Incremental Fault Diagnosis
机械英语单词综述
board n.板卡fine adj.精密的word n.字ABS(absolute) adj.绝对的absolute adj.绝对的AC n.交流accelerate v.加速acceleration n.加速度active adj.有效的adapter n.适配器,插头address n.地址adjust v.调整adjustment n.调整advance v.前进advanced adj.高级的,增强的alarm n.报警ALM(alarm) n.报警alter v.修改amplifier n.放大器angle n.角度APC n.绝对式脉冲编码器appendix n.附录,附属品arc n.圆弧argument n.字段,自变量arithmetic n.算术arrow n.箭头AUTO n.自动automatic adj.自动的automation n.自动auxiliary function 辅助功能axes n.轴(复数)axis n.轴background n.背景,后台backlash n.间隙backspace v.退格backup v.备份bar n.栏,条battery n.电池baudrate n.波特率bearing n.轴承binary adj..二进制的bit n.位blank n.空格block n.块,段block n.撞块,程序段blown v.熔断bore v.镗boring n.镗box n.箱体,框bracket n.括号buffer n.v.缓冲bus n.总线button n.按钮cabient n.箱体calbe n.电缆calculate v.计算calculation n.计算call v.调用CAN(cancel) v.清除cancel v.清除canned cycle 固定循环capacity n.容量card n.板卡carriage n.床鞍,工作台cassette n.磁带cell n.电池CH(chanel) n.通道change v.变更,更换channel n.通道check v.检查chop v.錾削chopping n.錾削circle n.圆circuit n.电路,回路circular adj.圆弧的clamp v.夹紧clear v.清除clip v.剪切clip board n.剪贴板clock n.时钟clutch n.卡盘,离合器CMR n.命令增益CNC 计算机数字控制code n.代码coder n.编码器command n,v.命令communication n.通讯compensation n.补偿computer n.计算机condition n.条件configuration n.配置configure v.配置connect v.连接connection n.连接connector n.连接器console n.操作台constant n.常数,adj.恒定的contour n.轮廓control v.控制conversion n.转换cool v.冷却coolant n.冷却coordinate n.坐标copy v.拷贝corner n.转角correct v.改正,adj.正确的correction n.修改count v.计数counter n.计数器CPU n.中央处理单元CR n.回车cradle n.摇架create v.生成CRT n.真空射线管CSB n.中央服务板current n.电流,当前的,缺省的current loop n.电流环cursor n.光标custom n.用户cut v.切削cutter n.(元盘形)刀具cycle n.循环cylinder n.圆柱体cylindrical adj.圆柱的data n.数据(复数)date n.日期datum n.数据(单数)DC n.直流deceleration n.减速decimal point n.小数点decrease v.减少deep adj.深的define v.定义deg. n.度degree n.度DEL(delete) v.删除delay v,n.延时delete v.删除deletion n.删除description n.描述detect v.检查detection n.检查device n.装置DGN(diagnose) v.诊断DI n.数字输入DIAG(diagnosis) n.诊断diagnosis n.诊断diameter n.直径diamond n.金刚石digit n.数字dimension n.尺寸,(坐标系的)维DIR n.目录direction n.方向directory n.目录disconnect v.断开disconnection n.断开disk n.磁盘diskette n.磁盘display v,n.显示distance n.距离divide n,v除,v.划分DMR n.检测增益DNC 直接数据控制DO n.数字输出dog switch n.回参考点减速开关DOS n.磁盘操作系统DRAM n.动态随机存储器drawing n.画图dress v.修整dresser n.修整器drill v.钻孔drive v.驱动driver n.驱动器dry run 空运行duplicate v.复制duplication n.复制dwell n,v.延时edit v.编辑EDT(edit) v.编辑EIA n.美国电子工业协会标准electrical adj.电气的electronic adj.电子的emergency n.紧急情况enable v.使能encoder n.编码器end v,n.结束enter n.回车,v.输入,进入entry n.输入equal v.等于equipment n.设备erase v.擦除error n.误差,错误,故障esc=escape v.退出exact adj.精确的example n.例子exchange v.更换execute v.执行execution n.执行exit v.退出external adj.外部的failure n.故障FANUC n.(日本)法那克fault n.故障feed v.进给feedback v.反馈feedrate n.进给率figure n.数字file n.文件filt(filtrate) v.过滤filter n.过滤器fin(finish) n.完成(应答信号)fine adj.精密的fixture n.夹具FL (回参考点的)低速flash memory n.闪存flexible adj.柔性的floppy adj.软的foreground n.前景,前台format n.格式,v.格式化function n.功能gain n.增益GE FANUC GE法那克gear n.齿轮general adj.总的,通用的generator n.发生器geometry n.几何gradient n.倾斜度,梯度graph n.图形graphic adj.图形的grind v.磨削group n.组guidance n.指南,指导guide v.指导halt n,v.暂停,间断handle n.手动,手摇轮handy adj.便携的handy file 便携式编程器hardware n.硬件helical adj.螺旋上升的help n,v.帮助history n.历史HNDL(handle) n.手摇,手动hold v.保持hole n.孔horizontal a.水平的host n.主机hour n.小时hydraulic adj.液压的I/O n.输入/输出illegal adj.非法的inactive adj.无效的inch n.英寸increment n.增量incremental adj.增量的index 分度,索引initial adj.原始的initialization n.C523初始化initialize v.初始化input n.v.输入INS(insert) v.插入insert v.插入instruction n.说明interface n.接口internal adj.内部的interpolate v.插补interpolation n.插补interrupt v.中断interruption n.中断intervent n.间隔,间歇involute n.渐开线ISO n.国际标准化组织jog n.点动jump v.跳转key n.键keyboard n.键盘label n.标记,标号ladder diagram 梯形图language n.语言lathe n.车床LCD n.液晶显示least adj.最小的length n.长度LIB(library) n.库library n.库life n.寿命light n.灯limit n.极限limit switch n.限位开关line n.直线linear adj.线性的linear scale n.直线式传感器link n,v.连接list n,v.列表load n.负荷,v.装载local adj.本地的locate v.定位,插销location n.定位,插销lock v.锁定logic n.逻辑look ahead v.预,超前loop n.回路,环路LS n.限位开关LSI n.大规模集成电路machine n.机床,v.加工macro n.宏macro program n.宏程序magazine n.刀库magnet n.磁体,磁magnetic a.磁的main program n.主程序maintain v.维护maintenance n.维护MAN(manual) n.手动management n.管理manual n.手动master adj.主要的max adj.最大的,n.最大值maximum adj.最大的,n.最大值MDI n.手动数据输入meaning n.意义measurement n.测量memory n.存储器menu n.菜单message n.信息meter n.米metric adj.米制的mill n.铣床,v.铣削min adj.最小的,n.最小值minimum adj.最小的,n.最小值minus v.减,adj.负的minute n.分钟mirror image n.镜像miscellaneous function n.辅助功能MMC n.人机通讯单元modal adj.模态的modal G code n.模态G代码mode n.方式model n.型号modify v.修改module n.模块MON(monitor) v.监控monitor v.监控month n.月份motion n.运动motor n.电机mouse n.鼠标MOV(移动) v.移动move v.移动movement n.移动multiply v.乘N number n.程序段号N.M n.牛顿.米name n.名字NC n.数字控制NCK n.数字控制核心negative adj.负的nest v,n.嵌入,嵌套nop n.空操作NULL n.空number n.号码numeric adj.数字的O number n.程序号octal adj.八进制的OEM n.原始设备制造商OFF adv.断offset n.补偿,偏移量ON adv.通one shot G code 一次性G代码open v.打开operate v.操作operation n.操作OPRT(operation) n.操作origin n.起源,由来original adj.原始的output n,v.输出over travel 超程over voltage 过电压overcurrent 过电流overflow v,n.溢出overheat n.过热overload n.过负荷override n.(速度等的)倍率page n.页page down 下翻页page up 上翻页PARA(parameter) n.参数parabola n.抛物线parallel adj.平行的,并行的,并联的parameter n.参数parity n.奇偶性part n.工件,部分password n.口令,密码paste v.粘贴path n.路径pattern n.句型,式样PC n.个人电脑PCB n.印刷电路板per prep.每个percent n.百分数pitch n.节距,螺距plane n.平面PLC n.可编程序逻辑控制器plus n.增益,prep.加,adj.正的PMC n.可编程序逻辑控制器pneumatic adj.空气的polar adj.两极的,n.极线portable adj.便携的POS(position) v,n.位置,定位position v,n.位置,定位position loop n.位置环positive adj.正的power n.电源,能量,功率power source n.电源preload v.预负荷preset v.予置pressure n.压力preview v.予览PRGRM(program) v.编程,n.程序print v.打印printer n.打印机prior adj.优先的,基本的procedure n.步骤profile n.轮廓,剖面program v.编程,n.程序programmable adj.可编程的programmer n.编程器protect v.保护protocol n.协议PSW(password) n.密码,口令pulse n.脉冲pump n.泵punch v.穿孔puncher n.穿孔机push button n.按钮PWM n.脉宽调制query n.问题,疑问quit v.退出radius n.半径RAM n.随机存储器ramp n.斜坡ramp up v.(计算机系统)自举range n.范围rapid adj.快速的rate n.比率,速度ratio n.比值read v.读ready adj.有准备的ream v.铰加工reamer n.铰刀record v,n.记录REF(reference) n.参考reference n.参考reference point n.参考点register n.寄存器registration n.注册,登记relative adj.相对的relay v,n.中继remedy n.解决方法remote adj.远程的replace v.更换,代替reset v.复位restart v.重启动RET(return) v.返回return v.返回revolution n.转rewind v.卷绕rigid adj.刚性的RISC n.精简指令集计算机roll v.滚动roller n.滚轮ROM n.只读存储器rotate v.旋转rotation n.旋转rotor n.转子rough adj.粗糙的RPM n.转/分RSTR(restart) v.重启动run v.运行sample n.样本,示例save v.存储save as 另存为scale n.尺度,标度scaling n.缩放比例schedule n.时间表,清单screen n.屏幕screw n.丝杠,螺杆search v.搜索second n.秒segment n.字段select v.选择selection n.选择self-diagnostic 自诊断sensor n.传感器sequence n.顺序sequence number 顺序号series n.系列,adj.串行的series spindle n.数字主轴servo n.伺服set v.设置setting n.设置shaft n.轴shape n.形状shift v.移位SIEMENSE (德国)西门子公司sign n.符号,标记signal n.信号skip v,n.跳步slave adj.从属的SLC n.小型逻辑控制器slide n.滑台,v.滑动slot n.槽slow adj.慢soft key n.软键盘software n.软件space n.空格,空间SPC n.增量式脉冲编码器speed n.速度spindle n.主轴SRAM n.静态随机存储器SRH(search) v.搜索start v.启动statement n.语句stator n.定子status n.状态step n.步stop v.停止,n.挡铁store v.储存strobe n.选通stroke n.行程subprogram n.子程序sum n.总和surface n.表面SV(servo) n.伺服switch n.开关switch off v.关断switch on v.接通symbol n.符号,标记synchronous adj.同步的SYS(system) n.系统system n.系统tab n.制表键table n.表格tail n.尾座tandem adv.一前一后,串联tandem control n.纵排控制(加载预负荷的控制方式)tank n.箱体tap n,v.攻丝tape n.磁带,纸带。
常用数控设备英文词汇.
board n.板卡fine adj.精密的word n.字ABS(absolute) adj.绝对的absolute adj.绝对的AC n.交流accelerate v.加速acceleration n.加速度active adj.有效的adapter n.适配器,插头address n.地址adjust v.调整adjustment n.调整advance v.前进advanced adj.高级的,增强的alarm n.报警ALM(alarm) n.报警alter v.修改amplifier n.放大器angle n.角度APC n.绝对式脉冲编码器appendix n.附录,附属品arc n.圆弧argument n.字段,自变量arithmetic n.算术arrow n.箭头AUTO n.自动automatic adj.自动的automation n.自动auxiliary function 辅助功能axes n.轴(复数)axis n.轴background n.背景,后台backlash n.间隙backspace v.退格backup v.备份bar n.栏,条battery n.电池baudrate n.波特率bearing n.轴承binary adj..二进制的bit n.位blank n.空格block n.块,段block n.撞块,程序段blown v.熔断bore v.镗boring n.镗box n.箱体,框bracket n.括号buffer n.v.缓冲bus n.总线button n.按钮cabient n.箱体calbe n.电缆calculate v.计算calculation n.计算call v.调用CAN(cancel) v.清除cancel v.清除canned cycle 固定循环capacity n.容量card n.板卡carriage n.床鞍,工作台cassette n.磁带cell n.电池CH(chanel) n.通道change v.变更,更换channel n.通道check v.检查chop v.錾削chopping n.錾削circle n.圆circuit n.电路,回路circular adj.圆弧的clamp v.夹紧clear v.清除clip v.剪切clip board n.剪贴板clock n.时钟clutch n.卡盘,离合器CMR n.命令增益CNC 计算机数字控制code n.代码coder n.编码器command n,v.命令communication n.通讯compensation n.补偿computer n.计算机condition n.条件configuration n.配置configure v.配置connect v.连接connection n.连接connector n.连接器console n.操作台constant n.常数,adj.恒定的contour n.轮廓control v.控制conversion n.转换cool v.冷却coolant n.冷却coordinate n.坐标copy v.拷贝corner n.转角correct v.改正,adj.正确的correction n.修改count v.计数counter n.计数器CPU n.中央处理单元CR n.回车cradle n.摇架create v.生成CRT n.真空射线管CSB n.中央服务板current n.电流,当前的,缺省的current loop n.电流环cursor n.光标custom n.用户cut v.切削cutter n.(元盘形)刀具cycle n.循环cylinder n.圆柱体cylindrical adj.圆柱的data n.数据(复数)date n.日期datum n.数据(单数)DC n.直流deceleration n.减速decimal point n.小数点decrease v.减少deep adj.深的define v.定义deg. n.度degree n.度DEL(delete) v.删除delay v,n.延时delete v.删除deletion n.删除description n.描述detect v.检查detection n.检查device n.装置DGN(diagnose) v.诊断DI n.数字输入DIAG(diagnosis) n.诊断diagnosis n.诊断diameter n.直径diamond n.金刚石digit n.数字dimension n.尺寸,(坐标系的)维DIR n.目录direction n.方向directory n.目录disconnect v.断开disconnection n.断开disk n.磁盘diskette n.磁盘display v,n.显示distance n.距离divide n,v除,v.划分DMR n.检测增益DNC 直接数据控制DO n.数字输出dog switch n.回参考点减速开关DOS n.磁盘操作系统DRAM n.动态随机存储器drawing n.画图dress v.修整dresser n.修整器drill v.钻孔drive v.驱动driver n.驱动器dry run 空运行duplicate v.复制duplication n.复制dwell n,v.延时edit v.编辑EDT(edit) v.编辑EIA n.美国电子工业协会标准electrical adj.电气的electronic adj.电子的emergency n.紧急情况enable v.使能encoder n.编码器end v,n.结束enter n.回车,v.输入,进入entry n.输入equal v.等于equipment n.设备erase v.擦除error n.误差,错误,故障esc=escape v.退出exact adj.精确的example n.例子exchange v.更换execute v.执行execution n.执行exit v.退出external adj.外部的failure n.故障FANUC n.(日本)法那克fault n.故障feed v.进给feedback v.反馈feedrate n.进给率figure n.数字file n.文件filt(filtrate) v.过滤filter n.过滤器fin(finish) n.完成(应答信号)fine adj.精密的fixture n.夹具FL (回参考点的)低速flash memory n.闪存flexible adj.柔性的floppy adj.软的foreground n.前景,前台format n.格式,v.格式化function n.功能gain n.增益GE FANUC GE法那克gear n.齿轮general adj.总的,通用的generator n.发生器geometry n.几何gradient n.倾斜度,梯度graph n.图形graphic adj.图形的grind v.磨削group n.组guidance n.指南,指导guide v.指导halt n,v.暂停,间断handle n.手动,手摇轮handy adj.便携的handy file 便携式编程器hardware n.硬件helical adj.螺旋上升的help n,v.帮助history n.历史HNDL(handle) n.手摇,手动hold v.保持hole n.孔horizontal a.水平的host n.主机hour n.小时hydraulic adj.液压的I/O n.输入/输出illegal adj.非法的inactive adj.无效的inch n.英寸increment n.增量incremental adj.增量的index 分度,索引initial adj.原始的initialization n.C523初始化initialize v.初始化input n.v.输入INS(insert) v.插入insert v.插入instruction n.说明interface n.接口internal adj.内部的interpolate v.插补interpolation n.插补interrupt v.中断interruption n.中断intervent n.间隔,间歇involute n.渐开线ISO n.国际标准化组织jog n.点动jump v.跳转key n.键keyboard n.键盘label n.标记,标号ladder diagram 梯形图language n.语言lathe n.车床LCD n.液晶显示least adj.最小的length n.长度LIB(library) n.库library n.库life n.寿命light n.灯limit n.极限limit switch n.限位开关line n.直线linear adj.线性的linear scale n.直线式传感器link n,v.连接list n,v.列表load n.负荷,v.装载local adj.本地的locate v.定位,插销location n.定位,插销lock v.锁定logic n.逻辑look ahead v.预,超前loop n.回路,环路LS n.限位开关LSI n.大规模集成电路machine n.机床,v.加工macro n.宏macro program n.宏程序magazine n.刀库magnet n.磁体,磁magnetic a.磁的main program n.主程序maintain v.维护maintenance n.维护MAN(manual) n.手动management n.管理manual n.手动master adj.主要的max adj.最大的,n.最大值maximum adj.最大的,n.最大值MDI n.手动数据输入meaning n.意义measurement n.测量memory n.存储器menu n.菜单message n.信息meter n.米metric adj.米制的mill n.铣床,v.铣削min adj.最小的,n.最小值minimum adj.最小的,n.最小值minus v.减,adj.负的minute n.分钟mirror image n.