精品 九年级数学中考模拟试题 一
【九年级】中考数学第一次模拟考试题(附答案)
【九年级】中考数学第一次模拟考试题(附答案)卷ⅰ(,共24分)一、(本大题共12个小题;每小题2分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案涂在答题卡上)1.的绝对值就是()a.4b.c.d.2.以下运算中恰当的就是()a.b.c.d.3.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=20°,那么∠3的度数是()a.25°b.30°c.60°d.65°4.不等式3x+1≥2x的解集在数轴上表示为()5.未知四边形中,,如果嵌入一个条件,即可面世该四边形就是正方形,那么这个条件可以就是()a.b.c.d.6.例如图,未知⊙o的直径ab⊥弦cd于点e.以下结论一定恰当的就是()a.ae=oeb.ce=dec.oe=12ced.∠aoc=60°7.某人沿着存有一定坡度的坡面跑了10米,此时他与水平地面的垂直距离为6米,则他水平行进的距离为()米.a.5 b.6 c.8 d.108.种饮料比种饮料单价太少1元,小峰买了2瓶种饮料和3瓶种饮料,一共花掉了13元,如果设种饮料单价为元/瓶,那么下面所列方程恰当的就是()a.b.c.d.9.如图,是一种古代计时器――“漏壶”的示意图,在壶内盛一定量的水,水从壶下的小孔漏出,壶壁内画出刻度,人们根据壶中水面的位置计算时间.若用表示时间,表示壶底到水面的高度,下面的图象适合表示一小段时间内与的函数关系的是(不考虑水量变化对压力的影响)()abcd10.如图所示,半圆ab平移到半圆cd的位置时所扫过的面积为()a.3b.3+c.6d.6+11.未知抛物线的开口向上,顶点座标为(2,-3),那么该抛物线有()a.最小值-3b.最大值-3c.最小值2d.最大值212.在平面直角坐标系中,对于平面内任一点(,n),规定以下两种变换:①,如;②,如.按照以上变换有:,那么等于()a.(3,2)b.(3,-2)c.(-3,2)d.(-3,-2)卷ii(非选择题,共96分)请把答案写在答题纸上二、题(本大题共6个小题;每小题3分后,共18分后)13.计算:=;14.例如图,若a就是实数a在数轴上对应的点,则关于a,-a,1的大小关系是.15.学校精心安排三辆车,非政府九年级学生团员回去敬老院看望老人,其中小王与小菲都可以从这三辆车中自由选择一辆乘坐,则小王与小菲同车的概率为__________.16.如果,那么代数式的值是。
九年级数学中考模拟试题(含答案)
中考模拟考试数学试卷注意:1. 本试卷共6页,满分为150分,考试时间为120分钟.2. 答题前,考生务必将本人的姓名、考试号填写在答题纸相应的位置上.3. 考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.-8的立方根是( ▲ )A .±2B .2C .-2D .242.下列计算正确的是( ▲ )A .4312a a a ? B3 C .20(1)0x += D .若2x x =,则x =13.下列图形是中心对称图形,但不是轴对称图形的是( ▲ )A .正方形B .等边三角形C .圆D .平行四边形4.下面几何体的主视图是( ▲ )A .B .C .D .第4题图 5.为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是( ▲ )A .方差是4B .众数是7C .中位数是8D .平均数是106.如图,在半径为3,圆心角为90°的扇形ACB 内,以BC 为直径作半圆交AB 于点D ,连接CD ,则阴影部分的面积是( ▲ )A .5392π-B .9944π-C .9944π+D .9984π- 二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)第6题图7.比较大小:8.把0.70945四舍五入精确到百分位是 ▲ .9.已知32x y =,则x y x y-+= ▲ . 10. 为了解某校初中学生的身体健康状况,以下选取的调查对象中:①120位男学生;②每个年级都随机抽选20位男学生和20位女学生;③120位八年级学生.你认为较合适的是 ▲ (填序号).11.转动如图所示的4个可以自由转动的转盘,当转盘停止转动时,估计指针落在黑色区域内的发生的可能性大小,将转盘的序号按发生的可能性从小到大....的顺序排列为 ▲ .第11题图12.若一个多边形的内角和比外角和大360°,则这个多边形的边数为 ▲ .13.如图,△ABC 与△DEF 是位似图形,点B 的坐标为(3,0),则其位似中心的坐标为 ▲ .14.若关于x 的一元二次方程2(3)510a x x +-+=有实数根,则整数a 的最大值是 ▲ .第13题图 第15题图 第16题图15.根据以下作图过程解决问题:第一步:在数轴上,点O 表示数0,点A 表示数-1,点B 表示数2,以AB 为直径作半圆;第二步:以B点为圆心,1为半径作弧交半圆于点C(如图);第三步:以A点为圆心,AC为半径作弧交数轴的正半轴于点M.则点M在数轴上表示的数为▲.16.如图,在△ABC中,已知AC=BC=5,AB=6,点E是线段AB上的动点(不与端点重合),点F是线段AC上的动点,连接CE、EF,若在点E、点F的运动过程中,始终保证∠CEF=∠B.当以点C为圆心,以CF为半径的圆与AB相切时,则BE的长为▲.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本题满分12分)(1)计算:22130()2tan6︒--+-;(2)解方程:213xx x+=+.18.(本题满分8分)某中学现有在校学生2150人,为了解该校学生的课余活动情况,采取随机抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生,并将调查的结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:第18题图(1)本次调查共抽取了多少名学生?(2)通过计算补全条形图,并求出扇形统计图中阅读部分圆心角的度数;(3)请你估计该中学在课余时间参加阅读和其它活动的学生一共有多少名?19.(本题满分8分)有四张相同的卡片,分别写有数字-2,0,1,5,将它们背面朝上(背面无差别)洗匀后放在桌上.20%(1)从中任意抽出一张,抽到卡片上的数字为负数的概率;(2)从中任意抽出两张,用树状图或表格列出所有可能的结果,并求抽出卡片上的数字积为正数的概率.20.(本题满分8分)如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.第20题图21.(本题满分10分)如图,在平面直角坐标系中,过点A (2,0)的直线y kx b =+与y 轴交于点B ,与双曲线m y x =交于点P ,点P 位于y 轴左侧,且到y 轴的距离为1,已知tan ∠OAB =12. (1)分别求出直线与双曲线相应的函数表达式; (2)观察图象,直接写出不等式kx b +>m x 的解集.第21题图22.(本题满分10分)如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,经过A、D两点的圆的圆心O恰好落在AB上,⊙O分别与AB、AC相交于点E、F.(1)判断直线BC与⊙O的位置关系并证明;(2)若⊙O的半径为2,AC=3,求BD的长度.第22题图23.(本题满分10分)“楚水服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.(1)要使每天的利润为4000元,裤子的定价应该是多少元?(2)如何定价可以使每天的利润最大?最大利润是多少?24.(本题满分10分)一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,(1)求点C到直线AB的距离;(2)求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)第24题图25. (本题满分12分)如图①,在等腰△ABC 和△ADE 中,AB =AC ,AD =AE ,且∠BAC =∠DAE =120°.(1)求证:△ABD ≌△ACE ;(2)把△ADE 绕点A 逆时针方向旋转到图②的位置,连接CD ,点M 、P 、N 分别为DE 、DC 、BC的中点,连接MN 、PN 、PM ,判断△PMN 的形状,并说明理由;(3)在(2)中,把△ADE 绕点A 在平面内自由旋转,若AD =4,A B=6,请分别求出△PMN 周长的最小值与最大值.第25题图① 第25题图②26. (本题满分14分)如图,直线3y x =-+与x 轴、y 轴分别交于点B 、C ,抛物线2(1)y a x k =-+经过点B 、C ,并与x 轴交于另一点A .(1)求此抛物线及直线AC 的函数表达式;(2)垂直于y 轴的直线l 与抛物线交于点P (1x ,1y ),Q (2x ,2y ),与直线BC 交于点 N (3x ,3y ),若3x <1x <2x ,结合函数的图象,求123x x x ++的取值范围;(3)经过点D (0,1)的直线m 与射线AC 、射线OB 分别交于点M 、N .当直线m 绕点D 旋转时,2AM AN+ 是否为定值,若是,求出这个值,若不是,说明理由.第26题图 备用图数学参考答案一、选择题(本大题共有6小题,每小题3分,共18分)1.C;2.B;3.D;4.A;5.B;6.B.二、填空题(本大题共10小题,每小题3分,满分30分)7. <; 8. 0.71; 9. 15; 10. ②; 11.④、①、②、③; 12.6; 13. (1,0);14. 3; 15.1; 16. 1或5.三、解答题(本大题共10小题,满分102分)17.(12分)(1)原式=-9(1分)﹣分)分)+4(1分)=-5分);(1)去分母得:x2+2(x+3)=x(x+3)(2分),解得:x=6(3分),经检验:x=6是原方程的解(1分);18.(8分)(1)根据题意得:20÷20%=100(名)(1分),答:一共调查的学生数是100人(1分);(2)娱乐的人数是:100﹣30﹣20﹣10=40(名),补图如下(1分):阅读部分的扇形圆心角的度数是360°×=108°(2分);(3)根据题意得:2150×=860(名)(2分),答:该中学在课余时间参加阅读和其它活动的学生一共有860名(1分).19.(8分)(1)从中随机抽取1张卡片共有4种等可能结果(1分),取出的卡片上的数字是负数的结果只有1种,所以抽到卡片上的数字为负数的概率为(2分);(2)画树状图如下:(3分)由树状图知,共有12种等可能结果,其中抽出卡片上的数字积为正数的结果为2种, 所以抽出卡片上的数字积为正数的概率为=(2分).20.(8分)(1)证明:∵∠A=∠F ,∴DE ∥BC (1分),∵∠1=∠2,且∠1=∠DMF ,∴∠DMF=∠2, ∴DB ∥EC (1分),则四边形BCED 为平行四边形(2分);(2)解:∵BN 平分∠DBC ,∴∠DBN=∠CBN ,∵EC ∥DB ,∴∠CNB=∠DBN (2分),∴∠CNB=∠CBN , ∴CN=BC=DE=2(2分).21.(10分)(1)∵点A (2,0),∴OA=2,∵tan ∠OAB=,∴OB=1,∴点B 的坐标为(0,1), 直线y=kx+b 过点A 和点B ,所以,得, 即直线表达式为y=﹣0.5x+1(3分);∵直线上的点P 位于y 轴左侧,且到y 轴的距离为1.∴点P 的横坐标为﹣1,将x=﹣1代入y=﹣0.5x+1,得y=1.5,∴点P 的坐标为(﹣1,1.5),∵反比例函数y=的图象经过点P ,∴1.5=,得m=﹣1.5,所以双曲线相应的函数表达式为32y x=-(3分) (2)求得直线与双曲线的另一个交点为(3,0),观察图象得kx b +>m x 的解集为x<-1(2分)或0<x<3(2分).22. (10分)(1)BC 与⊙O 相切(1分).证明:连接OD .∵AD 是∠BAC 的平分线,∴∠BAD=∠CAD .又∵OD=OA ,∴∠OAD=∠ODA .∴∠CAD=∠ODA .∴OD ∥AC (2分).∴∠ODB=∠C=90°,即OD ⊥BC .又∵BC 过半径OD 的外端点D ,∴BC 与⊙O 相切(2分).(2)由(1)知OD ∥AC .∴△BDO ∽△BCA .∴=(1分).∵⊙O 的半径为2,∴DO=OE=2,AE=4. ∴=(2分).∴BE=2.∴BO=4(1分),∴在Rt △BDO 中,BD==2(1分).23.(10分)(1)设裤子的定价为每条x元(1分),根据题意,得:(x﹣50)[50+5(100﹣x)]=4000(2分),解得:x=70或x=90(1分),答:裤子的定价应该是70元或90元(1分);(2)销售利润y=(x﹣50)[50+5(100﹣x)](1分)=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,=﹣5(x﹣80)2+4500(2分),∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500(1分);答:定价为每条80元可以使每天的利润最大,最大利润是4500元(1分).24.(10分)(1)如图,过点C作CD⊥AB交AB延长线于D(1分).在Rt△ACD中,∵∠ADC=90°,∠CAD=30°(1分),AC=80海里,∴点C到直线AB距离CD=AC=40(3分).(2)在Rt△CBD中,∵∠CDB=90°,∠CBD=90°﹣37°=53°(1分),∴BC=≈=50(海里)(12分),50÷40=(小时)(1分),∴海警船到达事故船C处所需的时间大约为小时。
九年级中考数学一模考试试卷及答案
