图象经过一三象限过原点的直线,y 随x 的增大而增大,故选项A 错误; y=3x的图象在一、三象限,在每个象限内y 随x 的增大而减小,故选项B 正确; y=−1x 的图象在二、四象限,故选项C 错误; y=x ²的图象是顶点在原点开口向上的抛物线,在一、二象限,故选项D 错误;故选B.二、填空题(本题包括8个小题)13.某物体对地面的压强P (Pa )与物体和地面的接触面积S (m 2)成反比例函数关系(如图),当该物体与地面的接触面积为0.25m 2时,该物体对地面的压强是______Pa .【答案】1【分析】直接利用函数图象得出函数解析式,进而求出答案.【详解】设P =k s ,把(0.5,2000)代入得: k =1000,故P =1000s, 当S =0.25时,P =10000.25=1(Pa ). 故答案为:1.此题主要考查了反比例函数的应用,正确求出函数解析会死是解题关键.14.若x y =2,则-x x y =_____. 【答案】1【分析】根据x y=1,得出x =1y ,再代入要求的式子进行计算即可. 【详解】∵x y =1, ∴x =1y ,∴222x y x y y y==--; 故答案为:1.【点睛】本题主要考查了比例的基本性质.解答此题的关键是根据比例的基本性质求得x =1y .15.已知菱形ABCD 中,120A ∠=︒,4AB =,边,AD CD 上有点E 、点F 两动点,始终保持DE DF =,连接,,BE EF 取BE 中点G 并连接,FG 则FG 的最小值是_______.【答案】1【分析】过D 点作DH ⊥BC 交BC 延长线与H 点,延长EF 交DH 与点M ,连接BM .由菱形性质和120A ∠=︒可证明FM DF EF DE ===,进而可得12FG BM =,由BM 最小值为BH 即可求解. 【详解】解:过D 点作DH ⊥BC 交BC 延长线与H 点,延长EF 交DH 与点M ,连接BM .∴60ADC ∠=︒,DH BC ⊥,∴30HDC ∠=︒,∵DE DF =,60ADC ∠=︒,∴EF DE DF ==,∴60DEF ∠=︒,又∵DH BC ⊥,∴30MDF FMD ∠=∠=︒,∴FM DF EF ==,又∵BG EG =, ∴12FG BM =, ∴当BM 最小时FG 最小,根据点到直线的距离垂线段最短可知,BM 的最小值等于BH ,∵在菱形ABCD 中, 4AB =,∴4AB BC CD ===又∵在Rt △CHD 中,30HDC ∠=︒, ∴122CH CD ==, ∴426BH BC CH =+=+=,∴AM 的最小值为6,∴FG 的最小值是1.故答案为:1.【点睛】本题考查了动点线段的最小值问题,涉及了菱形的性质、等腰三角形性质和判定、垂线段最短、中位线定理等知识点;将“两动点”线段长通过中位线转化为“一定一动”线段长求解是解题关键.16.在本赛季CBA 比赛中,某运动员最后六场的得分情况如下:17,15,21,28,12,19,则这组数据的极差为_______.【答案】1【分析】极差是指一组数据中最大数据与最小数据的差.极差=最大值−最小值,根据极差的定义即可解答.【详解】解:由题意可知,极差为28−12=1,故答案为:1.【点睛】17.如图,P (m ,m )是反比例函数9y x =在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.【答案】9332+ . 【解析】如图,过点P 作PH ⊥OB 于点H ,∵点P (m ,m )是反比例函数y=9x在第一象限内的图象上的一个点, ∴9=m 2,且m >0,解得,m=3.∴PH=OH=3.∵△PAB 是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得AH=3.∴OB=3+3∴S △POB =12OB•PH=933+. 18.如图所示是二次函数2y ax bx c =++的图象,下列结论:①二次三项式2ax bx c ++的最大值为4;②使3y ≤成立的x 的取值范围是2x -≤;③一元二次方程2ax bx c k ++=,当4k <时,方程总有两个不相等的实数根;④该抛物线的对称轴是直线1x =-;420a b c -+<⑤其中正确的结论有______________ (把所有正确结论的序号都填在横线上)【答案】①③④【分析】根据图象求出二次函数的解析式,根据二次函数的性质结合图象可以判断各个小题中的结论是否正确.【详解】由函数图象可知:抛物线过(-3,0),(1,0),(0,3),∴设抛物线解析式为(1)(3)y a x x =-+,把(0,3)代入得:3=(1)(3)a ⨯-⨯,解得:a=-1, ∴抛物线为(1)(3)y x x =--+,即2(1)4y x =-++,∴二次三项式ax 2+bx+c 的最大值为4,故①正确,由2(1)4y x =-++=3,解得:x=0或x=-2,由图像可知:使y ≤3成立的x 的取值范围是x ≤﹣2或x ≥0,故②错误.∵二次三项式ax 2+bx+c 的最大值为4,∴当k <4时,直线y=k 与抛物线2y ax bx c =++有两个交点,∴当k <4时,方程一元二次方程2ax bx c k ++=总有两个不相等的实数根,故③正确,该抛物线的对称轴是直线x=﹣1,故④正确,当x=﹣2时,y=4a ﹣2b+c >0,故⑤错误.故答案为:①③④.【点睛】本题考查了二次函数图象与系数的关系、二次函数的最值、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.三、解答题(本题包括8个小题)19.问题提出:如图1,在等边△ABC 中,AB =9,⊙C 半径为3,P 为圆上一动点,连结AP ,BP ,求AP+13BP 的最小值 (1)尝试解决: 为了解决这个问题,下面给出一种解题思路,通过构造一对相似三角形,将13BP 转化为某一条线段长,具体方法如下:(请把下面的过程填写完整)如图2,连结CP ,在CB 上取点D ,使CD =1,则有13==CD CP CP CB△∽△∴13= PD BP∴PD=13 BP∴AP+13BP=AP+PD∴当A,P,D三点共线时,AP+PD取到最小值请你完成余下的思考,并直接写出答案:AP+13BP的最小值为.(2)自主探索:如图3,矩形ABCD中,BC=6,AB=8,P为矩形内部一点,且PB=1,则12AP+PC的最小值为.(请在图3中添加相应的辅助线)(3)拓展延伸:如图1,在扇形COD中,O为圆心,∠COD=120°,OC=1.OA=2,OB=3,点P是CD上一点,求2PA+PB 的最小值,画出示意图并写出求解过程.【答案】(1)BCP,PCD,BCP,259;(2)10;(3)作图与求解过程见解析,2PA+PB97.【分析】(1)连结AD,过点A作AF⊥CB于点F,AP+13BP=AP+PD,要使AP+13BP最小,AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即可求解;(2)在AB上截取BF=2,连接PF,PC,AB=8,PB=1,BF=2,证明△ABP∽△PBF,当点F,点P,点C 三点共线时,AP+PC的值最小,即可求解;(3)延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,确定12OA OPOP OF==,且∠AOP=∠AOP,△AOP∽△POF,当点F,点P,点B三点共线时,2AP+PB的值最小,即可求解.【详解】解:(1)如图1,连结AD,过点A作AF⊥CB于点F,∵AP+13BP=AP+PD,要使AP+13BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+13BP最小值为AD,∵AC=9,AF⊥BC,∠ACB=60°∴CF=3,AF=93;∴DF=CF﹣CD=3﹣1=2,∴AD=22259 =2AF DF+,∴AP+13BP的最小值为2592;故答案为:259;(2)如图2,在AB上截取BF=2,连接PF,PC,∵AB=8,PB=1,BF=2,∴12BP BFAB BP==,且∠ABP=∠ABP,∴△ABP∽△PBF,∴12 FP BPAP AB==,∴PF=12 AP,∴12AP+PC=PF+PC,∴当点F,点P,点C三点共线时,AP+PC的值最小,∴CF=222262210BF BC+=+=,∴12AP+PC的值最小值为210,故答案为:210;(3)如图3,延长OC,使CF=1,连接BF,OP,PF,过点F作FB⊥OD于点M,∵OC=1,FC=1,∴FO=8,且OP=1,OA=2,∴12OA OPOP OF==,且∠AOP=∠AOP∴△AOP∽△POF∴1=2 AP OAPF OF=,∴PF=2AP∴2PA+PB=PF+PB,∴当点F,点P,点B三点共线时,2AP+PB的值最小,∵∠COD=120°,∴∠FOM=60°,且FO=8,FM⊥OM∴OM=1,FM=3∴MB=OM+OB=1+3=7∴FB2297FM MB+,∴2PA+PB的最小值为97.【点睛】本题主要考查了圆的有关知识,勾股定理,相似三角形的判定和性质,解本题的关键是根据材料中的思路构造出相似三角形..20.如图所示是某路灯灯架示意图,其中点A表示电灯,AB和BC为灯架,l表示地面,已知AB=2m,BC=5.7m,∠ABC=110°,BC⊥l于点C,求电灯A与地面l的距离.(结果精确到0.1m.参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)【答案】电灯A距离地面l的高度为6.4米.【分析】过A作AD⊥l,过B作BE⊥AD于E,则DE=BC=5.7m,解直角三角形即可得到结论.【详解】解:过A作AD⊥l,过B作BE⊥AD于E,则DE=BC=5.7m,∵∠ABC=110°,∴∠ABE=20°,∴∠A=70°,∴sin20°=AEAB =AE2=0.34,解得:AE=0.68,∴AD=AE+DE≈6.4;答:电灯A距离地面l的高度为6.4米.【点睛】考核知识点:解直角三角形应用.构造直角三角形,解直角三角形是关键.21.不透明的袋中装有1个红球与2个白球,这些球除颜色外都相同,将其搅匀.(1)从中摸出1个球,恰为红球的概率等于_________;(2)从中同时摸出2个球,摸到红球的概率是多少?(用画树状图或列表的方法写出分析过程)【答案】(1)13(2)23【解析】(1)根据题意和概率公式求出即可;(2)先画出树状图,再求即可.【详解】(1)由题意得,从中摸出1个球,恰为红球的概率等于13.故答案为13;(2)画树状图:所以共有6种情况,含红球的有4种情况,所以p42 63 ==.答:从中同时摸出2个球,摸到红球的概率是23.【点睛】本题考查了列表法与画树状图,概率公式等知识点,能够正确画出树状图是解答此题的关键.22.青青草原上,灰太狼每天都想着如何抓羊,而且是屡败屡试,永不言弃.(如图所示)一天,灰太狼在自家城堡顶部A处测得懒羊羊所在地B处的俯角为60°,然后下到城堡的C处,测得B处的俯角为30°.已知AC=50米,若灰太狼以5米/秒的速度从城堡底部D处出发,几秒钟后能抓到懒羊羊?(结果保留根号)【答案】灰太狼3【分析】根据已知得出AC=BC,进而利用解直角三角形得出BD的长进一步可得到结果.【详解】解;在Rt△BCD中∵∠BCD=90-30=60,∠CBD=30∴AC=BC=50m ,在Rt△BCD中∴sin60=BD BC∴BD=BCsin60=502⨯=,设追赶时间为ts,由题意得:5t=∴t=s答:灰太狼秒钟后能抓到懒羊羊.【点睛】此题考查解直角三角形的应用.注意能借助俯角构造直角三角形并解直角三角形是解题的关键,注意数形结合思想的应用.23.已知反比例函数的图像经过点(2,-3).(1)求这个函数的表达式.(2)点(-1,6),(3,2)是否在这个函数的图像上?(3)这个函数的图像位于哪些象限?函数值y随自变量x的增大如何变化?【答案】(1)y=-6x;(2)(-1,6)在函数图像上,(3,2)不在函数图像上;(3)二、四象限,在每个象限内,y随x的增大而增大.【分析】(1)根据待定系数法求得即可;(2)根据图象上点的坐标特征,把点(﹣1,6),(3,2)代入解析式即可判断;(3)根据反比例函数的性质即可得到结论.【详解】(1)设反比例函数的解析式为ykx=(k≠0).∵反比例函数的图象经过点(2,﹣3),∴k=2×(﹣3)=﹣6,∴反比例函数的表达式y6x =-;(2)把x=﹣1代入y6x=-得:y=6,把x=3代入y6x=-得:y=﹣2≠2,∴点(﹣1,6)在函数图象上,点(3,2)不在函数图象上.(3)∵k=﹣6<0,∴双曲线在二、四象限,在每个象限内y随x的增大而增大.【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数的性质,反比例函数图象上点的坐标特征,熟练掌握待定系数法以及反比例函数的性质是解答本题的关键.24.为了解某小区居民使用共享单车次数的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数统计如下:(1)这10位居民一周内使用共享单车次数的中位数是次,众数是次.(2)若小明同学把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是.(填“中位数”,“众数”或“平均数”)(3)若该小区有2000名居民,试估计该小区居民一周内使用共享单车的总次数.【答案】(1)10,10;(2)中位数和众数;(3)22000【分析】(1)根据众数、中位数和平均数的定义分别求解可得;(2)由中位数和众数不受极端值影响可得答案;(3)用总人数乘以样本中居民的平均使用次数即可得.【详解】解:(1)这10位居民一周内使用共享单车次数的中位数是:1010=102+(次),根据使用次数可得:众数为10次;(2)把数据“20”看成了“30”,那么中位数,众数和平均数中不受影响的是中位数和众数,故答案为:中位数和众数;(3)平均数为01511041532011110⨯+⨯+⨯+⨯+⨯=(次),11200022000⨯=(次)估计该小区居民一周内使用共享单车的总次数为22000次.【点睛】本题考查的是平均数、众数、中位数的定义及其求法,牢记定义是关键.25.小明本学期4次数学考试成绩如下表如示:(1)小明4次考试成绩的中位数为__________分,众数为______________分;(2)学校规定:两次月考的平均成绩作为平时成绩,求小明本学期的平时成绩;(3)如果本学期的总评成绩按照平时成绩占20%、期中成绩占30%、期末成绩占50%计算,那么小明本学期的数学总评成绩是多少分?【答案】(1)139,138;(2)140分;(3)139分【分析】(1)根据中位数和众数的定义解答;(2)根据平均数的定义求解;(3)根据加权平均数的计算方法求解.【详解】解:(1)将4个数按照从小到大的顺序排列为:138,138,140,142,所以中位数是1381401392+=分,众数是138分;故答案为:139,138;(2)()1381422140+÷=(分),∴小明的平时成绩为140分;(3)14020%14030%13850%13920%30%50%⨯+⨯+⨯=++(分) ∴小明本学期的数学总评成绩为139分.【点睛】本题是有关统计的综合题,主要考查了中位数、众数和平均数的知识,属于基础题型,熟练掌握以上基本知识是解题关键.26. “万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了12m %,香橙每千克的进价在11月份的基础上下降了m %,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了5m 8%,香橙购进的数量比11月份增加了2m %,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求m 的值.【答案】(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m 的值为49.1.【解析】(1)设11月份红桔的进价为每千克x 元,香橙的进价为每千克y 元, 依题意有4006001520024x y y x +=⎧⎨=+⎩, 解得820x y =⎧⎨=⎩, 答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣12m%)×400(1+58m%)+20(1﹣m%)×100(1+2m%)=15200,解得m 1=0(舍去),m 2=49.1,故m 的值为49.1.27.如图,在等腰三角形ABC 中,,AB AC AH BC =⊥于点H ,点E 是AH 上一点,延长AH 至点F ,使FH EH =.求证:四边形EBFC 是菱形.【答案】见解析.【分析】根据等腰三角形的三线合一可得BH=HC ,结合已知条件FH EH =,从而得出四边形EBFC 是平行四边形,再根据AH CB ⊥得出四边形EBFC 是菱形.【详解】证明:,AB AC AH CB =⊥,BH HC ∴=FH EH =,∴四边形EBFC 是平行四边形又AH CB ⊥,∴四边形EBFC 是菱形.【点睛】本题考查了菱形的判定和性质,以及等腰三角形的性质,熟练掌握相关的知识是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,AB 为O 的直径,,C D 为O 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°【答案】B 【分析】根据题意连接AD ,再根据同弧的圆周角相等,即可计算的ABD ∠的大小.【详解】解:连接AD ,∵AB 为O 的直径,∴90ADB ∠=︒.∵40BCD ∠=︒,∴40A BCD ∠=∠=︒,∴904050ABD ∠=︒-︒=︒.故选B .【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.2.如图是二次函数2 23y x x =--+的图象,使0y ≥成立的 x 的取值范围是( )A .31x ≤≤-B .1x ≥C .31x x <->或D .31x x ≤-≥或【答案】A【分析】先找出抛物线与x 轴的交点坐标,根据图象即可解决问题.【详解】解:由图象可知,抛物线与x 轴的交点坐标分别为(-3,0)和(1,0),∴0y ≥时,x 的取值范围为31x ≤≤-. 故选:A .【点睛】本题考查抛物线与x 轴的交点,对称轴等知识,解题的关键是学会数形结合,根据图象确定自变量的取值范围,属于中考常考题型.3.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150【答案】B【分析】可设每月营业额平均增长率为x ,则二月份的营业额是100(1+x ),三月份的营业额是100(1+x )(1+x ),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x .根据题意得:100(1+x )1=150,故选:B .【点睛】本题考查数量平均变化率问题.原来的数量为a ,平均每次增长或降低的百分率为x 的话,经过第一次调整,就调整到a×(1±x ),再经过第二次调整就是a (1±x )(1±x )=a (1±x )1.增长用“+”,下降用“-”. 4.抛物线2245y x x =++的顶点坐标为( )A .(1,3)B .(1,3)-C .(1,5)D .(1,5)- 【答案】B 【分析】利用顶点公式24,24b ac b a a ⎛⎫-- ⎪⎝⎭,进行计算 【详解】2245y x x =++()()()222242322113213x x x x x =+++=+++=++∴顶点坐标为(1,3)-故选B.【点睛】本题考查二次函数的性质,熟练运用抛物线顶点的公式是解题关键.5.下列事件中,是必然事件的是( )A .从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B .抛掷一枚普通正方体骰子,所得点数小于7C .抛掷一枚一元硬币,正面朝上D .从一副没有大小王的扑克牌中抽出一张,恰好是方块【答案】B【解析】根据事件发生的可能性大小即可判断.【详解】A. 从装有10个黑球的不透明袋子中摸出一个球,恰好是红球的概率为0,故错误;B. 抛掷一枚普通正方体骰子,所得点数小于7的概率为1,故为必然事件,正确;C. 抛掷一枚一元硬币,正面朝上的概率为50%,为随机事件,故错误;D. 从一副没有大小王的扑克牌中抽出一张,恰好是方块,为随机事件,故错误;故选B.【点睛】此题主要考查事件发生的可能性,解题的关键是熟知概率的定义.6.在数学活动课上,张明运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为( )粒.A .125B .1250C .250D .2500 【答案】B【解析】设瓶子中有豆子x 粒,根据取出100粒刚好有记号的8粒列出算式,再进行计算即可.【详解】设瓶子中有豆子x 粒豆子, 根据题意得:1008100x =, 解得:1250x =,经检验:1250x =是原分式方程的解,答:估计瓶子中豆子的数量约为1250粒.故选:B.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.7.如图所示的几何体的左视图为()A.B.C.D.【答案】D【解析】根据左视图是从几何体左面看得到的图形,认真观察实物,可得这个几何体的左视图为长方形,据此观察选项即可得.【详解】观察实物,可知这个几何体的左视图为长方形,只有D选项符合题意,故选D.【详解】本题考查了几何体的左视图,明确几何体的左视图是从几何体的左面看得到的图形是解题的关键.注意错误的选项B、C.8.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为( )A.110°B.125°C.130°D.140°【答案】B【解析】解:∵点O为△ABC的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵点I为△ABC的内心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故选B.9.如图所示的几何体的左视图是()A.B.C.D.【答案】D【分析】根据左视图是从左边看得到的图形,可得答案.【详解】从左边看一个正方形被分成两部分,正方形中间有一条横向的虚线,如图:故选:D.【点睛】本题考查了几何体的三视图,从左边看得到的是左视图.中,CD是斜边AB上的高,则图中的相似三角形共有()10.如图,在Rt ABCA.1对B.2对C.3对D.4对【答案】C【分析】根据相似三角形的判定定理及已知即可得到存在的相似三角形.【详解】∵∠ACB=90°,CD⊥AB∴△ABC∽△ACD,△ACD∽△CBD,△ABC∽△CBD所以有三对相似三角形,故选:C.【点睛】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似.11.布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()A .16B .29C .13D .23【答案】C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,∴P (一红一黄)=26=13.故选C . 12.关于x 的一元二次方程230x x m -+=中有一根是1,另一根为n ,则m 与n 的值分别是( ) A .m=2,n=3B .m=2,n=-3C .m=2,n=2D .m=2,n=-2【答案】C【分析】将根是1代入一元二次方程,即可求出m 的值,再解一元二次方程,可求出两个根,即可求出n 的值.【详解】解:∵将1代入方程,得到:1-3+m=0,m=2∴2320x x -+=∴解得x 1=1,x 2=2∴n=2故选C .【点睛】本题主要考查了一元二次方程,熟练解满足一元二次方程以及解一元二次方程是解决本题的关键.二、填空题(本题包括8个小题)13.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH ;③线段BF 的取值范围为3≤BF≤4;④当点H 与点A 重合时,5以上结论中,你认为正确的有 .(填序号)。