镜像miscellaneous function n.辅助功能MMC n.人机通讯单元modal adj.模态的modal G code n.模态G代码mode n.方式model n.型号modify v.修改module n.模块MON(monitor) v.监控monitor v.监控month n.月份motion n.运动motor n.电机mouse n.鼠标MOV(移动) v.移动move v.移动movement n.移动multiply v.乘N number n.程序段号N.M n.牛顿.米name n.名字NC n.数字控制NCK n.数字控制核心negative adj.负的nest v,n.嵌入,嵌套nop n.空操作NULL n.空number n.号码numeric adj.数字的O number n.程序号octal adj.八进制的OEM n.原始设备制造商OFF adv.断offset n.补偿,偏移量ON adv.通one shot G code 一次性G代码open v.打开operate v.操作operation n.操作OPRT(operation) n.操作origin n.起源,由来original adj.原始的output n,v.输出over travel 超程over voltage 过电压overcurrent 过电流overflow v,n.溢出overheat n.过热overload n.过负荷override n.(速度等的)倍率page n.页page down 下翻页page up 上翻页panel n.面板PARA(parameter) n.参数parabola n.抛物线parallel adj.平行的,并行的,并联的parameter n.参数parity n.奇偶性part n.工件,部分password n.口令,密码paste v.粘贴path n.路径pattern n.句型,式样pause n.暂停PC n.个人电脑PCB n.印刷电路板per prep.每个percent n.百分数pitch n.节距,螺距plane n.平面PLC n.可编程序逻辑控制器plus n.增益,prep.加,adj.正的PMC n.可编程序逻辑控制器pneumatic adj.空气的polar adj.两极的,n.极线portable adj.便携的POS(position) v,n.位置,定位position v,n.位置,定位position loop n.位置环positive adj.正的power n.电源,能量,功率power source n.电源preload v.预负荷preset v.予置pressure n.压力preview v.予览PRGRM(program) v.编程,n.程序print v.打印printer n.打印机prior adj.优先的,基本的procedure n.步骤profile n.轮廓,剖面program v.编程,n.程序programmable adj.可编程的programmer n.编程器protect v.保护protocol n.协议PSW(password) n.密码,口令pulse n.脉冲pump n.泵punch v.穿孔puncher n.穿孔机push button n.按钮PWM n.脉宽调制query n.问题,疑问quit v.退出radius n.半径RAM n.随机存储器ramp n.斜坡ramp up v.(计算机系统)自举range n.范围rapid adj.快速的rate n.比率,速度ratio n.比值read v.读ready adj.有准备的ream v.铰加工reamer n.铰刀record v,n.记录REF(reference) n.参考reference n.参考reference point n.参考点register n.寄存器registration n.注册,登记relative adj.相对的relay v,n.中继remedy n.解决方法remote adj.远程的replace v.更换,代替reset v.复位restart v.重启动RET(return) v.返回return v.返回revolution n.转rewind v.卷绕rigid adj.刚性的RISC n.精简指令集计算机roll v.滚动roller n.滚轮ROM n.只读存储器rotate v.旋转rotation n.旋转rotor n.转子rough adj.粗糙的RPM n.转/分RSTR(restart) v.重启动run v.运行sample n.样本,示例save v.存储save as 另存为scale n.尺度,标度scaling n.缩放比例schedule n.时间表,清单screen n.屏幕screw n.丝杠,螺杆search v.搜索second n.秒segment n.字段select v.选择selection n.选择self-diagnostic 自诊断sensor n.传感器sequence n.顺序sequence number 顺序号series n.系列,adj.串行的series spindle n.数字主轴servo n.伺服set v.设置setting n.设置shaft n.轴shape n.形状shift v.移位SIEMENSE (德国)西门子公司sign n.符号,标记signal n.信号skip v,n.跳步slave adj.从属的SLC n.小型逻辑控制器slide n.滑台,v.滑动slot n.槽slow adj.慢soft key n.软键盘software n.软件space n.空格,空间SPC n.增量式脉冲编码器speed n.速度spindle n.主轴SRAM n.静态随机存储器SRH(search) v.搜索start v.启动statement n.语句stator n.定子status n.状态step n.步stop v.停止,n.挡铁store v.储存strobe n.选通stroke n.行程subprogram n.子程序sum n.总和surface n.表面SV(servo) n.伺服switch n.开关switch off v.关断switch on v.接通symbol n.符号,标记synchronous adj.同步的SYS(system) n.系统system n.系统tab n.制表键table n.表格tail n.尾座tandem adv.一前一后,串联tandem control n.纵排控制(加载预负荷的控制方式)tank n.箱体tap n,v.攻丝tape n.磁带,纸带tape reader n.纸带阅读机tapping n.攻丝teach in 示教technique n.技术,工艺temperature n.温度test v,n.测试thread n.螺纹time n.时间,次数tolerance n.公差tool n.刀具,工具tool pot n.刀杯torque n.扭矩tower n.刀架,转塔trace n.轨迹,踪迹track n.轨迹,踪迹tranducer n.传感器transfer v.传输,传送transformer n.变压器traverse v.移动trigger v.触发turn v转动,n转,回合turn off v.关断turn on v.接通turning n.转动,车削unclamp v.松开unit n.单位,装置unload n.卸载unlock v.解锁UPS n.不间断电源user n.用户value n.值variable n.变量,adj.可变的velocity n.速度velocity loop n.速度环verify v.效验version n.版本vertical a.垂直的voltage n.电压warning n.警告waveform n.波形wear n,v.磨损weight n.重量,权重wheel n.轮子,砂轮window n.窗口,视窗workpiece n.工件write v.写入wrong n.错误,adj.错的year n.年zero n.零,零位zone n.区域。
数控系统常用英语
数控系统中常用的英语单词目前数控系统大多使用英语,为方便使用数控设备时查找,在下面列出了数控系统中比较常用的英文词汇。
其中的汉语解释只侧重于它们在数控系统中的含义,而对其它含义则予以忽略。
单词词义board n.板卡fine adj.精密的word n.字ABS(absolute) adj.绝对的absolute adj.绝对的AC n.交流accelerate v.加速acceleration n.加速度active adj.有效的adapter n.适配器,插头address n.地址adjust v.调整adjustment n.调整advance v.前进advanced adj.高级的,增强的alarm n.报警ALM(alarm) n.报警alter v.修改amplifier n.放大器angle n.角度APC n.绝对式脉冲编码器appendix n.附录,附属品arc n.圆弧argument n.字段,自变量arithmetic n.算术arrow n.箭头AUTO n.自动automatic adj.自动的automation n.自动auxiliary function 辅助功能axes n.轴(复数)axis n.轴background n.背景,后台backlash n.间隙backspace v.退格backup v.备份bar n.栏,条battery n.电池baudrate n.波特率bearing n.轴承binary adj..二进制的bit n.位blank n.空格block n.撞块,程序段blown v.熔断bore v.镗boring n.镗box n.箱体,框bracket n.括号buffer n.v.缓冲bus n.总线button n.按钮cabient n.箱体calbe n.电缆calculate v.计算calculation n.计算call v.调用CAN(cancel) v.清除cancel v.清除canned cycle 固定循环capacity n.容量card n.板卡carriage n.床鞍,工作台cassette n.磁带cell n.电池CH(chanel) n.通道change v.变更,更换channel n.通道check v.检查chop v.錾削chopping n.錾削circle n.圆circuit n.电路,回路circular adj.圆弧的clamp v.夹紧clear v.清除clip v.剪切clip board n.剪贴板clock n.时钟clutch n.卡盘,离合器CMR n.命令增益CNC 计算机数字控制code n.代码coder n.编码器command n,v.命令communication n.通讯compensation n.补偿computer n.计算机condition n.条件configuration n.配置configure v.配置connect v.连接connection n.连接connector n.连接器console n.操作台constant n.常数,adj.恒定的contour n.轮廓control v.控制conversion n.转换cool v.冷却coolant n.冷却coordinate n.坐标copy v.拷贝corner n.转角correct v.改正,adj.正确的correction n.修改count v.计数counter n.计数器CPU n.中央处理单元CR n.回车cradle n.摇架create v.生成CRT n.真空射线管CSB n.中央服务板current n.电流,当前的,缺省的current loop n.电流环cursor n.光标custom n.用户cut v.切削cutter n.(元盘形)刀具cycle n.循环cylinder n.圆柱体cylindrical adj.圆柱的data n.数据(复数)date n.日期datum n.数据(单数)DC n.直流deceleration n.减速decimal point n.小数点decrease v.减少deep adj.深的define v.定义deg. n.度degree n.度DEL(delete) v.删除delay v,n.延时delete v.删除deletion n.删除description n.描述detect v.检查detection n.检查device n.装置DGN(diagnose) v.诊断DI n.数字输入DIAG(diagnosis) n.诊断diagnosis n.诊断diameter n.直径diamond n.金刚石digit n.数字dimension n.尺寸,(坐标系的)维DIR n.目录direction n.方向directory n.目录disconnect v.断开disconnection n.断开disk n.磁盘diskette n.磁盘display v,n.显示distance n.距离divide n,v除,v.划分DMR n.检测增益DNC 直接数据控制DO n.数字输出dog switch n.回参考点减速开关DOS n.磁盘操作系统DRAM n.动态随机存储器drawing n.画图dress v.修整dresser n.修整器drill v.钻孔drive v.驱动driver n.驱动器dry run 空运行duplicate v.复制duplication n.复制dwell n,v.延时edit v.编辑EDT(edit) v.编辑EIA n.美国电子工业协会标准electrical adj.电气的electronic adj.电子的emergency n.紧急情况enable v.使能encoder n.编码器end v,n.结束enter n.回车,v.输入,进入entry n.输入equal v.等于equipment n.设备erase v.擦除error n.误差,错误,故障Esc=escape v.退出exact adj.精确的example n.例子exchange v.更换execute v.执行execution n.执行exit v.退出external adj.外部的failure n.故障FANUC n.(日本)法那克fault n.故障feed v.进给feedback v.反馈feedrate n.进给率figure n.数字file n.文件filt(filtrate) v.过滤filter n.过滤器Fin(finish) n.完成(应答信号)fine adj.精密的fixture n.夹具FL (回参考点的)低速flash memory n.闪存flexible adj.柔性的floppy adj.软的foreground n.前景,前台format n.格式,v.格式化function n.功能gain n.增益GE FANUC GE法那克gear n.齿轮general adj.总的,通用的generator n.发生器geometry n.几何gradient n.倾斜度,梯度graph n.图形graphic adj.图形的grind v.磨削group n.组guidance n.指南,指导guide v.指导halt n,v.暂停,间断handle n.手动,手摇轮handy adj.便携的handy file 便携式编程器hardware n.硬件helical adj.螺旋上升的help n,v.帮助history n.历史HNDL(handle) n.手摇,手动hold v.保持hole n.孔horizontal a.水平的host n.主机hour n.小时hydraulic adj.液压的I/O n.输入/输出illegal adj.非法的inactive adj.无效的inch n.英寸increment n.增量incremental adj.增量的index 分度,索引initial adj.原始的initialization n.C523初始化initialize v.初始化input n.v.输入INS(insert) v.插入insert v.插入instruction n.说明interface n.接口internal adj.内部的interpolate v.插补interpolation n.插补interrupt v.中断interruption n.中断intervent n.间隔,间歇involute n.渐开线ISO n.国际标准化组织jog n.点动jump v.跳转key n.键keyboard n.键盘label n.标记,标号ladder diagram 梯形图language n.语言lathe n.车床LCD n.液晶显示least adj.最小的length n.长度LIB(library) n.库library n.库life n.寿命light n.灯limit n.极限limit switch n.限位开关line n.直线linear adj.线性的linear scale n.直线式传感器link n,v.连接list n,v.列表load n.负荷,v.装载local adj.本地的locate v.定位,插销location n.定位,插销lock v.锁定logic n.逻辑look ahead v.预,超前loop n.回路,环路LS n.限位开关LSI n.大规模集成电路machine n.机床,v.加工macro n.宏macro program n.宏程序magazine n.刀库magnet n.磁体,磁magnetic a.磁的main program n.主程序maintain v.维护maintenance n.维护MAN(manual) n.手动management n.管理manual n.手动master adj.主要的max adj.最大的,n.最大值maximum adj.最大的,n.最大值MDI n.手动数据输入meaning n.意义measurement n.测量memory n.存储器menu n.菜单message n.信息meter n.米metric adj.米制的mill n.铣床,v.铣削min adj.最小的,n.最小值minimum adj.最小的,n.最小值minus v.减,adj.负的minute n.分钟mirror image n.镜像miscellaneous function n.辅助功能MMC n.人机通讯单元modal adj.模态的modal G code n.模态G代码mode n.方式model n.型号modify v.修改module n.模块MON(monitor) v.监控monitor v.监控month n.月份motion n.运动motor n.电机mouse n.鼠标MOV(移动)v.移动move v.移动movement n.移动multiply v.乘N number n.程序段号N.M n.牛顿.米name n.名字NC n.数字控制NCK n.数字控制核心negative adj.负的nest v,n.嵌入,嵌套nop n.空操作NULL n.空number n.号码numeric adj.数字的O number n.程序号octal adj.八进制的OEM n.原始设备制造商OFF adv.断offset n.补偿,偏移量ON adv.通one shot G code 一次性G代码open v.打开operate v.操作operation n.操作OPRT(operation) n.操作origin n.起源,由来original adj.原始的output n,v.输出over travel 超程over voltage 过电压overcurrent 过电流overflow v,n.溢出overheat n.过热overload n.过负荷override n.(速度等的)倍率page n.页page down 下翻页page up 上翻页panel n.面板PARA(parameter) n.参数parabola n.抛物线parallel adj.平行的,并行的,并联的parameter n.参数parity n.奇偶性part n.工件,部分password n.口令,密码paste v.粘贴path n.路径pattern n.句型,式样pause n.暂停PC n.个人电脑PCB n.印刷电路板per prep.每个percent n.百分数pitch n.节距,螺距plane n.平面PLC n.可编程序逻辑控制器plus n.增益,prep.加,adj.正的PMC n.可编程序逻辑控制器pneumatic adj.空气的polar adj.两极的,n.极线portable adj.便携的POS(position) v,n.位置,定位position v,n.位置,定位position loop n.位置环positive adj.正的power n.电源,能量,功率power source n.电源preload v.预负荷preset v.予置pressure n.压力preview v.予览PRGRM(program) v.编程,n.程序print v.打印printer n.打印机prior adj.优先的,基本的procedure n.步骤profile n.轮廓,剖面program v.编程,n.程序programmable adj.可编程的programmer n.编程器protect v.保护protocol n.协议PSW(password) n.密码,口令pulse n.脉冲pump n.泵punch v.穿孔puncher n.穿孔机push button n.按钮PWM n.脉宽调制query n.问题,疑问quit v.退出radius n.半径RAM n.随机存储器ramp n.斜坡ramp up v.(计算机系统)自举range n.范围rapid adj.快速的rate n.比率,速度ratio n.比值read v.读ready adj.有准备的ream v.铰加工reamer n.铰刀record v,n.记录REF(reference) n.参考reference n.参考reference point n.参考点register n.寄存器registration n.注册,登记relative adj.相对的relay v,n.中继remedy n.解决方法remote adj.远程的replace v.更换,代替reset v.复位restart v.重启动RET(return) v.返回return v.返回revolution n.转rewind v.卷绕rigid adj.刚性的RISC n.精简指令集计算机roll v.滚动roller n.滚轮ROM n.只读存储器rotate v.旋转rotation n.旋转rotor n.转子rough adj.粗糙的RPM n.转/分RSTR(restart) v.重启动run v.运行sample n.样本,示例save v.存储save as 另存为scale n.尺度,标度scaling n.缩放比例schedule n.时间表,清单screen n.屏幕screw n.丝杠,螺杆search v.搜索second n.秒segment n.字段select v.选择selection n.选择self-diagnostic 自诊断sensor n.传感器sequence n.顺序sequence number 顺序号series n.系列,adj.串行的series spindle n.数字主轴servo n.伺服set v.设置setting n.设置shaft n.轴shape n.形状shift v.移位SIEMENSE (德国)西门子公司sign n.符号,标记signal n.信号skip v,n.跳步slave adj.从属的SLC n.小型逻辑控制器slide n.滑台,v.滑动slot n.槽slow adj.慢soft key n.软键盘software n.软件space n.空格,空间SPC n.增量式脉冲编码器speed n.速度spindle n.主轴SRAM n.静态随机存储器SRH(search) v.搜索start v.启动statement n.语句stator n.定子status n.状态step n.步stop v.停止,n.挡铁store v.储存strobe n.选通stroke n.行程Subprogram n.子程序sum n.总和surface n.表面SV(servo) n.伺服switch n.开关switch off v.关断switch on v.接通symbol n.符号,标记synchronous adj.同步的SYS(system) n.系统system n.系统tab n.制表键table n.表格tail n.尾座tandem adv.一前一后,串联tandem control n.纵排控制(加载预负荷的控制方式)tank n.箱体tap n,v.攻丝tape n.磁带,纸带tape reader n.纸带阅读机tapping n.攻丝teach in 示教technique n.技术,工艺temperature n.温度test v,n.测试thread n.螺纹time n.时间,次数tolerance n.公差tool n.刀具,工具tool pot n.刀杯torque n.扭矩tower n.刀架,转塔trace n.轨迹,踪迹track n.轨迹,踪迹tranducer n.传感器transfer v.传输,传送transformer n.变压器traverse v.移动trigger v.触发turn v转动,n转,回合turn off v.关断turn on v.接通turning n.转动,车削unclamp v.松开unit n.单位,装置unload n.卸载unlock v.解锁UPS n.不间断电源user n.用户value n.值variable n.变量,adj.可变的velocity n.速度velocity loop n.速度环verify v.效验version n.版本vertical a.垂直的voltage n.电压warning n.警告waveform n.波形wear n,v.磨损weight n.重量,权重wheel n.轮子,砂轮window n.窗口,视窗workpiece n.工件write v.写入wrong n.错误,adj.错的year n.年zero n.零,零位zone n.区域。
MIDAS侦测器故障代码与故障诊断
0P3 型热分解器失效,Data value: Data value: others, 热分解器内部失效,联系服务商。
传感器缺失, 无通讯。 重装传感器。更换传感器。
F49
Cartridge wrong type.