九年级数学试卷第1页(共10页)九年级数学试卷第2页(共10页)学校________________班级________________姓名_________________密封线内不能答题初中学业水平考试模拟测试九 年 级 数 学考生须知1.本试卷共10页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.右图是某几何体的三视图,该几何体是(A )三棱柱(B )长方体(C )圆锥(D )圆柱2.2021年我国加大农村义务教育薄弱环节建设力度,提高学生营养改善计划补助标准,约37000000学生受益.将37000000用科学计数法表示应为(A )603710.⨯(B )63710.⨯(C )73710.⨯(D )63710⨯3.实数a ,b ,c 在数轴上的对应点的位置如图所示,下列结论中正确的是(A )0b c -<(B )2b >-(C )0+ac >(D )b c>4.下列多边形中,内角和为720°的是(A )(B )(C )(D )5.下列图形中,既是中心对称图形也是轴对称图形的是(A )平行四边形(B )等腰三角形(C )正五边形(D )矩形6.将宽为2cm 的长方形纸条折叠成如图所示的形状,那么折痕AB 的长是(A )3cm (B )3cm (C)cm (D )4cm7.2022年2月4日晚,举世瞩目的北京第二十四届冬季奥林匹克运动会开幕式在国家体育场隆重举行.冬奥会的项目有滑雪(如跳台滑雪、高山滑雪、单板滑雪等)、滑冰(如短道速滑、速度滑冰、花样滑冰等)、冰球、冰壶等.如图,有5张形状、大小、质地均相同的卡片,正面分别印有高山滑雪、速度滑冰、冰球、单板滑雪、冰壶五种不同的项目图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面恰好是滑雪图案的概率是油漆时,如果每平方米费用为16元,那么总费用与底面边长满足的函数关系是(A )正比例函数关系(B )一次函数关系(C )反比例函数关系(D )二次函数关系二、填空题(共16分,每题2分)9.若代数式11x -有意义,则实数x 的取值范围是.10.如图,在△ABC 中,ABAC =,AB 的垂直平分线MN交AC于D 点.若BD 平分ABC ∠,则A ∠=°.11.已知关于x 的一元二次方程22210()x a x a +-+=有两个不相等的实数根,则a 的取值范围是.124小的无理数.高山滑雪速度滑冰冰球单板滑雪冰壶2022.4九年级数学试卷第3页(共10页)九年级英语试卷第4页(共10页)密封线内不能答题13.如图,点A ,B ,C 在⊙O 上,若20∠OCB =°,则∠A 的度数为_________.14.已知点A (1,2),B 在反比例函数()0ky x x=>的图象上,若OA=OB ,则点B 的坐标为_________.15.下表记录了甲、乙、丙三名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙平均数9.359.359.34方差6.66.96.7根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择_________.16.某市为进一步加快文明城市的建设,园林局尝试种植A 、B 两种树种.经过试种后发现,种植A 种树苗a 棵,种下后成活了()棵,种植B 种树苗b 棵,种下后成活了棵.第一阶段两种树苗共种植了40棵,且两种树苗的成活棵树相同,则种植A 种树苗_________棵.第二阶段,该园林局又种植A 种树苗m 棵,B 种树苗n 棵,若,在第一阶段的基础上进行统计,则这两个阶段种植A 种树苗成活棵数_________种植B 种树苗成活棵数(填“>”“<”或“=”).三、解答题(共68分,第17—20题,每题5分,第21—22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:()2012cos3022+-⎛⎫︒-π-- ⎪⎝⎭.18.解不等式组:21115≤,x . x x ⎧⎪⎨⎪⎩-+<-19.已知230m m +-=,求代数式2211+m m m m m +⎛⎫+÷ ⎪⎝⎭的值.20.已知:如图,点M 为锐角∠APB 的边PA 上一点.求作:∠AMD ,使得点D 在边PB 上,且∠AMD =2∠P .作法:①以点M 为圆心,MP 长为半径画圆,交PA 于另一点C ,交PB 于点D ;②作射线MD .(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵点P ,C ,D 都在⊙M 上,∠P 为 CD所对的圆周角,∠CMD 为 CD 所对的圆心角,∴∠P =12∠CMD ()(填推理依据).∴∠AMD =2∠P .九年级数学试卷第5页(共10页)九年级数学试卷第6页(共10页)学校________________班级________________姓名_________________密封线内不能答题21.如图,一个单向隧道的断面,隧道顶是一条抛物线的一部分,经测量,隧道顶的跨度为4米,最高处到地面的距离为4米,两侧墙高均为3米,距左侧墙壁1米和3米时,隧道高度均为3.75米.设距左侧墙壁水平距离为x 米的地点,隧道高度为y 米.请解决以下问题:(1)在下边网格中建立适当的平面直角坐标系,根据题中数据描点,并用平滑的曲线连接;(2)请结合所画图象,写出抛物线的对称轴;(3)今有宽为2.4米的卡车在隧道中间行驶,如果卡车载物后的高度为3.2米,要求卡车从隧道中间通过时,为保证安全,要求卡车载物后最高点到隧道顶面对应的点的距离均不小于0.6米,结合所画图象,试判断该卡车能否通过隧道.22.如图,在□ABCD 中,过点B 作BE ⊥CD 交CD 的延长线于点E ,过点C 作C F//EB交AB 的延长线于点F.(1)求证:四边形BFCE 是矩形;(2)连接AC ,若AB =BE =2,tan ∠FBC =12,求AC 的长.23.如图,一次函数y =kx +4k (k ≠0)的图象与x 轴交于点A ,与y 轴交于点B ,且经过点C (2,m ).(1)当92m =时,求一次函数的解析式并求出点A 的坐标;(2)当x >-1时,对于x 的每一个值,函数y =x 的值大于一次函数y =kx+4k (k ≠0)的值,求k 的取值范围.24.如图,BE 是⊙O 直径,点A 是⊙O 外一点,OA ⊥OB ,AP 切⊙O 于点P ,连接BP交AO 于点C .(1)求证:∠PAO =2∠PBO ;(2)若⊙O 的半径为5,tan ∠PAO 34=,求BP 的长.九年级数学试卷第7页(共10页)九年级英语试卷第8页(共10页)密封线内不能答题25.为庆祝中国共产党建党100周年,讴歌中华民族实现伟大复兴的奋斗历程,继承革命先烈的优良传统,某中学开展了建党100周年知识测试.该校七、八年级各有300名学生参加,从中各随机抽取了50名学生的成绩(百分制),并对数据(成绩)进行整理,描述和分析,下面给出了部分信息:a.八年级的频数分布直方图如下(数据分为5组:50≤x<60,60≤x<70,70≤x<80,80≤x <90,90≤x≤100);b.八年级学生成绩在80≤x<90的这一组是:808182838383.583.58484858686.587888989c.七、八年级学生成绩的平均数、中位数、众数如下:年级平均数中位数众数七年级87.28591八年级85.3m90根据以上信息,回答下列问题:(1)表中m的值为;(2)在随机抽样的学生中,建党知识成绩为84分的学生,在年级抽样学生中排名更靠前,理由是;(3)若成绩85分及以上为“优秀”,请估计八年级达到“优秀”的人数.26.已知二次函数2y x bx c=++(b,c为常数)的图象经过点A(1,0)与点C(0,-3),其顶点为P.(1)求二次函数的解析式及P点坐标;(2)当m≤x≤m+1时,y的取值范围是-4≤y≤2m,求m的值.27.已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC ,BD,BP之间的数量关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.l备用图l图1九年级数学试卷第9页(共10页)九年级数学试卷第10页(共10页)学校________________班级________________姓名_________________密封线内不能答题28.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P ,Q两点(Q 在P ,H 之间).我们把点P 称为⊙I 关于直线a 的“远点”,把PQ ·PH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,4),半径为1的⊙O 与两坐标轴交于点A ,B ,C ,D .①过点E 作垂直于y 轴的直线m ,则⊙O 关于直线m 的“远点”是点(填“A ”,“B ”,“C ”或“D ”),⊙O 关于直线m 的“特征数”为;②若直线n 的函数表达式为y =3x +4,求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点M (1,4),点F 是坐标平面内一点,以F 为圆心,3为半径作⊙F .若⊙F 与直线l 相离,点N (-1,0)是⊙F 关于直线l 的“远点”,且⊙F 关于直线l 的“特征数”是66,直接写出直线l 的函数解析式.图1图2初中学业水平考试模拟测试九年级数学学科参考答案一、 选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.A 、2.C 、3.B 、4.D 、5.D 、6.B 、7.B 、8.D二、 填空题(共16分,每题2分)9.x ≠1 10. 36 11.a <1412.答案不唯一13.70°14.(2,1) 15.甲16.22,>三、解答题(共68分,第17—20题,每题5分,第21—22题,每题6分,第23题5分,第24题6分,第25题5分,第26题6分,第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:()2012cos30+224+1−⎛⎫︒−π− ⎪⎝⎭−− …………………………………………4分=3…………………………………………5分18.解:21115x x x ⎧⎪⎨⎪⎩−+<−≤②①x 由①得:≤3…………………………………………2分15546x x x +<−−<−由②得:32x >…………………………………………4分 32x ∴不等式组的解集为≤3.<……………………………………… 5分19.解:()()2222221+121+11+1+1m m m m m m m m m m m m m m m m +⎛⎫+÷ ⎪⎝⎭++=⨯+=⨯=2=m m+ …………………………………………3分230m m +−=23m m ∴+=…………………………………………4分 =3 3.∴∴原式代数式的值为 …………………………………………5分20.(1) 补全图形,如图所示 ……………………3分 (2)一条弧所对的圆周角等于它所对的圆心角的一半…………………………………………5分21.解:略…………………………………………6分22.(1)证明:∵四边形ABCD 是平行四边形,∴AB CD ∥∵//CF EB∴四边形BFCE 是平行四边形∵BE CD ⊥∴90E ∠=︒∴四边形BFCE 是矩形…………………………………………3分 (2)解:∵四边形BFCE 是矩形∴90F ∠=︒,CF EB =∵2AB BE ==∴2CF =……………………………………………4分∵1tan 2FBC ∠=ECD FA B∴4BF =∴6AF = ……………………………………………5分在Rt AFC △中,90F ∠=︒,AC == …………………6分23.解:(1)∵92m =∴将点9(2)2C ,代入4y kx k =+,得34k = ……………………………1分∴一次函数表达式为334y x =+,点A 的坐标为(4,0)−. ……………………………3分 (2)∵当1x −>时,对于x 的每一个值,函数y x =的值大于一次函数40y kx k k =+≠()的值 结合函数图象可知,当=1x −时,41kx k +−≤即可,解得13k −≤∴13k −≤………………………………………………5分24.(1)证明: 连接PO∵AP 切⊙O 于点P ∴OP AP ⊥∴90A AOP ∠+∠=︒ ∵OA OB ⊥∴90POE AOP ∠+∠=︒ ∴=A POE ∠∠∵2POE PBO ∠=∠ ∴2PAO PBO∠=∠……………………………………………3分(2)解:过点P 作PM EB ⊥于点M∵3tan 4PAO ∠=∴3tan 4POM ∠=∴设3,4PM k MO k ==∴5OP k =∵⊙O 半径为5 ∴5OB OP ==∴1k =∴3,4PM MO ==∴9BM BO MO =+=∴在Rt PMB △中,=90PMB ∠︒PB == ……………………………………………6分25.解:(1)83……………………………………………1分 (2)八 该学生的成绩大于八年级样本数据的中位数83,在八年级成绩中排名21名;该学生成绩小于七年级样本数据的中位数,在七年级排名在后25名 ………………………………………3分(3)20300=12050⨯(人)答:估计八年级达到“优秀”的人数是120人. ………………………5分 26.解:(1)∵二次函数的2y x bx c =++图象经过点(1,0)A 与点(0.3)C −∴103b c c ++=⎧⎨=−⎩解得23b c =⎧⎨=−⎩∴二次函数的表达式是223y x x =+−…………………………………………2分顶点P 的坐标为14−−(,)…………………………………………3分 (2)∵二次函数的顶点P 的坐标为14−−(,) ∴当1x =−时,y 有最小值是4−∵当1m x m +≤≤时,y 的取值范围是y m -4≤≤2 ∴21m −−≤≤① 当322m −−≤≤时,当x m =时,=2y m 即2232m m m +−=解得,m =∴m =②当312m −<≤-时,当1x m =+时,=2y m即212132m m m+++−=()()解得,12=0,2m m =−(不合题意)综上所述,m =……………………………………………………6分27.(1)①补全图形如图所示,…………………………………………………1分证明:设PD 交BC 于点E ∵ABC △是等边三角形∴60BAC ABC ACB ∠=∠=∠=︒∵将射线PC 绕点P 顺时针旋转60° ∴60DPC ∠=︒ ∵//l AC∴60DBE ACB ∠=∠=︒ ∴60DBE CPE ∠=∠=︒ ∵BED PEC ∠=∠ ∴BDP PCB ∠=∠……………………………………………………3分 ②BC BD BP=+在BC 上取一点Q 使得BQ =BP ,连接PQ ∵60ABC ∠=︒∴PBQ △是等边三角形 ∴PB =PQ ,∠BPQ =60° ∴BPD CPQ ∠=∠ 又∵BDP PCB ∠=∠ ∴PBD PQC △≌△ ∴BD QC =∵BC BQ QC =+∴BC BD BP =+ …………………………………………………5分(2)BC BD BP =− …………………………………………………7分28(1)①D,10 …………………………………………2分 ②∵直线n 的函数表达式为y =3x +4∴E (0,4),F(3−,0)∴tan 3OF FEO OE ∠== ∴30FEO ∠=︒ OM ME ⊥2OM ∴=∵⊙O 的半径为16PM PN ∴⋅=即⊙O 关于直线n 的“特征数”为6. ………………………………5分(2)直线l 的函数解析式为12977y x =−+或5y x =−+. ……………7分。
最新初三中考数学模拟试卷及答案(4套)
25.(本题满分10分)
如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A,AD与BC交于点E,F在DA的延长线上,且AF=AE.
(1)求证:BF是⊙O的切线;
23.(本题满分10分)
已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.
(1)求证:D是BC的中点;
(2)如果AB=AC,试判断四边形ADCF的 形状,并证明你的结论.
24.(本题满分10分)
数学课上,老师用多媒体给同学们放了2010年春节联欢晚会由魔术界当红艺人刘谦表演的的神奇的障眼法“硬币穿玻璃”魔术,敏捷的身手、幽默的语言把同学们逗得乐不可支。看完后老师说:“今天我也来当一回魔术师给你们现场表演一个数学魔术。”说完便在黑板上画出下面两个图:
(1)甲、乙、丙三辆车中,谁是进货车?
(2)甲车和丙车每小时各运输多少吨?
(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但
丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两
车又工作了几小时,使仓库的库存量为6吨?
28.(本题满分12分)
在平面直角坐标系中,已知点A(4,0),点B(0,3).点P从点A出发,以每秒1个单位的速度向右平移,点Q从点B出发,以每秒2个单位的速度向右平移,又P、Q两点同时出发.