上海市长宁区2018届九年级上期末质量检测数学试题有答案-优质资料

上海市长宁区2018届九年级上期末质量检测数学试题有答案-优质资料

2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ ) (A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A ) 21=EC AE ; (B ) 2=ACEC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知e 是单位向量,且e a 2-=,e b 4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )b a 21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bba +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .第2题图AB CDE 第6题图O ABCD11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”) 15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等, 我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE .(1)求BCBF的值; (2)联结EF ,设a BC =,b AC =,用含a 、b 的式子表示EF .第20题图FAD E 第18题图A B CDBCDA 第17题图第15题图D ABG21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C在⊙O上,联结CO并延长交弦AB于点D,»»AC BC=,联结AC、OB,若CD=40,520=AC.(1)求弦AB的长;(2)求ABO∠sin的值.22.(本题满分10分)如图,一栋居民楼AB的高为16米,远处有一栋商务楼CD,小明在居民楼的楼底A处测得商务楼顶D处的仰角为60°,又在商务楼的楼顶D处测得居民楼的楼顶B处的俯角为45°.其中A、C两点分别位于B、D两点的正下方,且A、C两点在同一水平线上,求商务楼CD的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC中,点D在边BC上,联结AD,∠ADB=∠CDE,DE交边AC于点E,DE交BA延长线于点F,且DFDEAD⋅=2.(1)求证:BFD∆∽CAD∆;(2)求证:ADABDEBF⋅=⋅.24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=xy分别与x轴、y轴交于点A、C. 抛物线cbxxy++-=221经过点A与点C,且与x轴的另一个交点为点B. 点D在该抛物线上,且位于直线AC的上方.(1)求上述抛物线的表达式;(2)联结BC、BD,且BD交AC于点E,如果∆ABE的面积与∆ABC的面积之比为4:5,求∠DBA的余切值;(3)过点D作DF⊥AC,垂足为点F,联结CD. 若∆CFD与∆AOC相似,求点D的坐标.FEDAB C第23题图第21题图DAOB备用图第24题图CDAB第22题图25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)备用图 备用图图1DCBA DCBA F EP D CB A 第25题图解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵a BC =,CF 与BC 方向相反 ∴a CF 53-= (2分) 同理:b EC 52=(2分) 又∵→+=CF ∴→-=a 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵CD 过圆心O, »»AC BC = ∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分)∵045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分)∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。

[试卷合集5套]上海市2018年九年级上学期期末学业水平测试数学试题

[试卷合集5套]上海市2018年九年级上学期期末学业水平测试数学试题
(2)根据等腰三角形三线合一的性质证得∠BAD= ∠BAC=30°,由30°的直角三角形的性质即可求得BD.
【详解】(1)证明:连接OD,AD,
∵AB是⊙O的直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴BD=CD,
∵OA=OB,
∴OD是△BAC的中位线,
【答案】 .
【解析】试题分析:将△ABC绕点B旋转60°,顶点C运动的路线长是就是以点B为圆心,BC为半径所旋转的弧,根据弧长公式即可求得.
试题解析:∵AB=4,∴BC=2,
所以弧长= .
考点:1.弧长的计算;2.旋转的性质.
14.如图,A、B、C是⊙O上三点,∠ACB=30°,则∠AOB的度数是_____.
【答案】60°
【分析】直接利用圆周角定理,即可求得答案.
【详解】∵A、B、C是⊙O上三点,∠ACB=30°,
∴∠AOB的度数是:∠AOB=2∠ACB=60°.
故答案为:60°.
【点睛】
考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.
15.如图,在大楼AB的楼顶B处测得另一栋楼CD底部C的俯角为60度,已知A、C两点间的距离为15米,那么大楼AB的高度为_____米.(结果保留根号)
【详解】解:∵∠BCA=90°,∠BAC=30°,
∴AB=2BC=8,AC= BC=4 ,
∵Rt△ABC绕A点顺时针旋转90°得到Rt△ADE,
∴ห้องสมุดไป่ตู้CAE=∠BAD=90°,
∴BC扫过的阴影面积=S扇形BAD-S△CAE
= .
故答案为:4π.
【点睛】
本题考查了扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形= 或S扇形= (其中l为扇形的弧长);求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.也考查了旋转的性质.