传感器型号错误,与出厂设置不一致,更换传感器或如果现
在安装的传感器类型正确的话,“打勾”确认。
F80
Temperature limits exceeded. 温度超限 检查安装环境
F81
Flow fail.
0P3 pyrolyzer module failure
热分解器加热不匹配,需要不同型号的热分解器。联系服务 商需要用HTP 型号的热分解器。MIDAS-S-CFX or MIDAS-E-CFX 需要安装在高温型的热分解器上。 更换HTP 型号的热分解器 。 0P3 型热分解器失效,Data value: 0x0800,热分解加温失 效 0P3 型热分解器失效,Data value: 0x1000,热分解器流量 超出范围,检查MIDAS 主机和PO3热分解器之间的流量
器的前提下,检查环境背景气体浓度, 或更换传感器。
F46
Cartridge analog failure.
传感器模拟转换故障, 电子故障或检测气体浓度大范围超出
量程造成损坏, 更换传感器。
F47
Cartridge memory invalid.
传感器内存失效,传感器内部校验失效,更换传感器。
F48
Cartridge absent.
F42
Calibration expired.
F43
Cartridge expired.
F44
Cell failure.
机器人领域用语集
索引分類:[一般]:ロボットの種類,ロボットシステム,安全,その他[メカ]:ロボットの型,機構,機械要素、ハンド,グリッパ[駆動]:アクチュエータ,制御要素,動力源[移動]:移動ロボット,移動ロボットの運動学・力学[数学][運動]:質点の運動,剛体の並進運動・回転運動,ロボット動作[力学]:静力学,動力学[制御]:制御理論,制御要素[情報]:計算機のハード・ソフト,計算技術,データ処理,人工知能[センサ]:画像を除くセンサ,センサによる計測法[画像]:視覚センサ,画像処理,画像認識[音]:音声,音声認識,音声合成[応用]:ロボットの利用[A]・abduction[知能]:アブダクション,仮説生成・acceleration[運動]:加速度・acceleration motor[数学・運動]:(モータ代数の)加速度モータ・accelerometer[センサ]:加速度計・AC servomotor[駆動]:ACサーボモータ・active joint[メカ]:能動関節・acoustic analysis[音]:音響分析・active sensing[センサ]:アクティブ(能動)センシング・adaptive control[制御]:適応制御・Adept cycle[運動・応用]:アデプトサイクル・advanced teleoperator[制御]:知的遠隔操作(作業)システム・affine space[数学]:アフィン空間・affine transformation[数学]:アフィン変換・agricultural robot[応用]:農業ロボット・ample, trot, pace, center, traverse gallop, rotary gallop, bound(bounce), bronk[移動]・amusement robot[応用]:アミューズメントロボット・analysis-by-synthesis[音・情報]:合成による分析・android[一般]:アンデロイド・angular momentum[力学]:角運動量・angular displacement[運動]:角変位・angular velocity[運動]:角速度・angular acceleration[運動]:角加速度・ankle joint[移動]:かかと関節・anthropomorphic[一般]:人間型・approach vector[運動]:接近ベクトル・arc interpolation[運動]:円弧補間・arm[メカ]:アーム・articulated robot[メカ]:多関節ロボット・articulation sensor[センサ]:関節覚センサ・artificial constraint[運動]:人工的拘束・artificial intelligence[知能]:人工知能・aspect ratio[画像]:円形度・assembled battery[駆動]:組電池・assembly robot[応用]:組立ロボット・asymptotic stability[制御]:漸近安定・attack angle[移動]:迎え角・attitude control[移動]:姿勢制御・automated guided vehicle(AGV)[移動]:自動誘導車両・automatic control[制御]:自動制御・automatic regulation[制御]:自動調整・automaton[一般]:オートマトン・autoregressive moving average[情報]:自己回帰移動平均・availability[一般]:(安全)アベイラビリティ・azimuth meter[センサ]:方位角センサ[B]・backlash[メカ]:バックラッシュ・ball screw[メカ]:ボールねじ・Banach space[数学]:バナッハ空間:・bang-bang control[制御]:バンバン制御・base coordinate system[運動]:ベース座標系・battery[駆動]:バッテリ,電池・behavior-based control[制御]:ビヘイビアベースドコントロール:・bilateral operation[制御]:バイラテラル(双方向)操作・bilateral servo[制御]:バイラテラルサーボ・bi-linear interpolation method[数学・画像]:双線形補間法・binarization[情報]:2値化・binocular stereo vision[画像]:両眼視・binocular parallax, binocular disparity[画像]:両眼視差・bin-picking task[応用・運動]:ビンピッキング作業・biped locomotion robot[移動]:2足歩行ロボット・biped locomotion[移動]:2足歩行・block diagram[制御]:ブロック線図・Bode diagram[制御]:ボード線図・boundary model[情報]:・boundary element method[情報]:境界領域法・braquiation[運動]:ブラキエーション,鉄棒動作・brushless DC servomotor[駆動]:ブラシレスDCサーボモータ[C]・calibration[センサ]:較正・Cartesian coordinate robot[メカ]:直角座標ロボット・Cartesian space[数学]:直角座標空間・CCD camera[画像]:CCDカメラ・central moment[画像]:重心まわりのモーメント・centrifugal acceleration[運動]:遠心加速度・centripetal acceleration[運動]:求心加速度・centrifugal force[力学]:遠心力・centripetal force[力学]:求心力・cepstrum[情報]:ケプストラム・cepstrum coefficiency[情報]:線形予測ケプストラム係数・characteristic equation[制御]:特性方程式・characteristic root[制御]:特性根・chattering[制御]:チャッタ・circular gait[移動]:旋回歩容・clean room robot[応用]:クリーンルームロボット・closed form equation[数学]:閉じた形の方程式・clothoid curve[数学・移動]:クロソイド曲線・coarticulation[音]:調音結合・cogging torque[駆動]:トルク脈動・column[数学]:(行列の)列・collision avoidance[運動・制御]:衝突回避・compensator[制御]:補償器・compliance[力学]:コンプライアンス・compliance control[制御]:コンプライアンス制御・compliant motion[運動・制御]:コンプライアント運動・computer vision[画像]:コンピュータビジョン・configuration obstacle[運動]:コンフィギュレーション障害物・configuration space[運動]:コンフィギュレーション空間・connected word recognizer[音]:連続単語認識・connectivity[メカ・運動]:(指の)連結度・conservative force[力学]:保存力・constraint[数学・運動]:拘束・construction robot[応用]:建設ロボット・constructive model[情報]:コンスツラクティブモデル・control[制御]:制御・controllable[制御]:可制御・controlled variable[制御]:制御量・control variable[制御]:制御変数・convergence[画像]:輻輳・conversation recognition[音]:会話理解・convex hull[数学]:凸多角形の辺・cooperative control[制御]:協調制御・coordinated control[制御]:協調制御・coordinate system[運動]:座標系・coordinate transformation[数学]:座標変換・Coriolis' acceleration[運動]:コリオリの加速度・corner cube[センサ]:コーナキューブ・Coulomb friction[力学]:クーロン摩擦・couple[力学]:偶力・coupling force, moment[力学]:カップリング力,カップリングモーメント・Coriolis' acceleration[運動]:コリオリの加速度・Coriolis' force[力学]:コリオリの力・CP control[制御]:CP制御・crab gait[移動]:側行歩容・crab angle[移動]:側行角・crawl gait, quadruped crawl gait[移動]:クロール歩容・crawler, tracked vehicle[移動]:クローラ型移動機構・crawler belt[移動]:履帯・creep gait[移動]:クリープ歩容・cross product[数学]: = vector product・cruise[移動]:巡航・current control[制御]:電流制御・cylindrical coordinate robot[メカ]:円筒座標ロボット[D]・data driven system[情報]:データ駆動システム・DC servomotor[駆動]:直流サーボモータ・DD motor[駆動]:DDモータ,ダイレクトドライブモータ・dead beat performance[制御]:デッドビート動作・deadlock[移動]:行き詰まり,デッドロック・dead reckoning[移動]:デッドレコニング・decomposition model[情報]:デコンポジションモデル・deduction[情報]:演繹・degenerate[数学・運動]:縮退・degree of freedom[運動]:自由度・degree of freedom of mechanism[機構]:機構の自由度・demisyllable[音]:半音節・Denavit-Hartenberg's transformation matrix[数学・運動]:Denavit-Hartenbergの変換行列・density[画像]:濃度・departure angle[移動]:背離角・detector[センサ]:検出器・detent torque[駆動]:デテントトルク・determinant[数学]:行列式・diagonal matrix[数学]:対角行列・diagonalization[数学]:対角変換,対角化・dimensionless foot position[移動]:無次元化足位置・dimensionless initial foot position[移動]:無次元化初期足位置・dimensionless longitudinal stability margin[移動]:無次元化縦安定余裕・direct drive[メカ]:直接駆動方式・direct drive robot[メカ]:DDロボット,ダイレクトドライブロボット・direct dynamics[力学]:順動力学・direct feedback system[制御]直接フィードバック系・direct kinematics[運動]:順運動学・direct teach[応用]:直接教示・disaster preventive robot[応用]:防災ロボット・discrete data system[制御]:離散値系・discrete Fourier transform[情報]:離散的フーリエ変換・discriminant function[画像]:・disparity[画像]:視差・displacement[運動]:変位・disturbance[制御]:外乱・distributed control[制御]:分散制御・domestic robot[応用]:家庭用ロボット・double support phase[移動]:両脚支持期・dry friction[力学]:乾性摩擦・dual number[数学]:デュアル数,2元数・dual vector[数学]:デュアルベクトル,2元ベクトル・duty factor[移動]:デューティ比・dynamic thresholding[情報]:動的2値化・dynamic control(computed torque method)[制御]:動的制御・dynamic manipulability index[力学]:動的可操作度・dynamic parameter[力学]:動力学パラメータ・dynamics[力学]:動力学・dynamic time warping algorithm[音]:時間正規化マッチング法,DPマッチング法[E]・edge preserving smoothing filter[画像]:エッジ保存するフィルタ・effector level[応用]:エフェクタレベル・effector sensor[センサ]:効果器センサ・eigenvalue[数学]:固有値・eigenvector[数学]:固有ベクトル・elbow[メカ]:肘・electrically-driven robot[メカ]:電動ロボット・electro-hydraulic motor[駆動]:電気・油圧サーボモータ・electro-hydraulic servo mechanism[制御]:電気油圧サーボ機構・electrostatic actuator[駆動]:静電アクチュエータ・encoder, incremental, absolute[センサ]:エンコーダ・endeffector[メカ]:エンドエフェクタ,(末端)効果器・endeffector coordinate system[運動]:エンドエフェクタ座標系,ハンド座標系・endless track[移動]:無限履帯・epipolar line[画像]:エピポーラ線・epipolar plane image[画像]:エピポーラ面画像・equilibrium point[制御]:平衡点・Euclid space:ユークリッド空間・Euler equation[力学]:オイラーの式・Eulerean angles[運動]:オイラー角・event driven system[情報]:事象駆動システム・expert system[知能]:エキスパートシステム・extended Gaussian image[画像]:拡張ガウス像表現・external sensor[センサ]外界センサ[F]・failure[一般]:故障・failure intensity[一般]:故障強度・failure mode[一般]:故障モード・failure mode and effect analysis[一般]:故障モード影響解析・failure rate[一般]:故障率・fail safe[一般]:フェールセーフ・fault tolerance[一般]:フォールトトレランス・fault tree analysis[一般]:故障木解析・fault[一般]:欠陥・fault detection[一般]:故障検出・fault avoidance[一般]:故障排除・fault diagnosis[一般]:故障診断・fault dictionary[一般]:故障辞書・feedback control[制御]:フィードバック制御・feedforward control[制御]:フィードフォワード制御・feeding method[駆動]:給電方式・field robot[応用]:圃場ロボット・findpath problem[運動]:経路探索問題・finger[メカ]:指・fingersurface[メカ]:指の腹・finite element method[情報]:有限要素法・first-order system[制御]:1次遅れ系・flexible arm[メカ]:柔軟アーム,フレキシブルアーム・follow-the leader[移動]:前脚追従・follow-up control[制御]:追従制御・foothold[移動]:足場・foot[移動]:足・force feedback bilateral servo system[制御]:力帰還型バイラテラルサーボ系・force sensor:力覚センサ・force steering[制御]:力ステアリング・forearm[メカ]:前腕・forestry robot[応用]:林業ロボット・formant frequency[音]:ホルンマント周波数・four-bar linkage mechanism[機構]:4節リンク機構・Fourier analysis[情報]:フーリエ解析・Fourier transform[数学・計算]:フーリエ変換・free gait[移動]:適応歩容・free space[運動]:自由空間・frequency characteristics[運動・制御]:周波数特性・frequency response[運動・制御]:周波数応答・frequency spectrum[情報]:周波数スペクトル・friction coefficient[力学]:摩擦係数・friction angle[力学]:摩擦角・friction cone[力学]:摩擦円錐・fluid friction[力学]:流体摩擦・force[力学]:力・fundamental frequency contour, F0 contour[音・情報]:基本周波数パターン[G]・gantry type robot[メカ]:ガントリ型ロボット,門型ロボット・gas rate gyroscope[センサ]:ガスレートジャイロ・Gaussian[数学]:ガウシアン・gear, spur gear, helical gear, bevel gear, worm gear[メカ]:歯車,平歯車,はすば歯車,かさ歯車,ウオームギヤ・gearless differential speed reducer[メカ]:ボール減速機・general inertia ellipsoid(GIE)[運動]:一般化慣性楕円体・generalized coordinate[数学・運動]:一般座標,広義座標・generalized bilateral control[制御]:一般化バイラテラル制御・generalized cylinder[数学]:一般円筒表現・generalized force[数学・力学]:一般力,広義の力・generalized information feedback[制御]:一般化情報フィードバック・geomagnetic sensor[センサ]:地磁気センサ・geometric configuration of robot[メカ]:ロボットの構造・geometric model, world model[運動]:幾何モデル,ワールドモデル・geometric parameter[運動]:幾何学パラメータ・global path planning[移動]:大域的経路計画・goniometer[センサ]=articulation sensor・grasping force[力学]:把握力・grasping mechanism, gripper[メカ]:グリッパ・ground contact area[移動]:接地面積・ground pressure[移動]:接地圧・group control[制御]:群管理制御・guarded motion[運動・制御]:近接非接触運動・gyroscope[センサ]:ジャイロスコープ,ジャイロ・gyroscopic moment[力学]:ジャイロモーメント[H]・hand, mechanical hand[メカ]:ハンド・hand-eye system[画像・制御]:ハンドアイシステム・half-step drive[駆動]:1-2相励磁駆動・harmonic drive gearing[メカ]:ハーモニックドライブ(減速機)・healthcare robot[応用]:医療サービスロボット・hexapod walking machine(robot),six-legged walking machine(robot)[移動]:6脚(6足)ロボット・hidden Markov model[情報]:隠れマルコフモデル・hierarchy control[制御]:階層制御・high rate discharge[駆動]:高率放電・H∞control[制御]:H∞制御・hip joint[移動]:腰関節・hobby robot[応用]ホビーロボット・holonomic constraint[数学・運動]:ホロノームな拘束・homogeneous coordinate system[数学]:同次座標系・homogeneous transformation(matrix)[数学・運動]:同次変換,同次変換行列(座標変換行列)・hopping robot[移動]:跳躍ロボット,ホッピングロボット・Hough transformation[数学・画像]:ハフ変換・hybrid controller[制御]:ハイブリッド制御器・hybrid position-force control[制御]・hydraulic actuator[駆動]:油圧アクチュエータ・hydraulically-driven robot[メカ]:油圧駆動ロボット[I]・ideal legged locomotion machine[移動]:理想脚移動機械・image recognition[画像]:画像認識・image understanding[画像]:画像理解・image memory[画像]画像メモリ・impedance control[制御]:インピーダンス制御・impulse response[制御]:インパルス応答・inclination sensor[センサ]:傾斜角センサ・indefinite[数学]:(2次形式・正方行列の)非定・indirect drive[メカ]:間接駆動方式・indirect teach[応用]:間接教示・indicial response[制御]:インデシャル応答・induction[情報]:帰納・industrial robot[一般]:産業用ロボット・inertia force[力学]:慣性力・inertia matrix[力学]:慣性行列・inertia tensor[力学]:慣性テンソル,慣性行列・inertia torque(inertial resistance moment)[力学]:慣性トルク(慣性抵抗モーメント)・inertial navigation system[移動・制御]:慣性航法システム・inference[情報]:推論・initialize[応用]:原点合わせ・inner product[数学]:内積:・inspection robot[応用]:検査ロボット・intelligent sensor[センサ]:知能センサ・intelligent remote operation[制御]:知的遠隔操作・intelligent robot[一般]:知能ロボット・internal sensor[センサ]内界センサ・intensity[画像]:明るさ・inverse coordinate transformation[運動]:逆座標変換・inverse dynamics[力学]:逆動力学・inverse kinematics[運動]:逆運動学・inverse matrix[数学]:逆行列・isolated word recognizer[音]:離散単語認識・isomorphic kinematical chain[メカ]:同形機構(連鎖)・isotropic rolling robot[移動]:均質転がり移動ロボット[J]・Jacobian[数学]:ヤコビアン,ヤコビ・jaw[ハンド]:爪・jerk[運動]:ジャーク,加加速度・joint[メカ]:ジョイント,関節・joint displacement vector[運動]:関節変位ベクトル・joint servo[制御]:関節サーボ・joint space[運動]:関節空間・joint torque vector[力学]:関節トルクベクトル・Jordan form, Jordan matrix[数学]:ジョルダン形式,ジョルダン行列・joystick[応用]:ジョイスティック[K]・Karman filter[センサ・情報]:カルマンフィルタ・kinematical analysis[運動]:運動(学的)解析・kinematical gait formula[移動]:運動学的歩容式・kinetic friction[力学]:動摩擦(力)・kinetic energy[力学]:運動エネルギー・knee joint[移動]:膝関節[L]・Lagrange equation[力学]:ラグランジュの(運動方程)式・Lagrangian formulation[力学]:ラグランジュ法による定式化・Lagrangian method[力学]:ラグランジュ法・Laplace transform[数学・制御]:ラプラス変換・Laplacian[数学・画像]:ラプラシアン・landmark[移動]:ランドマーク・laser radar[センサ]:レーザレーダ・lateral plane, frontal plane[移動]:前頭面・learning[情報]:学習・learning control[制御]:学習制御・leg phase[移動]:脚相・legged robot, walking robot, walking machine[移動]:脚式ロボット,歩行ロボット・lifted phase[移動]:= swinging phase・lifting[移動]:(脚ロボットの)離陸・line drawing[画像]:線画:・linear programming[情報]:線形計画法・linear encoder, rotary encoder[センサ]:直動エンコーダ,回転エンコーダ・linear interpolation[運動・応用]:直線補間・linear predictive analysis, linear predictive coding[情報]:線形予測分析法・linear predictive coefficients[情報]:線形予測係数・linear mapping[数学]:線形写像・linear motion guide[メカ]:直動案内装置・linearly dependent[数学]:線形従属・linearly independent[数学]:線形独立・linearization[数学・制御]:線形化・link[メカ]:リンク・link coordinate system[運動]:リンク座標系・link parameter[メカ・運動]:リンクパラメータ・locomotion mechanism[移動]:= mobile mechanism・longitudinal stability margin[移動]:縦安定余裕・low rate discharge[駆動]:低率放電・Lyapunov first method[制御]:リアプノフの第1の方法・Lyapunov function[制御]:リアプノフ関数・Lyapunov second method[制御]:リアプノフの第2の方法[M]・machine vision[画像]:マシンビジョン・mechanism [メカ]:機構,メカニズム・machine element[メカ]:機械要素・magnetic encoder[センサ]:磁気式エンコーダ・maintainability[一般]:保全性・manipulator[一般]:マニピュレータ・man-machine interface[一般]:マン・マシンインタフェイス・manipulability[運動]:可操作性,可操作度・manual control[制御]:手動制御・manual manipulator[一般]:マニュアルマニピュレータ・mapping[数学]:写像・master-slave[制御]:マスタスレーブ・master-slave manipulator[一般・応用:マスタ・スレーブマニピュレータ・matching[画像]:マッチング,照合・matrix[数学]:行列・mean time to failure(MTTF)[一般]:平均故障寿命・mean time between failure(MTBF)[一般]:平均故障間隔・mean time to repair(MTTR)[一般]:平均修復時間・measurement robot[応用]:測定ロボット・mechanical gripper[メカ]:(メカニカル)グリッパ・mechanical hand[メカ]:(メカニカル)ハンド・mechano-chemical actuator[駆動]:メカノケミカルアクチュエータ(人工筋)・medical robot[応用]:医用ロボット・MEMS(electro-mechanical system):MEMS,マイクロ電子機械システム,マイクロメカトロニクス・micromechanism[メカ]マイクロメカニズム・micromouse[応用]:マイクロマウス・military robot[応用]:軍事ロボット・MIMD[情報]:MIMD,複数命令複数データ流・MISD[情報]:MIMD,複数命令単一データ流・mobile robot,[移動]:移動ロボット・mobile mechanism[移動]:移動機構・mobility[運動]:(指の)可動度・model-based vision system[画像]:モデルに基づく視覚システム・model referenced adaptive control(MRAC)[制御]:モデル規範型適応制御・Moire topography[センサ・画像]:モアレ法・moment[画像]:(図形の)モーメント・moment[力学]:モーメント(モーメントベクトル)・moment of inertia[力学]:慣性モーメント・momentum[力学]:運動量・Moore-Penrose inverse matrix[数学]:ムーア・ペンローズ逆行列・motion description[運動・応用]:動作記述・motion range[運動]:運動範囲・motion stereo[画像]:移動ステレオ・motor[運動・力学]:(電動)モータ・motor[数学]:(モータ代数の)モータ・motor algebra[数学]:モータ代数・motor constant[メカ]:モータ定数・moving coordinate system[運動]:移動座標系・movement parallax[画像]:運動視差・moving platform[移動]:移動搬送車・multibody system[運動]:多体系・multi-legged robot[移動]:多脚ロボット,多足ロボット・multi-train epicycloidal reduction gear[メカ]:RV減速機[N]・natural constraint[運動]:自然拘束・navigation[移動]:航行制御,ナビゲーション・nearest neighbor method[数学]:最近傍法・negative definite[数学]:(2次形式・行列の)負定・negative semidefinite[数学]:(2次形式・行列の)半負定,準負定,非定・Newton equation[力学]:ニュートンの式・Newton-Euler equation[力学]:ニュートンオイラーの式・Newton-Euler method[力学]:ニュートンオイラー法・Newton-Raphson method[数学]:ニュートン-ラプソン法.