A.7 B.9 C.9或12 D.12
7.由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()
A.正视图的面积最大B.俯视图的面积最大
2022年北京市朝阳区九年级数学中考模拟试题(一模)及答案解析
2022年北京市朝阳区九年级数学中考模拟试题(一模)一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 长方体C. 圆锥D. 圆柱2. 2022年3月5日,国务院总理李克强代表国务院,向十三届全国人大五次会议作政府工作报告.报告中指出过去一年是党和国家历史上具有里程碑意义的一年,“十四五”实现良好开局,我国发展又取得新的重大成就.2021年国内生产总值达114万亿元,增长8.1%.将1140000用科学记数法表示应为( )A. 0.114×107B. 1.14×105C. 1.14×106D. 11.4×1043. 实数a,b在数轴上对应的点的位置如图所示,下列结论中正确的是( )A. a+b>0B. ab>0C. a−b>0D. |a|>|b|4. 将一副三角尺(厚度不计)如图摆放,使有刻度的两条边互相平行,则图中∠1的大小为( )A. 100°B. 105°C. 115°D. 120°5. 下列多边形中,内角和与外角和相等的是A. B.C. D.6. 不透明的袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次摸到相同颜色的小球的概率是A. 14B. 13C. 12D. 237. 下图是国家统计局公布的2021年居民消费价格月度涨跌幅度,月度同比和月度环比的平均数分别为x同,x环,方差分别为s2同,s2环,则A. x同>x环,s2同>s2环B. x同>x环,s2同<s2环C. x同<x环,s2同>s2环D. x同<x环,s2同<s2环8. 点A(x1,y1),B(x2,y2)在反比例函数y=1x的图象上,下列推断正确的是( )A. 若x 1<x 2,则y 1<y 2B. 若x1<x2,则y1>y2C. 若x 1+x 2=0,则y 1+y 2=0D. 存在x1=x2,使得y1≠y2二、填空题(本大题共8小题,共24.0分)9. 若代数式1x−1有意义,则实数x的取值范围是___.10. 分解因式:2a2−4ab+2b2=.11. 写出一个比4大且比5小的无理数:_____.12. 如图,AC,BC是⊙O的弦,PA,PB是⊙O的切线,若∠C=60°,则∠P=_____°.13. 如图,在△ABC中,AB=AC,点D在AC上(不与点A,C重合),只需添加一个条件即可证明△ABC和△BDC相似,这个条件可以是(写出一个即可).14. 如图,2022年北京冬奥会上,一些可看作正六边形的“小雪花”对称地排列在主火炬周围,中间空出了13个“小雪花”的位置来突出主火炬.在其中91个“小雪花”上面写有此次参会的国家或地区的名称,此外还有几个“小雪花”上面只有中国结图案.这些只有中国结图案的“小雪花”共有个.15. 若关于x的一元二次方程(a−1)x2+a2x−a=0有一个根是x=1,则a=_____.16. 尊老敬老是中华民族的传统美德,某校文艺社团的同学准备在“五一”假期去一所敬老院进行慰问演出,他们一共准备了6个节目,全体演员中有8人需参加两个或两个以上的节目演出,情况如表:演员1演员2演员3演员4演员5演员6演员7演员8节目A√√√√√节目B√√√节目C√√√节目D√√节目E√√节目F√√从演员换装的角度考虑,每位演员不能连续参加两个节目的演出,从节目安排的角度考虑,首尾两个节目分别是A,F,中间节目的顺序可以调换,请写出一种符合条件的节目先后顺序(只需按演出顺序填写中间4个节目的字母即可).三、计算题(本大题共2小题,共12.0分)17. 计算:2cos30∘+|−√3|−(π−√3)0−√12.18. 解不等式组:{x−3(x−2)≥4, x−1<1+2x3.四、解答题(本大题共10小题,共80.0分。
2024年湖北省武汉二中广雅中学年中考数学模拟试题(一)
九年级(下)数学中考模拟(一)一、选择题(共10小题,每小题3分,共30分)1.-2024的绝对值是( )A.2024B.-2024C.-12024D.120242.下列几何图形中,是轴对称图形但不是中心对称图形是( )3.“三次投掷一枚硬币,三次都正朝上”这一事件是( )A.必然事件B.随机事件C.不可能事件D.确定性事件4.如图所示几何体的左视图是( )5.下列运算正确的是( )A.(−3aa)3=−9aa3B.(aa3)2=aa5C.(aaaa)5=aa5aa5D.aa6÷aa3=aa26.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心0的光线相交于点P,点F为焦点.若∠1=152°,∠3=50°,则∠2的度数为( )A.18°B.22°C.28°D.32°7.将分别标有“大”“美”“武”“汉”汉字的四张卡片装在一个不透明的盒子中,这些卡片除汉字外无其他差别,随机抽出两张,抽出的卡片上的汉字能组成“武汉”的概率是( )A.18B.16C.14D.128.某学习小组在网上获取了声音空气中的传播速度和空气温度之间的关系的一些数据如表,下列说法中错误的是( )温度(℃)-20 -10 0 10 20 30声速(m/s) 318 324 330 336 342 348A.温度每降低10℃,声减少6m/sB.若想让声速为355m/s,则温度应为40℃C.当温度升高到33摄氏度时,声速为349.8m/sD.在这个变化过程中,自变量是温度,声速是温度的函数9.如图,在边长为12的等边△ABC中,点E在边AC上自A向C运动,点F在边CB上自C向B运动,且运动速度相同,连接BE,AF交于点P,连接CP,在运动过程,点P的运动路径长为( )A.92ππB.4√3−34ππC.8√3−32ππD.8√33ππ9题图 10题图10.利用几何画板探究函数y=a(x−b)|x−c|图象,输入一组a,b,c的值之后,得到了如图所示的函数图象,根据学习函数的经验:可以判断,小雨输入的参数值满足( )A.a>0,b>0,c=0B.a<0,b>0,c=0C.a>0,b=0,c=0D.a<0,b=0,c>0二、填空题(共6小题)11.五一假期,武汉东湖风景区人气指数登上全国第八位,据统计约有161万名游客畅游东湖,其中数据161万用科学记数法表示为名.12.在每一个象限内,反比例函数y=k x(k≠0)随x的增大而增大,则k的值可以是 (填写一个即可)13.计算:2mm mm2−4−1mm−214.图1是一种折叠式晾衣架。
九年级数学中考模拟试题(1)
九年级阶段性测试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为90分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,将答案用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分. 4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分. 第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,共36分,选错、不选或选出的答案超过一个均计零分.1.化简4122a a a ⎛⎫+÷ ⎪--⎝⎭的结果是( ) A.2a a + B. 2a a + C. 2a a - D. 2aa - 2.在四张完全相同的卡片上,分别画有圆、菱形、等腰三角形、等腰梯形,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是( ) A.14 B. 12 C. 34D.1 3.如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( )A.29cm πB. 218cm πC. 227cm πD. 236cm π4.不等式组2153112x x x -⎧⎪⎨-+⎪⎩<≥的解集在数轴上表示正确的是( )A .B .C .D .5.如图是一个几何体的三视图,则这个几何体的侧面积是( )A.218cm B. 220cm C.(218cm + D.(218cm +6.关于x 、y 的方程组3,x y m x my n -=⎧⎨+=⎩的解是1,1.x y =⎧⎨=⎩则m n -的值是( )积之和为( ) A.1 B.2D.10.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则()A.S=2B.S=2.4C.S=4D.S与BE长度有关第10题图第11题图11.如图,是反比例函数2kyx-=的图像的一个分支,对于给出的下列说法:①常数k的取值范围是k>2;②另一个分支在第三象限;③在函数图像上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;④在函数图像的某一个分支上取点A(a1,b1)和点B(a2,b2),当a1>a2时,则b1<b2;其中正确的个数是()个.A.1B.2C.3D.412.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为()A. B.C. D.第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.分解因式:269a ab ab -+= .14.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为1001n n =∑,这里“∑”是求和符号,通过对以上材料的阅读,计算201211(1)n n n =+∑= .15.用尺子和圆规作一个角的平分线的示意图如图所示,则能说明∠AOC =∠BOC 的依据是.第15题图 第16题图 第18题图16.如图,是由若干个完全相同的小正方体组成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数是 .17.在△ABC 中,若∠A 、∠B满足21cos sin 022A B ⎛-+-= ⎝⎭,则∠C = .18.如图,在等边三角形ABC 中,D 是BC 边上的一点,延长AD 至E ,使AE =AC ,∠BAE 的平分线交△ABC 的高BF 于点O ,则tan ∠AEO = .九年级阶段性测试数 学 答 题 纸第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.14. 15.16.17.18.三、解答题:本大题共7小题,满分60分.解答时要写出必要的文字说明、证明过程或演算步骤.19.(8分)(1)计算:(10212;3π-⎛⎫-+⨯- ⎪⎝⎭(2)先化简,在求值:22222a b ab b a a ab a ⎛⎫-+÷+ ⎪-⎝⎭,其中1a =,1b =.姓名 班级 考号20.(8分)“最美女教师”张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷为她捐款,我市某中学九年级一班全体同学参加了捐款活动,该班同学捐款情况的部分统计图如图所示:(1)求该班的总人数;(2)将条形图补充完整,并写出捐款总额的众数;(3)该班平均每人捐款多少元?21.(8分)如图,E是矩形ABCD的边BC上一点,EF⊥AE,EF分别交AC,CD于点M,F,BG⊥AC,垂足为C,BG交AE于点H.(1)求证:△ABE∽△ECF;(2)找出与△ABH相似的三角形,并证明;(3)若E是BC中点,BC=2AB,AB=2,求EM的长22.(8分)有四张形状、大小和质地相同的卡片A、B、C、D,正面分别写有一个正多边形(所有正多边形的边长相等),把四张卡片洗匀后正面朝下放在桌面上,从中随机抽取一张(不放回),接着再随机抽取一张.(1)请你用画树形图或列表的方法列举出可能出现的所有结果;(2)如果在(1)中各种结果被选中的可能性相同,求两次抽取的正多边形能构成平面镶嵌的概率;(3)若两种正多边形构成平面镶嵌,p、q表示这两种正多边形的个数,x、y表示对应正多边形的每个内角的度数,则有方程px+qy=360,求每种平面镶嵌中p、q的值.23.(8分)如图,点A、B、C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.(1)求证:AP是⊙O的切线;(2)求PD的长.24.(10分)小明家今年种植的“红灯”樱桃喜获丰收,采摘上市20天全部销售完,小明对销售情况进行跟踪记录,并将记录情况绘成图像,日销售量y(千克)与上市时间x(天)的函数关系如图1所示,樱桃价格z(元/千克)与上市时间x(天)的函数关系式如图2所示.(1)观察图像,直接写出日销量的最大值;(2)求小明家樱桃的日销量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?25.如图,在平面直角坐标系中放置一直角三角板,其顶点为A(0,1),B(2,0),O(0,0),将此三角板绕原点O逆时针旋转90°,得到△A′B′O.(1)一抛物线经过点A′、B′、B,求该抛物线的解析式;(2)设点P是在第一象限内抛物线上的一动点,是否存在点P,使四边形PB′A′B的面积是△A′B′O面积4倍?若存在,请求出P的坐标;若不存在,请说明理由.(3)在(2)的条件下,试指出四边形PB′A′B是哪种形状的四边形?并写出四边形PB′A′B的两条性质.。
河南省2024届九年级下学期中考模拟数学试卷(一)及答案
2024年河南省中考数学复习模拟试卷(一)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.(共10题;共30分)1.(3分)绝对值小于4的所有整数的和是( )A.4B.8C.0D.17 2.(3分)将一个棱长为1的正方体水平放于桌面(始终保持正方体的一个面落在桌面上),则该正方体正视图面积的最大值为( )A.2B.C.D.1 3.(3分)根据最新数据统计,2018 年中山市常住人口已达到3260000 人.将3260000用科学记数法表示,下列选项正确的是( )A.3.26×105B.3.26×106C.32.6×105D.0.326×1074.(3分)如图,为的直径,弦于点E,于点F,,则为( )A.B.C.D.5.(3分)已知分式,,其中,则与的关系是( )A.B.C.D.6.(3分)如图,AC,BD是⊙O直径,且AC⊥BD,动点P从圆心O出发,沿O→C→D→O路线作匀速运动,设运动时间为t(秒),∠APB=y(度),则下列图象中表示y与t之间的函数关系最恰当的是( )A.B.C.D.7.(3分)关于的一元二次方程的根的情况,下列说法正确的是( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.与的值有关,无法确定8.(3分)一个不透明的袋子中放入三个除标号外其余均相同的小球,三个小球的标号分别是2,1,-1,随机从这个袋子中一次取出两个小球,取出的两个小球上数BK字之积为负数的概率是( )A.B.C.D.9.(3分)一次函数y=kx+b(k≠0)的图象如图,则下列结论正确的是( )A.k=2B.k=3C.b=2D.b=3 10.(3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P 不与点B,C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.二、填空题(每小题3分,共15分)(共5题;共15分)11.(3分)下表是2002年12月份的日历,现在用一个长方形在日历中任意框出4个数,请你用一个等式表示之间的关系 .12.(3分)已知关于x,y的方程组给出下列结论:①是方程组的一个解;②当时,x,y的值互为相反数③a=1时,方程组的解也是方程的解;④和之间的数量关系是.其中正确的是 (填序号)13.(3分)某班女学生人数与男生人数之比是4:5,把男女学生人数分布情况制成扇形统计图,则表示女生人数的扇形圆心角的度数是 .14.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交边BC于点D,E,F分别是AD,AC上的点,连接CE,EF.若AB=10,BC=6,AC=8,则CE+EF的最小值是 .15.(3分)如图,正方形网格中的△ABC,若小方格的边长都为1,则△ABC是 三角形.三、解答题(本大题共8个小题,共75分)(共8题;共75分)16.(10分)回答下列问题.(1)(5分)计算:.(2)(5分)解方程:.17.(9分)为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998根据以上信息,解答下列问题:(1)(3分)这个班共有男生 人,共有女生 人;(2)(3分)补全初二1班体育模拟测试成绩分析表;(3)(3分)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.18.(9分)一犯罪分子正在两交叉公路间沿到两公路距离相等的一条小路上逃跑,埋伏在A、B两处的两名公安人员想在距A、B相等的距离处同时抓住这一罪犯.请你帮助公安人员在图中设计出抓捕点.19.(9分)如图,等腰Rt的直角顶点A在反比例函数的图象上.(1)(3分)已知,求此反比例函数的解析式;(2)(3分)先将点A绕原点O逆时针旋转90°,得到点E,再将点E向右平移1个单位得到点F,若点F恰好在正比例函数的图象上,求正比例函数的表达式.20.(9分)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S在一条直线上,且直线与河垂直,在过点S且与直线垂直的直线a上选择适当的点T,与过点Q且与垂直的直线b的交点为R.如果,,,求的长.21.(9分)一辆出租车一天上午从某商场出发在东西大街上运行,若规定向东行为正,向西行为负,行驶里程(单位:km)依次如下:+9,-8,-5,+6,-8,+9,-3,-7,-5,+10.(1)(3分)将最后一名乘客送到目的地,出租车在该商场的哪边?离商场有多远?(2)(3分)如果出租车每行驶100 km的油耗为10L,1L汽油的售价为7.2元,那么出租车在这天上午消耗汽油的金额是多少元?22.(10分)如图,足球场上守门员在O处开出一高球,球从离地面1米的A处飞出(A在y轴上),运动员乙在距O点6米的B处发现球在自己头部的正上方达到最高点M,距地面4米高,球落地为C点.(1)(5分)求足球开始飞出到第一次落地时,该抛物线的解析式;(2)(5分)足球第一次落地点C距守门员多少米?23.(10分)如图,在菱形ABCD中,,将边AB绕点A逆时针旋转至,记旋转角为.过点D作于点F,过点B作BE⊥直线于点E,连接EF.【探索发现】(1)(3分)填空:当时,_ °;的值是_ ;(2)(3分)【验证猜想】当时,(1)中的结论是否仍然成立?若成立,请仅就图2的情形进行证明;若不成立,请说明理由;(3)(4分)【拓展应用】在(2)的条件下,若,当是等腰直角三角形时,请直接写出线段EF的长.答案1.C2.C3.B4.C5.B6.C7.C8.C9.D10.D11.d-c=b-a12.①②③13.160°14.4.815.直角16.(1)解:原式(2)解:,.17.(1)20;25(2)解:甲的平均分为×(5+6×2+7×6+8×3+9×5+10×3)=7.9,女生的众数为8,补全表格如下:平均分方差中位数众数男生7.9287女生7.92 1.9988(3)解:可根据众数比较得出答案.从众数看,女生队的众数高于男生队的众数,所以女生队表现更突出.18.解:角平分线上的点到角两边的距离相等(即犯罪分子在∠MON的角平分线上,点P也在其上)线段垂直平分线上的点到线段两端点的距离相等(所以点P在线段AB的垂直平分线上).∴两线的交点,即点P符合要求.19.(1)解:如图,作AC⊥OB于C,∵△AOB是等腰直角三角形,OA=2,∴AC=OC=2,∴A(2,2),∵直角顶点A在反比例函数y=(x>0)的图象上,∴k=2×2=4,∴反比例函数的解析式为y=;(2)解:∵A(2,2),∴将点A绕原点O逆时针旋转90°,得到点E(-2,2),再将点E向右平移1个单位得到点F(-1,2),∵点F恰好在正比例函数y=mx的图象上,∴2=-m,解得m=-2,∴正比例函数的表达式为y=-2x.20.解:由题意可知,,,设,∵,,,∴,,解得,经检验x=120是方程的解的长为.21.(1)解:9-8-5+6-8+9-3-7-5+10=(9+6+9+10)-(8+5+8+3+7+5)=34-36=-2(km).答:将最后一名乘客送到目的地,出租车在该商场的西边,离商场2 km;(2)解:|+9|+|-8|+|-5|+|+6|+|-8|+|+9|+|-3|+|-7|+|-5|+|+10|=70(km),×10×7.2= 50.4 (元).答:出租车在这天上午消耗汽油的金额是50.4元.22.(1)解:以O为原点,直线OA为y轴,直线OB为x轴建直角坐标系.由于抛物线的顶点是(6,4),所以设抛物线的表达式为y=a(x﹣6)2+4,当x=0,y=1时,1=a(0﹣6)2+4,所以a=﹣,所以抛物线解析式为:y=﹣x2+x+1;(2)解:令y=0,则﹣x2+x+1=0,解得:x1=6﹣4 (舍去),x2=6+4 =12.8(米),所以,足球落地点C距守门员约12.8米.23.(1)30;(2)解:当时,(1)中的结论仍然成立.证明:如图,连接BD,∵,∴,,∴,∴,∵,∴,∴,即,∴,,∴,又∵,∴,∴.(3)解:的长为或.。
精品解析: 2022年河南省名校联考九年级中考模拟考试(一)数学试题(解析版)
故A,B,D不符合题意,C符合题意;
故选C
【点睛】本题考查的是平均数与方差的含义,利用平均数与方差做决策,理解平均数的方差的意义是解本题的关键.