(汇总3份试卷)2018年上海市九年级上学期期末学业质量检查模拟数学试题

(汇总3份试卷)2018年上海市九年级上学期期末学业质量检查模拟数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,已知抛物线y=x2+px+q的对称轴为直线x=﹣2,过其顶点M的一条直线y=kx+b与该抛物线的另一个交点为N(﹣1,﹣1).若要在y轴上找一点P,使得PM+PN最小,则点P的坐标为().A.(0,﹣2)B.(0,﹣4 3)C.(0,﹣53)D.(0,﹣54)【答案】B【解析】根据线段垂直平分线的性质,可得N,′根据待定系数法,可得函数解析式,根据配方法,可得M 点坐标,根据两点之间线段最短,可得MN′,根据自变量与函数值的对应关系,可得P点坐标.【详解】如图,作N点关于y轴的对称点N′,连接MN′交y轴于P点,将N点坐标代入抛物线,并联立对称轴,得2{211pp p-=--+-=,解得4{2pq==,y=x2+4x+2=(x+2)2-2,M(-2,-2),N点关于y轴的对称点N′(1,-1),设MN′的解析式为y=kx+b,将M 、N′代入函数解析式,得22{1k b k b -+-+-==, 解得13{43k b -==, MN′的解析式为y=13x-43, 当x=0时,y=-43,即P (0,-43), 故选:B .【点睛】本题考查了二次函数的性质,利用了线段垂直平分线的性质,两点之间线段最短得出P 点的坐标是解题关键.2.若2|3|0a b -+-=,则a b 的值为( )A .9B .3C .3D .23 【答案】B【分析】根据算术平方根、绝对值的非负性分别解得a b 、的值,再计算a b 即可.【详解】2|3|0a b -+-=2=3a b ∴=,2=(3)3a b ∴=故选:B .【点睛】本题考查二次根式、绝对值的非负性、幂的运算等知识,是重要考点,难度较易,掌握相关知识是解题关键.3.如图,正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点.现随机向正方形ABCD 内投掷一枚小针,则针尖落在阴影区域的概率为( )A .18B .14C .13D .12【答案】B【分析】连接BE,如图,利用圆周角定理得到∠AEB=90°,再根据正方形的性质得到AE=BE=CE,于是得到阴影部分的面积=△BCE的面积,然后用△BCE的面积除以正方形ABCD的面积可得到镖落在阴影部分的概率.【详解】解:连接BE,如图,∵AB为直径,∴∠AEB=90°,而AC为正方形的对角线,∴AE=BE=CE,∴弓形AE的面积=弓形BE的面积,∴阴影部分的面积=△BCE的面积,∴镖落在阴影部分的概率=14.故选:B.【点睛】本题考查了几何概率:某事件的概率=这个事件所对应的面积除以总面积.也考查了正方形的性质.4.小亮同学在教学活动课中,用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是()A.线段B.三角形C.平行四边形D.正方形【答案】B【解析】根据长方形放置的不同角度,得到的不同影子,发挥想象能力逐个实验即可.【详解】解:将长方形硬纸的板面与投影线平行时,形成的影子为线段;将长方形硬纸板与地面平行放置时,形成的影子为矩形;将长方形硬纸板倾斜放置形成的影子为平行四边形;由物体同一时刻物高与影长成比例,且长方形对边相等,故得到的投影不可能是三角形.故选:B.【点睛】本题主要考查几何图形的投影,关键在于根据不同的位置,识别不同的投影图形.5.一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了45次手,这次参加会议到会的人数是x 人,可列方程为:( )A .(1)45x x +=B .1(1)452x x -=C .1(1)452x x +=D .(1)45x x -=【答案】B【分析】设这次会议到会人数为x ,根据每两个参加会议的人都相互握了一次手且整场会议一共握了45次手,即可得出关于x 的一元二次方程,此题得解.【详解】解:设这次会议到会人数为x ,依题意,得:1(1)452x x -=. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.6.若函数 k y x=-与2y ax bx c =++的图象如图所示,则函数y kx b =-的大致图象为( )A .B .C .D .【答案】A【分析】首先根据二次函数及反比例函数的图象确定k 、b 的符号,然后根据一次函数的性质确定答案即可.【详解】∵二次函数的图象开口向上,对称轴2b x a=->0 ∴a>0,b<0, 又∵反比例函数k y x=-的图形位于二、四象限, ∴-k <0,∴k >0 ∴函数y=kx-b 的大致图象经过一、二、三象限.故选: A【点睛】本题考查的是利用反比例函数和二次函数的图象确定一次函数的系数,然后根据一次函数的性质确定其大致图象,确定一次函数的系数是解决本题的关键.7.如图,是二次函数2y ax bx c =++图象的一部分,在下列结论中:①0abc >;②0a b c -+>;③210ax bx c +++=有两个相等的实数根;④42a b a -<<-;其中正确的结论有( )A .1个B .2 个C .3 个D .4个【答案】C 【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对各个结论进行判断.【详解】解:由抛物线的开口方向向上可推出a >0,与y 轴的交点为在y 轴的负半轴上可推出c=-1<0, 对称轴为210b ax >=->,a >0,得b <0, 故abc >0,故①正确; 由对称轴为直线12b x a =->,抛物线与x 轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,所以当x=-1时,y >0,所以a-b+c >0,故②正确;抛物线与y 轴的交点为(0,-1),由图象知二次函数y=ax 2+bx+c 图象与直线y=-1有两个交点, 故ax 2+bx+c+1=0有两个不相等的实数根,故③错误; 由对称轴为直线2b x a =-,由图象可知122b a<-<, 所以-4a <b <-2a ,故④正确.所以正确的有3个,故选:C .【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定,解题时要注意数形结合思想的运用.8.设计一个摸球游戏,先在一个不透明的盒子中放入2个白球,如果希望从中任意摸出1个球是白球的概率为13,那么应该向盒子中再放入多少个其他颜色的球.(游戏用球除颜色外均相同)( ) A .4B .5C .6D .7【答案】A【分析】利用概率公式,根据白球个数和摸出1个球是白球的概率可求得盒子中应有的球的个数,再减去白球的个数即可求得结果.【详解】解:∵盒子中放入了2个白球,从盒子中任意摸出1个球是白球的概率为13,∴盒子中球的总数=1263÷=,∴其他颜色的球的个数为6−2=4,故选:A.【点睛】本题考查了概率公式的应用,灵活运用概率=所求情况数与总情况数之比是解题的关键.9.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【答案】B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.10.在一幅长60 cm、宽40 cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A .(60+2x)(40+2x)=2816B .(60+x)(40+x)=2816C .(60+2x)(40+x)=2816D .(60+x)(40+2x)=2816【答案】A【解析】根据题意可知,挂画的长和宽分别为(60+2x )cm 和(40+2x)cm ,据此可列出方程(60+2x)(40+2x)=2816【详解】若设金色纸边的宽为x cm ,则挂画的长和宽分别为(60+2x )cm 和(40+2x)cm ,可列方程(60+2x)(40+2x)=2816故答案为A.【点睛】本题考查一元二次方程的应用,找出题中的等量关系是解题关键.11.给出下列一组数:227,0.3•38-•010010001, 3.14π-,其中无理数的个数为( ) A .0B .1C .2D .3 【答案】C【分析】直接利用无理数的定义分析得出答案.【详解】解:227,•0.3,38-•010010001, 3.14π-,其中无理数为•010010001, 3.14π-,共2个数.故选C .【点睛】此题考查无理数,正确把握无理数的定义是解题关键.12.对于题目“抛物线l 1:2(1)4y x =--+(﹣1<x≤2)与直线l 2:y =m (m 为整数)只有一个交点,确定m 的值”;甲的结果是m =1或m =2;乙的结果是m =4,则( )A .只有甲的结果正确B .只有乙的结果正确C .甲、乙的结果合起来才正确D .甲、乙的结果合起来也不正确【答案】C【分析】画出抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)的图象,根据图象即可判断.【详解】解:由抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)可知抛物线开口向下,对称轴为直线x =1,顶点为(1,4),如图所示:∵m 为整数,由图象可知,当m =1或m =2或m =4时,抛物线l 1:y =﹣(x ﹣1)2+4(﹣1<x≤2)与直线l 2:y =m (m 为整数)只有一个交点,∴甲、乙的结果合在一起正确,故选:C .【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键.二、填空题(本题包括8个小题)13.如图,AB 是⊙O 的弦,AB 长为8,P 是⊙O 上一个动点(不与A 、B 重合),过点O 作OC ⊥AP 于点C ,OD ⊥PB 于点D ,则CD 的长为 ▲ .【答案】1.【分析】利用垂径定理和中位线的性质即可求解.【详解】∵OC ⊥AP ,OD ⊥PB ,∴由垂径定理得:AC=PC ,PD=BD , ∴CD 是△APB 的中位线,∴CD=12AB=12×8=1. 故答案为114.一个反比例函数的图像过点()2,3A -,则这个反比例函数的表达式为__________.【答案】6y x=-【分析】设反比例函数的解析式为y=k x (k≠0),把A 点坐标代入可求出k 值,即可得答案. 【详解】设反比例函数的解析式为y=k x (k≠0), ∵反比例函数的图像过点()2,3A -,∴3=2k -, 解得:k=-6,∴这个反比例函数的表达式为6y x =-, 故答案为:6y x=-【点睛】本题考查待定系数法求反比例函数解析式,熟练掌握反比例函数图象上的点的坐标特征是解题关键. 15.某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有________ 条鱼.【答案】1000【解析】试题考查知识点:统计初步知识抽样调查思路分析:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的十分之一.具体解答过程:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的比例为:∵先从鱼塘中捞出后作完记号又放回水中的鱼有100条∴该鱼塘里总条数约为:(条)试题点评:16.如图,某景区想在一个长40m ,宽32m 的矩形湖面上种植荷花,为了便于游客观赏,准备沿平行于湖面两边的纵、横方向各修建一座小桥(桥下不种植荷花).已知修建的纵向小桥的宽度是横向小桥宽度的2倍,荷花的种植面积为21140m ,如果横向小桥的宽为xm ,那么可列出关于x 的方程为__________.(方程不用整理)【答案】()()402321140x x --=【分析】横向小桥的宽为xm ,则纵向小桥的宽为2xm ,根据荷花的种植面积列出一元二次方程.【详解】解:设横向小桥的宽为xm ,则纵向小桥的宽为2xm根据题意,()()402321140x x --=【点睛】本题关键是在图中,将小桥平移到长方形最边侧,将荷花池整合在一起计算.17.如图,在矩形ABCD 中,点E 为AB 的中点,EF EC ⊥交AD 于点F ,连接()CF AD AE >,下列结论:①AEF BCE ∠=∠;②AF BC CF +>;③CEF EAF CBE S S S =+; ④若32BC CD =,则CEF CDF ≅. 其中正确的结论是______________.(填写所有正确结论的序号)【答案】①③④【分析】根据矩形的性质和余角的性质可判断①;延长CB ,FE 交于点G ,根据ASA 可证明△AEF ≌△BEG ,可得AF=BG ,EF=EG ,进一步即可求得AF 、BC 与CF 的关系,S △CEF 与S △EAF +S △CBE 的关系,进而可判断②与③;由32BC CD =,结合已知和锐角三角函数的知识可得30BCE ∠=︒,进一步即可根据AAS 证明结论④;问题即得解决.【详解】解:∵EF EC ⊥,90AEF BEC ∴∠+∠=︒,∵四边形ABCD 是矩形,∴∠B=90°,∴90BEC BCE ∠+∠=︒,AEF BCE ∴∠=∠,所以①正确;延长CB ,FE 交于点G ,如图,在△AEF 和△BEG 中,∵∠FAE=∠GBE=90°,AE=BE ,∠AEF=∠BEG ,∴△AEF ≌△BEG (ASA ),∴AF=BG ,EF=EG ,∴S △CEG =S △CEF ,∵CE ⊥EG ,∴CG=CF ,∴AF+BC=BG+BC=CG=CF ,所以②错误;∴S△CEF=S△CEG=S△BEG+S△CBE=S△EAF+S△CBE,所以③正确;若32 BCCD=,则132311tan222BC BC BCBCE BE AB CD====⨯=∠,30BCE∴∠=︒,30DCF ECF∴∠=∠=︒,在CEF∆和CDF∆中,∵∠CEF=∠D=90°,ECF DCF∠=∠,CF=CF,CEF∴≌()CDF AAS,所以④正确.综上所述,正确的结论是①③④.故答案为:①③④.【点睛】本题考查了矩形的性质、余角的性质、全等三角形的判定和性质以及锐角三角函数等知识,综合性较强,属于常考题型,正确添加辅助线、熟练掌握上述基本知识是解题的关键.18.已知x1、x2是关于x 的方程x2+4x-5=0的两个根,则x1+ x2=_____.【答案】-1【分析】根据根与系数的关系即可求解.【详解】∵x1、x2是关于x 的方程x2+1x-5=0的两个根,∴x1+ x2=-41=-1,故答案为:-1.【点睛】此题主要考查根与系数的关系,解题的关键是熟知x1+ x2=-ba.三、解答题(本题包括8个小题)19.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的1C处,点D落在点1D处,11C D交线段AE于点G.(1)求证:11BC F AGC ∆∆;(2)若1C 是AB 的中点,6AB =,9BC =,求AG 的长.【答案】(1)证明见解析;(2)94AG =.【分析】(1)利用有两组对应角相等的两个三角形相似证明即可;(2)先利用勾股定理求出BF 的长,再利用(1)中相似,列比例式即可.【详解】(1)证明:由题意可知190A B GC F ∠=∠=∠=︒,∴1190BFC BC F ∠+∠=︒,1190AC G BC F ∠+∠=︒,∴11BFC AC G ∠=∠.∴11BC F AGC ∆∆.(2)∵1C 是AB 的中点,6AB =,∴113AC BC ==.在1Rt BC F 中由勾股定理得()22239BF BF +=-,解得:4BF =.由(1)得11BC F AGC ∆∆,∴11AC AG BC BF =,即334AG =, ∴94AG =. 【点睛】此题考查的是相似三角形的判定和勾股定理,掌握用两组对应角相等证两个三角形相似、及折叠问题中相等的边和勾股定理求边是解决此题的关键.20.如图,已知在△ABC 中,AD 是∠BAC 平分线,点E 在AC 边上,且∠AED=∠ADB .求证:(1)△ABD ∽△ADE ; (2)AD 2=AB·AE.【答案】 (1)、证明过程见解析;(2)、证明过程见解析【分析】试题分析:(1)、根据角平分线得出∠BAD=∠DAE ,结合∠AED=∠ADB 得出相似;(2)、根据相似得出答案.【详解】试题解析:(1)、∵AD是∠BAC平分线∴∠BAD=∠DAE 又∵∠AED=∠ADB ∴△ABD∽△ADE(2)、∵△ABD∽△ADE ,∴AB ADAD AE=∴AD2=AB·AE.考点:相似三角形的判定与性质21.文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出a=_______,m=_______,第3组人数在扇形统计图中所对应的圆心角是_______度.(2)请补全上面的频数分布直方图.(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?【答案】(1)25,20,126;(2)见解析;(2)60万人.【分析】(1)用抽样人数-第1组人数-第3组人数-第4组人数-第5组人数,可得a的值,用第4组的人数÷抽样人数×100%可以求得m的值,用360°×第3组人数在抽样中所占的比例可得第3组在扇形统计图中所对应的圆心角的度数;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)用市民人数×第4组(40~50岁年龄段)的人数在抽样中所占的比例可以计算出40~50岁年龄段的关注本次大会的人数约有多少.【详解】(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,第3组人数在扇形统计图中所对应的圆心角是:360°35100⨯=126°.故答案为:25,20,126;(2)由(1)知,20≤x<30有25人,补全的频数分布直方图如图所示;(3)30020100⨯=60(万人). 答:40~50岁年龄段的关注本次大会的人数约有60万人.【点睛】本题考查了频数分布直方图、频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C ,抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A ,C 两点,与x 轴的另一交点为点B . (1)求抛物线解析式.(2)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为213222y x x =--+;(2)抛物线存在点M ,点M 的坐标(32)-,或(0)2,或(2,3)-或(5,18)- 【分析】(1)根据自变量与函数值的对应关系,可得A 、C 点坐标,根据函数值相等的两点关于对称轴对称,可得B 点坐标,根据待定系数法,可得函数解析式;(2)分两种情形分别求解即可解决问题;【详解】解:(1)当x =0时,y =2,即C (0,2),当y =0时,12x+2=0,解得x =﹣4,即A (﹣4,0). 由A 、B 关于对称轴对称,得B (1,0).将A 、B 、C 点坐标代入函数解析式,得164002a b c a b c c ⎧-+=⎪++=⎨⎪=⎩, 解得12322a b c ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩, 抛物线的解析式为y =﹣12x 2﹣32x+2; (2)①当点M 在x 轴上方时,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,如图,设M (m ,﹣12x 2﹣32x+2),N (m ,0). AN =m+4,MN =﹣12m 2﹣32m+2, 由勾股定理,得AC 2225AO OC +=,BC 225OB OC +=∵AC 2+BC 2=AB 2,∴∠ACB =90°,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时点M 与点C 重合,M (0,2).当△ANM ∽△BCA 时,∠MAN =∠ABC ,此时M 与C 关于抛物线的对称轴对称,M (﹣3,2). ②当点M 在x 轴下方时,当△ANM ∽△ACB 时,∠CAB =∠MAN ,此时直线AM 的解析式为y =﹣12x ﹣2, 由212213222y x y x x ⎧=--⎪⎪⎨⎪=--+⎪⎩,解得40x y ⎧=-⎨=⎩或23x y ⎧=⎨=-⎩, ∴M (2,﹣3),当△ANM ′∽△BCA 时,∠MAN =∠ABC ,此时AM ′∥BC ,∴直线AM ′的解析式为y =﹣2x ﹣8, 由22813222y x y x x ⎧=--⎪⎨=--+⎪⎩,解得40x y ⎧=-⎨=⎩或518x y ⎧=⎨=-⎩, ∴M (5,﹣18)综上所述:抛物线存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似,点M 的坐标(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【点睛】本题主要考查了二次函数的综合,准确计算是解题的关键.23.数学兴趣小组对矩形面积为9,其周长m 的范围进行了探究.兴趣小组的同学们已经能用“代数”的方法解决,以下是他们从“图形”的角度进行探究的部分过程,请把过程补充完整.(1)建立函数模型.设矩形相邻两边的长分别为x ,y ,由矩形的面积为9,得xy =9,即y =9x ;由周长为m ,得2(x+y )=m ,即y =﹣x+2m .满足要求的(x ,y )应是两个函数图象在第 象限内交点的坐标. (2)画出函数图象.函数y=9x(x>0)的图象如图所示,而函数y=﹣x+2m的图象可由直线y=﹣x平移得到,请在同一直角坐标系中画出直线y=﹣x.(3)平移直线y=﹣x,观察函数图象.①当直线平移到与函数y=9x(x>0)的图象有唯一交点(3,3)时,周长m的值为;②在直线平移过程中,直线与函数y=9x(x>0)的图象交点个数还有哪些情况?请写出交点个数及对应的周长m的取值范围.(4)得出结论面积为9的矩形,它的周长m的取值范围为.【答案】(1)一;(2)见解析;(3)①1;②0个交点时,m<1;1个交点时,m=1;2个交点时,m>1;(4)m≥1.【分析】(1)x,y都是边长,因此,都是正数,即可求解;(2)直接画出图象即可;(3)在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y=9x和y=﹣x+2m整理得:2x﹣12mx+9=0,即可求解;(4)由(3)可得.【详解】解:(1)x,y都是边长,因此,都是正数,故点(x,y)在第一象限,故答案为:一;(2)图象如下所示:(3)①当直线平移到与函数y =9x (x >0)的图象有唯一交点(3,3)时, 由y =﹣x+2m 得:3=﹣3+12m ,解得:m =1, 故答案为1;②在直线平移过程中,交点个数有:0个、1个、2个三种情况,联立y =9x 和y =﹣x+2m 并整理得:x ²﹣12mx+9=0, ∵△=14m ²﹣4×9, ∴0个交点时,m <1;1个交点时,m =1; 2个交点时,m >1;(4)由(3)得:m≥1,故答案为:m≥1.【点睛】本题是反比例函数综合运用题,涉及到一次函数、一元二次方程、函数平移等知识点,此类探究题,通常按照题设条件逐次求解即可.24.如图所示,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF=14DC ,连结EF 并延长交BC 的延长线于点G ,连结BE .(1)求证:△ABE∽△DEF.(2)若正方形的边长为4,求BG 的长.【答案】(1)见解析;(2)BG=BC+CG=1.【分析】(1)利用正方形的性质,可得∠A=∠D ,根据已知可得AE :AB=DF :DE ,根据有两边对应成比例且夹角相等三角形相似,可得△ABE∽△DEF;(2)根据相似三角形的预备定理得到△EDF∽△GCF,再根据相似的性质即可求得CG的长,那么BG的长也就不难得到.【详解】(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90 °.∵AE=ED,∴AE:AB=1:2.∵DF=14 DC,∴DF:DE=1:2,∴AE:AB=DF:DE,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,∴△EDF∽△GCF,∴ED:CG=DF:CF.又∵DF=14DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=1.【点睛】本题考查了正方形的性质,相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.25.在四张背面完全相同的纸牌A、B、C、D,其中正面分别画有四个不同的几何图形(如图),小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A、B、C、D表示);(2)求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.【答案】(1)详见解析;(2)14.【详解】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由既是轴对称图形又是中心对称图形的有4种情况,直接利用概率公式求解即可求得答案.试题解析:解(1)画树状图得:则共有16种等可能的结果;(2)∵既是中心对称又是轴对称图形的只有B 、C ,∴既是轴对称图形又是中心对称图形的有4种情况,∴既是轴对称图形又是中心对称图形的概率为:41164=. 考点:列表法与树状图法.26.在面积都相等的一组三角形中,当其中一个三角形的一边长x 为1时,这条边上的高y 为1. (1)①求y 关于x 的函数解析式;②当3x ≥时,求y 的取值范围;(2)小明说其中有一个三角形的一边与这边上的高之和为4,你认为小明的说法正确吗?为什么?【答案】(1)①6y x=;②02y <≤;(2)小明的说法不正确. 【分析】(1)①直接利用三角形面积求法进而得出y 与x 之间的关系;②直接利用3x ≥得出y 的取值范围;(2)直接利用x y +的值结合根的判别式得出答案.【详解】(1)①11632S =⨯⨯=, ∵x 为底,y 为高, ∴132xy =, ∴6y x =; ②当3x =时,2y =,∴当3x ≥时,y 的取值范围为:02y ≤<;(2)小明的说法不正确,理由:根据小明的说法得:64x x +=, 整理得:2460x x -+=,∵1a =,4b =-,6c =,∴()224441680b ac =-=--⨯⨯=-<⊿,方程无解,∴一个三角形的一边与这边上的高之和不可能是4,∴小明的说法不正确.【点睛】本题主要考查了反比例函数的应用以及一元二次方程的解法,正确得出y与x之间的关系是解题关键.27.如图,⊙O是△ABC的外接圆,AB=AC,P是⊙O上一点,请你只用无刻度的直尺,分别画出图①和图②中∠P的平分线.【答案】见解析.【分析】如图①中连接PA,根据等弧所对得圆周角相等,易知∠APB=∠APC,所以PA就是∠BPC的平分线;如图②中,连接AO延长交⊙O于E,连接PE,由垂径定理和圆周角定理易知∠EPB=∠EPC.【详解】如图①中,连接PA,PA就是∠BPC的平分线.理由:∵AB=AC,∴AB=AC,∴∠APB=∠APC.如图②中,连接AO延长交⊙O于E,连接PE,PE就是∠BPC的平分线.理由:∵AB=AC,∴AB=AC,∴BE=EC,∴∠EPB=∠EPC.【点睛】本题主要考查圆周角定理和垂径定理,根据等弧所对的圆周角相等得到角平分线是关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.关于x 的一元二次方程()2340a x x --+=,则a 的条件是( ) A .1a ≠B .2a ≠C .3a ≠D .4a ≠【答案】C 【解析】根据一元二次方程的定义即可得.【详解】由一元二次方程的定义得30a -≠解得3a ≠故选:C .【点睛】本题考查了一元二次方程的定义,熟记定义是解题关键.2.若52x y =,则x y y -的值为( ) A .52 B .25 C .32 D .﹣35【答案】C【分析】将x y y-变形为x y ﹣1,再代入计算即可求解. 【详解】解:∵52x y =, ∴x y y -=x y ﹣1=52﹣1=32. 故选:C .【点睛】考查了比例的性质,解题的关键是将x y y-变形为1x y -. 3.如图,ABCD 是矩形纸片,翻折∠B ,∠D ,使AD ,BC 边与对角线AC 重叠,且顶点B ,D 恰好落在同一点O 上,折痕分别是CE ,AF ,则AE EB等于( )A 3B .2C .1.5D 2【答案】B【详解】解:∵ABCD是矩形,∴AD=BC,∠B=90°,∵翻折∠B,∠D,使AD,BC边与对角线AC重叠,且顶点B,D恰好落在同一点O上,∴AO=AD,CO=BC,∠AOE=∠COF=90°,∴AO=CO,AC=AO+CO=AD+BC=2BC,∴∠CAB=30°,∴∠ACB=60°,∴∠BCE=12∠ACB=30°,∴BE=12CE ,∵AB ∥CD,∴∠OAE=∠FCO,在△AOE和△COF中,∵∠OAE=∠FCO,AO=CO,∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,∴EF与AC互相垂直平分,∴四边形AECF为菱形,∴AE=CE,∴BE=12AE,∴12AE AEEB AE=2,故选B.【点睛】本题考查翻折变换(折叠问题).4.已知如图1所示的四张牌,若将其中一张牌旋转180°后得到图1.则旋转的牌是()A.B.C.D.【答案】A【解析】解:观察发现,只有是中心对称图形,∴旋转的牌是.故选A.5.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax﹣2b(a≠0)与反比例函数y=cx(c≠0)在同一平面直角坐标系中的图象大致是()A.B.C.D.【答案】D【分析】先根据二次函数的图象开口向上可知a>0,对称轴在y轴的左侧可知b>0,再由函数图象交y 轴的负半轴可知c<0,然后根据一次函数的性质和反比例函数的性质即可得出正确答案.【详解】∵二次函数的图象开口向上,对称轴在y轴的左侧,函数图象交于y轴的负半轴∴a>0,b>0,c<0,∴反比例函数y=cx的图象必在二、四象限;一次函数y=ax﹣2b一定经过一三四象限,故选:D.【点睛】此题主要考查二次函数与反比例函数的图像与性质,解题的关键是熟知二次函数各系数与图像的关系.6.已知反比例函数1y x=-,下列结论;①图象必经过点(1,1)-;②图象分布在第二,四象限;③在每一个象限内,y 随x 的增大而增大.其中正确的结论有( )个. A .3B .2C .1D .0 【答案】A【分析】根据反比例函数的图像与性质解答即可.【详解】①∵-1×1=-1,∴图象必经过点(1,1)-,故①正确;②∵-1<0,图象分布在第二,四象限,故②正确;③∵-1<0,∴在每一个象限内,y 随x 的增大而增大,故③正确.故选A.【点睛】本题考查了反比例函数的图像与性质,反比例函数k y x=(k 是常数,k≠0)的图像是双曲线,当k >0,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 k <0,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.7.若关于x 的一元二次方程220x x m --= 有实数根,则m 的值不可能是( )A .2-B .1-C .0D .2018【答案】A【分析】由题意直接根据一元二次方程根的判别式,进行分析计算即可求出答案.【详解】解:由题意可知:△=24b ac -=4+4m ≥0,∴m ≥-1, m 的值不可能是-2.故选:A .【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式进行分析求解.8.如图,网格中小正方形的边长为1个单位长度,△ABC 的顶点均在小正方形的顶点上,若将△ABC 绕着点A 逆时针旋转得到△AB′C′,点C 在AB′上,则'BB 的长为( )A .πB .2πC .7πD .6π【答案】A 【分析】根据图示知∠BAB′=45°,所以根据弧长公式l =180n r π求得BB '的长. 【详解】根据图示知,∠BAB′=45°,。

上海市2018-2019年九年级上期末考试数学试卷含答案

上海市2018-2019年九年级上期末考试数学试卷含答案

九年级上学期期末考试数学试卷考试内容:人教版九年级上册全册。

考试时间: 100 分钟满分: 120 分一、选择题(每题 3 分,共 42 分)在以下各题中只有一个是正确的,请把答案填在下列表格中。

题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14答案、一元二次方程 x 2﹣ 5x=0 的根是 () 1 A .5B .0C .0 或 5D .0 或﹣52、用配方法解方程 x 2+8x+9=0 ,变形后的结果正确的选项是( )A .(x+4)2 =-7B.(x+4) 2=-9C.( x+4)2=7D. (x+4)2=253、已知方程2x 2+4x-3=0 的两根分别为 x 1 和 x 2,则 x 1+x 2 的值等于( )C.3 D.322、假如对于 x 的一元二次方程 2 x 2 (2k 1)x 1 0 有两个不相等的实数根,那么 k 的 4 k取值范围是()A. k >1B. k > 1且 k 0C. k <1D. k1且 k 044445、对于抛物线 y1( x 5)2 3 ,以下说法错误的选项是( )A. 对称轴是直线 x 5B.函数的最大值是 3C. 张口向下,极点坐标(,)当x 5时, y随x 的增大而增大.53 D.6、以下四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转120°后,能与原图形完整重合的是()A.B.C.D.7、抛物线 y=x2- 2x+ 1 与坐标轴的交点个数为 ( )A.无交点B.1个C.2个D.3个8、随机掷一枚质地平均的硬币两次,落地后至多有一次正面朝下的概率为()A. 3B. 2C. 1D. 14 3 2 49、以下说法正确的选项是()A.抛一枚硬币,正面必定向上;B.掷一颗骰子,点数必定不大于6;C.为认识一种灯泡的使用寿命,宜采纳普查的方法;D.“明日的降水概率为80%”,表示明日会有 80%的地方下雨.10、分别标有数字0, 2,1,3, 1的五张卡片,除数字不一样外其余均同样,从中任抽一张,那么抽到负数的概率是()A.1B.2C.3D.4 5 5 5 511、一个箱子里装有8 个球,此中 5 个红球, 3 个白球,每个球除颜色外其余完整相同,从中随意摸出一个球,是白球的概率是()A. 1B. 5C. 3D.38 8 5 812、如图12,从圆 O 外一点P引圆 O 的两条切线 PA,PB ,切点分别为 A,B .假如APB 60,PA 8 ,那么弦AB的长是()A.4B.8C.4 3D.8 313. 如图 13,在⊙ O中,∠ ABC=50°,则∠ AOC等于()°°°°14、如图14,角三角形ABC 两锐角极点 A,B 为圆心作等圆,⊙ A 与⊙ B 恰巧外切,若 AC=2,那么图中两个扇形 (即暗影部分 )的面积之和为 ()ππ2πA. 4B. 2C. 2D. 2πA APO BOBC图 12图 13图 14 二、填空题:(总合 16 分)15、若 3a 2 a 2 0 ,则 5 2a 6a 2.16、时钟 上的时 针不 停地旋转 ,从上 午 8 时到上 午 11 时,时针旋转 的角度是.、二次函数 = x 2+2x - 4 的图象的对称轴是 ____ ,极点坐标是 ___。

2018年上海市长宁区初三数学一模试卷

2018年上海市长宁区初三数学一模试卷

2017学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ )(A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知e 是单位向量,且e a 2-=,e b 4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=a ;(C ) ||2||a b -=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.第2题图AB CDE 第6题图O ABD二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bb a +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”)15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等,我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .第18题图A B CDBCDA 第17题图第15题图D AG三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE . (1)求BCBF的值; (2)联结EF ,设=,=,用含、的式子表示.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长; (2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2. (1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DEBF ⋅=⋅.F EA第23题图第20题图AD E 第21题图24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方. (1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.备用图第24题图备用图 备用图图1DA DCBAF EP D CB A 第25题图长宁区2017学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分)同理:b EC 52= (2分)又∵→+=CF EC EF ∴→-=a b EF 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O , AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090 ∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分) ∵163-=-=x CE CD DE (1分) ∵0045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分) ∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。