・non-holonomic constraint[数学・運動]:非ホロノームな拘束・nonlinear programming[情報]:非線形計画法・nonparametric impulse response[制御]:パラメータ表示でないインパルス応答・norm[数学]:ノルム・normalized texture property map[画像]:正規化テクスチャ属性マップ・normal vector[数学]:法線ベクトル・nuclear robot, robot for nuclear power plant[応用]:原子力ロボット・null space[数学]:ナル空間・nursery robot[応用]:種苗生産ロボット・nursery robot, patient care robot[応用]看護ロボット・null space[数学]:ゼロ化空間・number synthesis[機構]:数総合・Nyquist criteria[制御]:ナイキストの安定判別・Nyquist diagram[制御]:ナイキスト線図[O]・objective function(performance index)[制御]:目的関数・object level[応用]:対象物レベル・object-oriented language[情報]:オブジェクト指向言語・observer[制御]:オブザーバ・observable[制御]:可観測・occlusion[画像]:オクルージョン,遮蔽・occluding contour[画像]:遮蔽輪郭線・off-line teach[応用]:オフライン教示・off-line simulation[情報・応用]:・offset[メカ]:オフセット・offshore robot[応用]:= underwater robot・omnidirectional vehicle(ODV)[移動]:全方向車・on-line simulation[情報・応用]:・open-loop kinematical chain[メカ]:開ループ運動連鎖・open-loop transfer function[制御]:開ループ伝達関数(一巡伝達関数)・operating robot[一般]:操縦ロボット・optical flow[画像]:オプチカルフロー・optimal control[制御]:最適制御・optical encoder[センサ]:光学式エンコーダ・optical gyroscope[センサ]:光学式ジャイロ・orientation[運動]:姿勢・orientation transformation matrix[数学・運動]:姿勢変換行列・orientation vector[運動]:姿勢ベクトル,方向ベクトル・orthogonal[数学]:直交・orthogonal basis[数学]:正規直交基底・orthogonal transformation:直交変換・orthogonal matrix[数学]:直交行列・output equation[制御]:出力方程式[P]・painting robot[応用]:塗装ロボット・pair[メカ]:対偶・palletizing task[運動]:パレタイジング作業・palm[メカ]:掌・parallel bilateral servo system[制御]:並列型バイラテラルサーボ系・parallel link(pantograph)[メカ]:平行クランク,パンタグラフ・parallel link manipulator[機構]:並列リンク式マニピュレータ・parallel processing[センサ・計算]:並列処理・parameter identification[機構・制御]:パラメータ同定・passive joint[機構]:受動関節・passive navigation[制御]:・path[運動]:経路・pattern recognition[情報・画像]:パターン認識・peg-in-hole task[応用・運動]:ペグインホール作業,ピン挿入作業・perturbation method[数学・制御]:摂動法・phone[音]:単音・phoneme[音]:音素・photometric system[センサ]:光学的計測法・photometric stereo[画像]:ホトメトリックステレオ・pick-and-place task[応用・運動]:ピックアンドプレース作業・PID compensation[制御]:PID補償・PID control[制御]:PID制御・piezo actuator[駆動]:ピエゾアクチュエータ・pixel[画像]:ピクセル,画素:・planetary gear reduction[メカ]:遊星歯車装置・planetary roller screw[メカ]:遊星ローラねじ機構・planning[知能]:プラニング,計画・placing[移動]:(脚ロボットの)接地・playback robot[一般]:プレイバックロボット・pneumatically-driven robot[駆動]:空気圧駆動ロボット・pneumatic actuator[駆動]:空気圧アクチュエータ・pneumatic gripper[メカ]:空気圧グリッパ・polar coordinate robot[メカ]:極座標ロボット・pole assignment[制御]:極配置・pose[運動]:ポーズ・position[運動]:位置・positive definite[数学]:(2次形式・行列の)正定・positive semidefinite[数学]:(2次形式・行列の)半正定,準正定,非負定・position[運動]:位置・posture transformation gait[移動]:踏み換え歩容・potential energy[力学]:保存エネルギー・potential field method[制御・移動]:ポテンシアル場法・potentiometer[センサ]:ポテンシオメータ・power manipulation[運動]:・power rate[駆動]:パワーレート・power source[駆動]:動力源・precession[運動・力学]:歳差運動・predictive maintenance[一般]:予防保全・pressure sensor[センサ]:圧覚センサ・primary battery[駆動]:一次電池・principal axes of inertia[力学]:慣性主軸・principal axis transformation[数学]:主軸変換・principle of virtual work[力学]:仮想仕事の原理・prismatic joint[メカ]:直動関節・problem solving[情報]:問題解決・process control[制御]:プロセス制御・products of inertia[力学]:慣性乗積・program control[制御]:プログラム制御・programmable controller[制御]:プログラマブルコントローラ・projection, projective transformation[数学]:射影,射影変換・projective matrix[数学]:射影行列:・prosodic features[音]:韻律的特徴・prosthesis[応用]:義手,義足・protocol[情報]:プロトコル,通信規約・proximity sensor[センサ]:近接覚センサ・pruning robot[応用]:枝打ちロボット・PSD(position sensitive device)[画像]:PSD、半導体位置検出素子・pseudo inverse matrix[数学]:疑似逆行列・pseudo-vector[数学]:疑似ベクトル・PTP control[制御]:PTP制御・PTP control[制御]:PTP制御・pull-in torque characteristics[駆動]:引き込みトルク特性・pull-out torque characteristics[駆動]:脱出特性・PWM[駆動]:パルス幅変調・PZT[駆動]:PZT,圧電素子[Q]・quadratic form[数学]:2次形式・quadratic programming[情報]:2次計画法・quadruped walking machine(robot), four-legged walking machine(robot)[移動]:4脚(4足)ロボット・quasi-dynamic walk[移動]:準動歩行[R]・rank[数学]:ランク,階数・range sensor[センサ]:距離センサ・rate control[制御]:速度制御・rate integration[センサ]:積分ジャイロ・ray tracing algorithm[画像]:光線追跡法・reaction force, reaction moment[力学]:反作用力,反作用モーメント・reasoning[情報]:推論・recursive computation[数学]:反復計算・reduction ratio[メカ]:減速比・redundant degree of freedom[運動]:冗長自由度・redundancy[運動]:冗長性・reference[制御]:目標値・reference coordinate system[運動]:基準座標系・reflectance mapping[画像]:反射率マップ・region growing[情報]:領域拡張・regular[数学]:正則・regular gait[移動]:レギュラー歩容・rehabilitation robot[応用]:リハビリ用ロボット・relative motion[運動]:相対運動・relative displacement[運動]:相対変位・relative velocity[運動]:相対速度・relative acceleration[運動]:相対加速度・reliability[一般]:信頼性・reliability design[一般]:信頼性設計・reliability block diagram[一般]:信頼性ブロック図・remote manipulator[一般]:遠隔操作マニピュレータ・remote teach[応用]:遠隔教示・rescue robot[応用]:(災害)救助ロボット・resolved motion rate control[制御]:分解速度制御・resolved acceleration control[制御]:分解加速度制御.・resolver[センサ]:レゾルバー・revolute joint, rotational joint[メカ]:ジョイント,回転関節・rigid body[運動・力学]:剛体・ring laser gyroscope[センサ]:リングレーザジャイロ・robot[一般]:ロボット・robot controller[制御]:ロボットコントローラ・robot for disabled[応用]:身障者介助ロボット・robot for hazardous environment[応用]:極限作業ロボット・robot for high voltage line operation[応用]:高圧線工事ロボット・robot for disaster prevention[応用]= disaster preventive robot・robot language[応用]:ロボット言語・robot vision[画像]:ロボットビジョン・robust[制御]:ロバストな・robust control[制御]:ロバスト制御・roller chain[メカ]:ローラチェイン・roll-pitch-yaw angles[運動]:ロールピッチヨー角・rotary joint, slide joint[メカ]:回転関節,直動関節・rotation[運動]:回転・rotational transformation[数学・運動]:回転行列・rough terrain[移動]:荒れ地・row[数学]:(行列の)行[S]・sagittal plane[移動]:矢状面・salt-and-pepper noise[情報]:胡麻塩雑音・sampled-data control, sampling control[制御]:サンプル値制御・scalar[数学]:スカラ・SCARA robot[メカ]:スカラロボット・scavenger robot, cleaning robot[応用]:清掃ロボット・scene[画像]:シーン,情景・scene analysis[画像]:情景解析:・screw-nut system[メカ]:ねじ送り装置・screw space[数学・運動]:スクリュー空間・search[情報]:探索・secondary battery[駆動]:2次電池・2nd-order system[制御]:2次遅れ系・security robot[応用]:保安ロボット,警備ロボット・segmental features[音]:文節的特徴・self-tuning adaptive control[制御]:自己チューニング適応制御・sensor[センサ]:センサ・sensor; optical -, mechanical -, resistance -, semiconductor -, electrostatic -, capacitance -, hydraulic -, bio-, magnetic -,liquid -[センサ]:光学式,機械式,(電気)抵抗式,半導体,静電,静電容量式.流体,生体,磁気式,液体,各センサ・sensor fusion[センサ]:センサ融合・sensory control[制御]:センサ制御・sensor coordinate system[運動]:センサ座標系・sensor feedback control[制御]:センサフィードバック制御・sensor feedback robot[一般]:センサフィードバックロボット・sensory control[制御]:感覚制御,センサ制御・sensor-based control[制御]:センサベースドコントロール・sequential control[制御]:シーケンス制御,逐次制御・servomechanism[制御]:サーボ機構・sequential control[制御]:シーケンス制御・serial link manipulator[メカ]:直列リンク式マニピュレータ・service robot[応用]:サービスロボット・servovalve[駆動]:サーボバルブ・set-up control[制御]:定値制御・shading[視覚]:シェーディング・shading model[画像]:陰影モデル・shape from shading[画像]:・shape from texture[画像]:・shape recognition[画像]:形状認識・shoulder[メカ]:肩・side-step[移動]:横行・SIMD[情報]:SIMD,単一命令複数データ流:・simulation[応用]:シミュレーション・single support phase[移動]:単脚支持期・singular point[数学・運動]:特異点・singular value[数学]:特異値・singular value decomposition[数学・運動]:特異値分解.・SISD[情報]:SIMD,単一命令単一データ流:・slewing characteristics[駆動]:連続特性・slide joint:[メカ]= prismatic joint・sliding mode control[制御]:スライディングモード制御・slip sensor:滑り覚センサ・SMA(shape memory alloy)[駆動]:形状記憶合金・SM,IM,VR,AC servomotor[駆動]:・smart sensor[センサ]:スマートセンサ,知能センサ・smell sensor[センサ]:においセンサ・soft gripper[メカ]:ソフトグリッパ・software servo[制御]:ソフトウェアサーボ・sole[移動]:足底・solid friction[力学]:固体摩擦・solid model[画像]:ソリッドモデル・solid modeler[画像]:ソリッドモデラ・space robot[応用]:宇宙ロボット・spatial filter[画像・情報]:空間フィルタ・speaker dependent, talker dependent[音]:特定話者用・speaker independent, talker independent[音]:不特定話者用・specific resistance[移動]:移動仕事率・speech recognition[音]:音声認識・speech synthesis[音]:音声合成・speech synthesis by rule[音]:規則音声合成方式・speech synthesis from concept[音]:概念からの音声合成・speech synthesizer[音]:音声合成装置・speech recognition[音]:音声認識・spectrum[情報]:スペクトル・spherical joint[メカ]:球面関節・spillover[制御]:スピルオーバ・spline curve[数学]:スプライン曲線・sprocket[メカ]:スプロケット・stability in the sense of Lyapunov[制御]:リアプノフの意味の安定・stability margin[移動]:安定余裕・stair-climbing[移動]:階段登降・stair-climbing robot[移動]:階段昇降ロボット・standing posture transformation gait[移動]:静止踏み換え歩容・standard gait[移動]:基準歩容・starting torque characteristics[駆動]:起動トルク特性・state equation[制御]:状態関数,状態方程式・state transition matrix[制御]:状態遷移行列・state transition equation[制御]:状態遷移方程式・state variable[制御]:状態変数・statics[力学]:静力学・static friction[力学]:静摩擦(力)・steady state velocity error[制御]:定常速度偏差・steady state response[制御]:定常状態・step response[制御]:ステップ応答・static walk[移動]:静歩行・statically stable[移動]:静的安定・statistical pattern recognition[画像]:統計的パターン認識・steering[移動]:ステアリング,舵取り・step motor(stepping motor)[駆動]:ステップモータ,パルスモータ・step motor; VR -, PM -, hybrid -, [駆動]:可変リラクタンス,永久磁石型,ハイブリッド型ステップモータ・stepping rate[駆動]:パルスレート・stereo[画像]:立体視・stiffness control[制御]:スティフネス制御・strain gauge[センサ]:歪みゲージ・stride[移動]:ストライド・stride length[移動]:ストライド幅・structure from motion:・structural pattern recognition[画像]:構造的パターン認識・subsea robot[応用]:= underwater robot・supervisory control[制御]:管理制御・supporting phase[移動]:支持相,立脚相・support polygon[移動]:支持多角形・surface model[画像]:サーフィスモデル・swept volume[運動]:可動空間体積・swing, tilt, pan[センサ・メカ]:スイング,ティルト,パン(3軸傾き角)・swinging phase[移動]:(歩行)遊脚相・syllable[音]:音節・syntactically controlled DP matching[情報]:オートマトン制御DPマチング法・symmetric bilateral servo system[制御]:対称型バイラテラルサーボ系・symmetric gait[移動]:対称歩容・system configuration of robot[一般]:ロボットシステムの構成[T]・tachometer generator「センサ]:タコメータ(タコジェネ)・tactile control[センサ]:触覚制御・tactile recognition[センサ]:触覚認識・tactile sensor[センサ]:接触覚センサ・task coordinates servo[制御]:作業空間サーボ・task coordinate system[運動]:作業座標系・task description[応用]:作業記述・task-level programming[運動・応用]:作業レベルの動作計画・task performability[運動]:作業性能・task planning[応用]:作業計画・task vector[運動]:作業ベクトル・taste sensor[センサ]:味センサ・teaching[応用]:教示,ティーチング・teaching playback[制御・応用]:教示再生方式・teleexistence[画像]:テレエグジステンス,遠隔臨場システム・teleoperating robot[一般・応用]:遠隔操縦ロボット・telepresence[画像]:= teleexistence・telerobot[制御]:テレロボット・template matching[画像]:テンプレートマッチング・tensor[数学]:テンソル・terminal analog[音]:ターミナルアナログ・text-to-speech conversion[音]:テキスト音声合成・text to speech synthesis[音]:テキスト音声合成・texture[画像]:テクスチャ・texture analysis[画像]:テクスチャ解析・threshold[センサ]:敷居値・thumb[メカ]:親指・time of flight method[センサ]:飛行時間測定法・time optimal control[制御]:最短時間制御・time to failure[一般]:故障寿命・time warping[計算]:時間軸圧縮・toothed belt(synchronous belt)[メカ]:歯付きベルト,タイミングベルト・torque tube[メカ]:トルクチューブ・touch sensor[センサ]:触覚センサ・trace[数学]:(行列の)トレース・tracking control[制御]:追値制御・trajectory[運動]:軌道・trajectory control[制御]:軌道制御・trajectory tracking[運動]:軌道追従・transfer function[制御]:伝達関数・transfer robot[応用]:搬送ロボット・transfer phase[移動]:= swinging phase・transient response[運動・制御]:過渡状態・translation[運動]:直動,直線運動・translational joint[メカ]:= prismatic joint・transmission element[メカ]:(運動)伝達要素・triangulation[センサ]:3角測量法・turn-in-place[移動]:その場旋回[U]・ultrared sensor[センサ]:赤外線センサ・ultrasonic motor[駆動]:超音波モータ・underactuated system[制御]:アンダーアクチュエーテッドシステム・underwater robot[応用]:海洋ロボット・unilateral servo[制御]:ユニラテラルサーボ・unilateral operation[制御]:ユニラテラル(1方向)操作・unit battery[駆動]:単位電池・universal hand[メカ]:万能ハンド・unmanned transfer vehicle[応用]:無人搬送車・unmanned carriage[応用]:無人台車・upper arm[メカ]:上腕[V]・vacuum chamber robot[応用]:真空環境ロボット・vanishing point[画像]:消失点・vanishing line[画像]:消失線・variable structure system[制御]:可変構造システム・variable structure control[制御]:可変構造制御・vector[数学]:ベクトル・vector product[数学]:外積・vector space[数学]:ベクトル空間・velocity[運動]:速度・velocity motor[数学・運動]:(モータ代数の)速度モータ・vibration control[制御]:振動制御・vibrometer[センサ]:振動計・vision sensor[画像]:視覚センサ・visual feedback[画像・制御]:視覚フィードバック・visual servo[画像・制御]:ビジュアルサーボ・vocoder[音]:ボコーダ・vocal tract analog[音]:声道アナログ[W]・wave gait[移動]:波動歩容(ウェーブ歩容)・welding robot[応用]:溶接ロボット・welfare robot[応用]:福祉ロボット・wheeled type mobile robot[移動]:車輪型移動機構・whisker sensor[センサ]:触角センサ・window[情報]:ウィンドー・wire, cable, chain, belt[メカ]:ワイヤ、ケーブル,チェイン,ベルト・wireframe model[画像・情報]:ワイヤフレームモデル・workspace[運動]:作業空間・world model[情報]:実世界モデル・word recognition system[音]:単語音声認識システム・wrench[力学]:レンチ・wrist[メカ]:手首,リスト[Z]・zero-cross method[センサ]:ゼロクロス法。