7.若方程 有实数根,则实数a的取值不可以是()
A.-1B.0C.1D.2
【答案】D
【解析】
【分析】当a≠0时,是一元二次方程,根据根的判别式的意义得Δ=22-4a×1=4-4a≥0,然后解不等式;当a=0时,是一元一次方程有实数根,由此得出答案即可.
3.下列用相同的正方体堆放在一起组成的几何体中,主视图和左视图不相同的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】根据主视图是从正面看到的图形,可得主视图,从左面看到的图形是左视图,可得答案.
【详解】A.主视图和左视图都相同,底层为三个小正方形,中层和上层的左边分别是一个小正方形,故本选项不合题意;
故选:C.
【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左面看得到的图形是左视图.
4.下列运算正确的是()
A. B. C. D.
【答案】B
【解析】
【分析】根据合并同类项可判断A,根据同底数幂的除法运算可判断B,根据同底数幂的乘法运算可判断C,根据积的乘方与幂的乘方运算可判断D,从而可得答案.
,
=5
故选B.
【点睛】本题考查的是一次函数与反比例函数的综合,坐标与图形的面积,二次根式的运算,一元二次方程的解法,求解A,B的坐标,再表示C的坐标是解本题的关键.
9.如图, OABC的顶点O(0,0),C(13,0),OA=3,点B在第一象限,将 OABC绕点O顺时针旋转得到 OA′B′C′,当点A的对应点A′落在x轴正半轴上时,点B的对应点B′恰好落在BC的延长线上,则点B′的坐标是()
浙教版-学年度九年级数学中考模拟试题一(含解析)
浙教版2018-2019学年度九年级数学中考模拟试题一一.选择题(共10小题,满分40分,每小题4分)1.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×1082.下列计算正确的是()A.x8÷x4=x2B.x3•x4=x12C.(x3)2=x6D.(﹣x2y3)2=﹣x4y63.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④4.若,,则x的取值范围()A.B.或C.或D.以上答案都不对5.已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.66.给出下列四个命题:正确命题的个数是()(1)若点A在直线y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(2)若A(a,m)、B(a﹣1,n)(a>0)在反比例函数y=的图象上,则m<n;(3)一次函数y=﹣2x﹣3的图象不经过第三象限;(4)二次函数y=﹣2x2﹣8x+1的最大值是9.A.1个B.2个C.3个D.4个7.将方程变形正确的是()A.9+B.0.9+C.9+D.0.9+=3﹣10x8.下列说法正确的是()A.x=4是不等式2x>﹣8的一个解B.x=﹣4是不等式2x>﹣8的解集C.不等式2x>﹣8的解集是x>4 D.2x>﹣8的解集是x<﹣49.如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cm B.6cm C.7cm D.8cm10.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若△BEC的面积为6,则k 等于()A.3 B.6 C.12 D.24二.填空题(共6小题,满分24分,每小题4分)11.盒子里有10个球,每个球上写有1﹣10中的1个数字,不同的球上数字不同,其中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是.12.计算:÷=.13.计算:(2m+3)(2m﹣3)=;x(x+2y)﹣(x+y)2=.14.在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC 为边构造▱AODC.当∠A=°时,线段BD最长.15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是.16.如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD翻折,点A 落在点E处,EB交DC于点F,则点F到直线DB的距离为.三.解答题(共9小题,满分86分)17.(7分)计算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.18.(7分)先化简,再求值:,其中.19.(8分)已知,如图1,四边形ABCD是正方形,E、F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转时一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF”,小明将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小明的思路写出证明过程;(2)如图2,当∠EAF的两边分别与CB、DC的延长线交于点E、F,连接EF,试探究线段EF、BE、DF之间的数量关系,并证明.20.(8分)如图:两个观察者从A,B两地观测空中C处一个气球,分别测得仰角为45°和60°,已知A,B两地相距200m,当气球沿着与AB平行地漂移40秒后到达C1,在A处测得气球的仰角为30度.求:(1)气球漂移的平均速度(结果保留3个有效数字);(2)在B处观测点C1的仰角(精确到度).21.(8分)铜陵市义安区实施了城乡居民基本医疗保险(简称“医疗保险”),办法规定农村村民只要每人每年交纳180元钱就可以加入医疗保险,住院时自己先垫付,出院同时就可得到按一定比例的报销款,这项举措惠及民生,吴斌与同学随机调查了他们镇的一些农民,根据收集到的数据绘制了以下的统计图.根据图中信息,解答下列问题:(1)本次调查了多少村民?被调查的村民中参加医疗保险,得到报销款的有多少人?(2)若该镇有34000村民,请估算有多少人参加了医疗保险?要使两年后参加医疗保险的人数增加到业务31460人,假设这两年的年增长率相同,求年增长率?22.(10分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O 的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.23.(10分)已知关于x的一元二次方程x2+2x+=0(1)若此方程有两个不相等的实数根,求k的取值范围;(2)当此方程有一根为零时,将二次函数y=x2+2x+图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后图象与原图象x轴上方的部分组成给一个“W”形状的新图象,观察新图象发现:①当直线y=m与该新图象有4个公共点时,实数m的取值范围是.②当直线y=x+b与该新图象恰好有3个公共点时,直接写出实数b的值.24.(14分)如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=°,理由是:;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.25.(14分)如图1,二次函数y=ax2﹣2ax﹣3a(a<0)的图象与x轴交于A、B两点(点A在点B的右侧),与y轴的正半轴交于点C,顶点为D.(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C.①求抛物线的函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;③点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5 300万美元,“5 300万”用科学记数法可表示为()A.5.3×103B.5.3×104C.5.3×107D.5.3×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5 300万=5 300×103万美元=5.3×107美元.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.下列计算正确的是()A.x8÷x4=x2B.x3•x4=x12C.(x3)2=x6D.(﹣x2y3)2=﹣x4y6【分析】根据同底数幂的除法对A进行判断;根据同底数幂的乘法对B进行判断;根据幂的乘方对C进行判断;根据积的乘方对D进行判断.【解答】解:A、原式=x4,所以A选项的计算错误;B、原式=x7,所以B选项的计算错误;C、原式=x6,所以C选项的计算正确;D、原式=x4y6,所以D选项的计算错误.故选:C.【点评】本题考查了同底数幂的除法法则:底数不变,指数相减.即a m÷a n=a m﹣n(a≠0,m,n是正整数,m>n).也考查了同底数幂的乘法.3.已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④【分析】①观察条件,知是当x=1时,有a+b+c=0,因而方程有根.②把x=﹣1和2代入方程,建立两个等式,即可得到2a+c=0.③方程ax2+c=0有两个不相等的实根,则△=﹣4ac>0,左边加上b2就是方程ax2+bx+c=0的△,由于加上了一个非负数,所以△>0.④把b=2a+c代入△,就能判断根的情况.【解答】解:①当x=1时,有若a+b+c=0,即方程有实数根了,∴△≥0,故错误;②把x=﹣1代入方程得到:a﹣b+c=0 (1)把x=2代入方程得到:4a+2b+c=0 (2)把(2)式减去(1)式×2得到:6a+3c=0,即:2a+c=0,故正确;③方程ax2+c=0有两个不相等的实数根,则它的△=﹣4ac>0,∴b2﹣4ac>0而方程ax2+bx+c=0的△=b2﹣4ac>0,∴必有两个不相等的实数根.故正确;④若b=2a+c则△=b2﹣4ac=(2a+c)2﹣4ac=4a2+c2,∵a≠0,∴4a2+c2>0故正确.②③④都正确,故选C.【点评】总结:1、一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.2、对于给定的条件要仔细分析,向所求的内容转化.4.若,,则x的取值范围()A.B.或C.或D.以上答案都不对【分析】在同一平面直角坐标系中作出反比例函数y=与y=2、y=﹣3的图象,观察图象可知,反比例函数y=落在直线y=2下方且在直线y=﹣3上方的部分所对应的x的取值,即为所求的x的取值范围.【解答】解:作出函数y=与y=2、y=﹣3的图象,由图象可知交点为(,2),(﹣,﹣3),∴当或时,有,.故选:C.【点评】本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.5.已知BD是△ABC的中线,AC=6,且∠ADB=45°,∠C=30°,则AB=()A.B.2C.3D.6【分析】根据题中所给的条件,在直角三角形中解题.根据角的正切值与三角形边的关系,结合勾股定理求解.【解答】解:过点B作BE⊥AC交AC于点E.如下图设BE=x,∵∠BDA=45°,∠C=30°,∴DE=x,BC=2x,∵tan∠C=,∴=tan30°,∴3x=(3+x),解得x=,在Rt△ABE中,AE=DE﹣AD=﹣3=,由勾股定理得:AB2=BE2+AE2,AB==3.故选:C.【点评】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.6.给出下列四个命题:正确命题的个数是()(1)若点A在直线y=2x﹣3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;(2)若A(a,m)、B(a﹣1,n)(a>0)在反比例函数y=的图象上,则m<n;(3)一次函数y=﹣2x﹣3的图象不经过第三象限;(4)二次函数y=﹣2x2﹣8x+1的最大值是9.A.1个B.2个C.3个D.4个【分析】根据题意和函数的有关性质,逐一判断每个命题的正确性.【解答】解:(1)联立或,解得或所以点A的坐标为(3,3)或((1,﹣1),在第一或第四象限正确(2)反比例函数y=,在每个象限内y随x的增大而减小,点A在第一象限,而点B 不能确定在第几象限,无法比较m、n的大小,错误(3)一次函数y=﹣2x﹣3的图象不经过第一象限,错误(4)二次函数y=﹣2x2﹣8x+1,可化为y=﹣2(x+2)2+9所以二次函数y=﹣2x2﹣8x+1的最大值是9,正确.(1)、(4)正确,故选B.【点评】此题考查了二次函数的增减性和最值,一次函数、反比例函数的增减性,以及一次函数的图象性质.7.将方程变形正确的是()A.9+B.0.9+C.9+ D.0.9+=3﹣10x【分析】根据分母分子同时扩大10倍后分式的数值不变可得出答案.【解答】解:方程变形得:0.9+=3﹣10x,所以选D.【点评】本题考查解一元一次方程的知识,注意等式性质的运用.8.下列说法正确的是()A.x=4是不等式2x>﹣8的一个解 B.x=﹣4是不等式2x>﹣8的解集C.不等式2x>﹣8的解集是x>4 D.2x>﹣8的解集是x<﹣4【分析】据题意只要解出不等式2x>﹣8的解,再用排除法解题即可.【解答】解:因为2x>﹣8的解为x>﹣4,所以A、x=4是不等式2x>﹣8的一个解,正确;B、x=﹣4是不等式2x>﹣8的解集,错误;C、不等式2x>﹣8的解集是x>4,错误;D、2x>﹣8的解集是x<﹣4,错误.故选:A.【点评】本题较简单,解答此题的关键是掌握不等式的性质,在不等式两边同除一个正数,不等号的方向不变.9.如图,在⊙O内有折线OABC,点B、C在圆上,点A在⊙O内,其中OA=4cm,BC=10cm,∠A=∠B=60°,则AB的长为()A.5cm B.6cm C.7cm D.8cm【分析】延长AO交BC于D,过O作BC的垂线,设垂足为E,根据∠A、∠B的度数易证得△ABD是等边三角形,设AB的长为xcm,由此可表示出OD、BD和DE的长;在Rt△ODE中,根据∠ODE的度数,可得出OD=2DE,进而可求出x的值.【解答】解:延长AO交BC于D,作OE⊥BC于E,设AB的长为xcm,∵∠A=∠B=60°,∴∠ADB=60°;∴△ADB为等边三角形;∴BD=AD=AB=x;∵OA=4cm,BC=10cm,∴BE=5cm,DE=(x﹣5)cm,OD=(x﹣4)cm,又∵∠ADB=60°,∴DE=OD,∴x﹣5=(x﹣4),解得:x=6.故选:B.【点评】此题主要考查了等边三角形的判定和性质以及勾股定理的应用.解答此题时,通过作辅助线将半径OB置于直角三角形OBE中,从而利用勾股定理求得.10.如图,Rt△ABC的直角边BC在x轴正半轴上,斜边AC边上的中线BD反向延长线交y轴负半轴于E,双曲线y=的图象经过点A,若△BEC的面积为6,则k 等于()A.3 B.6 C.12 D.24【分析】先根据题意证明△BOE∽△CBA,根据相似比及面积公式得出BO•AB的值即为|k|的值,再由函数所在的象限确定k的值.【解答】解:∵BD为Rt△ABC的斜边AC上的中线,∴BD=DC=AC,∴∠DBC=∠ACB,又∵∠DBC=∠EBO,∴∠EBO=∠ACB,又∵∠BOE=∠CBA=90°,∴△BOE∽△CBA,∴BO:BC=OE:AB,即BC•OE=BO•AB.=6,又∵S△BEC∴BC•EO=6,即BC•OE=12,∵|k|=BO•AB=BC•OE=12.又∵反比例函数图象在第一象限,k>0.∴k=12.故选:C.【点评】此题主要考查了反比例函数y=中k的几何意义、相似三角形的判定与性质以及直角三角形的性质.此题难度较大,注意掌握数形结合思想的应用.二.填空题(共6小题,满分24分,每小题4分)11.盒子里有10个球,每个球上写有1﹣10中的1个数字,不同的球上数字不同,其中两个球上的数的和可能是3,4,…,19.现从盒中随意取两个球,这两个球上的数的和,最有可能出现的是11.【分析】分别找到和等于3,4,…,19的可能的情况数,看和等于哪个数的情况数最多即可.【解答】解:共有90种情况,和为3的有2种情况;和为4的有2种情况;和为5的有4种情况;和为6的有4种情况;和为7的有6种情况;和为8的有6种情况;和为9的有9种情况;和为10的有8种情况;和为11的有10种情况;和为12的有8种情况;和为13的有8种情况;和为14的有6种情况;和为15的有6种情况;和为16的有4种情况;和为17的有4种情况;和为18的有2种情况;和为19的有1种情况;故答案为11.【点评】考查用树状图解决实际问题;画出所有的树状图是解决本题的关键.12.计算:÷=.【分析】直接利用分式的除法运算法则计算得出答案.【解答】解:÷=×=.故答案为:.【点评】此题主要考查了分式的除法运算,正确掌握运算法则是解题关键.13.