2017-2018学年上海市长宁区九年级第一学期期末质量调研数学测试卷

2017-2018学年上海市长宁区九年级第一学期期末质量调研数学测试卷

2017-2018学年上海市长宁区九年级第一学期期末质量调研数学测试卷一、选择题(本大题共6题,每题4分,满分24分)【每小题只有一个正确选项,在答题纸相应题号的选项上用2B 铅笔正确填涂】1.在Rt ABC ∆中,90,,3C A AC α∠=∠==,则AB 的长可以表示为( )【A 】3cos α 【B 】3sin α【C 】3sin α 【D 】3cos α 【答案】A【解析】因3,90,,3,,cos cos AC AC Rt ABC C A AC COS AB AB αααα∆∠=∠==∴=== 2.如图,在ABC ∆中,点,D E 分别在边,BA CA 的延长线上,2ABAD=,那么下列条件中能判断//DE BC 的是( )【A 】12AE EC = 【B 】2EC AC =【C 】21=BC DE 【D 】2=AE AC【答案】D【解析】,//AB ACDE BC AD AE= 选项D 正确 3.将抛物线()213y x =-++向右平移2个单位后得到的新抛物线的表达式为( )【A 】()211y x =-++ 【B 】()213y x =--+ 【C 】()215y x =-++【D 】()233y x =-++ 【答案】B第2题图 AB C DE【解析】因为将抛物线()213y x =-++向右平移2个单位,所以新抛物线的表达式为()()2212313y x x =-+-+=--+,故选B4.已知在直角坐标平面内,以点()2,3P -为圆心,2为半径的圆P 与x 轴的位置关系是( ) 【A 】相离 【B 】相切 【C 】相交【D 】相离、相切、相交都有可能 【答案】A【解析】点P 的坐标为()2,3-,因为点P 到x 轴的距离是3,所以23<,所以以点()2,3P -为圆心,2为半径的圆P 与x 轴的位置关系是相离,故选A 。

5.已知e →是单位向量,且2,4a e b e →→→→=-=,那么下列说法错误..的是( ) 【A 】//a b →→【B 】2a →=【C 】2b a →→=-【D 】12a b →→=-【答案】C【解析】12,4,//,2,2a eb e a b a a b →→→→→→→→→=-=∴==-,所以A 、B 、D 正确,故选C 。

上海市长宁区2018年九年级数学上学期教学质量检测试卷

上海市长宁区2018年九年级数学上学期教学质量检测试卷

长宁区2018年九年级数学上学期教学质量检测试卷(考试时间:100分钟 满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本调研卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.抛物线22(2)3y x =+-的顶点坐标是( )(A )(2,3)-; (B )(2,3)--; (C ) (2,3)-; (D ) (2,3). 2.如图,点D 、E 分别在ABC ∆的边AB 、AC 上, 下列条件中能够判定//DE BC 的是( ) (A )AD DE AB BC =; (B )AD AEBD AC =; (C )BD CE AB AE =; (D )AD ABAE AC=. 3.在Rt ABC ∆中,90C ∠=︒,如果1cos 3B =,BC a =,那么AC 的长是( ) (A ); (B ) 3a ; (C; (D)4. 4.如果||2a =r ,12b a =-r r,那么下列说法正确的是( )(A )||2||b a =r r ; (B )b r 是与a r 方向相同的单位向量 ;(C ) 20b a -=r r r ; (D ) //b a r r.5.在直角坐标平面内,点O 是坐标原点,点A 的坐标是(3,2),点B 的坐标是(3,4)-.如果以点O 为圆心,r 为半径的圆O 与直线AB 相交,且点A 、B 中有一点在圆O 内,另一点在圆O 外,那 么r 的值可以取( )(A )5; (B )4; (C )3; (D )2.6.在ABC ∆中,点D 在边BC 上,联结AD ,下列说法错误的是( ) (A )如果90BAC ∠=︒,2AB BD BC =⋅,那么AD BC ⊥; (B )如果AD BC ⊥,2AD BD CD =⋅,那么90BAC ∠=︒; (C )如果AD BC ⊥,2AB BD BC =⋅,那么90BAC ∠=︒; (D )如果90BAC ∠=︒,2AD BD CD =⋅,那么AD BC ⊥.第2题图ABDE二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 、c 、d 满足45a c b d ==,则a cb d++的值等于 . 8.如果抛物线2(3)3y m x =--有最高点,那么m 的取值范围是 . 9.两个相似三角形的周长之比等于1:4,那么它们的面积之比等于 . 10.边长为6的正六边形的边心距等于 .11.如图,已知////AD BE CF ,若3AB =,7AC =,6EF =,则DE 的长为 .12.已知点P 在线段AB 上,满足::AP BP BP AB =,若2BP =,则AB 的长为 .13.若点(1,7)A -、(5,7)B 、(2,3)C --、(,3)D k -在同一条抛物线上,则k 的值等于 .14.如图,在一条东西方向笔直的沿湖道路l 上有A 、B 两个游船码头,观光岛屿C 在码头A 的北偏东60°方向、在码头B 的北偏西45°方向, 4AC =千米.那么码头A 、B 之间的距离等于 千米.(结果保留根号)15.在矩形ABCD 中,2AB =,4AD =,若圆A 的半径长为5,圆C 的半径长为R ,且圆A 与圆C 内切,则R 的值等于 .16.如图,在等腰ABC ∆中,AB AC =,AD 、BE 分别是边BC 、AC 上的中线,AD 与BE 交于点F ,若6BE =,3FD =,则ABC ∆的面积等于 .17.已知点P 在ABC ∆内,联结PA 、PB 、PC ,在PAB ∆、PBC ∆和PAC ∆中,如果存在一个三角形与ABC ∆相似,那么就称点P 为ABC ∆的自相似点. 如图,在Rt ABC ∆中,90ACB ∠=︒,12AC =,5BC =,如果点P 为Rt ABC ∆的自相似点,那么ACP ∠的余切值等于 .18.如图,点P 在平行四边形ABCD 的边BC 上,将ABP ∆沿直线AP 翻折,点B 恰好落在边AD 的垂直平分线上,如果5AB =,8AD =,4tan 3B =,那么BP 的长为 .第11题图B AC DE F第16题图ACBD FE AD第18题图第17题图ABC第14题图60°45° C西 东南北 lA B三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:2sin303cot 60cos45cos30︒︒+︒-︒.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,AB 与CD 相交于点E ,//AC BD ,点F 在DB 的延 长线上,联结BC ,若BC 平分ABF ∠,2AE =,3BE =. (1)求BD 的长;(2)设EB a =u u u r r ,ED b =u u u r r ,用含a r 、b r的式子表示BC u u u r .21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,AB 是圆O 的一条弦,点O 在线段AC 上,AC AB =,3OC =,3sin 5A =.求:(1)圆O 的半径长;(2)BC 的长.第21题图OBC AA BCDFE第20题图22.(本题满分10分,第(1)小题6分,第(2)小题4分)如图,小明站在江边某瞭望台DE的顶端D处,测得江面上的渔船A的俯角为40°.若瞭望台DE垂直于江面,它的高度为3米,2CE=米,CE平行于江面AB,迎水坡BC的坡度1:0.75i=,坡长10BC=米.(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,cot40°≈1.19)(1)求瞭望台DE的顶端D到江面AB的距离;(2)求渔船A到迎水坡BC的底端B的距离.(结果保留一位小数)23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,点D、E分别在ABC∆的边AC、AB上,延长DE、CB交于点F,且AE AB AD AC⋅=⋅.(1)求证:FEB C∠=∠;(2)联结AF,若FB CDAB FD=,求证:EF AB AC FB⋅=⋅.第22题图40°BCDAE第23题图EDABF24.(本题满分12分,每小题4分)如图,在直角坐标平面内,抛物线经过原点O 、点(1,3)B ,又与x 轴正半轴相交于点A ,45BAO ∠=︒,点P 是线段AB 上的一点,过点P 作//PM OB ,与抛物线交于点M ,且点M 在第一象限内.(1)求抛物线的表达式;(2)若BMP AOB ∠=∠,求点P 的坐标;(3)过点M 作MC x ⊥轴,分别交直线AB 、x 轴于点N 、C ,若ANC ∆的面积等于PMN ∆的面积的2倍,求MNNC的值.第24题图xO A By备用图xO A By25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知锐角MBN ∠的余弦值为35,点C 在射线BN 上,25BC =,点A 在MBN ∠的内部,且90BAC ∠=︒,BCA MBN ∠=∠.过点A 的直线DE 分别交射线BM 、射线BN 于点D 、E . 点F 在线段BE 上(点F 不与点B 重合),且EAF MBN ∠=∠. (1)如图1,当AF BN ⊥时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设BF x =,BD y =,求y 关于x 的函数解析式并写出函数定义域;(3)联结DF ,当ADF ∆与ACE ∆相似时,请直接写出BD 的长.如图2BF EC N DA MB FC E N A DM如图1备用图BC NAM参考答案和评分建议一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.A ; 4.D ; 5.B ; 6.D . 二.填空题:(本大题共12题,满分48分) 7.45; 8.3m >; 9.1:16; 10. 11.92; 121; 13.6; 14.2; 15.5-或5+ 16. 17.125; 18.2577或. 三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式21分)13+ (2分)(2分)=分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分)解:(1)∵BC 平分ABF ∠ ∴ABC CBF ∠=∠ ∵AC //BD ∴ CBF ACB ∠=∠ ∴ABC ACB ∠=∠ ∴AC AB =∵ 2,3AE BE ==∴5AB AC == (3分) ∵AC //BD ∴AC AEBD BE=(1分)∴523BD = ∴ 152BD = (1分) (2)∵AC //BD ∴23EC AC ED BD == ∵ED b =u u u r r , ∴23EC b =-u u u r r (2分)∴ 23BC BE EC a b →=+=--u u u r u u u r rr (3分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)过点O 作OH ⊥AB ,垂足为点H ,在 Rt OAH ∆中,∠OHA=90︒ ∴3sin 5OH A AO == 设3OH k =,5AO k = (1分)则4AH k =∵OH 过圆心O ,OH ⊥AB ∴28AB AH k == (2分)∴8AC AB k == ∴853k k =+ ∴ 1k = (1分)∴5AO =即 ⊙O 的半径长为5. (1分) (2) 过点C 作CG ⊥AB ,垂足为点G , 在 Rt ACG ∆中,∠AGC=90︒∴3sin 5CG A AC ==∵8AC = ∴245CG =, 325AG == ,85BG = (3分) 在 Rt CGB ∆中,∠CGB=90︒∴ BC == (2分)22.(本题满分10分,第(1)小题6分,第(2)小题4分)解:(1)延长DE 交AB 于点F ,过点C 作CG ⊥AB ,垂足为点G ,由题意可知CE=GF=2,CG=EF (1分) 在Rt BCG ∆中,∠BGC=90︒ ∴ 140.753CG i BG === (1分)设4CG k =,3BG k =,则510BC k ===∴2k = ∴6BG = , ∴8CG EF == (2分) ∵3DE = ∴3811DF DE EF =+=+= 米 (1分) 答:瞭望台DE 的顶端D 到江面AB 的距离为11米. (1分) (2)由题意得 ∠A=40︒ 在 Rt ADF ∆中,∠DFA=90︒∴ cot AF A DF =∴ 1.1911AF≈ ∴11 1.1913.09AF ≈⨯= (2分) ∴ 5.09 5.1AB AF BG GF =--=≈ 米 (1分)答:渔船A 到迎水坡BC 的底端B 的距离为5.1米. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵AE AB AD AC ⋅=⋅ ∴AE ADAC AB=(1分) 又∵A A ∠=∠ ∴AED ∆∽ACB ∆ (2分) ∴AED C ∠=∠ (1分) 又∵AED FEB ∠=∠ ∴FEB C ∠=∠ (1分) (2)∵FEB C ∠=∠ , EFB CFD ∠=∠ ∴EFB ∆∽CFD ∆ ∴FBE FDC ∠=∠ (1分) ∵FB CD AB FD = ∴FB ABCD FD=∴ FBA ∆∽CDF ∆ ∴AFB C ∠=∠ ∴AF AC = (2分) ∵FEB C ∠=∠ ∴FEB AFB ∠=∠ (1分) 又∵FBE ABF ∠=∠ ∴EFB ∆∽FAB ∆ (1分)∴EF FBAF AB=(1分) ∵AF AC = ∴EF AB AC FB ⋅=⋅. (1分)24.(本题满分12分,每小题4分)解:(1)过点B 作BH ⊥x 轴,垂足为点H, ∵(1,3)B ∴1,3OH BH == ∵90,BHA ∠=︒45BAO ∠=︒ ∴3AH BH ==,4OA =∴(4,0)A (2分) ∵抛物线过原点O 、点A 、B ∴设抛物线的表达式为2(0)y ax bx a =+≠31640a b a b +=⎧⎨+=⎩∴ 14a b =-⎧⎨=⎩ (1分)∴抛物的线表达式为24y x x =-+ (1分) (2)∵//PM OB ∴OBA BPM ∠=∠ 又∵BMP AOB ∠=∠∴BPM ∆∽ABO ∆ ∴MBP OAB ∠=∠ ∴//BM OA∴设(,3)M x ∵M 在抛物线24y x x =-+上 ∴ (3,3)M (2分) ∵直线OB 经过点(0,0)O 、(1,3)B ∴ 直线OB 的表达式为3y x = ∵//PM OB 且直线PM 过点(3,3)M ∴ 直线PM 的表达式为36y x =- ∵直线AB 经过点(4,0)A 、(1,3)B ∴ 直线AB 的表达式为4y x =-+ ∴364y x y x =-⎧⎨=-+⎩ ∴ 5232x b ⎧=⎪⎪⎨⎪=⎪⎩∴53(,)22P (2分) (3) 延长MP 交x 轴于点D ,作PG MN ⊥,垂足为点G ∴//PG AD ∴MPG MDC ∠=∠,45GPN BAO ∠=∠=︒ ∵//PM BO ∴MDC BOA ∠=∠ ∴MPG BOA ∠=∠ ∴tan tan 3MPG BOA ∠=∠= ∵90MPG ∠=︒ ∴tan 3MGMPG PG∠== 设PG t =,则3MG t = ∵90PGN ∠=︒,45GPN ∠=︒ ∴PG GN t ==,4MN t = ∴21422PMN S t t t ∆=⋅⋅= (2分) ∴221242ANC PMN S S t NC ∆∆===∴NC = (1分)∴MN NC == (1分) 25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)∵在 Rt BAC ∆中 90BAC ∠=︒∴3cos cos 5AC BCA MBN BC ∠=∠== ∵25BC = ∴15AC = (1分)20AB == (1分)∵1122ABC S AB AC BC AF ∆=⋅=⋅ ∴12AF = (1分) ∵AF BC ⊥ ∴90AFC ∠=︒ ∴ 4tan tan 3EF FAE BCA AF ∠=∠== ∴16EF = (1分)(2)过点A 作AH EF ⊥于点H ∴ 90AHB ∠=︒ ∴16BH11 ∵BF x =,16FH x =-,25FC x =- ∴ 222212(16)32400AF x x x =+-=-+ (1分) ∵ MBN BCA ∠=∠,MBN EAF ∠=∠∴EAF BCA ∠=∠ 又∵AFE CFA ∠=∠ ∴AFE ∆∽CFA ∆ ∴AF EF CF AF =,AEF FAC ∠=∠,∴2AF FC EF =⋅ ∴232400(25)x x x EF -+=-⋅ (1分) ∴23240025x x EF x -+=-,23240040072525x x xBE EF BF x x x -+-=+=+=-- (1分)∵ MBN ACB ∠=∠,AEF FAC ∠=∠,∴BDE ∆∽CFA ∆ ∴BD BEFC AC = (1分)∴4007252515xyxx --=- ∴400715xy -=(2502x <≤) (1分+1分)(3) 965或 2000117 (2分+2分)。

2018届九年级上学期期末质量检测数学试题(附答案精品)

2018届九年级上学期期末质量检测数学试题(附答案精品)

2018-2019学年度金山区第一学期初三期末质量检测数学试卷一、选择题:(本大题共6题,每题4分,满分24分)1. 已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A. ;B. ;C. ;D. .【答案】B【解析】∵2a=3b,∴,∴,∴A、C、D选项错误,B选项正确,故选B.2. 在Rt△ABC中,,,,,下列各式中正确的是()A. ;B. ;C. ;D. .【答案】C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有选项C正确,故选C.【点睛】本题考查了三角函数的定义,熟练掌握三角函数的定义并且灵活运用是解题的关键.3. 将抛物线平移,使平移后所得抛物线经过原点,那么平移的过程为()A. 向下平移3个单位;B. 向上平移3个单位;C. 向左平移4个单位;D. 向右平移4个单位.【答案】A【解析】将抛物线平移,使平移后所得抛物线经过原点,若左右平移n个单位得到,则平移后的解析式为:,将(0,0)代入后解得:n=-3或n=1,所以向左平移1个单位或向右平移3个单位后抛物线经过原点;若上下平移m个单位得到,则平移后的解析式为:,将(0,0)代入后解得:m=-3,所以向下平移3个单位后抛物线经过原点,故选A.4. 如图,梯形ABCD中,AD∥BC,AB=DC,DE∥AB,下列各式正确的是()A. ;B. ;C. ;D. .【答案】D【解析】∵AD//BC,DE//AB,∴四边形ABED是平行四边形,∴,,∴选项A、C错误,选项D正确,选项B错误,故选D.5. 一个三角形框架模型的三边长分别为20厘米、30厘米、40厘米,木工要以一根长为60厘米的木条为一边,做一个与模型三角形相似的三角形,那么另两条边的木条长度不符合条件的是()A. 30厘米、45厘米;B. 40厘米、80厘米;C. 80厘米、120厘米;D. 90厘米、120厘米【答案】C【解析】当60cm的木条与20cm是对应边时,那么另两条边的木条长度分别为90cm与120cm;当60cm的木条与30cm是对应边时,那么另两条边的木条长度分别为40cm与80cm;当60cm的木条与40cm是对应边时,那么另两条边的木条长度分别为30cm与45cm;所以A、B、D选项不符合题意,C选项符合题意,故选C.6. 在Rt△ABC中,∠ACB=90°,AC=12,BC=9,D是AB的中点,G是△ABC的重心,如果以点D为圆心DG 为半径的圆和以点C为圆心半径为的圆相交,那么的取值范围是()A. ;B. ;C. ;D. .【答案】D【解析】延长CD交⊙D于点E,∵∠ACB=90°,AC=12,BC=9,∴AB==15,∵D是AB中点,∴CD=,∵G是△ABC的重心,∴CG==5,DG=2.5,∴CE=CD+DE=CD+DF=10,∵⊙C与⊙D相交,⊙C的半径为r,∴ ,故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.二、填空题:(本大题共12题,每题4分,满分48分)7. 计算:_________.【答案】【解析】,故答案为:.。

【数学】长宁区2018年一模试卷及答案

【数学】长宁区2018年一模试卷及答案
2017-2018 学年长宁第一学期初三数学教学质量检测试卷
(考试时间:100 分钟 满分:150 分)2018.01
一、选择题(本大题共 6 题, 每题 4 分, 满分 24 分) 【每小题只有一个正确选项, 在答题纸相应题号的选项上用 2B 铅笔正确填涂】 1.在 Rt ∆ ABC 中,∠C=90°, ∠A = α ,AC= 3 ,则 AB 的长可以表示为( ▲ ) (A)
联结 AC、OB,若 CD=40, AC = 20 5 . (1)求弦 AB 的长; (2)求 sin ∠ABO 的值.
O
C
第 21 题图
咨询电话:4000-121-121
3
22. (本题满分 10 分) D 如图,一栋居民楼 AB 的高为 16 米,远处有一栋商务楼 CD, ,又在商 小明在居民楼的楼底 A 处测得商务楼顶 D 处的仰角为 60° 务楼的楼顶 D 处测得居民楼的楼顶 B 处的俯角为 45° .其中 A、C 两点分别位于 B、D 两点的正下方,且 A、C 两点在同一水平线上, 求商务楼 CD 的高度. (参考数据: 2 ≈ 1.414 , 3 ≈ 1.732 .结果精确到 0.1 米) A C 第 22 题图 B
2




11.已知 ∆ ABC 与 ∆ DEF 相似,且 ∆ ABC 与 ∆ DEF 的相似比为 2:3,若 ∆ DEF 的面积为 36,则 ∆ ABC 的面积等于 ▲ . ▲ .
12.已知线段 AB=4,点 P 是线段 AB 的黄金分割点,且 AP<BP,那么 AP 的长为 13.若某斜面的坡度为 1 : 3 ,则该坡面的坡角为 ▲ 度.
4.已知在直角坐标平面内, 以点 P(-2,3)为圆心, 2 为半径的圆 P 与 x 轴的位置关系是 ( ▲ ) (A) 相离; (B) 相切; (C) 相交; (D) 相离、相切、相交都有可能.