数控系统中常用的英语单词
clip v.剪切
clip board n.剪贴板
clock n.时钟
clutch n.卡盘,离合器
CMR n.命令增益
CNC 计算机数字控制
code n.代码
coder n.编码器
command n,v.命令
communication n.通讯
limit switch n.限位开关
line n.直线
linear adj.线性的
linear scale n.直线式传感器
link n,v.连接
list n,v.列表
load n.负荷,v.装载
local adj.本地的
locate v.定位,插销
location n.定位,插销
单 词 词 义
board n.板卡
fine adj.精密的
word n.字
ABS(absolute) adj.绝对的
absolute adj.绝对的
AC n.交流
accelerate v.加速
acceleration n.加速度
active adj.有效的
adapter n.适配器,插头
axis n.轴
background n.背景,后台
backlash n.间隙
backspace v.退格
backup v.备份
bar n.栏,条
battery n.电池
baudrate n.波特率
bearing n.轴承
binary adj..二进制的
bit n.位
handy adj.便携的
电力系统继电保护中英文对照表
1 Directional protection 方向保护2 Distance protection 距离保护3 Over current protection 过流保护4 Pilot protection高频保护5 Differential protection 差动保护6 Rotor earth-fault protection 转子接地保护7 Stator earth-fault protection 定子接地保护8 Over fluxing protection 过励磁保护9 Back-up protection 后备保护11 Sequential tripping 顺序跳闸12 Start up/Pick up 起动13 Breaker断路器14 Disconnecting switch 隔离开关15 Current transformer 电流互感器16 Potential transformer 电压互感器17 Dead zone/Blind spot 死区18 Vibration/Oscillation 振荡19 Reliability可靠性20 Sensitivity灵敏性21 Speed速动性22 Selectivity选择性23 Step-type distance relay 分段距离继电器24 Time delay延时25 Escapement/interlock/blocking 闭锁26 Incorrect tripping误动27 Phase to phase fault 相间故障28 Earth fault接地故障29 Through- fault穿越故障30 Permanent fault 永久性故障31 Temporary fault瞬时性故障32 Overload 过负荷34 Contact multiplying relay 触点多路式继电器35 Timer relay 时间继电器40 Ground fault relay 接地故障继电器41 Recloser 重合闸42 Zero-sequence protection 零序保护43 Soft strap 软压板44 Hard strap 硬压板45 High resistance 高阻46 Second harmonic escapement 二次谐波制动47 CT line-break CT 断线48 PT line-breakPT 断线49 Secondary circuit 二次回路50 AC circuit breaker 交流开关电路51 AC directional over current relay 交流方向过流继电器52 Breaker point wrench 开关把手53 Breaker trip coil 断路器跳闸线圈54 Bus bar 母线; 导电条55 Bus bar current transformer 母线电流变压器56Bus bar disconnecting switch 分段母线隔离开关57Bus compartment 母线室; 汇流条隔离室58Bus duct 母线槽; 母线管道59 Bus hub 总线插座60 Bus line 汇流线61Bus insulator 母线绝缘器62Bus request cycle 总线请求周期Bus reactor 母线电抗器64Bus protection 母线保护65Bus rings 集电环66Bus rod 汇流母线67Bus section reactor 分段电抗器68Bus structure母线支架; 总线结构69Bus tie switch 母线联络开关70Bus-bar chamber 母线箱71Bus-bar fault 母线故障72Bus-bar insulator 母线绝缘子73Busbar sectionalizing switch 母线分段开关Current attenuation 电流衰减75Current actuated leakage protector 电流起动型漏电保护器76Current balance type current differential relay 电流平衡式差动电流继电器;差动平衡式电流继电器77Current changer 换流器78Current compensational ground distance relay 电流补偿式接地远距继电器79Current consumption 电流消耗80Coil adjuster 线圈调节器81Coil curl 线圈82Coil current 线圈电流83Coil end leakage reactance 线圈端漏电抗84Coil inductance 线圈电感Current transformer phase angle 电流互感器相角86Distance relay; impedance relay 阻抗继电器87Power rheostat电力变阻器88Electrically operated valve电动阀门89Electrical governing system 电力调速系统90Field application relay 励磁继电器; 激励继电器91High tension electrical porcelain insulator 高压电瓷绝缘子92Option board任选板; 选配电路板; 选择板93Oscillator coil振荡线圈94Over-V oltage relay过压继电器95Power factor relay功率因素继电器Protection against overpressure 超压防护97Protection against unsymmetrical load 不对称负载保护装置98 Protection device 保护设备; 防护设备99Protection reactor 保护电抗器100 Protection screen 保护屏101 Protection switch 保护开关102 Insulator cap 绝缘子帽; 绝缘子帽103 Insulator chain 绝缘子串; 绝缘子串104 Insulator arc-over 绝缘子闪络; 绝缘子闪络105Insulator arcing horn 绝缘子角形避雷器; 绝缘子角形避雷器106 Insulator bracket 绝缘子托架; 绝缘子托架Impedance compensator 阻抗补偿器108 Resistance grounded neutral system 中心点电阻接地方式109 Reactance bond电抗耦合; 接合扼流圈110 Reactance of armature reaction 电枢反应电抗111 Under-Voltage relay 欠压继电器112 Voltage differential relay 电压差动继电器114 Relay must-operate value 继电器保证启动值115 Relay act trip继电器操作跳闸116 Relay overrun继电器超限运行117 Longitudinal differential protection 纵联差动保护118 Phase-angle of voltage transformer 电压互感器的相角差119 Zero-sequence current/residual current 零序电流120 Residual current relay 零序电流继电器121 Bus bar protection/bus protection 母线保护122 Breaker contact point 断路器触点123 Cut-off push断路器按钮124 Gaseous shield瓦斯保护装置125 Neutral-poi nt earthi ng 中性点接地126 In ternal fault内部故障127 Auxiliary con tacts辅助触点128 Neutral auto-tra nsformer中性点接地自耦变压器129 Fuse box/fusible cutout 熔断器130 Pulse relay/surge relay 冲击继电器七戒旅长存*2005 七2007-10-26 11:14131 Auxiliary relay/intermediate relay中间继电器132 Common-m ode voltage 共模电压133 Impeda nee mismatch 阻抗失配134 Intermittent fillet weld间断角缝焊接135 Loss of synchronism protect ion 失步保护136 Closing coil 合闸线圈137 Electro polarized relay 极化继电器138 Power direction relay 功率方向继电器139 Direct-to-ground capacity 对地电容140 Shunt running潜动141 Trip/opening跳闸142 Trip switch跳闸开关143 Receiver machine收信机144 High-frequency direction finder 高频测向器145 Capacity charge电容充电146 time over-current 时限过电流148 Surge guard冲击防护149 Oscillatory surge振荡冲击150 Fail safe interlock五防装置151 Differential motion差动152 Capacitive current 电容电流154 Time delay延时156 Normal inverse 反时限157 Definite time定时限158 Multi-zone relay 分段限时继电器159 Fail-safe unit五防161 Unbalance current 不平衡电流162 Blocking autorecloser 闭锁重合闸163 Primary protection 主保护164 Tap分接头165 YC (telemetering) 遥测167 Fault clearing time 故障切除时间168 Critical clearing time 极限切除时间169 Switch station 开关站170 Traveling wave行波171 Protection feature 保护特性172 Fault phase selector 故障选线元件173 Fault type 故障类型174 Inrush 励磁涌流175 Ratio restrain 比率制动176 Laplace and Fourier transforms 拉氏和傅利叶变换177 Short circuit calculations 短路计算178 Load flow calculations 潮流计算179 Oscillatory reactivity perturbation 振荡反应性扰动180 Quasi-steady state 准稳态181 Automatic quasi-synchronization 自动准同步182 Protective relaying equipment 继电保护装置183 AC directional overcurrent relay 交流方向过流继电器184 AC reclosing relay 交流重合闸继电器185 Annunciator relay 信号继电器188 Carrier or pilot-wire receiver relay 载波或导引线接受继电器189 Current-limiting relay 限流继电器190 Definite time relay 定时限继电器192 Lockout relay闭锁继电器;保持继电器;出口继电器193 Micro-processor based protective relay 微机继电保护194 Voltage -controlled overcurrent relay 电压控制过电流继电器196 Fault diagnosis故障诊断197 Back-up protection后备保护198 Overhead line架空线199 High voltage line高压线路200 Underground cable埋地电缆201 Circuit breaker断路器202 Brushless excitation无刷励磁203 Interlock 闭锁204 Trigger 触发器205 Winding-to-winding insulation 绕组间的绝缘206 Porcelain insulator瓷绝缘子207 Tie line联络线208 Leased line租用线路209 Private line专用线路211 Remote Terminal Unit 远程终端设备212 Economic dispatch system 经济调度系统213 State estimation状态估计214 Trip by local protection保护跳闸215 Close by local protection 保护合闸216 Operational (internal) overvoltage 操作(内部)过电压217 Sampling and holding采样保持218 Synchronized sampling 采样同步219 Manipulation操作220 Measuri ng/Meteri ng unit测量元件221 Locus of measured impeda nee测量阻抗轨迹222 Differen tial mode in terfere nee差模干扰223 Output (executive) orga n出口(执行)元件224 Overeurre nt relay with un dervoltage supervision低电压起动的过电流保护225 Low impeda nee busbar protect ion低阻抗母线保护回复2帖帖七戒旅长*膏2005六2007-10-26 11:15228 Half-cycle in tegral algorithm 半周积分算法230 Coordin ati on of relay sett ings保护的整定配合231 Reach (setti ng) of protect ion 保护范围(定值)232 Coordination time interval保护配合时间阶段233 Perce ntage differe ntial relay比率差动继电器234 Electromag netic relay电磁型继电器236 In sta ntan eous un dervoltage protect ion with curre ntsupervisi on 电流闭锁的电压速断保护237 Operating equation (criterion) 动作方程(判据)238 Operating characteristic 动作特性239Harmonic restraining 谐波制动241Segregated current differential protection 分相电流差动保护242Branch coefficient 分支系数243Power line carrier channel (PLC) 高频通道245High speed signal acquisition system 高速数字信号采集系统246Busbar protection with fixed circuit connection 固定联结式母线保护247Fault recorder 故障录波器248Fault phase selection 故障选相Compensating voltage 补偿电压252Polarized voltage 极化电压253Memory circuit 记忆回路254Unblocking signal 解除闭锁信号255Power system splitting and reclosing 解列重合闸256Connection with 90 degree90 度接线257Insulation supervision device 绝缘监视258Inrush exciting current of transformer 励磁涌流259Two star connection scheme 两相星形接线方式260Zero mode component of traveling wave 零模行波261Inverse phase sequence protection 逆相序保护Offset impedance relay 偏移特性阻抗继电器263Frequency response 频率响应264Activate the breaker trip coil 起动断路器跳闸266Permissive under reaching transfer trip scheme 欠范围允许跳闸式267Slight (severe) gas protection 轻(重)瓦斯保护268Man -machine interface 人机对话接口270Three phase one shot reclosure 三相一次重合闸271Out-of-step失步272Accelerating protection for switching onto fault 重合于故障线路加速保护动作275Abrupt signal analysis 突变信号分析276Out flowing current 外汲电流False tripping误动279Turn to turn fault ,inter turn faults 匝间短路280Relay based on incremental quantity 增量(突变量)继电器281Vacuum circuit breaker 真空开关282Power swing (out of step) blocking 振荡(失步)闭锁284Successive approximation type A/D 逐次逼进式A/D285Infeed current 助增电流286Self reset 自动复归287Adaptive segregated directional current differential protection 自适应分相方向纵差保护288Adaptive relay protection 自适应继电保护Angle of maximum sensitivity 最大灵敏角292Out of service 退出运行294Waveform 波形295Outlet 出口296Electromechanical 机电的297 Magnitude of current 电流幅值299Traveling wave signal 行波信号300Measurement signal 测量信号301Traveling wave relay 行波继电器302Transmission line malfunction 输电线路异常运行303 Subsystem 子系统Positive sequence impedance 正序阻抗305Negative sequence impedance 负序阻抗306Zero sequence impedance 零序阻抗307Digital signal processor 数字信号处理器308Frequency sensing 频率测量309Cable relay电缆继电器310Under power protection 低功率保护311Under voltage protection 低电压保护312Transient analysis暂态分析313Voltage sensor电压传感器314Zero-sequence protection 零序保护Zero sequence current transducer 零序电流互感器316Shunt 旁路,并联317Series 串联,级数318Parallel 并联319Saturation 饱和320 Free-standing 独立的,无需支撑物的321Troidal 环形的,曲面,螺旋管形322Bushing 套管323Magnetizing 磁化324Dropout current 回动电流325Reactor grounded neutral system 中性点电抗接地系统Grounding apparatus 接地装置327Dual bus 双总线328Thyristor 晶闸管329Spark gap 火花隙330Damping circuit 阻尼电路331Discharge 放电332Platform 平台333Grading 等级334Line trap 线路陷波器335Field test 实地试验337Off-position“断开”位置,“开路”位置Power-angle功角339Power-angle curve功角特性曲线340Torque-angle 转矩角341Symmetrical components 对称分量342Constant常量,恒定343Coupler耦合器345Concussion震动348Filter滤波器349Analogue模拟350Insulator绝缘子Rated burden\load 额定负载353Primary一次侧的354Remote-control apparatus 远距离控制设备355Capacitance 电容356Capacitor电容器357Reactance电抗358Inductor电感359Internal resistance内阻360Blow-out coil消弧线圈361Bundle-conductor spacer 分裂导线362Bundle factor 分裂系数Electromotive force电动势364伏安特性365Outgo ing line引出线366electrolyte电解质368Load characteristic负载特性369Self-i nductio n自感370Mutual-in ducti on互感371In duct ion coefficie nt感应系数372In ducta nee coup ing电感耦合373Time-i nvaria nt时不变的回复3帖4 帖七戒旅长* *2005 五2007-10-26 11:16374Terminal voltage端电压375非线性特性376External characteristics外特性378Harmonic curre nt正弦电流379Pole-pairs极对数380Quadrature正交381An gular velocity 角频率382Magn etic in duct ion磁感应强度385Armature电枢386Peak value(交变量的)最大值387A mutually in duced e.m.f互感电动势388The applied voltage 外施电压Zero-power-factor 零功率因数390The no-load power factor 空载功率因数391Sinusoidal variations 正弦变量392A lagging power factor 滞后的功率因数393Equivalent circuit 等值电路394Capacitance effect 电容效应395Direct axis 直轴396Quadrature axis 交轴398Concentrated coil 集中绕组399Magnetization curve 磁化曲线400Residual magnetism 剩磁401Rated armature current 额定电枢电流402Series excited 串励403Self excited 自励Shunt excited 并励405spottily excited 他励407Electromagnetic torque 电磁转矩408a retarding torque 制动转矩409Rectangular wave 矩形波410Synchronous speed 同步转速411Electromagnetic brake 电磁制动412synchronous reactance 同步电抗413synchronous condenser 同步调相机414Load shedding 甩负荷415Black-start 黑启动417Distribution feeder 配电馈线418Commissioning 投运419Reactive power compensation 无功补偿器Continuous rating 连续运行的额定值421AI (artificial intelligence) 人工智能422Network topology 网络拓补424Configuration control 组态控制425Topological information拓补信息426Black-out area停电区428Adaptive relaying 自适应继电保护429Adaptive features自适应特性430Phase comparison relays 相位比较继电器431Directional contact 方向触点432Protective gap保护间隙433Protective earthing保护接地434Protective earthing; outer insulation 保护绝缘435Protection switch保护开关436Protective cap 保护帽437Protective panel 保护屏柜439Protection device 保护设备440Protective casing 保护外壳441Catch net; protecting net 保护网442Protection system 保护系统443Protective link 保护线路444Protective ground 保护性接地445Protective cover; Protective housing 保护罩446Protection device; Protective gear 保护装置447Protective transformer 保护变压器448Alarm relay 报警信号继电器449Alarm signal ;alerting signal 报警信号450Admittance relays 导纳型继电保护装置451Low-voltage protection 低压保护452Under-voltage release 低电压跳闸453Under-voltage trip 低电压自动跳闸454Under-run低负荷运行455Under-power protection 低功率保护456Under-power relay 低功率继电器457Under-frequency protection 低频保护458Low-frequency high-voltage test 低频高压实验459Low-voltage relay 低压继电器460Low-voltage release relay 低压释放继电器461Under-frequency protection 低周波保护463Under-impedance relay 低阻抗继电器465Conductance relay 电导继电器466Motor-field failure relay 电动机磁场故障继电器467Dynamoelectric relay 电动式继电器468Electric