计算:(2m+3)(2m﹣3)=4m2﹣9;x(x+2y)﹣(x+y)2=﹣y2.【分析】利用平方差公式进行解答;由单项式乘多项式和完全平方公式进行解答.【解答】解:(2m+3)(2m﹣3)=(2m)2﹣32=4m2﹣9;x(x+2y)﹣(x+y)2=x2+2xy﹣x2﹣2xy﹣y2=﹣y2.故答案是:4m2﹣9;﹣y2.【点评】考查了平方差公式,完全平方公式和单项式乘多项式,属于解题计算题,熟记公式或计算法则即可解答.14.在⊙O中,弧AB所对的圆心角∠AOB=108°,点C为⊙O上的动点,以AO、AC 为边构造▱AODC.当∠A=27°时,线段BD最长.【分析】如图,连接OC,延长OA交⊙O于F,连接DF.由△DOF≌△CAO,可得DF=OC,推出点D的运动轨迹是F为圆心OC为半径的圆,推出当点D在BF的延长线上时,BD 的值最大,由此即可解决问题;【解答】解:如图,连接OC,延长OA交⊙O于F,连接DF.∵四边形ACDO是平行四边形,∴∠DOF=∠A,DO=AC,∵OF=AO,∴△DOF≌△CAO,∴DF=OC,∴点D的运动轨迹是F为圆心OC为半径的圆,∴当点D在BF的延长线上时,BD的值最大,∵∠AOB=108°,∴∠FOB=72°,∵OF=OB,∴∠OFB=54°,∵FD=FO,∴∠FOD=∠FDO=27°,∴∠A=∠FOD=27°,故答案为27°.【点评】本题考查圆周角定理、平行四边形的性质、全等三角形的判定和性质、点与圆的位置关系等知识,解题的关键是确定点D的运动轨迹,灵活运用所学知识解决问题,属于中考填空题中的压轴题.15.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,请根据这组数的规律写出第10个数是55.【分析】通过对题目中给出的数据进行分析可以发现:从第三个数起,每一个数都等于它前面两个数的和.如13=8+5.按照这个规律即可求出答案.【解答】解:3=2+1;5=3+2;8=5+3;13=8+5;…可以发现:从第三个数起,每一个数都等于它前面两个数的和.则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=55.故答案为55.【点评】此题考查了数字的有规律变化,解答此类题目的关键是要求学生的通对题目中给出的图表,数据等认真进行分析、归纳并发现其中的规律,并应用规律解决问题.此类题目难度一般偏大.16.如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD翻折,点A 落在点E处,EB交DC于点F,则点F到直线DB的距离为.【分析】由折叠性质可以得到,∠FBD=∠ABD=30°,△DEB≌△BCD,进而得到△DFB 是等腰三角形,有DF=FD,作FG⊥BD,由等腰三角形的性质:底边上的高与底边上的中线重合,则点G是BD的中点,而BD=ADsin30°=4,所以可求得FG=BGtan30°=.【解答】解:∵矩形纸片沿对角线BD翻折,点A落在点E处∴∠FBD=∠ABD=30°,△DEB≌△BCD,∴∠DBE=∠CDB,∴DF=FB,∴△DFB是等腰三角形,过点F作FG⊥BD,则点G是BD的中点∵BD=AD÷sin30°=4∴BG=2∴FG=BGtan30°=.【点评】本题利用了:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、矩形的性质,等腰三角形的性质,锐角三角函数的概念求解.三.解答题(共9小题,满分86分)17.(7分)计算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.【分析】根据实数的运算顺序,首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a ≠0);②00≠1.18.(7分)先化简,再求值:,其中.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•=•=,当a=﹣1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(8分)已知,如图1,四边形ABCD是正方形,E、F分别在边BC、CD上,且∠EAF=45°,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转时一种常用的方法.(1)在图1中,连接EF,为了证明结论“EF=BE+DF”,小明将△ADF绕点A顺时针旋转90°后解答了这个问题,请按小明的思路写出证明过程;(2)如图2,当∠EAF的两边分别与CB、DC的延长线交于点E、F,连接EF,试探究线段EF、BE、DF之间的数量关系,并证明.【分析】(1)利用旋转的性质,证明△AGE≌△AFE即可;(2)把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF即可求得EF=DF﹣BE.【解答】(1)证明:由旋转可得GB=DF,AF=AG,∠BAG=∠DAF,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°=∠EAF,在△AGE和△AFE中∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=GB+BE=BE+DF,∴EF=BE+DF;(2)解:EF=DF﹣BE,证明如下:如图,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF,∴EF=GF,且DG=BE,∴EF=DF﹣DG=DF﹣BE.【点评】本题主要考查正方形的性质及全等三角形的判定和性质,构造全等三角形是解题的关键,注意旋转性质的应用.20.(8分)如图:两个观察者从A,B两地观测空中C处一个气球,分别测得仰角为45°和60°,已知A,B两地相距200m,当气球沿着与AB平行地漂移40秒后到达C1,在A处测得气球的仰角为30度.求:(1)气球漂移的平均速度(结果保留3个有效数字);(2)在B处观测点C1的仰角(精确到度).【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形,应利用其公共边构造等量关系,进而可求出答案.【解答】解:(1)作CD⊥AB,C1E⊥AB,垂足分别为D、E,在RT△ACD中,AD=CD÷tan∠CAD=CD÷tan45°=CD;在RT△BCD中,BD=CD÷tan∠CBD=CD÷tan60°=;又因为AB=AD﹣BD=200,所以CD﹣=200,解之得CD=100(3),又CD⊥AB,C1E⊥AB,CC1∥AB,所以C1E=CD,DE=CC1,在RT△AEC1中,AE=C1E÷tan∠C1AE=100(3+)÷tan30°=300(),所以CC1=DE=AE﹣AD=300()﹣100(3+),即CC1=200,速度为200÷40≈8.66m/s;(2)由(1)知BD==100(1),所以tan∠C1BE==≈0.7637,所以∠C1BE=37°,即仰角为37°.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.21.(8分)铜陵市义安区实施了城乡居民基本医疗保险(简称“医疗保险”),办法规定农村村民只要每人每年交纳180元钱就可以加入医疗保险,住院时自己先垫付,出院同时就可得到按一定比例的报销款,这项举措惠及民生,吴斌与同学随机调查了他们镇的一些农民,根据收集到的数据绘制了以下的统计图.根据图中信息,解答下列问题:(1)本次调查了多少村民?被调查的村民中参加医疗保险,得到报销款的有多少人?(2)若该镇有34000村民,请估算有多少人参加了医疗保险?要使两年后参加医疗保险的人数增加到业务31460人,假设这两年的年增长率相同,求年增长率?【分析】(1)图中参加医疗保险和未参加医疗保险人数的和是本次共调查的村民人数,参加医疗保险并得到报销款的村民占25%,而参加医疗保险的总人数是260,那么参加医疗保险并得到报销款的人数可求;(2)根据统计的数据可求出参保率,34000人中有多少人参保可求,每年参保的人数等于上一年的参保人数乘以(1+x)(x为年增长率),据此可算出两年后的参保人数,而人数是31460,故可得到一个一元二次方程,解此方程可求年增长率.【解答】解:(1)260+80=340(人),260×25%=65(人);(2)34000×=26000(人).设这个相同的年增长率为x.依题意得,26000(1+x)2=31460,解得,x1=0.1=10%,x2=﹣2.1(不合题意舍去).答:该镇大约有26000人参加了医疗保险,相同的年增长率为10%.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.也考查了条形统计图、扇形统计图的应用以及利用样本估计总体.22.(10分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O 的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.【分析】(1)欲证明KE=GE,只要证明∠EGK=∠EKG即可;(2)欲证明CA∥FE,只要证明∠ACH=∠E即可;(3)作NP⊥AC于P.首先证明AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK==a由AK=,推出a=,可得a=1.AC=5,在Rt△APN中,tan∠CAH==,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN==3,推出CP=4b,推出AC=AP+CP=13b,由AC=5,推出13b=5,推出b=,可得CN==4b 解决问题;【解答】(1)证明:连接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)设∠FGB=α,∵AB是直径,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH==,设AH=3a,AC=5a,则CH==4a,tan∠CAH==,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK==a,∵AK=,∴a=,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,∴∠ABG+∠HKG=180°,∵∠AKH+∠HKG=180°,∴∠AKH=∠ABG,∵∠ACN=∠ABG,∴∠AKH=∠ACN,∴tan∠AKH=tan∠ACN=3,∵NP⊥AC于P,∴∠APN=∠CPN=90°,在Rt△APN中,tan∠CAH==,设PN=12b,则AP=9b,在Rt△CPN中,tan∠ACN==3,∴CP=4b,∴AC=AP+CP=13b,∵AC=5,∴13b=5,∴b=,∴CN==4b=.【点评】本题考查圆综合题、锐角三角函数、平行线的判定和性质、勾股定理、直径的性质、圆周角定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考压轴题.23.(10分)已知关于x的一元二次方程x2+2x+=0(1)若此方程有两个不相等的实数根,求k的取值范围;(2)当此方程有一根为零时,将二次函数y=x2+2x+图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后图象与原图象x轴上方的部分组成给一个“W”形状的新图象,观察新图象发现:①当直线y=m与该新图象有4个公共点时,实数m的取值范围是0<m<1.②当直线y=x+b与该新图象恰好有3个公共点时,直接写出实数b的值.【分析】(1)根据一元二次方程根的判别式即可得出;(2)先根据原抛物线的解析式得出翻折后得出新图象的解析式,进而画出图象,①根据图象直接判断出来;②结合图形确定出直线的位置即可求出b的值.【解答】解:(1)关于x的一元二次方程x2+2x+=0有两个不相等的实数根,∴△=22﹣4×>0,∴k<3;(2)∵关于x的一元二次方程x2+2x+=0方程有一根为零∴当x=0时,k=1,二次函数解析式为y=x2+2x=(x+1)2﹣1,∴抛物线y=x2+2x的顶点坐标为(﹣1,﹣1),当y=0时,x2+2x=0,解得x1=0,x2=﹣2,则抛物线y=x2+2x与x轴的交点为(﹣2,0),(0,0),把抛物线y=x2+2x图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣(x+1)2+1(﹣2≤x≤0),顶点坐标M(﹣1,1),如图,①当直线y=m与该新图象有4个公共点时,0<m<1故答案为0<m<1;②把直线y=x向上平移,当平移后的直线y=x+b过点A时,直线y=x+b与该新图象恰好有三个公共点,∴×(﹣2)+b=0,解得b=1;当直线y=x+b与抛物线y=﹣(x+1)2+1(﹣2≤x≤0)相切时,直线y=x+b与该新图象恰好有三个公共点,即﹣(x+1)2+1=x+b有相等的实数解,整理得x2+x+b=0,△=()2﹣4b=0,解得b=,所以b的值为1或.【点评】此题主要考查了翻折的性质,一元二次方程根的判别式,抛物线的性质,确定翻折后抛物线的关系式;利用数形结合的方法是解本题的关键,画出函数图象是解本题的难点.24.(14分)如图,AB是⊙O的直径,点C在⊙O上,∠ABC的平分线与AC相交于点D,与⊙O过点A的切线相交于点E.(1)∠ACB=90°,理由是:直径所对的圆周角是直角;(2)猜想△EAD的形状,并证明你的猜想;(3)若AB=8,AD=6,求BD.【分析】(1)根据AB是⊙O的直径,点C在⊙O上利用直径所对的圆周角是直角即可得到结论;(2)根据∠ABC的平分线与AC相交于点D,得到∠CBD=∠ABE,再根据AE是⊙O 的切线得到∠EAB=90°,从而得到∠CDB+∠CBD=90°,等量代换得到∠AED=∠EDA,从而判定△EAD是等腰三角形.(3)证得△CDB∽△AEB后设BD=5x,则CB=4x,CD=3x,从而得到CA=CD+DA=3x+6,然后在直角三角形ACB中,利用AC2+BC2=AB2得到(3x+6)2+(4x)2=82解得x后即可求得BD的长.【解答】解:(1)∵AB是⊙O的直径,点C在⊙O上,∴∠ACB=90°(直径所对的圆周角是直角)(2)△EAD是等腰三角形.证明:∵∠ABC的平分线与AC相交于点D,∴∠CBD=∠ABE∵AE是⊙O的切线,∴∠EAB=90°∴∠AEB+∠EBA=90°,∵∠EDA=∠CDB,∠CDB+∠CBD=90°,∵∠CBE=∠ABE,∴∠AED=∠EDA,∴AE=AD∴△EAD是等腰三角形.(3)解:∵AE=AD,AD=6,∴AE=AD=6,∵AB=8,∴在直角三角形AEB中,EB=10∵∠CDB=∠E,∠CBD=∠ABE∴△CDB∽△AEB,∴===∴设CB=4x,CD=3x则BD=5x,∴CA=CD+DA=3x+6,在直角三角形ACB中,AC2+BC2=AB2即:(3x+6)2+(4x)2=82,。
九年级中考数学模拟试题