【精选3份合集】2018-2019年上海市长宁区九年级上学期期末学业质量监测数学试题

【精选3份合集】2018-2019年上海市长宁区九年级上学期期末学业质量监测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在同一直角坐标系中,函数-ayx=与y=ax+1(a≠0)的图象可能是()A.B.C.D.【答案】B【分析】本题可先由反比例函数-ayx=图象得到字母a的正负,再与一次函数y=ax+1的图象相比较看是否一致即可解决问题.【详解】解:A、由函数-ayx=的图象可知a>0,由y=ax+1(a≠0)的图象可知a<0故选项A错误.B、由函数-ayx=的图象可知a>0,由y=ax+1(a≠0)的图象可知a>0,且交于y轴于正半轴,故选项B正确.C、y=ax+1(a≠0)的图象应该交于y轴于正半轴,故选项C错误.D、由函数-ayx=的图象可知a<0,由y=ax+1(a≠0)的图象可知a>0,故选项D错误.故选:B.【点睛】本题考查反比例函数的图象、一次函数的图象等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.2.把函数y=﹣3x2的图象向右平移2个单位,所得到的新函数的表达式是()A.y=﹣3x2﹣2 B.y=﹣3(x﹣2)2C.y=﹣3x2+2 D.y=﹣3(x+2)2【答案】B【分析】根据二次函数图象左加右减,上加下减的平移规律进行解答.【详解】二次函数y=﹣3x1的图象向右平移1个单位,得:y=﹣3(x﹣1)1.故选:B.【点睛】本题考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.3.下列倡导节约的图案中,是轴对称图形的是( ) A .B .C .D .【答案】C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故此选项错误; B 、不是轴对称图形,故此选项错误; C 、是轴对称图形,故此选项正确; D 、不是轴对称图形,故此选项错误. 故选C . 【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 4.二次函数y=ax 2+bx+c(a ≠0)的图象如图,则反比例函数y=ax与一次函数y=bx ﹣c 在同一坐标系内的图象大致是( )A .B .C .D .【答案】C【解析】根据二次函数的图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.【详解】解:观察二次函数图象可知: 开口向上,a >1;对称轴大于1,2ba>1,b <1;二次函数图象与y 轴交点在y 轴的正半轴,c >1. ∵反比例函数中k =﹣a <1,∴反比例函数图象在第二、四象限内; ∵一次函数y =bx ﹣c 中,b <1,﹣c <1, ∴一次函数图象经过第二、三、四象限.故选C . 【点睛】本题考查了二次函数的图象、反比例函数的图象以及一次函数的图象,解题的关键是根据二次函数的图象找出a 、b 、c 的正负.本题属于基础题,难度不大,解决该题型题目时,根据二次函数图象找出a 、b 、c 的正负,再结合反比例函数、一次函数系数与图象的关系即可得出结论.5.边长相等的正方形与正六边形按如图方式拼接在一起,则ABC ∠的度数为( )A .10︒B .15︒C .20︒D .30【答案】B【解析】利用多边形的内角和定理求出正方形与正六边形的内角和,进而求出每一个内角,根据等腰三角形性质,即可确定出所求角的度数.【详解】正方形的内角和为360°,每一个内角为90°; 正六边形的内角和为720°,每一个内角为120°, 则BAC ∠ =360°-120°-90°=150°, 因为AB=AC,所以ABC ∠=ACB ∠=15° 故选B 【点睛】此题考查了多边形内角和外角,等腰三角形性质,熟练掌握多边形的内角和定理是解本题的关键. 6.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( ) A .()1119802x x += B .()1119802x x -= C .()11980x x += D .()11980x x -=【答案】D【分析】根据题意得:每人要赠送(x-1)张贺卡,有x 个人,然后根据题意可列出方程:(x-1)x=1. 【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x 个人, ∴全班共送:(x-1)x=1, 故选:D . 【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x 个人是解决问题的关键.7.已知关于x 的方程x 2﹣3x+2k =0有两个不相等的实数根,则k 的取值范围是( )A.k>98B.k<98C.k<﹣98D.k<89【答案】B【分析】利用判别式的意义得到△=(﹣3)2﹣4•2k>0,然后解不等式即可.【详解】解:根据题意得△=(﹣3)2﹣4•2k>0,解得k<98.故选:B.【点睛】此题主要考查一元二次方程的根的情况,解题的关键是熟知根的判别式.8.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线21kyx+=-上,则下列关系式正确的是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【答案】B【解析】分析:根据题意,可得这个反比例函数图象所在的象限及每个象限的增减性,比较三个点的纵横坐标,分析可得三点纵坐标的大小,即可得答案.详解:∵双曲线21kyx+=-中的-(k1+1)<0,∴这个反比例函数在二、四象限,且在每个象限都是增函数,且1<π, ∴y1>0,y1<y3<0;故有y1>y3>y1.故选B.点睛:考查了运用反比例函数图象的性质判断函数值的大小,解题关键牢记反比例函数kyx=(x≠0)的性质:当k>0时,图像分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;当k<0时,图像分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大.9.如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(-4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为()A.(0,3)B.(0,2.5)C.(0,2) D.(0,1.5) 【答案】C【分析】如图连接BF交y轴于P ,由BC∥GF可得GPPC=GFPC,再根据线段的长即可求出GP,PC,即可得出P点坐标.【详解】连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(-4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC∥GF,∴GPPC =GFPC=12,∴GP=1,PC=2,∴点P的坐标为(0,2),故选C.【点睛】此题主要考查位似图形的性质,解题的关键是根据位似图形的对应线段成比例.10.如图,在同一平面直角坐标系中,反比例函数kyx与一次函数y=kx−1(k为常数,且k≠0)的图象可能是()A.B.C.D.【答案】B【分析】分k >0和k <0两种情况,分别判断反比例函数()0ky k x=≠的图象所在象限及一次函数y=-kx-1的图象经过的象限.再对照四个选项即可得出结论. 【详解】当k >0时, -k <0, ∴反比例函数ky x=的图象在第一、三象限,一次函数y=kx-1的图象经过第一、三、四象限; 当k <0时, -k >0, ∴反比例函数ky x=的图象在第二、四象限,一次函数y=kx-1的图象经过第二、三、四象限. 故选:B . 【点睛】本题考查了反比例函数的图象与性质以及一次函数图象与性质,熟练掌握两种函数的性质并分情况讨论是解题的关键.11.将函数22y x =的图象向左平移1个单位,再向下平移3个单位,可得到的抛物线是:( ) A .22(1)3y x =-- B .2y 2(x 1)3=-+ C .22(1)3y x =+-D .2y 2(x 1)3=++【答案】C【分析】先根据“左加右减”的原则求出函数y=-1x 2的图象向左平移2个单位所得函数的解析式,再根据“上加下减”的原则求出所得函数图象向下平移1个单位的函数解析式.【详解】解:由“左加右减”的原则可知,将函数22y x =的图象向左平移1个单位所得抛物线的解析式为:y=2(x+1)2;由“上加下减”的原则可知,将函数y=2(x+1)2的图象向下平移1个单位所得抛物线的解析式为:y=2(x+1)2-1. 故选:C . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键. 12.下列有关圆的一些结论①任意三点可以确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧;④圆内接四边形对角互补.其中正确的结论是( ) A .① B .②C .③D .④【答案】D【分析】根据确定圆的条件、圆心角、弧、弦的关系定理、垂径定理、圆内接四边形的性质进行判断即可得到正确结论.【详解】解:①不共线的三点确定一个圆,故①表述不正确; ②在同圆或等圆中,相等的圆心角所对的弧相等,故②表述不正确;③平分弦(不是直径)的直径垂直于弦,故③表述不正确;④圆内接四边形对角互补,故④表述正确.故选D.【点睛】本题考查了圆心角、弧、弦的关系定理,垂径定理的推论,半圆与弧的定义,圆内接四边形的性质,熟练掌握定义与性质是解题的关键.二、填空题(本题包括8个小题)13.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况如表,请你估计这400名同学的家庭一个月节约用水的总量大约是_____.【答案】110m1.【分析】先计算这20名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数400即可解答.【详解】解:20名同学各自家庭一个月平均节约用水是:(0.2×2+0.25×4+0.1×6+0.4×7+0.5×1)÷20=0.125(m1),因此这400名同学的家庭一个月节约用水的总量大约是:400×0.125=110(m1),故答案为:110m1.【点睛】此题考查的是根据样本估计总体,掌握样本平均数的公式是解决此题的关键.14.九年级学生在毕业前夕,某班每名同学都为其他同学写一段毕业感言,全班共写了2256段毕业感言,如果该班有x名同学,根据题意列出方程为____.【答案】(x﹣1)x=2256【分析】根据题意得:每人要写(x-1)条毕业感言,有x个人,然后根据题意可列出方程.【详解】根据题意得:每人要写(x−1)条毕业感言,有x个人,∴全班共写:(x−1)x=2256,故答案为:(x−1)x=2256.【点睛】此题考查一元二次方程,解题关键在于结合实际列一元二次方程即可.15.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,1,5,9;乙:9,6,1,10,7,1.(1)请补充完整下面的成绩统计分析表:(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________. 【答案】(1)83,1.5,1;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由. 【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,1,9,9,10 故甲组中位数:(1+9)÷2=1.5 乙组平均分:(9+6+1+10+7+1)÷6=1 填表如下:(2)两队的平均分相同,但乙组的方差小于甲组,所以乙组成绩更稳定.故答案为:83,1.5,1;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.16.如图,在△ABC 中,∠ABC =90°,AB =6,BC =4,P 是△ABC 的重心,连结BP ,CP ,则△BPC 的面积为_____.【答案】1【分析】△ABC的面积S=12AB×BC=1642⨯⨯=12,延长BP交AC于点E,则E是AC的中点,且BP=23BE,即可求解.【详解】解:△ABC的面积S=12AB×BC=1642⨯⨯=12,延长BP交AC于点E,则E是AC的中点,且BP=23BE,(证明见备注)△BEC的面积=12S=6,BP=23 BE,则△BPC的面积=23△BEC的面积=1,故答案为:1.备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:△ABC,E、F是AB,AC的中点.EC、FB交于G.求证:EG=12CG 证明:过E作EH∥BF交AC于H.∵AE=BE,EH∥BF,∴AH=HF=12 AF,又∵AF=CF,∴HF=12 CF,∴HF:CF=12,∵EH∥BF,∴EG:CG=HF:CF=12,∴EG=12 CG.【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.17.如图:⊙A、⊙B、⊙C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为.【答案】12π.【解析】试题分析:根据三角形的内角和是180°和扇形的面积公式进行计算.试题解析:∵∠A+∠B+∠C=180°,∴阴影部分的面积=2180113602ππ⨯=.考点:扇形面积的计算.18.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB边上一动点,过点E作DE⊥AB交AC边于点D,将∠A沿直线DE翻折,点A落在线段AB上的F处,连接FC,当△BCF为等腰三角形时,AE的长为_____.【答案】2或52或75.【分析】由勾股定理求出AB,设AE=x,则EF=x,BF=1﹣2x;分三种情况讨论:①当BF=BC时,列出方程,解方程即可;②当BF=CF时,F在BC的垂直平分线上,得出AF=BF,列出方程,解方程即可;③当CF=BC时,作CG⊥AB于G,则BG=FG12=BF,由射影定理求出BG,再解方程即可.【详解】由翻折变换的性质得:AE=EF.∵∠ACB=90°,AC=8,BC=6,∴AB2286=+=1.设AE=x,则EF=x,BF=1﹣2x.分三种情况讨论:①当BF=BC时,1﹣2x=6,解得:x=2,∴AE=2;②当BF=CF时.∵BF=CF,∴∠B=∠FCB.∵∠A+∠B=90°,∠FCA+∠FCB=90°,∴∠A=∠FCA,∴AF= FC.∵BF=FC,∴AF=BF,∴x+x=1﹣2x,解得:x52 =,∴AE52 =;③当CF=BC时,作CG⊥AB于G,如图所示:则BG=FG12=BF.根据射影定理得:BC2=BG•AB,∴BG22618105 BCAB===,即12(1﹣2x)185=,解得:x75 =,∴AE75 =;综上所述:当△BCF为等腰三角形时,AE的长为:2或52或75.故答案为:2或52或75.【点睛】本题考查了翻折变换的性质、勾股定理、射影定理、等腰三角形的性质;本题有一定难度,需要进行分类讨论.三、解答题(本题包括8个小题)19.已知ABC 为直角三角形,∠ACB=90°,AC=BC ,点A 、C 在x 轴上,点B 坐标为(3,m)(m>0),线段AB 与y 轴相交于点D ,以P(1,0)为顶点的抛物线过点B 、D .(1)求点A 的坐标(用m 表示);(2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结BQ 并延长交AC 于点F ,试证明:FC(AC+EC)为定值.【答案】(1)(3﹣m ,0);(2)2(1)y x =-;(3)见解析【分析】(1)AO=AC−OC=m−3,用线段的长度表示点A 的坐标;(2)ABC 是等腰直角三角形,因此AOD △也是等腰直角三角形,即可得到OD=OA ,则D(0,m−3),又由P(1,0)为抛物线顶点,用待定系数法设顶点式,计算求解即可;(3)过点Q 作QM ⊥AC 与点M ,过点Q 作QN ⊥BC 与点N ,设点Q 的坐标为2(,(1))x x -,运用相似比求出FC ,EC 长的表达式,而AC=m ,代入即可.【详解】解:(1)由B (3,m)可知OC=3,BC=m ,∴AC=BC=m ,OA=m ﹣3,∴点A 的坐标为(3﹣m ,0)(2)∵∠ODA=∠OAD=45°∴OD=OA= m ﹣3,则点D 的坐标是(0,m ﹣3)又抛物线的顶点为P(1,0),且过B 、D 两点,所以可设抛物线的解析式为:2(1)y a x =-得:221(31)4(01)3a a m m a m =⎧-=⎧⎨⎨=-=-⎩⎩解得: ∴抛物线的解析式为:2(1)y x =-(3)证明:过点Q 作QM ⊥AC 与点M ,过点Q 作QN ⊥BC 与点N ,设点Q 的坐标为2(,(1))x x -,则2(1)3QM CN x MC QN x ==-==-,∵QM ∥CE∴△PQM ∽△PEC 则2(1)12(1)2QM PM x x EC x EC PC EC --===-即得 ∵QN ∥FC∴△BQN ∽△BFC 则234(1)441QN BN x x FC FC BC FC x ---===+即得 又∵AC=m=4 ∴[]44()42(1)2(1)811FC AC EC x x x x +=+-=⨯+=++ 即()FC AC EC +为定值8本题主要考查了点的坐标,待定系数法求二次函数解析式,相似三角形的判定与性质,合理做出辅助线,运用相似三角形的性质求出线段的长度是解题的关键.20.如图,已知双曲线1k y x =与直线2y ax b =+交于点()14A ,和点()1B m -, (1)求双曲线的解析式;(2)直接写出不等式k ax b x+<的解集【答案】(1)14y x=;(2)01x <<或4x <- 【分析】(1)将点A 坐标代入双曲线解析式即可得出k 的值,从而求出双曲线的解析式;(2)求出B 点坐标,利用图象即可得解.【详解】解:(1)∵双曲线1k y x =经过点(14)A ,,414k =⨯=. ∴双曲线的解析式为14y x= (2)由双曲线解析式可得出B(-4,-1),结合图象可得出,不等式k ax b x+<的解集是:01x <<或4x <-. 【点睛】本题考查的知识点是反比例函数与一次函数的交点问题,解题的关键是从图象中得出相关信息. 21.已知函数y =ax 2+bx +c (a≠0,a 、b 、c 为常数)的图像经过点A (-1,0)、B (0,2). (1)b = (用含有a 的代数式表示),c = ;(2)点O 是坐标原点,点C 是该函数图像的顶点,若△AOC 的面积为1,则a = ;(3)若x >1时,y <1.结合图像,直接写出a 的取值范围.【答案】(1)a+2;2;(2)-2或642±(3)8215a ≤--【分析】(1)将点B 的坐标代入解析式,求得c 的值;将点A 代入解析式,从而求得b ;;(2)由题意可得AO=1,设C 点坐标为(x,y ),然后利用三角形的面积求出点C 的纵坐标,然后代入顶点坐标公式求得a 的值;(3)结合图像,若x >1时,y <1,则顶点纵坐标大于等于1,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B (0,2)代入解析式得:c=2将A (-1,0)代入解析式得: a ×(-1)2+b ×(-1)+c=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C 点坐标为(x,y ) 则1112y ⨯⨯= 解得:2y =±当y=2时,2424ac b a-= 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+= 解得:a=-2当y=-2时,2424ac b a-=- 由(1)可知,b=a+2;c=2 ∴242(2)24a a a⨯-+=-解得:6a =±∴a 的值为-2或6±(3)若x >1时,y <1,又因为图像过点A (-1,0)、B (0,2) ∴图像开口向下,即a <0则该图像顶点纵坐标大于等于1 ∴2454ac b a-≥ 即242(2)54a a a⨯-+≥解得:8a ≤--或8a ≥-+(舍去)∴a 的取值范围为8a ≤--【点睛】本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.。