reset relay 电复位继电器469Power-transformer relay 电力传输继电器471Power system oscillation 电力系统振荡472Electric interlock relay 连锁继电器473Current overload 电流过载474Self-polarizing relay 电流极化继电器475Current-balance relay 电流平衡式继电器476Circuit control relay 电路控制继电器479Capacitance relay 电容继电器480Capacity ground 电容接地Voltage balance relay 电压平衡继电器482Circuit control relay 电路控制继电器483Voltage responsive relay 电压响应继电器484Voltage selection relay 电压选择继电器485Power failure 电源故障486Power-transfer relay 电源切换继电器487vacuum-tube relay 电子管继电器488Ohm relay 电阻继电器489Timing relay; timed relay 定时继电器490Time pulse relay 定时脉冲继电器492Directional over-current relay 方向过流继电器493Directional over-current protection 方向过流保护494Directional distance relay 方向距离继电器495Directional pilot relaying 方向纵联继电保护Cut-off relay 断路继电器498Circuit breaker failure protection 断路器故障保护装置500Open-phase relay 断相继电器501Earth-leakage protection 对地漏电保护502Multiple-reclosing breaker 多次重合闸断路器503Multi-ended circuit protection 多端线路保护506Multiple earth 多重接地507Two-position relay 二位置继电器508Generator protection 发电机保护509Generator cutout relay 发电机断路继电器510Generator protection for negative sequence current 发电机负序电流保护511Transmitting relay 发送继电器512Back-spin timer 反转时间继电器513Auxiliary relay 辅助继电器514Negative phase relay负相位继电器515Negative-phase seque nee impe ndence负相序继电器516Un der-load relay负载不足继电器517Back-up over-speed gover nor附加超速保护装置518In ducti on cup relay感应杯式继电器520In ducti on type relay感应式继电器521In ducti on disc relay感应圆盘式继电器522High sen sitive relay高灵敏度继电器回复4帖5 帖七戒旅长**2005 四2007-10-26 11:16523High-speed impeda nee relay高速阻抗继电器524High-voltage relay高压继电器525Power relay 功率继电器527Transition impedance 过渡阻抗528Thermal protection 过热保护529Temperature limiting relay 过热继电器530Overload relay 过载继电器531Overload trip 过载跳闸532Thermostat relay 恒温继电器533Closing relay 合闸继电器534Transverse differential protection 横差保护535Transfer of auxiliary supply 后备电源切换536Back-up system 后备继电保护537Delay-action relay 缓动继电器538Slow-to release relay 缓放继电器539Converter relay 换流器继电器540Electromechanical relay 机电继电器541Biased differential relaying 极化差动继电保护系统542Discontinuous relay 鉴别继电器543Transistor relay 晶体管继电器544Crystal can relay 晶体密闭继电器545Static relay静电继电器546Fast-operate slow-release relay 快动缓释继电器547Fast-release relay 快释放继电器549Excitation-loss relay失磁继电器553Two-phase short circuit fault 两相短路故障554Two-phase grounding fault 两相接地短路故障556Sensitive polarized relay 灵敏极化继电器558Sensitive relay灵敏继电器560Abnormal overload异常过载561Abnormal overvoltage 事故过电压562Above earth potential 对地电势563Absolute potential绝对电势564AC circuit breaker 交流断路器565AC component交流分量566AC distribution system 交流配电系统567Air-blast circuit breaker 空气灭弧断路器568Air-blast switch 空气吹弧开关569Air brake switch 空气制动开关571Air breaker空气断路器572Air-space cable 空气绝缘电缆573Alive带电的574All-relay interlocking 全部继电连锁575All-relay selector 全继电式选择器578Arc extinguishing coil 灭弧线圈579Arc suppressing reactor 灭弧电抗器580Asymmetric load不对称负载581Asymmetric short circuit 不对称短路582Asynchronous reactance 异步电抗583Asynchronous resistance 异步电阻584Biased differential relaying 极化差动继电保护系统585Bi-directional relay 双向继电器586Blinker继电器吊牌587Blocking relay 连锁继电器589Blowout coil灭弧线圈590Bus hub总线插座591Bus protective relay 母线保护继电器592Bus section breaker 母线分段断路器593Bus terminal fault 母线终端故障594Bus separation 母线分离595Bus tie circuit breaker 母线联络继电器596Bypass旁路597Coil factor 线圈系数598Compound relay 复合电路599Continuous load 持续负载600Counting relay 计数继电器602Cut-off of supply 停止供电603Cut-out relay 短路继电器604Dash current 冲击电流605Data medium 数据载体606Data processing 数据处理607Data transmission 数据传输608Emergency service 事故运行609Emergency standby 事故备用611Extinction coil 消弧线圈612Extinguishing voltage 消弧线圈613Extra high voltage 超高压614Fault line故障线615Fault location 故障定位616Feedback反馈617Feeder馈电线618Interlock连锁619Intermittent fault 间歇故障620Interrupting time 断路时间621Negative direction 反方向622No-load release 无跳闸623Off-peak非峰值的624Operating load 运行负载625Orthogonal正交的626Rated primary voltage 一次额定电压627Rated secondary volage 二次额定电压628Remote controlled 遥控的629Reserve bus 备用母线630Rotor转子631Sectionalizer 分段断路器632Self-energizing自激的633Sequential tripping 顺序跳闸637Surge voltage 冲击电压638Sustained overload 持续过电压639Symmetrical对称的640Fault component 故障分量641Wavelet transform 小波变换642Object-oriented 面向对象643Faults recorder 故障录波644Setting calculation 整定计算645Topology analysis 拓扑分析646Expert system 专家系统647Security 安全性651Load schedule according to frequency change 按周波减载653Semiconductor, semiconductor diode, transistor 半导体、半导体二级管、三极管654Semi-orthogonal wavelet 半正交小波656Saturation, saturation detection, saturation curve 饱和,饱和检测,饱和曲线657Relay location保护安装处658Coordination of relay settings 保护的整定配合659Coordination time interval 保护配合时间阶段660Relay system configuration 保护配置661Redundancy of relaying system 保护配置的冗余度663Protection devices, protection equipment 保护装置664Starting current and returning current of protection device 保护装置的起动电流和返回电流665Alarm 报警666Approximation component 逼近分量668B sampling functionB 样条函数670Transformation matrix 变换矩阵。
英文资料神经网络的电网故障诊断资料
A NOVEL NEURAL NETWORK APPROACH FORFAULT SECTION ESTIMATION1 IntroductionRapid recovery after the accident is to reduce the power system during normal operation and enhanced reliability of power supply interruption time necessary conditions. As a first step in accident recovery, should be fast and accurate diagnosis to isolate the faulty components and to take appropriate measures to restore power supply. However, online fast and accurate fault diagnosis is still an unresolved problem, especially in the protection and circuit breaker is not working properly, or the case of multiple faults, fault diagnosis more difficult.Diagnosis is generally based on SCADA system provides information to determine the protection and circuit breaker failure in the power system components. A variety of artificial intelligence technology has been used to solve this problem, such as expert systems [1, 4], stochastic optimization techniques [5, 10] and artificial neural networks [11, 14] and so on. Expert system-based approach which has been widely noticed and studied. This method can provide a strong interpretation of the reasoning and have the ability, however, expert system knowledge acquisition, organization, and so very difficult to check and maintain, and its application to become a bottleneck. Moreover, the expert system must search the Knowledge Base to get a huge final diagnoses, which makes it unable to meet the requirements of real-time fault diagnosis. In addition, when the system protection and circuit breakers do not exist in normal operation, the expert system may lack the ability to identify the error caused by wrong diagnoses.Another fault diagnosis for a more promising approach is based on stochastic optimization method works. The main principle of this method is expressed as an integer troubleshooting optimization problem, then use the global optimization methods, such as Boltzmann machines [5], genetic algorithms [6 8], ant system simulation [9] or tabu search [10] to solve the optimization problem. The practical application of this method in the process there were also some problems: how to determine the parameters of stochastic optimization methods to achieve the correct diagnosis quickly; how to make these methods suitable for the protection and circuit breakers are not the normal operation of the circumstancesIn recent years, artificial neural networks [11, 14] aroused the interest of researchers because of its learning, generalization and fault tolerance. And the calculation of neurons in parallel, which is conducive to real-time applications. Various models in neural networks, the most widely applied model is the BP (Back-Propagation) neural network. BP model uses the standard gradient descent algorithm training, so the structure of BP neural network must beknown in advance, and the learning convergence speed is very slow and may converge to local minimum point. These adverse factors limit the BP model in fault diagnosisProposed radial basis function (Radial basis func-tion, RBF) neural network [15, 16] to solve the power system fault diagnosis. RBF neural network theory with an arbitrary function approximation ability [17]. RBF network and the learning time is much smaller than the forward neural network training time for other learning algorithms. In addition, RBF networks the number of hidden neurons can be determined automatically during parameter optimization. These features make it popular in practical applications. RBF neural network to establish a key issue in the training process is to optimize the parameters. In this paper, orthogonal least squares (Orthogonalleast square) algorithm [18] be extended to optimize the RBF neural network parameters. To assess the RBF neural network for fault diagnosis of the effectiveness of problem, the paper also uses a traditional BP neural network to solve the same problem, and their results were compared. 4 bus test system in the simulation results show that: RBF neural network is better than BP neural network model, can more effectively address the problem of fault diagnosis.2 For the RBF neural network fault diagnosis2.1 RBF neural network structureRBF neural network input layer, hidden layer and output layers, in which the hidden layer neurons from the radial basis function composition. Input space can be used, actual or normalized representation. Input signal is sent to the hidden layer, that layer of RBF neurons. Hidden layer neurons in the first i will calculate the input vector x and its weight vector distance between ui and put it as a radial basis functio n φi (x) of the input, and then calculated the output of the hidden layer. The results show that the choice of radial basis function type behavior of the RBF neural network has little effect. Study, the Gaussian function as radial basis function [15,16],N amely: φi (x) = exp (- [x-ui] T [x-ui] / 2σ2i) (i = 1, ..., nh) (1) where φi (x) is the first i-hidden layer neural Element of the output; nh is the number of hidden neurons; x is the input vector; ui and σi are the center of the corresponding Gaussian function (or weight) and the probability of divergence.Clearly, the radial basis function neuron i play the role of the detector, when the input vector x and weight vector ui is the same, the output is 1. Probability of divergence σi (> 0), said radial basis function neurons can respond to the input space ‖‖x-ui range. In general, the probability of divergence should be less than the input vector and radial basis function may be the maximum distance between the centers, the values determined by experiment.Output layer, hidden layer of radial basis function linear combination of the output to generate the desired output. J-output layer output neurons, dj = Σnhi= 1νij • φi (x) (j = 1, ..., no) (2)Where no is the total number of output neurons; νij for the first i-hidden layer neuron to neuron j output weights.Thus, according to the given training samples, quickly and efficiently determine the center of radial basis functions {ui} and the output layer weights {νij} is the training of RBF neural network critical tasks. In fact Once the center of radial basis functions {ui}, then for all the training sample, {φi (x)} nhi = 1 and the corresponding expected output of {dj} noj = 1 is known, the output weights {vij} by equation (2) obtained by the least square method. Therefore, RBF neural network to establish the key issue is the given training samples to determine the center of radial basis function. This issue will be analyzed in detail later. 2.2 RBF Neural Network Training AlgorithmAssuming RBF neural network input layer neurons ni, for the fault diagnosis problem is concerned, ni equal to the electricity network of all the total number of protective relays and circuit breakers, the protection and circuit breaker status (0 or 1) is a neural network Input. If there are N training samples, then the training sample set can be expressed as x (t) ∈Rni, t = 1, ..., N. The electricity network in the considered a total of M elements, such as transmission lines, busbars and transformers to determine the status of these components is the diagnosis of failure or the ultimate goal of normal, the RBF neural network output layer neuron number no = M . Determine the number of neurons in the hidden layer and the center nh easiest way is to accurately design (Exact design) method [16]. For this method to generate the RBF neural network, training samples when the input is x, the calculated output will be equal to the expected output, there is no error. This method produces the same number of training samples N the total number of hidden layer neurons, and to make appropriate weight ui = x (i), i = 1, ..., N. However, if the number of training samples N is too large, will lead to the corresponding hidden layer RBF neural network due to excessive number of neurons is difficult to accept. To solve this problem, the paper of [18] proposed the orthogonal least squares (Orthogonal Least Squares, OLS) algorithm has been extended and used to train the RBF neural network. In [18] in the OLS algorithm is only applicable to single-output RBF network optimization of parameters, and this will be extended to optimize its multi-output hidden layer neurons, the corresponding radial basis function centers and output layer weightsIn the OLS method, RBF neural network is seen as a special linear regression model. 