2022第1页( 共6页)2022年九年级中考模拟考试数学试题考生注意:1.本试卷共三大题24小题,卷面满分120分,考试时间120分钟;2.本试卷分试题卷和答题卡两部分,请将各题答案写在答题卡上每题对应的答题区域内,写在试题卷上无效;考试结束,只上交答题卡.3.参考公式:l 弧长=n πR 180;抛物线y =ax 2+bx +c 的顶点坐标是(-b 2a ,4ac -b 24a ).一、选择题(本大题满分33分,共11小题,每小题3分)下列各小题都给出了四个选项,其中只有一个符合题目要求,请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.1.若a =-2 022,则a 的绝对值是(☆☆☆).A .2 022B .-2 022C .12022D .-120222.国际数学家大会每四年举行一次,是全世界数学家交流、展示、研讨数学发展的国际性会议.下列四个图形分别是四届大会的会标,其中是轴对称图形的是(☆☆☆).3.北京冬奥会开幕式于2022年2月4日在国家体育场鸟巢举行. 本届冬奥会共招募志愿者39000余人.数据39000用科学记数法表示为(☆☆☆).A .3.9×103 B .3.9×104 C .3.9×105 D .39×1034.如图,是某个几何体的三视图,则该几何体是(☆☆☆).A .圆锥 B .长方体C .圆柱D .三棱柱5.九年级(1)班共有40名同学.在一次数学课上,老师提问后要求同学举手回答,结果有30名同学举手,其中男生10名,女生20名.若老师在举手的同学中随机选择一名同学回答问题,恰好选中女生的概率是(☆☆☆).A .14B .13C .12D .236.下列运算正确的是(☆☆☆).A .a 3+a 2=a 5B .a 3-a 2=aC .a 3﹒a 2=a 5D .(a 3)2=a 5(第4题)A B CD2022第2页( 共6页)7.将三角尺ABC 和DEF (其中∠B =30°,∠F =45°)按如图方式放置,其中斜边EF ∥AB ,顶点C ,D 分别在EF ,AB 上,AC 与DE 相交于点P ,则∠APE 的度数是(☆☆☆).A .105° B .90° C .75° D .60°8.如图,四边形ABCD 内接于⊙O ,若∠D =130°,则∠AOC 的度数是(☆☆☆).A .130° B .100° C .65° D .50°9.要使代数式xx +1有意义,则x 应满足的条件是( ).A .x =0B .x ≠0C .x =1D .x ≠-110.如图,线段MN 的垂直平分线l 与MN 相交于点Q ,P 是l 上一点,若tan M =34,则sin β的值为(☆☆☆).A .45 B .35 C .43 D .3411.如图,矩形ABCD 的面积为8,设AB =x ,AD =y ,则在下列图象中,能大致反映x 与y 之间的关系的图象是(☆☆☆).二、填空题(本大题满分12分,共4小题,每小题3分)请将下列各题的答案写在答题卡上指定的位置.12.计算5×(-1)2+(-3)的结果是☆☆☆ .13.为落实国家“双减”政策,某市在《义务教育阶段学生书面作业设计指南》中规定,九年级学生语文、数学、英语、物理、化学、道德与法治、历史学科每周周末书面作业总时长分别是(单位:min ):60,80,40,45,45,0,0.这组数据的中位数是 ☆☆☆.A B C DxyO42yxO42yxO42xyO42☆☆☆(第7题)ADC BEPF(第8题)AC BOD A BDC(第11题)x y(第10题)MNP Q l β2022第3页( 共6页)14.如图,平面直角坐标系中,点B 的坐标为(-3,2),BA ⊥x 轴,垂足是点A ,将△OAB 绕点O 顺时针旋转90°得到△OA ′B ′,则点B 的对应点B'的坐标是 ☆☆☆.15.如图,边长为2的正方形ABCD 的中心与半径为2的⊙O 的圆心重合,E ,F 分别是边AD ,BA 的延长与⊙O 的交点,则图中阴影部分的面积是 ☆☆☆.(结果保留π)三、解答题(本大题满分75分,共9小题)请将下列各题的解答过程写在答题卡上指定的位置.16.(本题满分6分)解不等式组:⎩⎪⎨⎪⎧x +23<1,3(x +1)≥x -1.17.(本题满分6分)如图,△ABC 是等边三角形,D 是BC 上的点,点E 在△ABC 外,且∠BAD =∠CAE ,AD =AE .求证: (1)△ABD ≌△ACE ;(2)CE ∥AB .18.(本题满分7分)如图,在5×5的正方形网格中,点A ,B ,C 都在小正方形的顶点上,一条圆弧经过A ,B ,C 三点.(1)请你确定这条圆弧所在圆的圆心O ;连接OA ,OC ,则∠AOC 的度数为 ;(2)设最小正方形的边长为1,求AC 的长(结果保留根号).(第18题)ACB(第15题)AFE B CDO(第14题)xy O BAA ′B ′(第17题)AEDCB2022 第4页共6页19.(本题满分7分)3月22日是“世界水日”,设立“世界水日”的宗旨是唤醒公众的节水意识,保护水资源. 生活中,如果水龙头关闭不严会造成滴水浪费. 为调查漏水量与漏水时间的关系,某实验小组观察了一漏水水龙头,得到漏水量与滴水时间的一组数据如下表(表中w 表示漏水量,t 表示滴水时间):(1)根据表中数据,在下列直角坐标系中描出各点,并顺次连接各点; (2)请你判断这些点近似地在哪种函数图象上?写出此函数的解析式; (3)请你估算该水龙头在这种漏水状态下一天的漏水量.20.(本题满分8分)为配合全市开展“清除违法建设”工作,某学校举行了以“清除违章建筑,建设美丽当阳”为主题的演讲比赛. 赛后组委会整理参赛同学成绩,将成绩按分数段分为A ,B ,C ,D 四组,并制作了如下不完整的频数分布表和频数分布直方图.请根据图表提供的信息,解答下列问题: (1)①表中a =,b =;②补全频数分布直方图;(2)若用扇形统计图描述成绩分布情况,求B 组所对应扇形的圆心角的度数; (3)比赛结果显示,成绩不低于90分的4名同学中正好有2名男生和2名女生. 学校从这4名同学中随机抽取2名同学接受电视台记者采访,求正好抽到1名男生和1名女生的概率(用列表或树状图法).时间t /min 0 5 10 15 20 25 30 … 水量w /mL102028405260…组别 成绩x (分) 频数(人) 百分比 A 60≤x <70 8 20% B 70≤x <80a 30% C 80≤x <90 16b % D90≤x <100410%w /min(第19题)(第20题)/分2022 第5页共6页21.(本题满分8分)如图,菱形ABCD 的对角线AC ,BD 相交于点E ,△ABE 的外接圆⊙O 交边AD 于点F ,过点E 作PQ ⊥AD 交AD 于点P ,交BC 于点Q . (1)求证:PQ 是⊙O 的切线; (2)若DF =2,PE =:5①求⊙O 的半径r ;②试比较菱形ABCD 的面积S 菱形ABCD 与⊙O 的面积S ⊙O 的大小.22.(本题满分10分)某企业为新能源汽车生产配件. 2021年该配件销售单价为1 000元,月均销售量2万件;每件配件的成本包括材料成本、人力成本和其他成本三部分,其中材料成本是人力成本的14倍,人力成本比其他成本多20元,总成本合计780元. (1)求每件配件的材料成本、人力成本和其他成本各是多少元?(2)2022年,这种配件每件的材料成本下降了40元,人力成本增加了20%,其他成本保持不变. 从2022年开始,该企业对这种配件实行降价销售,与2021年相比,销售单价降低的百分数为0.5a ,实现月均销售量增加,增加的百分数为a . 这样,2022年一季度销售总利润为1 320万元,求a 的值.(销售利润=销售收入-总成本)(第21题)2022 第6页共6页23.(本题满分11分)如图,矩形ABCD 中,AB =3,AD =5,E 是BC 边上的点,BE =1,连接DE . P 是AD 边上的动点,过点P 作PQ ∥DE 交边AB 于点Q . (1)如图1,求证:△APQ ∽△CED ;(2)如图2,若点H 是线段DE 上的点,P 是AD 的中点,连接PH ,QH ,若PQ 平分∠APH ,求证:△HPQ ≌△APQ ;(3)如图3,当点P 在AD 边上运动时,设PA =x ,若点H 在直线DE 的下方,线段QH经过点E ,那么,是否存在实数x ,使以P ,Q ,H 为顶点的三角形与△APQ 全等?若存在,求出x 的值;若不存在,说明理由.24.(本题满分12分)如图,平面直角坐标系中,矩形OABC 的顶点A ,C 分别在x 轴和y轴的正半轴上,点B 在第一象限,OA =n ,OC =(n >0).抛物线L :y =-x 2+bx +cn 212经过B ,C 两点.(1)求的值;bc(2)如图1,设Q 是抛物线L 上位于x 轴上方的动点,当△QBC 的面积最大且与矩形OABC的面积相等时,求此时矩形OABC 的周长;(3)如图2,设线段EF 的两个端点坐标为E (1,4),F (5,4),过点F 作x 轴的垂线,垂足为点H ,连接EH .①若抛物线L 与直线EH 有且只有一个公共点,求n 的值;②当抛物线L 与△EFH 有公共点时,探究其公共点的个数及对应n 的取值范围.(第23题 图3 供参考)AB C E PQ H FE AH QB C DP(第23题 图2)(第23题 图1)AQ B C DP(第24题 图1)(第24题 图2 供参考)。
2024年四川省成都市中考模拟数学试卷(一)
2024年四川省成都市中考模拟数学试卷(一)一、单选题1.在数轴上,下列四个数的对应点中,离原点最近的是( ). A .2-B .1.3C .0.4-D .0.62.农业农村部消息称,今年全国新建高标准农田80000000亩,优质稻谷、大豆种植面积持续增加,粮食丰收已成定局.将数据80000000用科学记数法表示为( ) A .68010⨯B .80.810⨯C .7810⨯D .8810⨯3.下列计算正确的是( ) A .m n mn +=B .22()mn m n =C .2224() 24m n m n mn +=++D .24()4)(4m m m +-=-4.成都是国家历史文化名城,区域内的都江堰、武侯祠、杜甫草堂、金沙遗址、青羊宫都有深厚的文化底蕴,某班同学分小组到以上五个地方进行研学旅行,人数分别为:10,9,11,10,8(单位:人),这组数据的众数和中位数分别是( ) A .10人,9人B .10人,10人C .10人,11人D .8人,11人5.如图,菱形ABCD 中,E F 、分别是AB AC 、的中点,若3EF =,则菱形ABCD 的周长为( )A .24B .18C .12D .96.“无偿献血,让你我血脉相连”,会宁县某中学有5名教师自愿献血,其中3人血型为O 型,2人血型为A 型,现从他们当中随机挑选2人参与献血,抽到的两人均为O 型血的概率为( ) A .310B .38C .25D .377.《九章算术》中记载这样一个问题:“今有上禾五秉,损实一斗一升,当下禾七秉;上禾七秉,损实二斗五升,当下禾五秉.”翻译后的大致意思:5捆上等稻子少结1斗1升稻谷,相当于7捆下等稻子结的稻谷;7捆上等稻子少结2斗5升稻谷,相当于5捆下等稻子结的稻谷,问上等稻子和下等稻子1捆分别能结多少稻谷(1斗=10升)?设上等稻子和下等稻子1捆分别能结稻谷x 升和y 升,则可列方程组为( ) A .51177255x y x y +=⎧⎨+=⎩ B .51177255y x y x -=⎧⎨-=⎩C .51177255x yx y -=⎧⎨-=⎩D .57117525y x y x =-⎧⎨=-⎩8.如图,抛物线2(0)y ax bx c a =++≠过点(1,0)和点(0,2)-,且顶点在第三象限,则下列判断错误的是( )A .2a b +=B .方程230ax bx c ++-=有两个不相等的实数根C .02b <<D .10a b c -<-+<二、填空题9.因式分解:25a a -=.10.若点()13,A y -,()22,B y -,()31,C y 都在函数3y x=-的图象上,则1y ,2y ,3y 的大小关系是(用“>”连接).11.如图,123l l l ∥∥,2cm BC =,3DFEF=,则AB 的长为.12.如图,已知AB CF ∥,E 为DF 的中点,若9,4AB BD ==,则CF =.13.如图,在Rt ABC △中,90BAC ∠=︒,按以下步骤作图:分别以点A 和点C 为圆心,以大于12AC 长为半径作弧,两弧相交于M ,N 两点,直线MN 交BC 边于点D .连接AD .若8AC =,5AD =,则AB 的长为.三、解答题14.(1)计算:()23112tan 603-⎛⎫-⨯--︒ ⎪⎝⎭;(2)求不等式组()2532,1321,2x x x x ⎧+≤+⎪⎨+-<⎪⎩①②的解集,并写出不等式组的非负整数解...... 15.某同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必选且只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取名学生,m 的值是,并根据题中信息补全条形统计图;(2)扇形统计图中,“数学”所对应的圆心角度数是;(3)若该校九年级共有320名学生,根据抽样调查的结果,请估计该校九年级学生中有多少名学生对数学感兴趣.16.张老师家的洗手盆上装有一种抬启式水龙头(如图①),完全开启后,把手AM 与水平线的夹角为37︒,此时把手端点A 、出水口点B 和落水点C 在同一直线上,洗手盆及水龙头示意图如图②,其相关数据为10cm 6cm 22cm AM MD DE ===,,,求EC 的长.(结果精确到0.1cm ,参考数据: 3sin 375︒=, 4cos375︒=, 3tan 374︒= 1.73≈)17.如图,AB 是O e 的直径,点D 在AB 的延长线上,C 是O e 上的一点,BCD CAB ∠=∠.(1)求证:CD 是O e 的切线; (2)若2tan 3CAB ∠=,4BD =,求O e 的半径. 18.如图,在平面直角坐标系xOy 中,一次函数24y x =+的图象与反比例函数ky x=的图象相交于(),2A a -,B 两点.(1)求反比例函数的表达式;(2)点C 是反比例函数第一象限图象上一点,且ABC V 的面积是AOB V 面积的一半,求点C 的横坐标;(3)将AOB V 在平面内沿某个方向平移得到(DEF △其中点A 、O 、B 的对应点分别是D 、E 、)F ,若D 、F 同时在反比例函数ky x=的图象上,求点E 的坐标.四、填空题 19.已知11233a b -=,则3234a b ab b a ab---+的值为. 20.如图是某圆锥的主视图和左视图,则该圆锥的表面积是.21.学校花园边墙上有一宽()BC为的矩形门ABCD ,量得门框对角线AC 长为4m ,为美化校园,现准备打掉地面BC 上方的部分墙体,使其变为以AC 为直径的圆弧形门,则要打掉墙体(阴影部分)的面积是 2m .22.如图,在Rt ABC △中,90ABC ∠=︒,8AB =,6BC =,分别在AB ,AC 上取点E ,F ,将AEF △沿直线EF 翻折得到A EF '△.使得点A 的对应点A '恰好落在CB 延长线上.当60EA B ∠'=︒时,AE 的长为.23.观察按一定规律排列的一组数:2,12,27,…,其中第1n +个数记为1n a +,第2n +个数记为2n a +,且满足21121n n n a a a ++=+,则4a ;2024a .五、解答题24.某企业为开启网络直播带货的新篇章,计划购买A ,B 两种型号直播设备.已知A 型设备价格是B 型设备价格的1.2倍,用4800元购买A 型设备的数量比用3000元购买B 型设备的数量多5台.(1)求A ,B 型设备单价分别是多少元;(2)该企业计划购买两种设备共60台,要求A 型设备数量不少于B 型设备数量的一半,设购买A 型设备a 台,购买总费用为w 元,求w 与a 的函数关系式,并求出最少购买费用.25.已知如图,抛物线()20y ax bx c a =++≠与坐标轴分别交于点()0,3A ,()3,0B -,()1,0C .(1)求抛物线解析式;(2)点P 是抛物线第三象限部分上的一点,若满足PCB ABC ∠=∠,求点P 的坐标; (3)若D 是x 轴上一点,在抛物线上是否存在点E ,使得以点A 、B 、D 、E 为顶点的四边形是平行四边形,若存在,请写出E 点的坐标,若不存在,请说明理由;26.从特殊到一般再到特殊是数学学习的重要模式,某数学兴趣小组拟做以下探究学习. 在Rt ABC △中,90ACB ∠=︒,AC BC =,将线段BC 绕点C 顺时针旋转α(0180α︒<<︒)得到线段DC ,取AD 中点H ,直线CH 与直线BD 交于点E ,连接AE .(1)【感知特殊】如图1,当30α=︒时,小组探究得出:AED △为等腰直角三角形,请写出证明过程; (2)【探究一般】①如图2,当090α︒<<︒时,试探究线段EA ,EC ,EB 之间的数量关系并证明; ②当90180α︒<<︒时,直接写出线段EA ,EC ,EB 之间的数量关系.(3)【应用迁移】AE=时,求线段EC的长.已知AC=DC的旋转过程中,当3。
2024年山东省枣庄市滕州市滕南中学九年级中考数学一模模拟试题