┃精选3套试卷┃2018届上海市九年级上学期期末教学质量检测数学试题

┃精选3套试卷┃2018届上海市九年级上学期期末教学质量检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,在△OAB中,顶点O(0,0),A(﹣3,4),B(3,4),将△OAB与正方形ABCD组成的图形绕点O逆时针旋转,每次旋转90°,则第2019次旋转结束时,点D的坐标为()A.(3,﹣10)B.(10,3)C.(﹣10,﹣3)D.(10,﹣3)【答案】C【分析】先求出AB=1,再利用正方形的性质确定D(-3,10),由于2019=4×504+3,所以旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转3次,由此求出点D坐标即可.【详解】∵A(﹣3,4),B(3,4),∴AB=3+3=1.∵四边形ABCD为正方形,∴AD=AB=1,∴D(﹣3,10).∵2019=4×504+3,∴每4次一个循环,第2019次旋转结束时,相当于△OAB与正方形ABCD组成的图形绕点O顺时针旋转''''的位置.3次,每次旋转90︒,刚好旋转到如图O A B C D∴点D的坐标为(﹣10,﹣3).故选:C.【点睛】本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,10°,90°,180°.2.下列成语描述的事件为随机事件的是( )A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼【答案】B【解析】试题解析:水涨船高是必然事件,A 不正确;守株待兔是随机事件,B 正确;水中捞月是不可能事件,C 不正确缘木求鱼是不可能事件,D 不正确;故选B .考点:随机事件.3.如图,随意向水平放置的大⊙O 内部区域抛一个小球,则小球落在小⊙O 内部(阴影)区域的概率为( )A .12B .14C .13D .19【答案】B【分析】针扎到内切圆区域的概率就是内切圆的面积与外切圆面积的比.【详解】解:∵如图所示的正三角形,∴∠CAB =60°,∴∠OAB =30°,∠OBA =90°,设OB =a ,则OA =2a ,则小球落在小⊙O 内部(阴影)区域的概率为()22142a a ππ=. 故选:B .【点睛】本题考查了概率问题,掌握圆的面积公式是解题的关键.4.抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为()4,0A ,其部分图象如图所示.下列叙述中:①24b ac <;②关于x 的方程20ax bx c ++=的两个根是122,4x x =-=;③20a b +=;④0a b c ++<;⑤当04x <<时,y 随x 增大而增大.正确的个数是( )A .4B .3C .2D .1【答案】B 【分析】由抛物线的对称轴是 1x =,可知系数a b ,之间的关系,由题意,与x 轴的一个交点坐标为() 4,0A ,根据抛物线的对称性,求得抛物线与 x 轴的一个交点坐标为() 0B -2,,从而可判断抛物线与x 轴有两个不同的交点,进而可转化求一元二次方程根的判别式,当 1x =时,代入解析式,可求得函数值,即可判断其y 的值是正数或负数. 【详解】抛物线的对称轴是 1x =1202b a b a∴-=+=,;③正确, 与x 轴的一个交点坐标为() 4,0A ∴抛物线与与 x 轴的另一个交点坐标为() 0B -2,∴关于x 的方程20ax bx c ++=的两个根是122,4x x =-=;②正确, 当x=1时,y=0a b c ++<;④正确∴抛物线与x 轴有两个不同的交点 ∴2b -4ac>0,2b >4ac 则①错误;当01x <<时,y 随x 增大而减小 当14x ≤<时,y 随x 增大而增大,⑤错误; ∴②③④正确,①⑤错误故选:B.【点睛】本题考查二次函数图象的基本性质:对称性、增减性、函数值的特殊性、二次函数与一元二次方程的综合运用,是常见考点,难度适中,熟练掌握二次函数图象基本性质是解题关键.5.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6 B.5 C.4 D.3 【答案】B【解析】过点O作OC⊥AB,垂足为C,则有AC=12AB=12×24=12,在Rt△AOC中,∠ACO=90°,AO=13,∴OC=22AO AC=5,即点O到AB的距离是5.6.下列说法正确的是()A.垂直于半径的直线是圆的切线B.经过三点一定可以作圆C.平分弦的直径垂直于弦D.每个三角形都有一个外接圆【答案】D【分析】根据圆的切线的定义、圆的定义、垂径定理、三角形外接圆的定义逐项判断即可.【详解】A、垂直于半径且与圆只有一个交点的直线是圆的切线,此项说法错误B、不在同一直线上的三点一定可以作圆,此项说法错误C、平分弦(非直径)的直径垂直于弦,此项说法错误D、每个三角形都有一个外接圆,此项说法正确故选:D.【点睛】本题考查了圆的切线的定义、圆的定义、垂径定理、三角形外接圆的定义,熟记圆的相关概念和定理是解题关键.7.某商场举行投资促销活动,对于“抽到一等奖的概率为110”,下列说法正确的是()A.抽一次不可能抽到一等奖B.抽10次也可能没有抽到一等奖C.抽10次奖必有一次抽到一等奖D.抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖【答案】B【解析】根据大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值,而不是一种必然的结果,可得答案.【详解】A. “抽到一等奖的概率为110”,抽一次也可能抽到一等奖,故错误;B. “抽到一等奖的概率为110”,抽10次也可能抽不到一等奖,故正确;C. “抽到一等奖的概率为110”,抽10次也可能抽不到一等奖,故错误;D. “抽到一等奖的概率为110”,抽第10次的结果跟前面的结果没有关系,再抽一次也不一定抽到一等奖,故错误;故选B.【点睛】关键是理解概率是反映事件的可能性大小的量.概率小的有可能发生,概率大的有可能不发生.概率等于所求情况数与总情况数之比.8.如图,在△ABC中,DE∥BC,DE分别与AB、AC相交于点D、E,若AD=4,DB=2,则EC:AE的值为()A.12B.23C.34D.16【答案】A【分析】根据平行线截线段成比例定理,即可得到答案.【详解】∵DE∥BC,∴BD EC AD AE=,∵AD=4,DB=2,∴12 ECAE=,故选:A.【点睛】本题主要考查平行线截线段成比例定理,,掌握平行线截线段成比例,是解题的关键.9.如图为二次函数y=ax2+bx+c的图象,在下列说法中①ac>0;②方程ax2+bx+c=0的根是x1=﹣1,x2=3;③a+b+c<0;④当x>1时,y随x的增大而增大,正确的是( )A .①③B .②④C .①②④D .②③④【答案】D 【分析】①依据抛物线开口方向可确定a 的符号、与y 轴交点确定c 的符号进而确定ac 的符号;②由抛物线与x 轴交点的坐标可得出一元二次方程ax 2+bx+c=0的根;③由当x=1时y <0,可得出a+b+c <0;④观察函数图象并计算出对称轴的位置,即可得出当x >1时,y 随x 的增大而增大.【详解】①由图可知:0a >,0c <,0ac ∴<,故①错误;②由抛物线与x 轴的交点的横坐标为1-与3,∴方程20ax bx c ++=的根是11x =-,23x =,故②正确;③由图可知:1x =时,0y <,0a b c ∴++<,故③正确;④由图象可知:对称轴为:1312x -+==, 1x ∴>时,y 随着x 的增大而增大,故④正确;故选D .【点睛】本题考查了二次函数图象与系数的关系、抛物线与x 轴的交点以及二次函数的性质,观察函数图象,逐一分析四条说法的正误是解题的关键.10.如图,正方形ABCD 和正方形DEFG 的顶点A 在y 轴上,顶点D ,F 在x 轴上,点C 在DE 边上,反比例函数y =kx(k≠0)的图象经过点B 、C 和边EF 的中点M .若S 正方形ABCD =2,则正方形DEFG 的面积为( )A .103B .329C .4D .154【分析】作BH⊥y轴于H,连接EG交x轴于N,进一步证明△AOD和△ABH都是等腰直角三角形,然后再求出反比例函数解析式为y=2x,从而进一步求解即可.【详解】作BH⊥y轴于H,连接EG交x轴于N,如图,∵正方形ABCD和正方形DEFG的顶点A在y轴上,顶点D、F在x轴上,点C在DE边上,∴∠EDF=45°,∴∠ADO=45°,∴∠DAO=∠BAH=45°,∴△AOD和△ABH都是等腰直角三角形,∵S正方形ABCD=2,∴AB=AD2,∴OD=OA=AH=BH22=1,∴B点坐标为(1,2),把B(1,2)代入y=kx得k=1×2=2,∴反比例函数解析式为y=2x,设DN=a,则EN=NF=a,∴E(a+1,a),F(2a+1,0),∵M点为EF的中点,∴M点的坐标为(322a+,2a),∵点M在反比例函数y=2x的图象上,∴322a+×2a=2,整理得3a2+2a﹣8=0,解得a1=13,a2=﹣2(舍去),∴正方形DEFG的面积=2∙12EN∙DF=2∙148233⋅⋅=329.故选:B.本题主要考查了正方形的性质与反比例函数的综合运用,熟练掌握相关概念是解题关键.11.如图,PA 、PB 分别与O 相切于A 、B 两点,点C 为O 上一点,连接AC ,BC ,若80P ∠=︒,则ACB ∠的度数为( )A .30B .40︒C .50︒D .60︒【答案】C 【分析】先利用切线的性质得∠OAP=∠OBP=90°,再利用四边形的内角和计算出∠AOB 的度数,然后根据圆周角定理计算∠ACB 的度数.【详解】解:连接OA 、OB ,∵PA 、PB 分别与O 相切于A 、B 两点,∴OA PA ⊥,OB PB ⊥,∴90OAP OBP ∠=∠=︒.∴180********AOB P ∠=︒-∠=︒-︒=︒, ∴111005022ACB AOB ∠=∠=⨯︒=︒. 故选C .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理.12.下列方程是一元二次方程的是( )A .20ax bx c ++=B .2221x x x +=-C .()()130x x --=D .212x x【答案】C【解析】试题解析:A 、20ax bx c ++=,没有给出a 的取值,所以A 选项错误;B 、2221x x x +=-不含有二次项,所以B 选项错误;C 、(1)(3)0x x --=是一元二次方程,所以C 选项正确;D 、212x x-=不是整式方程,所以D 选项错误.故选C . 考点:一元二次方程的定义.二、填空题(本题包括8个小题)13.点(2,3)关于原点对称的点的坐标是_____.【答案】(-2,-3).【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(−2,−3).故答案为(-2,-3).14.已知杭州市某天六个整点时的气温绘制成的统计图,则这六个整点时气温的中位数是 .【答案】15.6【解析】试题分析:此题考查了折线统计图和中位数,掌握中位数的定义是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.把这些数从小到大排列为:4.5,10.5,15.3,15.9,19.6,20.1,最中间的两个数的平均数是(15.3+15.9)÷2=15.6(℃),则这六个整点时气温的中位数是15.6℃.考点:折线统计图;中位数15.若一个反比例函数的图像经过点(),Aa a 和()3,2B a -,则这个反比例函数的表达式为__________. 【答案】36y x= 【分析】这个反比例函数的表达式为k y x=,将A 、B 两点坐标代入,列出方程即可求出k 的值,从而求出反比例函数的表达式. 【详解】解:设这个反比例函数的表达式为k y x =将点(),A a a 和()3,2B a -代入,得23k a a k a ⎧=⎪⎪⎨⎪-=⎪⎩化简,得260a a +=解得:126,0a a =-=(反比例函数与坐标轴无交点,故舍去)解得:36k = ∴这个反比例函数的表达式为36y x =故答案为:36y x =. 【点睛】此题考查的是求反比例函数的表达式,掌握待定系数法是解决此题的关键.16.方程24x x =-的根是_____.【答案】0和-4.【分析】根据因式分解即可求解.【详解】解24x x =- 240x x +=(4)0x x += ∴x 1=0,x 2=-4,故填:0和-4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法. 17.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,AB 与BC 的比是黄金比,过点C 作CE ∥BD ,过点D 作DE ∥AC ,DE 、CE 交于点E ,连接AE ,则tan ∠DAE 的值为___________.(不取近似值)【答案】516【分析】根据AB 与BC 的比是黄金比得到AB ∶BC=)512∶,连接OE 与CD 交于点G ,过E 点作EF ⊥AF交AD 延长线于F ,证明四边形CEDO 是菱形,得到1122EF CD AB == ,1122DF OE BC ==,即可求出tan ∠DAE 的值;【详解】解:∵AB 与BC 的比是黄金比,∴AB ∶BC=)512∶连接OE与CD交于点G,过E点作EF⊥AF交AD延长线于F,矩形ABCD的对角线AC、BD相交于点O,∵CE∥BD,DE∥AC,∴四边形CEDO是平行四边形,又∵ABCD是矩形,∴OC=OD,∴四边形CEDO是菱形(邻边相等的平行四边形是菱形),∴CD与OE垂直且平分,∴1122EF CD AB==,∴1122DF OE BC==,tan∠DAE1151233251ABEFAF BC⎛⎫-===⎪⎪⎝⎭-,故答案为:516-;【点睛】本题主要考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质、黄金分割比,掌握邻边相等的平行四边形是菱形是解题的关键;18.如图的一座拱桥,当水面宽AB为12 m时,桥洞顶部离水面4 m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,求选取点A为坐标原点时的抛物线解析式是_______.【答案】21y(6)49x=--+【分析】以A为坐标原点建立坐标系,求出其它两点的坐标,用待定系数法求解析式即可.【详解】解:以A为原点建立坐标系,则A(0,0),B(12,0),C(6,4)设y=a (x-h )2+k ,∵C 为顶点,∴y=a (x-6)2+4,把A (0,0)代入上式,36a+4=0, 解得:19a =-, ∴21y (6)49x =--+;故答案为:21y (6)49x =--+.【点睛】本题主要考查了待定系数法求二次函数解析式,恰当的选取坐标原点,求出各点的坐标是解决问题的关键.三、解答题(本题包括8个小题)19.如图,在ABC ∆中,AB AC =,D 是BC 上任意一点.(1)过,,A B D 三点作⊙O ,交线段AC 于点E (要求尺规作图,不写作法,但要保留作图痕迹); (2)若弧DE=弧DB ,求证:AB 是⊙O 的直径.【答案】(1)如图1所示见解析;(2)见解析.【解析】(1)作AB 与BD 的垂线,交于点O ,点O 就是△ABD 的外心,⊙O 交线段AC 于点E ;(2)连结DE ,根据圆周角定理,等腰三角形的性质,即可得到AD 是等腰三角形ABC 底边上的高线,从而证明AB 是⊙O 的直径;【详解】(1)如图1所示(2)如图2连结AD ,∵DE DB =弧弧∴BAD EAD ∠=∠∵AB AC =,∴AD BC ⊥,∴∠ADB=90°,∴AB 是⊙O 的直径.【点睛】本题考查作图-复杂作图,线段垂直平分线的作法,等腰三角形的性质,圆周角定理以及方程思想的应用等.20.如图,在Rt △ABC 中,∠ACB =90°,∠ABC 的平分线BD 交AC 于点D .(1)求作⊙O ,使得点O 在边AB 上,且⊙O 经过B 、D 两点(要求尺规作图,保留作图痕迹,不写作法); (2)证明AC 与⊙O 相切.【答案】(1)见解析;(2)见解析【分析】(1)作BD 的垂直平分线交AB 于O ,再以O 点为圆心,OB 为半径作圆即可;(2)证明OD ∥BC 得到∠ODC=90°,然后根据切线的判定定理可判断AC 为⊙O 的切线.【详解】解:(1)如图,⊙O 为所作;(2)证明:连接OD,如图,∵BD平分∠ABC,∴∠CBD=∠ABD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∴∠ODA=∠ACB,又∠ACB=90°,∴∠ODA=90°,即OD⊥AC,∵点D是半径OD的外端点,∴AC与⊙O相切.【点睛】本题考查了作图—复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定.21.现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)【答案】(1)经过第一次传球后,篮球落在丙的手中的概率为12;(2)篮球传到乙的手中的概率为38.【分析】(1)根据概率公式即可得出答案;(2)根据题意先画出树状图得出所有等情况数,由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,由概率公式即可得出答案.【详解】(1)经过第一次传球后,篮球落在丙的手中的概率为12;故答案为12; (2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为38.【点睛】本题考查用列表法或树状图法求概率以及概率公式.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.22.如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D .(1)求证:AE•BC=BD•AC ;(2)如果ADE S =3,BDE S =2,DE=6,求BC 的长.【答案】 (1)证明详见解析;(2)1.【详解】试题分析:(1)由BE 平分∠ABC 交AC 于点E ,ED ∥BC ,可证得BD=DE ,△ADE ∽△ABC ,然后由相似三角形的对应边成比例,证得AE•BC=BD•AC ;(2)根据三角形面积公式与ADE S=3,BDE S =2,可得AD :BD=3:2,然后由平行线分线段成比例定理,求得BC 的长.试题解析:(1)∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∵DE ∥BC ,∴∠DEB=∠CBE ,∴∠ABE=∠DEB ,∴BD=DE ,∵DE ∥BC ,∴△ADE ∽△ABC ,∴AE DEAC BC=,∴AE BDAC BC=,∴AE•BC=BD•AC;(2)解:设△ABE中边AB上的高为h,∴1·21·2ADEBDEAD hS ADS BDBD h===32,∵DE∥BC,∴DE ADBC AB=,∴635BC=,∴BC=1.考点:相似三角形的判定与性质.23.“脱贫攻坚战”打响以来,全国贫困人口减少了8000多万人。