2 RBF network mapping can be expressed as a matrix D = Φ • VE (3)Where matrix Φ corresponding to the 1st network mapping, known as the regression matrix. Can be written as Φ (N × nh) = [φ1 ... φl ... φnh] = [φ (1) ... φ (t) ... φ (N)] T, the l column of the matrix element t-line φl (x (t) ) Is the network the first hidden layer neuron l a s t on the input vector x (t) output; matrix V (nh × no) corresponds to the network, the first two mapping is type (2) definedWeight matrix; matrix D (N × no) = [d1 ... dm ... dno] = [d (1) ... d (t) ... d (N)] T is that all training samples of the expected output, its structure and Φ similar . Error matrix E (N × no) = [ε1 ... εm ... εno] that the calculation of RBF neural network output and the training sample the deviation between the expected output of D. Suppose E is not associated with Φ, and after completion of the training of RBF network should be as small as possible. The purpose of OLS algorithm is to determine the optimal value of Φ and V and the minimum error matrix E, so as to ensure the accuracy of diagnosis.Φ can be decomposed into Φ = W • A (4)Where A is a nh × nh the upper triangular matrixA = 1α12α13 ... α1nh0 1α23 ... α2nh ... ... ... ... 0 0 ... 1α (nh-1) nh0 0 ... 01 (5) and W (N × nh) = [w1 ... wl ... wnh] is an orthogonal matrix, that is, WT • W = H (6) or wTl • wl = ΣNt = 1wl (t) • wl (t) = hlwTl • wj = 01 ≤ l≤ nh (l ≠ j) (7) where H (nh × nh ) Is a diagonal matrix; hl l for its first two diagonal elements. If the skill (4) into (3), and define A • V = G (nh × n0) (8)Orthogonal matrix W according to the nature of the matrix G obtained the ideal (ie error matrix E 0) of the orthogonal least squares solution for the G ^ = H-1 • WT • D (9)The matrix elements calculated by the following formula: g ^ lm = wTl • dm / (wTl • wl), 1 ≤ l ≤ nh, 1 ≤ m ≤ no (10)Then (3) can be expressed asD = W • GE (11)G, where the '^ ' is deletedOr written in vector formdm = W • gm εm, 1 ≤ m ≤ no (12)Because when l ≠ p, the vector wl and wp are orthogonal to each other, and they are not related with the vector εm, so the first m output neurons in the energy function (dTm • dm) ca n be defined asdTm • dm = Σnhl = 1g2lmwTlwl εTm • εm (13)For all the training samples, the average output energy of the totalN-1 • Σnom = 1 (dTm • dm) = N-1Σnom = 1Σnhl = 1g2lmwTlwl εTm • εm (14)Obviously, N-1Σnom = 1Σnhl = 1g2lmwTlwl is equation (14) right-hand side of the master key, so a return on the first l vectors wl corresponding contribution factor of the output energy [out-con] l defined as [out-con] l =Σnom = 1g2lmwTlwl/Σnom = 1 (dTm • dm) 1 ≤ l ≤ nh(15)The ratio of training samples from a given set of {x (t)} Nt = 1, choose an important subset of the regression vector provides an effective quantitative indicators, when Σnhl = 1 [out-con] l → 1 when Training convergence.Based on the above concepts, OLS algorithm of the training algorithm is an iterative process, in each iteration will add a hidden layer radial basis function neurons, it is the center of the maximum output power can be generated by the contribution factor of the input vector Jueding . Then calculate and check thenew neural network output error. Iteration terminates when the error is small enough.We can see from the above training process, if the number of hidden neurons is equal to the number of training samples, the OLS algorithm for establishing the RBF neural network design with precision by the same neural network. Therefore, accurate design OLS algorithm can be viewed as a special case. OLS algorithm is clearly the maximum number of iterations will not exceed the number of training samples, and its fast convergence, and can theoretically achieve zero error on training samples. Therefore, RBF neural network for real-time fault diagnosis system is very attractive.2.3 RBF neural network compared with BP neural networkIn fault diagnosis, RBF neural network is better than BP neural network [16], although the latter has succeeded in many applications. The two new neural network based fault diagnosis methods are multi-layer neural networkto the network. In a nutshell, RBF neural network is stored in a knowledge of local neurons, while the BP neural network will be the knowledge contained in all neurons. For the RBF neural network, hidden layer neurons of the optimal number can be obtained in the training process; and BP neural network requires that the number of hidden neurons must be known before the training, and the optimal hidden neurons number Difficult to determine. In addition, training RBF neural network will not exceed the maximum number of iterations the number of training samples, while the number of hidden neurons is equalto the number of training samples, the output can achieve zero error; and BP neural network using gradient descent to minimize error , The error may converge very slowly, and may not achieve the residual error tolerance requirements. Gradient descent does not make sense and may even converge to a local optimum. In short, RBF neural network can be training time than the BP neural network learning is completed within a short time, while ensuring the accuracy of learning, so the power system fault diagnosis problem is concerned, RBF neural network is better than BP neural network.3 Computer simulation results3.1 RBF Neural Network Behavior Analysis training and diagnosticA simple 4-bus power system as a test system, shown in Figure 1. System, a total of nine components: 4 bus B1 ~ B4, a transformer T1 and the four transmission lines L1 ~ L4. In the simulation process, only consider a simplified system of protection configuration, which includes the transmission line main protection and backup protection MLP BLP, bus and transformer main protection MBP Main Protection MTP.The test power systemOn computer simulation calculation, N = 40, ie, 40 kinds of typical fault conditions for the training sample set. For each fault, all the protection and circuit breaker status (0 or 1) as the neural network input, ie ni = 33. 9 components of the state of systems is the output of neural networks, that is no = 9. If a neural network output close to 1, then the corresponding component that is the fault component.Obtained by the OLS algorithm for RBF neural network, when the probability of divergence σ = 2 and to allow deviations were ρ = 10-2 and 10-3, the number of hidden neurons and training iterations 37 and 39, respectively, Appropriate training time was 1.54s and 1.62s. It should be noted: For a given test system, designed by the exact method and the OLS algorithm to obtain the number of hidden layer neurons is not very different, mainly because of less training samples due to duplication of knowledge. In addition, when ρ increases, the learning accuracy is low, the number of hidden layer neurons will be reduced, so the need to balance the values of ρ diagnostic accuracy and training time required to determine the two factors. This article uses ρ = 10-2.Sample of a training example to illustrate the diagnosis of RBF neural network output. Assuming 4 bus fault, if the primary protection MBP4 bus 4 tripping, and the corresponding back-up protection BLP2 and BLP8 correct action, and then jumped off the circuit breaker CB2 and CB8 to isolate the bus 4, the OLS algorithm based on RBF neural network computing and the expected output Deviation between the output of 1.5 × 10-28. This shows that the two outputs are very close. For all other training samples can be obtained similar results.To test the generalization ability of neural network design, select does not exist in the training sample set of fault conditions as the test samples. Table 1 shows only one of the 12 test samples. All the test samples are more serious fault condition, the most serious failure up to 2 without the normal protection and circuit breaker action or double faults. The appropriate diagnostic results are listed in Table 2, where each line corresponds to a fault condition output. If the output of a component of a vector is greater than 0.5 (Table 2, Table 4 using underlined), the corresponding element is judged to be faulty components. These output vectors can be drawn from the RBF neural network can be all the test samples were correctly diagnosed conclusions. And whenthe probability of divergence σ changes from 2 to 10, RBF neural network can be correctly diagnosed, that is, the probability RBF neural network is not sensitive to changes of divergence. Simulation results show that: OLS algorithm based on RBF neural network has very good troubleshooting skills.3.2 compared with BP neural networkDesign and implementation of a BP neural network based on thetraditional fault diagnosis system and the RBF neural network in order to facilitate comparison. That the BP neural network has the same maximum tolerance ρ = 10-2, and the learning rate and momentum factor were η = 0.09 and α = 0.8. When the BP neural network hidden layer neurons is equal to 37 the number of RBF neural network with hidden layer neurons are the same, Table 3 shows the training process after 5326 iterations required to achieve the same error: ρ = 10-2 This RBF neural network is far greater than the number of iterations, the overall training time also increased significantly.Similarly, the situation will be serious problems for the 12 test samples to test the generalization ability of BP neural network, diagnostic results are listed in Table 4.The physical meaning of numbers similar to Table 2. Can be seen from Table 4, BP neural network in case of failure a diagnosis given the wrong conclusion, while the failure 7,9,11 and 12 failed to give a clear diagnostic results (Table 4 using double-underlined Said), so the generalization ability of BP neural network RBF neural network generalization than the poor. The simulation results indicate, under the same training error, RBF neural network fault diagnosis than the BP neural network fault diagnosis well.4 ConclusionIn this paper, RBF neural network for power system fault diagnosis was studied, and expanded by orthogonal least squares algorithm for optimizing the parameters of RBF neural network. RBF neural network in fault diagnosis, there are many excellent features. Simulation results show that: orthogonal least squares method to optimize the parameters of RBF neural network is very effective. The results also show that: RBF neural network training speed, fault diagnosis is better than BP neural network, especially the protection and circuit breakers for the existence of abnormal movements or multiple failures of serious fault conditions, the effect is more apparent. According to our latest research results, RBF neural network and network segmentation can also be combined, can effectively solve large-scale power system fault diagnosis.。
整车控制系统故障诊断流程感悟
整车控制系统故障诊断流程感悟1.故障诊断是整车控制系统维护的重要环节。
Diagnosis of faults is an important part of vehicle control system maintenance.2.故障诊断需要系统化的流程来进行。
Fault diagnosis requires a systematic process.3.首先要收集用户反馈的故障信息。
First, collect the fault information reported by users.4.然后进行初步的现场检查,确认故障表现和现象。
Then conduct a preliminary on-site inspection to confirm the fault behavior and symptoms.5.对车辆进行全面的检查,包括外观、部件连接和线路连接等。
Conduct a comprehensive inspection of the vehicle, including appearance, component connections, and wiring connections.6.使用诊断仪器进行系统诊断,获取故障代码和数据。
Use diagnostic equipment for system diagnosis to obtain fault codes and data.7.对比故障代码和数据,确认故障位置和可能原因。
Compare the fault codes and data to confirm the fault location and possible causes.8.根据故障代码和数据,进行分析判断,确定修复方案。
Based on the fault codes and data, analyze and judge to determine the repair solution.9.对可能的部件和线路进行逐一排查,确认具体故障原因。
数控机床英语
management n.管理
manual n.手动
master adj.主要的
max adj.最大的,n.最大值
maximum adj.最大的,n.最大值
MDI n.手动数据输入
meaning n.意义
measurement n.测量
memory n.存储器
esc=escape v.退出
exact adj.精确的
example n.例子
exchange v.更换
execute v.执行
execution n.执行
exit v.退出
external adj.外部的
failure n.故障
FANUC n.(日本)法那克
fault n.故障
drill v.钻孔
drive v.驱动
driver n.驱动器
dry run 空运行
duplicate v.复制
duplication n.复制
dwell n,v.延时
edit v.编辑
EDT(edit) v.编辑
EIA n.美国电子工业协会标准
electrical adj.电气的
backlash n.间隙
backspace v.退格
backup v.备份
bar n.栏,条
battery n.电池
baudrate n.波特率
bearing n.轴承
binary adj..二进制的
bit n.位