2024年山东省枣庄市滕州市滕南中学九年级中考数学一模模拟试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列实数2237π-、中,无理数有( ) A .1个 B .2个 C .3个 D .4个 2.我国航天事业发展越来越吸引人们关注,刚返回地面的神舟17号三名航天员接受采访的短视频最近在短视频平台的点赞量达到150万次,数据150万用科学记数法表示为( )A .51.510⨯B .50.1510⨯C .61.510⨯D .71.510⨯3.实数a ,b 在数轴上的位置如图所示,是( )A .1a b --+B .1a b -++C .1a b --D .1a b +- 4.“致中和,天地位焉,万物育焉.”对称美是我国古人和谐平衡思想的体现,常被运用于建筑、器物、绘画、标志等作品的设计上,使对称之美惊艳了千年的时光.下列大学的校徽图案是轴对称图形的是( )A .B .C .D . 5.2024年元旦期间,某超市为了增加销售额,举办了“购物抽奖”活动:凡购物达到200元即可抽奖1次,达到400元可抽奖2次,……,依次类推.抽奖方式为:在不透明的箱子中有四个形状相同的小球,四个小球上分别写有对应奖品的价值为10元、15元、20元和“谢谢惠顾”的字样;抽奖1次,随机从四个小球抽取一个;抽奖2次时,记录第1次抽奖的结果后放回箱子中再进行第2次抽取,……,依次类推.小明和妈妈一共购买了420元的物品,获得了两次抽奖机会,则小明和妈妈获得奖品总值不低于30元的概率为( )A .16B .14C .38 D .126.已知下列各图中的四边形是平行四边形,根据各图中保留的作图痕迹,能得到菱形的有()A.1个B.2个C.3个D.4个7.马面裙(图1),又名“马面褶裙”,是我国古代女子穿着的主要裙式之一,如图2,马面裙可以近似地看作扇环ABCD(AD和BC的圆心为点O),A为OB的中点,==,则该马面裙裙面(阴影部分)的面积为()8dmBC OBA.216πdm12πdm D.2 4πdm B.28πdm C.2V的边长为1,D是BC边上的一动点,过点D作AB边的垂线,交AB 8.如图,等边ABC△的面积为y,则y关于x的函数图象正确的是于点G,设线段AG的长度为x,GBD()A.B.C.D.9.已知()()111222,,,P x y P x y 是抛物线243y ax ax =++(a 是常数,)0a ≠上的点,现有以下四个结论:①该抛物线的对称轴是直线2x =-;②点()0,3在抛物线上;③若122x x >>-,则12y y >;④若12y y =,则122x x +=-其中,正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题10.已知m 的平方根是1k +和22k -,则m 的值是.11.已知数轴上两点,A B ,其中A 表示的数为3,B -表示的数为2.给出如下定义:若在数轴上存在一点C ,使得AC BC m +=,则称点C 叫做点,A B 的“m 和距离点”.如图,若点C 表示的数为0,有5A C B C +=,则称点C 为点,A B 的“5和距离点”.如果点D 在数轴上(不与,A B 重合),满足12BD AD =,且此时点D 为点,A B 的“m 和距离点”,则m 的值为.12.如图,直线y x b =+与直线6y kx =+交于点()3,5P ,则关于x 的不等式6kx x b +<+的解集是.13.如图,将矩形ABCD 沿对角线BD 所在直线折叠,点C 落在同一平面内,落点记为C ',BC '与AD 交于点E ,若34AB BC ==,,则DE 的长为.14.如图,点A ,B 在反比例函数()0k y x x=>的图像上,延长AB 交x 轴于点C ,若A O C V的面积为12,且2AC BC=,则k =.15.如图,已知直线L :2y x =+交x 轴于点A ,交y 轴于点1A ,点2A ,3A ,⋯在直线L 上点1B ,2B ,3B ,⋯在x 轴的正半轴上,若11AOB △,212A B B △,323A B B V ,⋯均为等腰直角三角形,直角顶点都在x 轴上,则202420232024A B B V 的面积为.三、解答题16.()2202411tan 6013-⎛⎫-++ ⎪︒⎝⎭. 17.先化简,再求代数式21123a a a a a ⎛⎫÷- ⎪⎝+⎭+的值,其中:2cos301a =︒+. 18.一次函数 4y x =-+与反比例函数()0k y x x=>的图象交于A ,B 两点,与x 轴交于点C ,其中()1,A a .(1)求反比例函数表达式;(2)结合图象,直接写出4k x x-+≥时,x 的取值范围; (3)若点P 在x 轴上,且APC △是直角三角形,求点P 的坐标.19.如图,在ABC V 中,AB BC =,AB 为O e 的直径,AC 与O e 相交于点 D ,过点D 作DE BC ⊥于点E ,CB 延长线交O e 于点F .(1)求证:DE 为O e 的切线;(2)若1BE =,2BF =,求AD 的长.20.如图,宜宾的著名建筑夹镜楼始建于清代初年,有诗曰:“两水夹明镜,双桥落彩虹; 巍峨夹镜楼,一楼镇三江”. 某校数学爱好者小明决定利用数学方法计算夹镜楼的高度.用无人机在夹镜楼的顶端C 处测得地面上A 、B 两点的俯角分别为45︒和30︒,又测得A 、B 两点的距离为17m ,且点D 、A 、B 在同一水平直线上,于是很快算出夹镜楼CD 的高度. 请你写出解答过程.(结果精确到1m . 参考数据 173≈..)21.某校数学活动小组在一次活动中,对一个数学问题作如下探究:(1)问题发现:如图1,在等边ABC 中,点P 是边BC 上任意一点,连接AP ,以AP 为边作等边APQ △,连接CQ ,BP 与CQ 的数量关系是________;(2)变式探究:如图2,在等腰ABC V 中,AB BC =,点P 是边BC 上任意一点,以AP 为腰作等腰APQ △,使AP PQ =,APQ ABC ∠=∠,连接CQ ,判断ABC ∠和ACQ ∠的数量关系,并说明理由;(3)解决问题:如图3,在正方形ADBC 中,点P 是边BC 上一点,以AP 为边作正方形APEF,Q是正方形APEF的中心,连接CQ.若正方形APEF的边长为5,CQ求正方形ADBC的边长.22.在平面直角坐标系中,抛物线y=ax2+bx-3与x轴交于点A(-1,0)和点B(3,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为第四象限内抛物线上一点,当△PBC面积最大时,求点P的坐标;(3)若点P为抛物线上一点,点Q是线段BC上一点(点Q不与两端点重合),是否存在以P、Q、O为顶点的三角形是等腰直角三角形,若存在,请直接写出满足条件的点P 的坐标;若不存在,请说明理由.。
2024年四川省成都市九年级中考数学模拟试题
2024年四川省成都市九年级中考数学模拟试题一、单选题1.2--的倒数是( )A .12B .12-C .2D .2-2.2018年5月21日,西昌卫星发射中心成功发射探月工程嫦娥四号任务“鹊桥号”中继星,卫星进入近地点高度为200公里、远地点高度为40万公里的预定轨道.将数据40万用科学记数法表示为( )A .60.410⨯B .5410⨯C .6410⨯D .60.410⨯ 3.如图所示的正六棱柱的主视图是( )A .B .C .D . 4.下列计算正确的是( )A .224x x x +=B .()222x y x y -=- C .()326=x y x y D .220x x -+= 5.某快递公司今年一月份完成投递的快递总件数为10万件,二月份、三月份每月投递的件数逐月增加,第一季度总投递件数为33.1万件,问:二、三月份平均每月的增长率是多少?设平均每月增长的百分率为x ,根据题意得方程( ).A .()2101331x +=.B .()()210110133.1x x +++=C .()21010133.1x ++= D .()()210101101331x x ++++=. 6.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃ 7.分式方程1112x x x ++=-的解是( ) A .x =1 B .x =−1 C .3x = D .3x =-8.关于二次函数2241y x x =+-,下列说法正确的是( )A .图像与y 轴的交点坐标为()0,1B .图像的对称轴在y 轴的右侧C .当0x <时,y 的值随x 值的增大而减小D .y 的最小值为-3二、填空题9.把3222a ab a b +-分解因式的结果是.10.函数y x 的取值范围是.11.小华为了测量所住楼房的高度,他请来同学帮忙,在阳光下测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米.已知小华的身高为1.6米,那么他所住楼房的高度为米.12.如图,AB 是⊙O 的弦,OC ⊥AB 于C .若AB=OC=1,则半径OB 的长为.13.如图,在ABC V 中,D 是边AB 上一点,按以下步骤作图:①以点A 为圆心,以适当长为半径作弧,分别交AB ,AC 于点M ,N ;②以点D 为圆心,以AM 长为半径作弧,交DB 于点M ';③以点M '为圆心,以MN 长为半径作弧,在BAC ∠内部交前面的弧于点N ':④过点N '作射线DN '交BC 于点E .若BDE V 与四边形ACED 的面积比为4:21,则BE CE的值为.三、解答题14.(1)()02202422sin 60π-+︒+; (2)解不等式组()315227x x x ->⎧⎪⎨+<+⎪⎩①②. 15.根据“五项管理”文件精神,某学校优化学校作业管理,探索减负增效新举措,学校就学生做作业时间进行问卷调查,将收集信息进行统计分成A 、B 、C 、D 四个层级,其中A :90分钟以上;B :60~90分钟;C :30~60分钟;D :30分钟以下.并将结果绘制成两幅不完整的统计图,请你根据统计信息解答下列问题:(1)接受问卷调查的学生共有____________人;(2)求扇形统计图中“D ”等级的扇形的圆心角的度数,并补全条形统计图;(3)全校约有学生1500人,估计“A ”层级的学生约有多少人?(4)学校从“A ”层级的的3名女生和2名男生中随机抽取2人参加现场深入调研,则恰好抽到1名男生和1名女生的概率是多少?16.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶4 km 至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求B ,C 两地的距离.17.如图1,一次函数312y x =-+的图象与反比例函数(0)k y k x=>的图象相交于A ,B 两点(A 在B 的左侧),与x 轴和y 轴分别交于E ,F 两点.(1)当9k =时,求A ,B 两点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P ,使PAB ∆是以点B 为直角顶点的直角三角形?若存在,求出点P 的坐标,若不存在,请说明理由;(3)如图2,连接AO 并延长交反比例函数(0)k y k x =>图象的另一支于点C ,连接BC 交y 轴于点G .若2BG CG=,求反比例函数的表达式. 18.如图1,AB 是O e 的直径,点D 在AB 的延长线上,点C ,E 是O e 上的两点,,CE CB BCD CAE =∠=∠,延长AE 交BC 的延长线于点F .(1)求证:CD 是O e 的切线;(2)若2,4BD CD ==,求直径AB 的长;(3)如图2,在(2)的条件下,连接OF ,求tan BOF ∠的值. 19.在Rt ABC △中,90ABC ∠=︒,AB BC =,M 是BC 边上一点,连接AM .(1)如图1,N 是AB 延长线上一点,CN 与AM 垂直.求证:BM BN =;(2)如图2,过点B 作BP AM ⊥,P 为垂足,连接CP 并延长交AB 于点Q ,求证:CP BQ BM PQ ⋅=⋅;20.如图1,抛物线24y ax bx =++交x 轴于(40)A -,,(30)B ,两点,与y 轴交于点C ,连接AC ,BC .点P 是第二象限内抛物线上的一个动点,点P 的横坐标为t ,过点P 作PM x ⊥轴,垂足为M ,PM 交AC 于点Q .(1)求此抛物线的表达式;(2)过点P作PN AC,垂足为N,请用含t的代数式表示线段PN的长,并求出当t为何值时PN有最大值,最大值是多少?。
2024年云南省昆明市五华区九年级中考模拟数学试题
2024年云南省昆明市五华区九年级中考模拟数学试题一、单选题1.九年级(1)班期末考试数学的平均成绩是80分,小亮得了90分,记作10+分,如果小明的成绩记作5-分,那么他得了( )A .95分B .90分C .85分D .75分 2.苏步青是中国著名的数学家,被誉为“数学之王”,为纪念其贡献,国际上将一颗距地球约218000000千米的小行星命名为“苏步青星”,将218000000用科学记数法表示为10n a ⨯的形式(其中110a ≤<,n 是正整数),则n 的值为( )A .6B .7C .8D .93.用4个高和直径相同的圆柱体组成如图所示的立体图形,它的俯视图是( )A .B .C .D .4.下列计算正确的是( )A .633a a a ÷=B .()222a b a b -=- C .()32639a a -=- D .235a a a += 5.3x =能使下列某个式子有意义,这个式子是( )AB C D 6.数学活动课上,李老师给出一组按一定规律排列的数:2,4-,8,16-,32,…,第n 个数是( )A .2nB .2n -C .()12n n -⨯D .()112n n +-⨯ 7.卷云纹是我国独特的传统装饰纹样,古代玉璧上的卷云纹纹饰优雅,寓意美好,下列四个选项中,是轴对称图形但不是..中心对称图形的是( ) A . B . C . D . 8.如图,已知直线12l l ∥,点C ,A 分别在直线12,l l 上,以点C 为圆心、CA 长为半径画弧,交直线1l 于点B ,连接AB .若140BCA ︒∠=,则1∠的度数为( )A .15︒B .20︒C .25︒D .30︒9.2024年4月23日,第三届全民阅读大会在昆明开幕,以“共建书香社会,共享现代文明”为主题,持续深化全民阅读活动,进一步涵育爱读书、读好书、善读书的社会风尚.经统计,某班学生每天的阅读时间(单位:分钟)如下表:该班学生每天阅读时间的众数和中位数分别是( )A .60,60B .60,70C .70,65D .70,7510.如图,一个地铁站入口的双翼闸机的双翼展开时,双翼边缘的端点P 与Q 之间的距离为4cm ,双翼的边缘64cm PC QD ==,且与闸机侧立面的夹角30ACP BDQ ∠=∠=︒,闸机的通道宽度为( )A .64cmB .68cmC .76cmD .88cm11.如图是根据甲、乙两名同学五次数学测试成绩绘制的折线统计图.比较甲、乙两名同学的成绩,下列说法正确的是( )A .甲同学成绩的平均分高,方差大B .甲同学成绩的平均分高,方差小C .乙同学成绩的平均分高,方差大D .乙同学成绩的平均分高,方差小12.如图, △ABC 内接于⊙O,CD 是⊙O 的直径,∠BCD 54=︒.则∠A 的度数是 ( )A .36︒B .33︒C .30︒D .27︒13.已知4c ,估计c 的值所在的范围是( )A .34c <<B .45c <<C .56c <<D .67c <<14.如图,AD ,CE 是ABC V 的两条中线,连接ED .若16ABC S =V ,则阴影部分的面积是( )A .2B .4C .6D .815.如图,一个棱长为15的正方体木块,从它的八个顶点处依次截去棱长分别为1,2,3,4,5,6,7,8的小正方体,最后得到的几何体的表面积是( )A .2615⨯B .()()()222151152158-+-++-LC .2615⨯或2261527⨯-⨯D .2615⨯或2261528⨯-⨯二、填空题16.分解因式:22x y xy y -+=.17.如图,一个正n 边形被树叶遮掩了一部分,若直线a ,b 所夹锐角为36︒,则n 的值是.18.下表是几组y 与x 的对应值,则y 关于x 的函数解析式为.19.如图,吊灯外罩呈圆锥形,它的底面周长为24cm π,高为16cm ,则该吊灯外罩的侧面积是2cm .(结果保留π)三、解答题20.计算:()10134565π-⎛⎫-︒+-- ⎪⎝⎭. 21.如图,AD ⊥AE ,AB ⊥AC ,AD =AE ,AB =AC .求证:△ABD ≌△ACE .22.某校开设智能机器人编程的活动课,购买了,A B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2800元购买A 型机器人模型和用2000元购买B 型机器人模型的数量相同.A 型、B 型机器人模型的单价分别是多少元?23.每年4月至5月,昆明的蓝花楹陆续盛开.一条条平日里不起眼的街道在披上了蓝紫色的轻纱后摇身一变,成了大家纷纷前往打卡的“网红”路.游客小迅从住宿的A 地出发,要先经B 地再到“网红”路C 地游览.如图,从A 地到B 地共有三条路线,长度分别为3km ,2km ,3km ,从B 地到C 地共有两条路线,长度分别为3km ,2km .(1)小迅从A 地到B 地所走路线长为3km 的概率为______;(2)请用列表法或画树状图法中的一种方法,求小迅从A 地经B 地再到C 地所走路线总长度为5km 的概率.24.为调动实习员工工作的积极性,某公司出台了两种工资方案,实习员工任选其中一种方案与公司签订合同.方案一:月工资y (单位:元)与生产的产品数量x (单位:件)的函数关系如图所示;方案二:每生产一件产品可得25元.(1)选择了工资方案一的实习员工甲,第一个月生产了60件产品,他该月得到的工资是多少元?(2)某月实习员工乙发现,他选择方案一比选择方案二月工资多450元,求乙员工该月生产产品的数量.25.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,过点A 作AE BC ⊥于点E ,延长BC 到点F ,使得CF BE =,连接DF .(1)求证:四边形AEFD 是矩形;(2)连接OE ,若6AB =,2CE =,求OE 的长.26.如图,ABC V 内接于O e ,过点C 作射线CP ,使得ACP B ∠=∠,CP 与BA 的延长线交于点P ,D 是BC 的中点,PD 与AC 交于点E .(1)判断直线PC 与O e 的位置关系,并证明你的结论;(2)若PC mPA =,求证:2CE m AE =.27.如果一个点的横、纵坐标均为常数,那么我们把这样的点称为确定的点,简称定点.比如点()1,2就是一个定点.对于一次函数3y kx k =-+(k 是常数,0k ≠),由于()313y kx k k x =-+=-+,当10x -=即1x =时,无论k 为何值,y 一定等于3,我们就说直线3y kx k =-+一定经过定点()1,3.设抛物线()2222y mx m x m =+-+-(m 是常数,0m ≠)经过的定点为点D ,顶点为点P .(1)抛物线经过的定点D 的坐标是______;(2)是否存在实数m ,使顶点P 在x 轴上?若存在,求出m 的值;若不存在,请说明理由;(3)当12m =-时,在3y kx =+的图像上存在点Q ,使得这个点到点P 、点D 的距离的和最短.求k 的取值范围.。