【精选3份合集】2018-2019年上海市长宁区九年级上学期期末复习检测数学试题

【精选3份合集】2018-2019年上海市长宁区九年级上学期期末复习检测数学试题

九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( )A.12B.13C.14D.16【答案】D【解析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2.下列事件是必然事件的是()A.打开电视机,正在播放动画片B.经过有交通信号灯的路口,遇到红灯C.过三点画一个圆D.任意画一个三角形,其内角和是180︒【答案】D【分析】必然事件是在一定条件下,必然会发生的事件.依据定义判断即可.【详解】A.打开电视机,可能正在播放新闻或其他节目,所以不是必然事件;B. 经过有交通信号灯的路口,遇到红灯,也可能遇到绿灯,所以不是必然事件;C. 过三点画一个圆,如果这三点在一条直线上,就不能画圆,所以不是必然事件;D. 任意画一个三角形,其内角和是180︒,是必然事件.故选:D【点睛】本题考查的是必然事件,必然事件是一定发生的事件.3.学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x个球队参赛.根据题意,下面所列方程正确的是()A.221x=B.1(1)212x x-=C.21212x=D.(1)21x x-=【答案】B【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)212x x-=,故选B.考点:由实际问题抽象出一元二次方程.4.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.60°B.50°C.40°D.30°【答案】B【分析】直接利用圆周角定理可求得∠ACB的度数.【详解】∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=12∠AOB=12⨯100°=50︒.故选:B.【点睛】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.5.从下列两组卡片中各摸一张,所摸两张卡片上的数字之和为5的概率是()第一组:1,2,3 第二组:2,3,4A.49B.38C.29D.13【答案】D【分析】根据题意,通过树状图法即可得解.【详解】如下图,画树状图可知,从两组卡片中各摸一张,一共有9种可能性,两张卡片上的数字之和为5的可能性有3种,则P(两张卡片上的数字之和为5)3193==, 故选:D.【点睛】 本题属于概率初步题,熟练掌握树状图法或者列表法是解决本题的关键.6.用配方法解方程x 2﹣2x ﹣5=0时,原方程应变形为( )A .(x+1)2=6B .(x+2)2=9C .(x ﹣1)2=6D .(x ﹣2)2=9 【答案】C【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:由原方程移项,得x 2﹣2x =5,方程的两边同时加上一次项系数﹣2的一半的平方1,得x 2﹣2x+1=1∴(x ﹣1)2=1.故选:C .【点睛】此题考查利用配方法将一元二次方程变形,熟练掌握配方法的一般步骤是解题的关键.7.已知2a =3b (b≠0),则下列比例式成立的是( )A .2a =3bB .32a b =C .23a b =D .32a b= 【答案】B【分析】根据等式的性质,可得答案.【详解】解:A 、等式的左边除以4,右边除以9,故A 错误;B 、等式的两边都除以6,故B 正确;C 、等式的左边除以2b ,右边除以92b ,故C 错误; D 、等式的左边除以4,右边除以b 2,故D 错误;故选:B .【点睛】本题考查了比例的性质,利用了等式的性质2:等式的两边都乘以或除以同一个不为零的数或整式,结果不变.8.已知一元二次方程22530x x -+=,则该方程根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .两个根都是自然数D .无实数根【答案】A【详解】解:∵a=2,b=-5,c=3,∴△=b 2-4ac=(-5)2-4×2×3=1>0,∴方程有两个不相等的实数根.故选A .【点睛】本题考查根的判别式,熟记公式正确计算是解题关键,难度不大.9.如图,在Rt △ABC 中,AC =6,AB =10,则sinA 的值( )A .45B .35C .34D .43【答案】A【分析】根据勾股定理得出BC 的长,再根据sinA =BC AB 代值计算即可. 【详解】解:∵在Rt △ABC 中,AC =6,AB =10,∴BC 22AB AC -8,∴sinA =BC AB =810=45; 故选:A .【点睛】本题考查勾股定理及正弦的定义,熟练掌握正弦的表示是解题的关键.10.已知点()11,A y 、()22,B y -、()32,C y -在函数()21212y x =+-上,则1y 、2y 、3y 的大小关系是( ).(用“>”连结起来)A .321y y y >>B .123y y y >>C .312y y y >>D .132y y y >>【答案】D【分析】抛物线开口向上,对称轴为x= -1.根据三点横坐标离对称轴的距离远近来判断纵坐标的大小.【详解】解:由函数()21212y x =+-可知: 该函数的抛物线开口向上,且对称轴为x=-1. ∵()11,A y 、()22,B y -、()32,C y -在函数()21212y x =+-上的三个点, 且三点的横坐标距离对称轴的远近为: ()11,A y 、()32,C y -、()22,B y -∴132y y y >>.故选: D .【点睛】主要考查二次函数图象上点的坐标特征.也可求得()1 1, A y 的对称点()13, y -,使三点在对称轴的同一侧.11.有一则笑话:妈妈正在给一对双胞胎洗澡,先洗哥哥,再洗弟弟.刚把两人洗完,就听到两个小家伙在床上笑.“你们笑什么?”妈妈问.“妈妈!”老大回答,“您给弟弟洗了两回,可是还没给我洗呢!”此事件发生的概率为( )A .14B .13C .12D .1【答案】A【分析】根据概率是指某件事发生的可能性为多少解答即可.【详解】解:此事件发生的概率14 故选A .【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.12.如图,一张矩形纸片ABCD 的长BC =xcm ,宽AB =ycm ,以宽AB 为边剪去一个最大的正方形ABEF ,若剩下的矩形ECDF 与原矩形ABCD 相似,则x y的值为( )A 51-B 51+C 2D 21+ 【答案】B【分析】根据相似多边形对应边的比相等,可得到一个方程,解方程即可求得.【详解】∵四边形ABCD是矩形,∴AD=BC=xcm,∵四边形ABEF是正方形,∴EF=AB=ycm,∴DF=EC=(x﹣y)cm,∵矩形FDCE与原矩形ADCB相似,∴DF:AB=CD:AD,即:x y y y x -=∴xy=5+12,故选B.【点睛】本题考查了相似多边形的性质、矩形的性质、翻折变换的性质;根据相似多边形对应边的比相等得出方程是解决本题的关键.二、填空题(本题包括8个小题)13.一只蚂蚁在如图所示的方格地板上随机爬行,每个小方格形状大小完全相同,当蚂蚁停下时,停在地板中阴影部分的概率为________.【答案】4 9【解析】分析:首先确定阴影的面积在整个面积中占的比例,根据这个比例即可求出蚂蚁停在阴影部分的概率.详解:∵正方形被等分成9份,其中阴影方格占4份,∴当蚂蚁停下时,停在地板中阴影部分的概率为49,故答案为49.点睛:此题主要考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.14.某公司快递员甲匀速骑车前往某小区送物件,出发几分钟后,快递员乙发现甲的手机落在公司,无法联系,于是乙匀速骑车去追赶甲.乙刚出发2分钟时,甲也发现自己手机落在公司,立刻按原路原速骑车回公司,2分钟后甲遇到乙,乙把手机给甲后立即原路原速返回公司,甲继续原路原速赶往某小区送物件,甲乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示(乙给甲手机的时间忽略不计).则乙回到公司时,甲距公司的路程是______米.【答案】6000【分析】根据函数图象和题意可以分别求得甲乙的速度和乙从与甲相遇到返回公司用的时间,从而可以求得当乙回到公司时,甲距公司的路程.【详解】解:由题意可得,甲的速度为:4000÷(12-2-2)=500米/分,乙的速度为:40005002500222+⨯-⨯+=1000米/分,乙从与甲相遇到返回公司用的时间为4分钟,则乙回到公司时,甲距公司的路程是:500×(12-2)-500×2+500×4=6000(米),故答案为6000.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,已知直线l:y=﹣x+4分别与x轴、y轴交于点A,B,双曲线kyx=(k>0,x>0)与直线l不相交,E为双曲线上一动点,过点E作EG⊥x轴于点G,EF⊥y轴于点F,分别与直线l交于点C,D,且∠COD=45°,则k=_____.【答案】1【解析】证明△ODA∽△CDO,则OD2=CD•DA,而则OD2=(4﹣n)2+n2=2n2﹣1n+16,CD2m+n ﹣4),DA2,即可求解.【详解】解:点A、B的坐标分别为(4,0)、(0,4),即:OA=OB,∴∠OAB=45°=∠COD,∠ODA=∠ODA,∴△ODA∽△CDO,∴OD2=CD•DA,设点E(m,n),则点D(4﹣n,n),点C(m,4﹣m),则OD 2=(4﹣n )2+n 2=2n 2﹣1n+16,CD =2(m+n ﹣4),DA =2n ,即2n 2﹣1n+16=2(m+n ﹣4)×2n ,解得:mn =1=k ,故答案为1.【点睛】本题考查的是反比例函数与一次函数的交点问题,涉及到三角形相似、一次函数等知识点,关键是通过设定点E 的坐标,确定相关线段的长度,进而求解.16.小刚和小亮用图中的转盘做“配紫色”游戏:分别转动两个转盘各一次,若其中的一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚赢,否则小亮赢.若用P 1表示小刚赢的概率,用P 2 表示小亮赢概率,则两人赢的概率P 1________P 2(填写>,=或<)【答案】<【分析】由于第二个转盘红色所占的圆心角为120°,则蓝色部分为红色部分的两倍,即相当于分成三个相等的扇形(红、蓝、蓝),再列出表,根据概率公式计算出小刚赢的概率和小亮赢的概率,即可得出结论.【详解】解:用列表法将所有可能出现的结果表示如下:红 蓝 蓝 蓝(红,蓝) (蓝,蓝) (蓝,蓝) 黄(红,黄) (蓝,黄) (蓝,黄) 黄(红,黄) (蓝,黄) (蓝,黄) 红 (红,红) (蓝,红) (蓝,红)上面等可能出现的12种结果中,有3种情况可以得到紫色,所以小刚赢的概率是131124P ==;则小亮赢的概率是213144P =-= 所以12P P <;故答案为:<【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.17.关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,0a ≠),则关于x 的方程2(3)0a x m b +++=的解是________.【答案】x 1=-12,x 2=1【分析】把后面一个方程中的x +3看作一个整体,相当于前面方程中的x 来求解.【详解】解:∵关于x 的方程2()0a x m b ++=的解是19x =-,211x =(a ,m ,b 均为常数,a≠0),∴方程2(3)0a x m b +++=变形为2[(3)]0a x m b +++=,即此方程中x +3=-9或x +3=11,解得x 1=-12,x 2=1,故方程2(3)0a x m b +++=的解为x 1=-12,x 2=1.故答案为x 1=-12,x 2=1.【点睛】此题主要考查了方程解的含义.注意观察两个方程的特点,运用整体思想进行简便计算.18.若顺次连接四边形ABCD 各边中点所得四边形为矩形,则四边形ABCD 的对角线AC 、BD 之间的关系为_____.【答案】AC ⊥BD .【分析】根据矩形的性质、三角形的中位线定理和平行线的性质即可得出结论.【详解】解:如图,设四边形EFGH 是符合题意的中点四边形,则四边形EFGH 是矩形,∴∠FEH =90°,∵点E 、F 分别是AD 、AB 的中点,∴EF 是△ABD 的中位线,∴EF ∥BD ,∴∠FEH =∠OMH =90°,又∵点E 、H 分别是AD 、CD 的中点,∴EH 是△ACD 的中位线,∴EH ∥AC ,∴∠OMH =∠COB =90°,即AC ⊥BD .故答案为AC ⊥BD .【点睛】本题考查了矩形的性质、三角形的中位线定理和平行线的性质,熟练掌握三角形中位线定理是解此题的关键.三、解答题(本题包括8个小题)19.如图是某货站传送货物的平面示意图. 原传送带AB 与地面DB 的夹角为30︒,AD DB ⊥,为了缩短货物传送距离,工人师傅欲增大传送带与地面的夹角,使其由30︒改为45︒,原传送带AB 长为8m .求:(1)新传送带AC 的长度;(2)求BC 的长度.【答案】(1)42AC =(2)()434BC m =【分析】(1)在构建的直角三角形中,首先求出两个直角三角形的公共直角边,进而在Rt △ACD 中,求出AC 的长.(2)利用Rt ADB ∆求出BD, 利用Rt ADC ∆求出CD,故可求解.【详解】解:(1)∵AD DB ⊥,30ABD ︒∠=,∴在Rt ADB ∆中, sin304AD AB ︒=⨯=,在Rt ADC ∆中,sin 45AD AC ︒=,∴42sin 45AD AC ︒==(2)在Rt ADB ∆中,cos3043DB AB ︒=⨯=在Rt ADC ∆中,cos 454DC AC ︒=⨯=,∴()434BC DB DC m=-=-.【点睛】考查了坡度坡角问题,应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.在两个直角三角形有公共直角边时,先求出公共边的长是解答此类题的基本思路.20.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若∠DAB=60°,⊙O的半径为3,求线段CD的长.【答案】(1)证明见解析;(2)33 CD=.【分析】(1)连接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分线的性质可以证明∠DAC=∠OCA,接着利用平行线的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可证明直线CD与⊙O相切于C点;(2)连接BC,∠BAC=30°,在Rt△ABC中可求得AC,同理在Rt△ACD中求得CD.【详解】(1)证明:连接CO,∵AO=CO,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴CO∥AD,∴CO⊥CD,∴DC为⊙O的切线;(2)解:连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠DAB=60°,AC平分∠DAB,∴∠BAC=12∠DAB=30°,∵⊙O的半径为3,∴AB=6,∴AC 3=3.∵∠CAD=30°∴1332CD AC==【点睛】此题主要考查了切线的性质与判定,解题时首先利用切线的判定证明切线,然后利用含特殊角度的直角三角形求得边长即可解决问题.21.阅读材料,解答问题:观察下列方程:①23xx+=;②65xx+=;③127xx+=;…;(1)按此规律写出关于x的第4个方程为,第n个方程为;(2)直接写出第n个方程的解,并检验此解是否正确.【答案】(1)9,2n+1;(2)2n+1,见解析【分析】(1)观察一系列等式左边分子为连续两个整数的积,右边为从3开始的连续奇数,即可写出第4个方程及第n个方程;(2)归纳总结即可得到第n个方程的解为n与n+1,代入检验即可.【详解】解:(1)x+45x⨯=x+20x=9,x+(1)n nx+=2n+1;故答案为:x+20x=9;x+(1)n nx+=2n+1.(2)x+(1)n nx+=2n+1,观察得:x1=n,x2=n+1,将x =n 代入方程左边得:n+n+1=2n+1;右边为2n+1,左边=右边,即x =n 是方程的解;将n+1代入方程左边得:n+1+n =2n+1;右边为2n+1,左边=右边,即x =n+1是方程的解,则经检验都为原分式方程的解.【点睛】本题主要考查的是分式方程的解,根据所给方程找出规律是解题的关键.22.在ABC ∆中,AB=6,BC=4,B 为锐角且cosB 12=.(1)求∠B 的度数.(2)求ABC ∆的面积.(3)求tanC .【答案】(1)60°;(2)63 ;(3)33【解析】(1)直接利用三角函数值,即可求出∠B 的度数;(2) 过A 作AD ⊥BC 于D ,根据cosB 12=,可求出BD 的值,利用勾股定理可求出AD 的值,即可求得ABC ∆的面积;(3)利用正切概念即可求得tanC 的值;【详解】解:(1)∵B 为锐角且cosB 12=, ∴∠B=60°;(2)如图,过A 作AD ⊥BC 于D ,在Rt ABD 中,cosB 1=2BD AB =,∵AB=6,∴BD=3,∴33AD=,∴1143363 22ABCS BC AD=⨯⨯=⨯⨯=,(3)∵BD=3,BC=4,∴CD=1,∴在Rt ACD中,tanC3=333 ADCD==.【点睛】本题考查了三角函数的定义及性质,掌握三角函数的性质是解题的关键.23.感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=2,BD=4,则DE的长为.【答案】探究:见解析;拓展:52.【分析】感知:先判断出∠BAP=∠DPC,进而得出结论;探究:根据两角相等,两三角形相似,进而得出结论;拓展:利用△BDP∽△CPE得出比例式求出CE,结合三角形内角和定理证得AC⊥AB且AC=AB;最后在直角△ADE中利用勾股定理来求DE的长度.【详解】解:感知:∵∠APD=90°,∴∠APB+∠DPC=90°,∵∠B=90°,∴∠APB+∠BAP=90°,∴∠BAP=∠DPC,∵AB∥CD,∠B=90°,∴∠C=∠B=90°,∴△ABP∽△PCD;探究:∵∠APC=∠BAP+∠B,∠APC=∠APD+∠CPD,∴∠BAP+∠B=∠APD+∠CPD.∵∠B=∠APD,∴∠BAP=∠CPD.∵∠B=∠C,∴△ABP∽△PCD;拓展:同探究的方法得出,△BDP∽△CPE,∴BD BP CP CE=,∵点P是边BC的中点,∴BP=CP=,∵BD=4,=∴CE=92,∵∠B=∠C=45°,∴∠A=180°﹣∠B﹣∠C=90°,即AC⊥AB且AC=AB=6,∴AE=AC﹣CE=6﹣92=32,AD=AB﹣BD=6﹣4=2,在Rt△ADE中,DE 52.故答案是:52.【点睛】此题是相似综合题.主要考查了相似三角形的判定与性质、勾股定理、三角形内角和定理以及三角形外角的性质.解本题的关键是判断出△ABP∽△PCD.24.某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.【答案】(1)水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15(x﹣3)2+5(0<x<8);(2)为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内;(3)扩建改造后喷水池水柱的最大高度为28920米.【解析】分析:(1)根据顶点坐标可设二次函数的顶点式,代入点(8,0),求出a值,此题得解;(2)利用二次函数图象上点的坐标特征,求出当y=1.8时x的值,由此即可得出结论;(3)利用二次函数图象上点的坐标特征可求出抛物线与y轴的交点坐标,由抛物线的形状不变可设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15x2+bx+165,代入点(16,0)可求出b值,再利用配方法将二次函数表达式变形为顶点式,即可得出结论.详解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,解得:a=﹣15,∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15(x﹣3)2+5(0<x<8).(2)当y=1.8时,有﹣15(x﹣3)2+5=1.8,解得:x1=﹣1,x2=7,∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.(3)当x=0时,y=﹣15(x﹣3)2+5=165.设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15x2+bx+165.∵该函数图象过点(16,0),∴0=﹣15×162+16b+165,解得:b=3,∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣15x2+3x+165=﹣15(x﹣152)2+28920,∴扩建改造后喷水池水柱的最大高度为28920米.点睛:本题考查了待定系数法求二次函数解析式以及二次函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数表达式;(2)利用二次函数图象上点的坐标特征求出当y=1.8时x的值;(3)根据点的坐标,利用待定系数法求出二次函数表达式.25.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE =∠B,(1)求证:△ADF∽△DEC(2)若AB=4,AD=3=3,求AF的长.【答案】(1)见解析(2)3【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC AB∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180︒,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四边形ABCD是平行四边形∴AD∥BC CD=AB=4又∵AE⊥BC ∴ AE⊥AD在Rt△ADE中,2222(33)36AD AE+=+=∵△ADF∽△DEC∴AD AFDE CD=334AF=∴AF=2326.关于x的一元二次方程x2+(m+4)x﹣2m﹣12=0,求证:(1)方程总有两个实数根;(2)如果方程的两根相等,求此时方程的根.【答案】(1)见解析;(1)x1=x1=1.【分析】(1)由△=(m+4)1−4(−1m−11)=(m+8)1≥0知方程有两个实数根;(1)如果方程的两根相等,则△=(m+8)1=0,据此求出m的值,代入方程求解可得.【详解】(1)∵△=(m+4)1﹣4(﹣1m﹣11)=m1+16m+64=(m+8)1≥0,∴方程总有两个实数根;(1)如果方程的两根相等,则△=(m+8)1=0,解得m=﹣8,此时方程为x1﹣4x+4=0,即(x﹣1)1=0,解得x1=x1=1.【点睛】本题考查了一元二次方程ax1+bx+c=0(a≠0)的根的判别式△=b1−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.27.已知二次函数y=x2+2mx+(m2﹣1)(m是常数).(1)若它的图象与x轴交于两点A,B,求线段AB的长;(2)若它的图象的顶点在直线y=12-x+3上,求m的值.【答案】AB=2;(2)m=1.【分析】(1)令y=0求得抛物线与x轴的交点,从而求得两交点之间的距离即可;(2)用含m的式子表示出顶点坐标,然后代入一次函数的解析式即可求得m的值.【详解】(1)令y=x2+2mx+(m2﹣1)=0,∴(x+m+1)(x+m﹣1)=0,解得:x1=﹣m﹣1,x2=﹣m+1,∴AB=|x1﹣x2|=|﹣m﹣1﹣(﹣m+1)|=2;(2)∵二次函数y=x2+2mx+(m2﹣1),∴顶点坐标为(﹣2m,()22 4144m m--),即:(﹣2m,﹣1),∵图象的顶点在直线y=12-x+3上,∴﹣12×(﹣2m)+3=﹣1,解得:m=1.【点睛】本题考查了解二次函数的问题,掌握二次函数的性质以及解二次函数的方法是解题的关键.九年级上学期期末数学试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.从2,0,π,227,6这五个数中随机抽取一个数,抽到有理数的概率是( )A.15B.25C.35D.45【答案】C【分析】根据有理数的定义可找出2,0,π,227,6这5个数中0227、,6为有理数,再根据概率公式即可求出抽到有理数的概率.【详解】解:在2,0,π,227,6这5个数中0227、,6为有理数,抽到有理数的概率是3 5 .故选C.【点睛】本题考查了概率公式以及有理数,根据有理数的定义找出五个数中有理数的个数是解题的关键.2.如图坐标系中,O(0,0),A(3,33),B(6,0),将△OAB沿直线CD折叠,使点A恰好落在线段OB上的点E处,若OE=65,则AC:AD的值是()A.1:2 B.2:3 C.6:7 D.7:8【答案】B【分析】过A作AF⊥OB于F,如图所示:根据已知条件得到AF=3OF=1,OB=6,求得∠AOB=60°,推出△AOB是等边三角形,得到∠AOB=∠ABO=60°,根据折叠的性质得到∠CED=∠OAB=60°,求得∠OCE=∠DEB,根据相似三角形的性质得到BE=OB﹣OE=6﹣65=245,设CE=a,则CA=a,CO=6﹣a,ED=b,则AD=b,DB=6﹣b,于是得到结论.【详解】过A作AF⊥OB于F,如图所示:。