2024年广西柳州市文华中学九年级中考模拟考试数学试题
2024年广西柳州市文华中学九年级中考模拟考试数学试题一、单选题1.在下列四个数中,最小的数是( )A .0B .2-C .3D .20242.柳州是中国的汽车制造基地之一,拥有众多汽车品牌,请选出是中心对称图形的车标是( )A .B .C .D .3.下列各式中是分式的是( )A .1πB .14x +C .2xD .04.下列各组数中,能够组成三角形的是( )A .1,2,3B .1,2,4C .2,2,4D .4,4,2 5.对于一组数据1,1,2,4,下列结论不正确的是( )A .平均数是2B .众数是1C .中位数是1.5D .方差是3 6.下列运算正确的是( )A .()2224ab a b =B .236a a a ⋅=C .842a a a ÷=D .235a a a += 7.若一个角为55︒,则它的补角的度数为( )A .25︒B .35︒C .115︒D .125︒8.圆心角为120︒的扇形的半径为3cm ,则这个扇形的面积是( )A .26cm πB .23cm πC .29cm πD .2cm π9.如图,在ABC V 中,25B ∠=︒,分别以点B ,C 为圆心,以大于12BC 长为半径画弧,交于点M ,N ,连接MN 交AB 于点D ,连接CD ,则ADC ∠的度数为( )A .30︒B .45︒C .50︒D .60︒ 10.下列有关函数()212y x =-+的说法不正确的是( )A .开口向上B .对称轴是直线1x =C .顶点坐标是()1,2-D .函数图象中,当0x <时,y 随x 增大而减小11.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?若设大和尚有x 人,则列出的方程正确的是( )A .31003x x += B .3(100)1003x x +-= C .10031003x x -+= D .10031003x x +-= 12.如图,已知矩形纸片ABCD ,其中6AB =,8BC =,现将纸片进行如下操作: 第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②;第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A .185B .165C .103D .3二、填空题13.2-的绝对值是.14.分解因式:23a a +=.15.一个多边形的每一个外角都等于36︒,则这个多边形的边数为 .16.如图,AB 是⊙O 的直径,CD 为⊙O 的弦,CD ⊥AB 于点E ,已知AB =10,CD =8,则OE =.17.2023年岳阳举办以“跃马江湖”为主题的马拉松赛事.如图,某校数学兴趣小组在A 处用仪器测得赛场一宣传气球顶部E 处的仰角为21.8︒,仪器与气球的水平距离BC 为20米,且距地面高度AB 为1.5米,则气球顶部离地面的高度EC 是米(结果精确到0.1米,sin21.80.3714,cos21.80.9285,tan21.80.4000︒≈︒≈︒≈).18.如图,在直角ABO V 中,AO 1AB =,将ABO V 绕点O 顺时针旋转105︒至A B O ''△的位置,点E 是OB '的中点,且点E 在反比例函数k y x=的图象上,则k 的值为.三、解答题19.计算:()()323215⨯-+÷-.20.解不等式组1+22113x x >-⎧⎪-⎨≤⎪⎩,并将解集在数轴上表示出来.21.如图,ABC V 的顶点坐标分别是()3,6A 、()1,3B 、()4,2C .(1)如果将ABC V 沿x 轴翻折得到111A B C △,写出111A B C △的三个顶点坐标;(2)如果将111A B C △绕点1C 按逆时针方向旋转90︒得到221A B C △.22.为了提高师生们的安全意识,使青少年学生安全、健康成长,某校组织学生防火、防食物中毒、防交通事故等一系列演练活动,并组织了一次“安全知识答题”活动.该校随机抽取部分学生的答题成绩进行统计,将成绩分为四个等级:A (90100x ≤≤),B (8090x ≤<),C (6080x ≤<),D (060x <<),并根据结果绘制成如图所示的两幅不完整的统计图.根据图中所给信息解答下列问题:(1)这次抽样调查共抽取______人;条形统计图中的m =______.(2)将条形统计图补充完整;在扇形统计图中,求C 等级所在扇形圆心角的度数;(3)已知甲、乙、丙、丁四名学生的答题成绩均为A 等级,并且他们又有较强的表达能力,学校决定从他们四人中随机抽出两名学生去做“安全知识宣传员”,请用列表或画树状图的方法,求甲、乙两名同学恰好能被同时选中的概率.23.如图,O e 的直径AB 与其弦CD 相交于点E ,过点A 的切线交CD 延长线于点F ,且AED EAD ∠∠=.(1)求证:AD FD =;(2)若6AE =,3sin 5AFE ∠=,求O e 半径的长. 24.如图,ABC V 为边长等于4的等边三角形,点F 是BC 边上的一个动点(不与点B 、C 重合),FD AB ⊥,FE AC ⊥,垂足分别是D 、E .(1)求证:BDF CEF △△∽;(2)若CF a =,四边形ADFE 面积为S ,求出S 与a 之间的函数关系式,并写出a 的取值范围. 25.图1是煤油温度计,该温度计的左侧是华氏温度(℉),右侧是摄氏温度(℃).华氏温度与摄氏温度之间存在着某种函数关系,小明通过查阅资料和观察温度计,得到了如下表所示的数据.(1)观察表格中的数据,华氏温度与摄氏温度之间的关系是__________(填“一次”、“反比例”或“二次”)函数;在如图2所示的平面直角坐标系中描出上表相应的点,并用平滑的线进行连接;(2)求y 与x 之间的函数解析式;(3)设(1)中所画的图象与直线y x =交于点A ,点A 的实际意义是__________;(4)某种疫苗需低温保存,其活性只能在某温度区间(摄氏温度)内维持,在该温度区间内,任意摄氏温度与其对应的华氏温度的数值相差的最大值为16,求该温度区间的最大温差是多少摄氏度.26.综合与实践(1)【问题发现】在学习了“特殊平行四边形”后,兴趣小组的同学发现了这样一个问题:如图1,已知正方形ABCD ,E 为对角线AC 上一动点,过点C 作垂直于AC 的射线CG ,点F 在射线CG 上,且90EBF ∠=︒,连接EF .通过观察图形,直接写出BE 与BF 的数量关系:.(2)【类比探究】兴趣小组的同学在探究了正方形中的结论后,将正方形换成矩形继续探究.如图2,已知矩形ABCD ,20AB =,10AD =,E 为对角线AC 上一动点,过点C 作垂直于AC 的射线CG ,点F 在射线CG 上,且90EBF ∠=︒,连接EF .请判断线段AE 与CF 的数量关系,并说明理由.(3)【拓展应用】在(2)的条件下,点E在对角线AC上运动,当四边形BECF为轴对称图形时,请直接写出线段BF的长:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
C. 3 3
D. 3
11.如图,将含 600 角的直角三角板 ABC 绕顶点 A 顺时针旋转 450 度后得到 △AB'C/,点 B 经过的路径为弧 BB/,若角∠BAC=600,AC=1,则图中阴影部分的面积是( A. ) C.
2
B.
3
4
D. [来:学科
12.如图,在矩形 ABCD 中,有一个菱形 BFDE(点 E、F 分别在线段 AB、CD 上) ,记它们的面积分别为 SABCD 和 SBFDE.现给出下列命题: ①若 S ABCD 2 3 ,则 tan EDF 3 ; ②若 DE 2 BD.EF ,则 DF 2 AD .
第 6 页 共 6 页
第 5 页 共 6 页
24(本小题 10 分)在△ABC 中,AC=BC=2,∠C=90 ,将一块等腰直角三角板的直角顶点放在斜边 AB 的中点 P 处,将三角板绕点 P 旋转,三角板的两直角边分别交射线 AC、CB 于 D、E 两点. 如图①、②、③是旋转三角板得到的图形中的三种情况,试探究: (1)三角板绕点 P 旋转,观察线段 PD 和 PE 之间有什么数量关系?并结合图②加以证明; (2)三角板绕点 P 旋转,△PBE 是否能成为等腰三角形?若能,写出所有△PBE 为等腰三角形时 CE 的长 (直 接写出答案即可) ;若不能,请说明理由; (3)如图 4,若将三角板的直角顶点放在斜边 AB 上的 F 处,且 AF:FB=1:3,和前面一样操作,试问线段 FD 和 FE 之间有什么数量关系?并结合图④证明你的结论.
21(本小题 10 分)如图,在 Rt△ABC 中,∠C=900,点 O 在 AB 上,以 O 为圆心、 OA 为半径的圆与 AC 交于点 D, 且∠A=∠CBD. (1)判断直线 BD 与⊙O 的位置关系,并证明你的结论; (2)若 AD:AO=6:5,BC=2,求 BD 的长.
第 4 页 共 6 页
九年级数学中考模拟试题 一
时间:100 分钟 满分:120 分 姓名: 得分:
一 选择题(12×3=36 分)
1.计算:-32=( A.-9 ) B.-6 ) C. ( x 2 )3 x 6 D. 3 x 5 x 4 8 x 5 ) C.9 D.6
2.下列运算中,结果正确的是( A. a 1
1 1 b = ) 2 a b a b a 2ab b 2
第 2 页 共 6 页
.
15.一元二次方程 (1 k ) x 2 2 x 1 0 有两个不相等的实数根,则 k 的取值范围是 16.如图,AB 是⊙O 的直径,BC 是弦,OD⊥BC 于 E,交弧 BC 于 D,BC=8,ED=2,则⊙O 的半径为
0
B. 3 8 2
3.如图,已知直线 AB,CD 相交于点 O,OA 平分∠EOC,∠EOC=1000,则∠BOD 的度数是( A.20
0
B.40
0
C.50
0
D.80
0
第 3 题图
第 4 题图
4.如图,在△ABC 中,BC>AC,点 D 在 BC 上,且 DC=AC,角∠ACB 的平分线 CE 交 AD 于 E,点 F 是 AB 的中点, 则 S△AEF:S 四边形 BDEF 为( A.3:4 5.下列说法错误 的是( .. ) B.1:2 ) B.相等的圆周角所对的弧不一定相等 D.有一个锐角对应相等的两个直角三角形相似 C.2:3 D.1:3
23(本小题 10 分)市体育协会在公园主办的放风筝比赛.比赛中小军在 A 处不小心让风筝挂在了一棵树的 树梢上(如图) ,固定在了 D 处,此时风筝线 AD 与水平线的夹角为 300.为了便于观察,小军迅速向前边移 动边收线到达了离 A 处 6 米的 B 处,此时风筝线 BD 与水平线的夹角为 450. 已知点 A、 B、 C 在同一条直线上,∠ACD=900.请求出此时小军手中的风筝线 BD 的长度约是多少米? (本题中风筝线均视为线段, 2 1.41 , 3 1.73 ,最后结果精确到 1 米)
根据图表信息,回答下列问题: (1)参加活动选拔的学生共有 人;表中 m= ,n= ; (2)若将各组的组中值视为该组的平均值,请估算参加选拔学生的平均成绩; (3)将第一组中的 4 名学生记为 A、B、C、D,由于这 4 名学生的体育综合水平相差不大,现决定随机 挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中 A 和 B 的概率.
0
25(本小题 10 分)如图,已知平面直角坐标系中,点 A(2,m),B(-3,n)为两动点,其中 m>1,连结 OA,OB,OA ⊥OB,作 BC⊥x 轴于 C 点,AD⊥x 轴于 D 点. (1)求证:mn=6; (2) 当 S△AOB=10 时,抛物线经过 A,B 两点且以 y 轴为对称轴,求抛物线对应的二次函数的关系式; [来源:Z (3) 在 (2) 的条件下,设直线 AB 交 y 轴于点 F,过点 F 作直线 l 交抛物线于 P,Q 两点,问是否存在直线 l , 使 S POF : S QOF 1 : 2 若存在,求出直线 l 对应的函数关系式;若不存在,请说明理由.
S BFDE 2
3
那么,下面判断正确的是( A.①正确,②正确
) B.①正确,②错误 C.①错误,②正确 D.①错误,②错误
二 填空题(6×3=18 分)
13.因式分解: x 3 2 x 2 y xy 2 _______________________ 14.已知 a 1 3,b 1 3 ,则分式 (
1 2
B.
1 3
C.
2 3
D.
5 6
第 1 页 共 页
8. 如图 ,过 x 轴正 半轴 上的 任意一 点 P,作 y 轴的 平行 线,分别 与反 比例 函数
y
6 4 和 y 的图象交于 A、B 两点.若点 C 是 y 轴上任意一点,连接 AC、BC, x x
) B.4 C.5 ) D.10
第 16 题图
第 17 题图
17.如图,△ACE 是以□ABCD 的对角线 AC 为边的等边三角形,点 C 与点 E 关于 x 轴对称.若 E 点的坐标是
(7,3 3 ) ,则 D 点的坐标是
.
8 ( x 0) 的图象上,顶点 A1、B1 分别在 x 轴、y 轴的正 x 8 半轴上,再在其右侧作正方形 P2P3A2B2, 顶点 P3 在反比例函数 y ( x 0) 的图象上,顶点 A2 在 x 轴的正半 x 轴上, (1)点 P1 坐标为 ;(2)求点 P3 的坐标________
22(本小题 10 分)我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众 健康需要,代理销售某种家用空气净化器,其进价是 200 元/台.经过市场销售后发现: 在一个月内,当售价是 400 元/台时,可售出 200 台,且售价每降低 10 元,就可多售出 50 台.若 供货商规定这种空气净化器售价不能低于 300 元/台,代理销售商每月要完成不低于 450 台的销售任务. (1)试确定月销售量 y(台)与售价 x(元/台)之间的函数关系式;并求出自变量 x 的取值范围; (2)当售价 x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润 w(元)最大?最大利润是 多少?
18.正方形的 A 1B1P1P2 顶点 P1、P2 在反比例函数 y
三 综合题(64 分)
2 x 3 9 19.(本小题 8 分)解不等式组: (并在数轴上将解集表示出来) 1 x 1 2 2
第 3 页 共 6 页
20.(本小题 8 分)我市某中学为备战运动会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学 生的综合成绩(得分为整数,满分为 100 分)分成四组,绘成了如下尚不完整的统计图表.
则△ABC 的面积为( A.3
9.已知抛物线 y x 2 2 x 3 ,下列结论中不正确 的是( .. A.抛物线的最大值是-2 C.图象的对称轴是直线 x=1
B.x<1 时,y 随 x 的增大而减小 D.图象与 y 轴的交点在 x 轴下方
10.如图,边长为 1 的小正方形构成的网格中,半径为 1 的⊙O 的圆心 O 在格点上,则∠AED 的正切值等于 ( A. 2 2 ) B.
A.有一个角是直角的菱形是正方形 C.垂直于半径的直线是圆的切线 6.某青年排球队 12 名队员年龄情况如下表:
则这 12 名队员年龄的众数、中位数分别是( A.20,19 B.19,19
) C.19,20.5 D.19,20
7.一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字 记为 p,再随机摸出另一个小球其数字记为 q,则满足关于 x 的方程 x2+px+q=0 有实数根的概率是( A. )