2018学年第一学期初三数学参考答案和评分建议

2018学年第一学期初三数学参考答案和评分建议

长宁区2018学年第一学期初三数学参考答案和评分建议2019.1一、选择题:(本大题共6题,每题4分,满分24分) 1.B ; 2.D ; 3.A ; 4.D ; 5.B ; 6.D . 二.填空题:(本大题共12题,满分48分)7.54; 8.3>m ; 9.1:16; 10.33; 11.29; 12.15+; 13.6; 14.232+; 15.525-或525+; 16.79; 17.512; 18.7725或.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分) 19. (本题满分10分)解:原式=232221)33(32-+⨯ (4分)=321313-+⨯(2分) =)32(33+- (2分) =3322-- (2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵BC 平分ABF ∠ ∴CBF ABC ∠=∠ ∵AC //BD ∴ ACB CBF ∠=∠ ∴ACB ABC ∠=∠ ∴AB AC =∵ 3,2==BE AE∴5==AC AB (3分)∵AC //BD ∴BEAEBD AC =(1分) ∴325=BD ∴ 215=BD (1分) (2)∵AC //BD ∴32==BD AC ED EC ∵b ED =, ∴b EC 32-= (2分)∴ b a EC ρρ32--=+=→ (3分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)过点O 作OH ⊥AB ,垂足为点H ,在 OAH Rt ∆中,∠OHA=︒90 ∴53sin ==AO OH A 设k OH 3=,k AO 5= (1分) 则k OH AO AH 422=-=∵OH 过圆心O ,OH ⊥AB ∴k AH AB 82== (2分)∴k AB AC 8== ∴358+=k k ∴ 1=k (1分) ∴5=AO 即 ⊙O 的半径长为5. (1分) (2) 过点C 作CG ⊥AB ,垂足为点G , 在 ACG Rt ∆中,∠AGC=︒90∴53sin ==AC CG A ∵8=AC ∴524=CG , 53222=-=CG AC AG ,58=BG (3分)在 CGB Rt ∆中,∠CGB=︒90∴ 5108)524()58(2222=+=+=BG CG BC (2分) 22.(本题满分10分,第(1)小题6分,第(2)小题4分)解:(1)延长DE 交AB 于点F ,过点C 作CG ⊥AB ,垂足为点G ,由题意可知CE=GF=2,CG=EF (1分) 在BCG Rt ∆中,∠BGC=︒90 ∴ 3475.01===BG CG i (1分) 设k CG 4=,k BG 3=,则10522==+=k BG CG BC∴2=k ∴6=BG , ∴8==EF CG (2分) ∵3=DE ∴1183=+=+=EF DE DF 米 (1分) 答:瞭望台DE 的顶端D 到江面AB 的距离为11米. (1分) (2)由题意得 ∠A=︒40 在 ADF Rt ∆中,∠DF A=︒90∴ DF AF A =cot ∴19.111≈AF∴09.1319.111=⨯≈AF (2分) ∴1.509.5≈=--=GF BG AF AB 米 (1分)答:渔船A 到迎水坡BC 的底端B 的距离为5.1米. (1分) 23.(本题满分12分,第(1)小题5分,第(2)小题7分) 证明:(1)∵AC AD AB AE ⋅=⋅ ∴ABADAC AE =(1分) 又∵A A ∠=∠ ∴AED ∆∽ACB ∆ (2分) ∴C AED ∠=∠ (1分) 又∵FEB AED ∠=∠ ∴C FEB ∠=∠ (1分)(2)∵C FEB ∠=∠ , CFD EFB ∠=∠ ∴EFB ∆∽CFD ∆ ∴FDC FBE ∠=∠ (1分)∵FD CD AB FB = ∴FDABCD FB = ∴ FBA ∆∽CDF ∆ ∴C AFB ∠=∠ ∴AC AF = (2分) ∵C FEB ∠=∠ ∴AFB FEB ∠=∠ (1分) 又∵ABF FBE ∠=∠ ∴EFB ∆∽FAB ∆ (1分)∴ABFBAF EF = (1分) ∵AC AF = ∴FB AC AB EF ⋅=⋅. (1分)24.(本题满分12分,每小题4分)解:(1)过点B 作BH ⊥x 轴,垂足为点H, ∵)3,1(B ∴3,1==BH OH ∵,90︒=∠BHA ︒=∠45BAO ∴3==BH AH ,4=OA∴)0,4(A (2分) ∵抛物线过原点O 、点A 、B ∴设抛物线的表达式为)0(2≠+=a bx ax y⎩⎨⎧=+=+04163b a b a ∴ ⎩⎨⎧=-=41b a (1分)∴抛物的线表达式为x x y 42+-= (1分) (2)∵OB PM //∴BPM OBA ∠=∠ 又∵AOB BMP ∠=∠ ∴BPM ∆∽ABO ∆ ∴OAB MBP ∠=∠ ∴OA BM //∴设)3,(x M ∵M 在抛物线x x y 42+-=上 ∴ )3,3(M (2分) ∵直线OB 经过点)0,0(O 、)3,1(B ∴ 直线OB 的表达式为x y 3= ∵OB PM //且直线PM 过点)3,3(M ∴ 直线PM 的表达式为63-=x y ∵直线AB 经过点)0,4(A 、)3,1(B ∴ 直线AB 的表达式为4+-=x y∴⎩⎨⎧+-=-=463x y x y ∴ ⎪⎩⎪⎨⎧==2325b x ∴)23,25(P (2分) (3) 延长MP 交x 轴于点D ,作MN PG ⊥,垂足为点G∴AD PG // ∴MDC MPG ∠=∠,︒=∠=∠45BAO GPN ∵BO PM // ∴BOA MDC ∠=∠ ∴BOA MPG ∠=∠∴3tan tan =∠=∠BOA MPG ∵︒=∠90MPG ∴3tan ==∠PGMGMPG设t PG =,则t MG 3= ∵︒=∠90PGN ,︒=∠45GPN∴t GN PG ==,t MN 4= ∴22421t t t S PMN =⋅⋅=∆ (2分)∴222142NC t S S PMN ANC ===∆∆ ∴t NC 22= (1分)∴2224==ttNC MN (1分)25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分) 解:(1)∵在 BAC Rt ∆中 ︒=∠90BAC∴53cos cos ==∠=∠BC AC MBN BCA ∵25=BC ∴15=AC (1分)2022=-=AC BC AB (1分)∵AF BC AC AB S ABC ⋅=⋅=∆2121 ∴12=AF (1分) ∵BC AF ⊥ ∴︒=∠90AFC∴ 34tan tan ==∠=∠AF EF BCA FAE∴16=EF (1分) (2)过点A 作EF AH ⊥于点H ∴ ︒=∠90AHB∴ 1622=-=AH AB BH∵x BF =,x FH -=16,x FC -=25∴ 40032)16(122222+-=-+=x x x AF (1分) ∵ BCA MBN ∠=∠,EAF MBN ∠=∠∴BCA EAF ∠=∠ 又∵CFA AFE ∠=∠ ∴AFE ∆∽CFA ∆ ∴AFEFCF AF =,FAC AEF ∠=∠, ∴EF FC AF ⋅=2∴EF x x x ⋅-=+-)25(400322(1分)∴xx x EF -+-=25400322,xxx x x x BF EF BE --=+-+-=+=25740025400322 (1分)∵ ACB MBN ∠=∠,FAC AEF ∠=∠,∴BDE ∆∽CFA ∆∴ACBEFC BD = (1分) ∴1525740025x xx y--=- ∴157400x y -=(2250≤<x ) (1分+1分) (3)596或 1172000(2分+2分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第一学期初三数学教学质量检测试卷(考试时间:100分钟 满分:150分)2018.01一、选择题(本大题共6题, 每题4分, 满分24分)【每小题只有一个正确选项, 在答题纸相应题号的选项上用2B 铅笔正确填涂】 1.在Rt ∆ABC 中,∠C =90°,α=∠A ,AC =3,则AB 的长可以表示为( ▲ ) (A )αcos 3; (B ) αsin 3; (C ) αsin 3; (D ) αcos 3. 2.如图,在∆ABC 中,点D 、E 分别在边BA 、CA 的延长线上,2=ADAB,那么下列条件中能判断DE ∥BC 的是( ▲ ) (A )21=EC AE ; (B ) 2=AC EC; (C )21=BC DE ; (D )2=AEAC. 3. 将抛物线3)1(2++-=x y 向右平移2个单位后得到的新抛物线的表达式为( ▲ ) (A ) 1)1(2++-=x y ; (B ) 3)1(2+--=x y ; (C ) 5)1(2++-=x y ; (D )3)3(2++-=x y .4. 已知在直角坐标平面内,以点P (-2,3)为圆心,2为半径的圆P 与x 轴的位置关系是( ▲ ) (A ) 相离; (B ) 相切; (C ) 相交; (D ) 相离、相切、相交都有可能. 5. 已知是单位向量,且2-=,4=,那么下列说法错误..的是( ▲ ) (A )b a //; (B ) 2||=;(C ) ||2||-=; (D )21-=. 6. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,AC 平分∠DAB ,且∠DAC =∠DBC ,那么下列结论不一定正确.....的是( ▲ ) (A )AOD ∆∽BOC ∆; (B )AOB ∆∽DOC ∆; (C )CD =BC ; (D )OA AC CD BC ⋅=⋅.二、填空题(本大题共12题, 每题4分, 满分48分) 【在答题纸相应题号后的空格内直接填写答案】 7.若线段a 、b 满足21=b a ,则bba +的值为 ▲ . 8.正六边形的中心角等于 ▲ 度.9.若抛物线2)2(x a y -=的开口向上,则a 的取值范围是 ▲ . 10.抛物线342+-=x x y 的顶点坐标是 ▲ .11.已知∆ABC 与∆DEF 相似,且∆ABC 与∆DEF 的相似比为2:3,若∆DEF 的面积为36,则∆ABC 的面积等于 ▲ .第2题图AB CDE 第6题图O ABCD12.已知线段AB=4,点P 是线段AB 的黄金分割点,且AP<BP ,那么AP 的长为 ▲ . 13.若某斜面的坡度为3:1,则该坡面的坡角为 ▲ 度.14.已知点A (-2,m )、B (2,n )都在抛物线t x x y -+=22上,则m 与n 的大小关系是m ▲ n .(填“>”、“<”或“=”) 15.如图,在Rt ∆ABC 中,∠BAC =90°,点G 是重心, 联结AG ,过点G 作DG//BC ,DG 交AB 于点D , 若AB=6,BC=9,则∆ADG 的周长等于 ▲ .16.已知⊙1O 的半径为4,⊙2O 的半径为R ,若⊙1O 与⊙2O 相切,且1021=O O ,则R 的值为 ▲ .17.如果一个四边形的某个顶点到其他三个顶点的距离相等, 我们把这个四边形叫做等距四边形,这个顶点叫做这个 四边形的等距点.如图,已知梯形ABCD 是等距四边形,AB//CD ,点B 是等距点. 若BC =10,1010cos =A , 则CD 的长等于 ▲ .18.如图,在边长为2的菱形ABCD 中,︒=∠60D ,点E 、F 分别在边AB 、BC 上. 将∆BEF 沿着直线EF 翻折, 点B 恰好与边AD 的中点G 重合,则BE 的长等于 ▲ .三、解答题(本大题共7题, 满分78分)【将下列各题的解答过程, 做在答题纸的相应位置上】 19.(本题满分10分)计算:︒--︒︒30cos 60tan 45sin 445cot 02.20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,在∆ABC 中,点D 在边AB 上,DE //BC ,DF //AC ,DE 、DF 分别交边AC 、BC于点E 、F ,且23=EC AE .(1)求BCBF的值; (2)联结EF ,设=,=,用含、的式子表示EF .21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,点C 在⊙O 上,联结CO 并延长交弦AB 于点D ,AC BC =, 联结AC 、OB ,若CD =40,520=AC . (1)求弦AB 的长;第20题图BAD E 第21题图第18题图A B CDBCDA 第17题图第15题图D AG(2)求ABO ∠sin 的值. 22.(本题满分10分)如图,一栋居民楼AB 的高为16米,远处有一栋商务楼CD , 小明在居民楼的楼底A 处测得商务楼顶D 处的仰角为60°,又在商 务楼的楼顶D 处测得居民楼的楼顶B 处的俯角为45°.其中A 、C 两点分别位于B 、D 两点的正下方,且A 、C 两点在同一水平线上, 求商务楼CD 的高度.(参考数据:414.12≈,732.13≈.结果精确到0.1米)23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE ,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2.(1)求证:BFD ∆∽CAD ∆;(2)求证:AD AB DE BF ⋅=⋅. 24.(本题满分12分,每小题4分)在直角坐标平面内,直线221+=x y 分别与x 轴、y 轴交于点A 、C . 抛物线c bx x y ++-=221经过点A 与点C ,且与x 轴的另一个交点为点B . 点D 在该抛物线上,且位于直线AC 的上方.(1)求上述抛物线的表达式;(2)联结BC 、BD ,且BD 交AC 于点E ,如果∆ABE 的面积与∆ABC 的面积之比为4:5,求∠DBA 的余切值;(3)过点D 作DF ⊥AC ,垂足为点F ,联结CD . 若∆CFD 与∆AOC 相似,求点D 的坐标.25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分)已知在矩形ABCD 中,AB =2,AD =4. P 是对角线BD 上的一个动点(点P 不与点B 、D 重合),过点P 作PF ⊥BD ,交射线BC 于点F . 联结AP ,画∠FPE =∠BAP ,PE 交BF 于点E . 设PD=x ,EF =y .(1)当点A 、P 、F 在一条直线上时,求∆ABF 的面积;(2)如图1,当点F 在边BC 上时,求y 关于x 的函数解析式,并写出函数定义域; (3)联结PC ,若∠FPC =∠BPE ,请直接写出PD 的长.F EDABC第23题图备用图第24题图DA DA PDA长宁区2017-2018学年第一学期初三数学参考答案和评分建议2018.1一、选择题:(本大题共6题,每题4分,满分24分) 1.A ; 2.D ; 3.B ; 4.A ; 5.C ; 6.D . 二.填空题:(本大题共12题,满分48分)7.23; 8.060; 9.a >2;10.)1,2(-; 11.16; 12.526-; 13.030; 14.<; 15.10;16.6或14; 17.16; 18.57.三、(本大题共7题,第19、20、21、22题每题10分,第23、24题每题12分,第25题14分,满分78分)19. (本题满分10分)解:原式= 233)22(412--⨯ (4分) =23321-- (2分) =2332-+ (2分) =232+(2分) 20.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵23=EC AE ∴52=AC EC (1分) ∵DE//BC ∴52==AC EC AB BD (2分) 又∵DF//A ∴52==AB BD BC BF (2分) (2)∵52=BC BF ∴53=BC FC ∵=,CF 与BC 方向相反 ∴a CF 53-= (2分) 同理:b EC 52=(2分)又∵→+=CF ∴→-=a 5352 (1分)21.(本题满分10分,第(1)小题5分,第(2)小题5分) 解:(1)∵CD 过圆心O, AC BC =∴C D ⊥AB ,AB=2AD=2BD (2分)∵CD =40,520=AC 又∵∠ADC=090∴2022=-=CD AC AD (2分)∴AB=2AD=40 (1分) (2)设圆O 的半径为r ,则OD =40-r (1分) ∵BD =AD =20, ∠ODB=090 ∴222OB OD BD =+∴222)40(20r r =-+ (1分) ∴r =25,OD =15 (2分) ∴532515sin ===∠OB OD ABO (1分) 22.(本题满分10分)解:过点B 作BE ⊥CD 与点E ,由题意可知∠DBE=045,∠DAC=060,CE=AB=16 (2分)设AC=x ,则x CD 3=,BE=AC=x (1分)∵163-=-=x CE CD DE (1分)∵045,90=∠=∠DBE BED ∴BE=DE ∴163-=x x (2分)∴1316-=x (1分) ∴)13(8+=x (1分) ∴9.3738243≈+==x CD (1分)答: 商务楼CD 的高度为37.9米。

(1分) 23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵DF DE AD ⋅=2∴ADDFDE AD =∵EDA ADF ∠=∠ ∴ADF ∆∽EDA ∆ (2分)∴DAE F ∠=∠ (1分) 又∵∠ADB=∠CDE ∴∠ADB+∠ADF =∠CDE+∠ADF即∠BDF =∠CDA (2分) ∴BFD ∆∽CAD ∆ (1分) (2)∵BFD ∆∽CAD ∆ ∴ADDFAC BF =(2分) ∵AD DF DE AD = ∴DEADAC BF = (1分) ∵BFD ∆∽CAD ∆ ∴C B ∠=∠∴AC AB = (1分)∴DEADAB BF =∴AD AB DE BF ⋅=⋅. (2分) 24.(本题满分12分,每小题4分)解:(1)由已知得A (-4,0),C (0,2) (1分) 把A 、C 两点的坐标代入c bx x y ++-=221得 ⎩⎨⎧=-=0482b C (1分) ∴⎪⎩⎪⎨⎧=-=223c b (1分) ∴223212+--=x x y (1分) (2)过点E 作EH ⊥AB 于点H 由上可知B (1,0) ∵ABC ABE S S ∆∆=54∴OC AB EH AB ∙⨯=∙215421 ∴5854==OC EH (2分) ∴)58,54(-E ∴59154=+=HB (1分) ∵090=∠EHB ∴895859cot ===∠EH HB DBA (1分)(3)∵DF ⊥AC ∴090=∠=∠AOC DFC①若CAO DCF ∠=∠,则CD//AO ∴点D 的纵坐标为2把y=2代入223212+--=x x y 得x=-3或x=0(舍去) ∴D (-3,2) (2分)②若ACO DCF ∠=∠时,过点D 作DG ⊥y 轴于点G ,过点C 作CQ ⊥DG 交x 轴于点Q∵090=∠=∠AOC DCQ ∴090=∠+∠=∠+∠CAO ACO ACQ DCF ∴CAO ACQ ∠=∠∴CQ AQ = 设Q (m ,0),则442+=+m m ∴23-=m ∴)0,23(-Q易证:COQ ∆∽DCG∆∴34232QO CO GC DG === 设D(-4t,3t+2)代入223212+--=x x y 得t=0(舍去)或者83=t ∴)825,23(-D (2分)25.(本题满分14分,第(1)小题3分,第(2)小题6分,第(3)小题5分) 解:(1)∵矩形ABCD ∴090=∠=∠ABF BAD∴090=∠+∠ADB ABD ∵A 、P 、F 在一条直线上,且PF ⊥BD ∴090=∠BPA ∴090=∠+∠BAF ABD ∴BAF ADB ∠=∠ ∵2142tan ===∠AD AB ADB ∴21tan ==∠AB BF BAF ∴1=BF (2分) ∴1122121=⨯⨯=∙=∆BF AB S ABF (1分) (2)∵PF ⊥BP ∴090=∠BPF∴090=∠+∠PBF PFB ∵090=∠ABF ∴090=∠+∠ABP PBF ∴PFB ABP ∠=∠ 又∵∠BAP =∠FPE ∴BAP ∆∽FPE ∆ ∴EFBPPF AB =(2分) ∵AD//BC ∴PBF ADB ∠=∠ ∴21tan tan =∠=∠ADB PBF 即21=BP PF ∵x BP -=52 ∴)52(21x PF -=(2分) ∴y xx-=-522522 ∴)52552(4)52(2<≤-=x x y (1分+1分) (3)15±(3分) 或514557-(2分)。

相关文档
最新文档