blank n.空格
block n.块,段
block n.撞块,程序段
数控系统常用英语
数控系统中常用的英语单词目前数控系统大多使用英语,为方便使用数控设备时查找,在下面列出了数控系统中比较常用的英文词汇。
其中的汉语解释只侧重于它们在数控系统中的含义,而对其它含义则予以忽略。
单词词义board n.板卡fine adj.精密的word n.字ABS(absolute) adj.绝对的absolute adj.绝对的AC n.交流accelerate v.加速acceleration n.加速度active adj.有效的adapter n.适配器,插头address n.地址adjust v.调整adjustment n.调整advance v.前进advanced adj.高级的,增强的alarm n.报警ALM(alarm) n.报警alter v.修改amplifier n.放大器angle n.角度APC n.绝对式脉冲编码器appendix n.附录,附属品arc n.圆弧argument n.字段,自变量arithmetic n.算术arrow n.箭头AUTO n.自动automatic adj.自动的automation n.自动auxiliary function 辅助功能axes n.轴(复数)axis n.轴background n.背景,后台backlash n.间隙backspace v.退格backup v.备份bar n.栏,条battery n.电池baudrate n.波特率bearing n.轴承binary adj..二进制的bit n.位blank n.空格block n.撞块,程序段blown v.熔断bore v.镗boring n.镗box n.箱体,框bracket n.括号buffer n.v.缓冲bus n.总线button n.按钮cabient n.箱体calbe n.电缆calculate v.计算calculation n.计算call v.调用CAN(cancel) v.清除cancel v.清除canned cycle 固定循环capacity n.容量card n.板卡carriage n.床鞍,工作台cassette n.磁带cell n.电池CH(chanel) n.通道change v.变更,更换channel n.通道check v.检查chop v.錾削chopping n.錾削circle n.圆circuit n.电路,回路circular adj.圆弧的clamp v.夹紧clear v.清除clip v.剪切clip board n.剪贴板clock n.时钟clutch n.卡盘,离合器CMR n.命令增益CNC 计算机数字控制code n.代码coder n.编码器command n,v.命令communication n.通讯compensation n.补偿computer n.计算机condition n.条件configuration n.配置configure v.配置connect v.连接connection n.连接connector n.连接器console n.操作台constant n.常数,adj.恒定的contour n.轮廓control v.控制conversion n.转换cool v.冷却coolant n.冷却coordinate n.坐标copy v.拷贝corner n.转角correct v.改正,adj.正确的correction n.修改count v.计数counter n.计数器CPU n.中央处理单元CR n.回车cradle n.摇架create v.生成CRT n.真空射线管CSB n.中央服务板current n.电流,当前的,缺省的current loop n.电流环cursor n.光标custom n.用户cut v.切削cutter n.(元盘形)刀具cycle n.循环cylinder n.圆柱体cylindrical adj.圆柱的data n.数据(复数)date n.日期datum n.数据(单数)DC n.直流deceleration n.减速decimal point n.小数点decrease v.减少deep adj.深的define v.定义deg. n.度degree n.度DEL(delete) v.删除delay v,n.延时delete v.删除deletion n.删除description n.描述detect v.检查detection n.检查device n.装置DGN(diagnose) v.诊断DI n.数字输入DIAG(diagnosis) n.诊断diagnosis n.诊断diameter n.直径diamond n.金刚石digit n.数字dimension n.尺寸,(坐标系的)维DIR n.目录direction n.方向directory n.目录disconnect v.断开disconnection n.断开disk n.磁盘diskette n.磁盘display v,n.显示distance n.距离divide n,v除,v.划分DMR n.检测增益DNC 直接数据控制DO n.数字输出dog switch n.回参考点减速开关DOS n.磁盘操作系统DRAM n.动态随机存储器drawing n.画图dress v.修整dresser n.修整器drill v.钻孔drive v.驱动driver n.驱动器dry run 空运行duplicate v.复制duplication n.复制dwell n,v.延时edit v.编辑EDT(edit) v.编辑EIA n.美国电子工业协会标准electrical adj.电气的electronic adj.电子的emergency n.紧急情况enable v.使能encoder n.编码器end v,n.结束enter n.回车,v.输入,进入entry n.输入equal v.等于equipment n.设备erase v.擦除error n.误差,错误,故障Esc=escape v.退出exact adj.精确的example n.例子exchange v.更换execute v.执行execution n.执行exit v.退出external adj.外部的failure n.故障FANUC n.(日本)法那克fault n.故障feed v.进给feedback v.反馈feedrate n.进给率figure n.数字file n.文件filt(filtrate) v.过滤filter n.过滤器Fin(finish) n.完成(应答信号)fine adj.精密的fixture n.夹具FL (回参考点的)低速flash memory n.闪存flexible adj.柔性的floppy adj.软的foreground n.前景,前台format n.格式,v.格式化function n.功能gain n.增益GE FANUC GE法那克gear n.齿轮general adj.总的,通用的generator n.发生器geometry n.几何gradient n.倾斜度,梯度graph n.图形graphic adj.图形的grind v.磨削group n.组guidance n.指南,指导guide v.指导halt n,v.暂停,间断handle n.手动,手摇轮handy adj.便携的handy file 便携式编程器hardware n.硬件helical adj.螺旋上升的help n,v.帮助history n.历史HNDL(handle) n.手摇,手动hold v.保持hole n.孔horizontal a.水平的host n.主机hour n.小时hydraulic adj.液压的I/O n.输入/输出illegal adj.非法的inactive adj.无效的inch n.英寸increment n.增量incremental adj.增量的index 分度,索引initial adj.原始的initialization n.C523初始化initialize v.初始化input n.v.输入INS(insert) v.插入insert v.插入instruction n.说明interface n.接口internal adj.内部的interpolate v.插补interpolation n.插补interrupt v.中断interruption n.中断intervent n.间隔,间歇involute n.渐开线ISO n.国际标准化组织jog n.点动jump v.跳转key n.键keyboard n.键盘label n.标记,标号ladder diagram 梯形图language n.语言lathe n.车床LCD n.液晶显示least adj.最小的length n.长度LIB(library) n.库library n.库life n.寿命light n.灯limit n.极限limit switch n.限位开关line n.直线linear adj.线性的linear scale n.直线式传感器link n,v.连接list n,v.列表load n.负荷,v.装载local adj.本地的locate v.定位,插销location n.定位,插销lock v.锁定logic n.逻辑look ahead v.预,超前loop n.回路,环路LS n.限位开关LSI n.大规模集成电路machine n.机床,v.加工macro n.宏macro program n.宏程序magazine n.刀库magnet n.磁体,磁magnetic a.磁的main program n.主程序maintain v.维护maintenance n.维护MAN(manual) n.手动management n.管理manual n.手动master adj.主要的max adj.最大的,n.最大值maximum adj.最大的,n.最大值MDI n.手动数据输入meaning n.意义measurement n.测量memory n.存储器menu n.菜单message n.信息meter n.米metric adj.米制的mill n.铣床,v.铣削min adj.最小的,n.最小值minimum adj.最小的,n.最小值minus v.减,adj.负的minute n.分钟mirror image n.镜像miscellaneous function n.辅助功能MMC n.人机通讯单元modal adj.模态的modal G code n.模态G代码mode n.方式model n.型号modify v.修改module n.模块MON(monitor) v.监控monitor v.监控month n.月份motion n.运动motor n.电机mouse n.鼠标MOV(移动)v.移动move v.移动movement n.移动multiply v.乘N number n.程序段号N.M n.牛顿.米name n.名字NC n.数字控制NCK n.数字控制核心negative adj.负的nest v,n.嵌入,嵌套nop n.空操作NULL n.空number n.号码numeric adj.数字的O number n.程序号octal adj.八进制的OEM n.原始设备制造商OFF adv.断offset n.补偿,偏移量ON adv.通one shot G code 一次性G代码open v.打开operate v.操作operation n.操作OPRT(operation) n.操作origin n.起源,由来original adj.原始的output n,v.输出over travel 超程over voltage 过电压overcurrent 过电流overflow v,n.溢出overheat n.过热overload n.过负荷override n.(速度等的)倍率page n.页page down 下翻页page up 上翻页panel n.面板PARA(parameter) n.参数parabola n.抛物线parallel adj.平行的,并行的,并联的parameter n.参数parity n.奇偶性part n.工件,部分password n.口令,密码paste v.粘贴path n.路径pattern n.句型,式样pause n.暂停PC n.个人电脑PCB n.印刷电路板per prep.每个percent n.百分数pitch n.节距,螺距plane n.平面PLC n.可编程序逻辑控制器plus n.增益,prep.加,adj.正的PMC n.可编程序逻辑控制器pneumatic adj.空气的polar adj.两极的,n.极线portable adj.便携的POS(position) v,n.位置,定位position v,n.位置,定位position loop n.位置环positive adj.正的power n.电源,能量,功率power source n.电源preload v.预负荷preset v.予置pressure n.压力preview v.予览PRGRM(program) v.编程,n.程序print v.打印printer n.打印机prior adj.优先的,基本的procedure n.步骤profile n.轮廓,剖面program v.编程,n.程序programmable adj.可编程的programmer n.编程器protect v.保护protocol n.协议PSW(password) n.密码,口令pulse n.脉冲pump n.泵punch v.穿孔puncher n.穿孔机push button n.按钮PWM n.脉宽调制query n.问题,疑问quit v.退出radius n.半径RAM n.随机存储器ramp n.斜坡ramp up v.(计算机系统)自举range n.范围rapid adj.快速的rate n.比率,速度ratio n.比值read v.读ready adj.有准备的ream v.铰加工reamer n.铰刀record v,n.记录REF(reference) n.参考reference n.参考reference point n.参考点register n.寄存器registration n.注册,登记relative adj.相对的relay v,n.中继remedy n.解决方法remote adj.远程的replace v.更换,代替reset v.复位restart v.重启动RET(return) v.返回return v.返回revolution n.转rewind v.卷绕rigid adj.刚性的RISC n.精简指令集计算机roll v.滚动roller n.滚轮ROM n.只读存储器rotate v.旋转rotation n.旋转rotor n.转子rough adj.粗糙的RPM n.转/分RSTR(restart) v.重启动run v.运行sample n.样本,示例save v.存储save as 另存为scale n.尺度,标度scaling n.缩放比例schedule n.时间表,清单screen n.屏幕screw n.丝杠,螺杆search v.搜索second n.秒segment n.字段select v.选择selection n.选择self-diagnostic 自诊断sensor n.传感器sequence n.顺序sequence number 顺序号series n.系列,adj.串行的series spindle n.数字主轴servo n.伺服set v.设置setting n.设置shaft n.轴shape n.形状shift v.移位SIEMENSE (德国)西门子公司sign n.符号,标记signal n.信号skip v,n.跳步slave adj.从属的SLC n.小型逻辑控制器slide n.滑台,v.滑动slot n.槽slow adj.慢soft key n.软键盘software n.软件space n.空格,空间SPC n.增量式脉冲编码器speed n.速度spindle n.主轴SRAM n.静态随机存储器SRH(search) v.搜索start v.启动statement n.语句stator n.定子status n.状态step n.步stop v.停止,n.挡铁store v.储存strobe n.选通stroke n.行程Subprogram n.子程序sum n.总和surface n.表面SV(servo) n.伺服switch n.开关switch off v.关断switch on v.接通symbol n.符号,标记synchronous adj.同步的SYS(system) n.系统system n.系统tab n.制表键table n.表格tail n.尾座tandem adv.一前一后,串联tandem control n.纵排控制(加载预负荷的控制方式)tank n.箱体tap n,v.攻丝tape n.磁带,纸带tape reader n.纸带阅读机tapping n.攻丝teach in 示教technique n.技术,工艺temperature n.温度test v,n.测试thread n.螺纹time n.时间,次数tolerance n.公差tool n.刀具,工具tool pot n.刀杯torque n.扭矩tower n.刀架,转塔trace n.轨迹,踪迹track n.轨迹,踪迹tranducer n.传感器transfer v.传输,传送transformer n.变压器traverse v.移动trigger v.触发turn v转动,n转,回合turn off v.关断turn on v.接通turning n.转动,车削unclamp v.松开unit n.单位,装置unload n.卸载unlock v.解锁UPS n.不间断电源user n.用户value n.值variable n.变量,adj.可变的velocity n.速度velocity loop n.速度环verify v.效验version n.版本vertical a.垂直的voltage n.电压warning n.警告waveform n.波形wear n,v.磨损weight n.重量,权重wheel n.轮子,砂轮window n.窗口,视窗workpiece n.工件write v.写入wrong n.错误,adj.错的year n.年zero n.零,零位zone n.区域。
自适应在线增量ELM 的故障诊断模型研究
自适应在线,王文双1, ,赵建印1,朱 敏2
关键词:超限学习机;数据增量学习;隐藏层增量学习;类增量学习;故障诊断 中图分类号:TP273 文献标志码:A 犇犗犐:10.12305/j.issn.1001506X.2021.09.39
犚犲狊犲犪狉犮犺犈狅犔狀犕犪狀犳犪犪狌犾犱狋犪狆犱狋犻犻犪狏犵犲狀狅狅狊狀犻犾狊犻狀犿犲狅犻犱狀犲犮犾狉犲犿犲狀狋犪犾
(1.中国人民解放军海军岸防兵学院,山东 烟台264001; 2.中国人民解放军91576部队,浙江 宁波315020)
摘 要:为满足现役装备根据故障样本数据集积累的特点进行自适应故障诊断的需求,本文将极限学习机 (extremelearningmachine,ELM)的数据增量学习、隐藏层增量学习和输出层增量学习(类增量学习)3种增量学习 模 式,融合到一个统一的学习框架内,提出一种凸最优自适应增量在线顺序 ELM(convexoptimaladaptiveincremental onlinesequentialELM,COAIOSELM)。模型能够根据增量学习中误差的变化情况,自适应地增加隐藏层神经元,减 小分类误差;并可根据增量数据集中新出现的故障类别,进行相应的类增量学习,增加故障诊断的范围。有效解决 了ELM 增量学习过程中模型自适应动态选择最佳网络结构的问题,提高模型的故障诊断的精度和故障诊断的范 围。本文选择 UCI数据集中公共数据集和 Biquad低通滤波电路故障诊断数据集,通过与类增量 ELM (classincre mentalELM,CIELM)模型对比实验,验证了所提方法的有效性。
奔腾某车型发动机怠速启停系统典型故障诊断与排除
10.16638/ki.1671-7988.2020.08.067奔腾某车型发动机怠速启停系统典型故障诊断与排除周武郁,徐聪,陈磊(信阳职业技术学院汽车与机电工程学院,河南信阳464000)摘要:为了提高能源的利用率,降低汽车油耗和尾气排放对大气的污染,汽车发动机怠速启停技术得到了广泛的应用。
该系统可在怠速情况下,实现车辆智能启停。
在实际使用过程中,由于各种原因,导致汽车怠速启停系统无法运行,车辆组合仪表盘提示怠速启停系统功能异常。
文章针对奔腾某车型发动机怠速启停系统进行分析,并提出故障诊断和排除方法。
关键词:怠速启停系统;故障诊断;故障排除中图分类号:U471 文献标识码:B 文章编号:1671-7988(2020)08-210-03The Typical Fault Diagnosis and Troubleshooting of The BESTUNE AutomobileEngine Idle Start-stop SystemZhou Wuyu, Xu Cong, Chen Lei( School of Automotive and Electrical Engineering, Xinyang V ocational and Technical College, Henan Xinyang 464000 )Abstract: In order to improve the utilization of energy, reduce automobile fuel consumption and exhaust emissions of air pollution, the automobile engine idle start-stop technology has been widely used. This system can realize the intelligent start and stop of vehicle under the idle speed. In actual use, due to the various reasons, the engineer idle start-stop system cannot run, and the vehicle combination dashboard indicates that the idling start-stop function is abnormal. This paper analyzes the BESTUNE automobile engine idle start-stop system principle, and puts forward the fault diagnosis and troubleshooting methods.Keywords: The engine idle start-stop system; Fault diagnosis; TroubleshootingCLC NO.: U471 Document Code: B Article ID: 1671-7988(2020)08-210-03引言随着汽车节能技术的发展,越来越多的汽车发动机配备了怠速启停系统。
100多个故障诊断名词术语和释义,常用的都在这了!
100多个故障诊断名词术语和释义,常用的都在这了!1状态监测(condition monitoring)-对机械设备的工作状态(静的和动的)进行监视和测量(实时的或非实时的),以了解其正常与不正常。
2故障诊断(fault diagnosis)又称为技术诊断(technical diagnosis)-采用一定的诊断方法和手段,确定机械设备功能失常的原因、部位、性质、程度和类别,明确故障的存在和发展。
3简易诊断(simple diagnosis)-使用简易仪器和方法进行诊断。
4精密诊断(meticulous diagnosis)-使用精密仪器进行的诊断(优于精确诊断或精度诊断术语)。
5故障征兆(symptom of fault)(或称故障症状)-能反映机械设备功能失常,存在故障的各种状态量。
6征兆参数(symptom of parameter)-能有效识别机械设备故障源故障的各种特征量,包括:原始量和处理量。
7状态识别(condition recognition/identification)-为判断机械设备工作状态的正常与不正常和通过故障状态量的区别,诊断其故障的方法。
8特征提取(feature extraction)-为了正确识别和诊断机械设备故障的存在与否,对征兆参数进行特别的处理。
9故障类别(fault classification)-反映机械设备功能失常、结构受损、工作实效的专用分类、名称。
10故障性质(nature of fault)-描述故障发生速度、危险程度、发生规律、发生原因等问题。
11突发故障(sudden fault)-突然发生的故障。
在故障发生瞬间,必须采用实时监控、保安装置、紧急停机等措施。
12渐发故障(slow fault)-故障的形成和发展比较缓慢,能够提供监测与诊断的条件。
13破坏性故障(damaging fault)或称灾难性故障(catastrophic fault)-故障的发生影响机械设备功能的全部失去,并造成局部或整体的毁坏,难以修复重新使用。
表 310 种故障诊断法对照
表 310 种故障诊断法对照英文回答:The 310 Fault Diagnosis Method Comparison Table is a comprehensive reference tool that provides a comparison of 310 different fault diagnosis methods. It is a valuable resource for professionals in various industries who need to diagnose and troubleshoot equipment and systems.The table includes various diagnostic methods such as visual inspection, measurement and testing, data analysis, and expert judgment. Each method is categorized based on its effectiveness, ease of use, cost, and other relevant factors. This allows users to quickly identify the most suitable method for their specific diagnostic needs.For example, let's say I work in the automotive industry and need to diagnose a problem with a car engine. By referring to the 310 Fault Diagnosis Method Comparison Table, I can easily find the most effective and cost-efficient method for diagnosing engine issues. This could be a combination of visual inspection, measurement and testing, and data analysis.In addition to providing a comparison of different diagnostic methods, the table also includes additional information such as the required equipment, skills, and training for each method. This helps users determine the feasibility and practicality of implementing a particular diagnostic method.中文回答:310种故障诊断法对照表是一份全面的参考工具,提供了310种不同的故障诊断方法的比较。
数据驱动的故障诊断方法体系
数据驱动的故障诊断方法体系英文回答:Data-driven fault diagnosis is a methodological approach that utilizes data analysis techniques to identify and diagnose faults or problems in a system or process. This method relies on the collection and analysis of relevant data to identify patterns, trends, and anomalies that may indicate the presence of a fault.One common data-driven fault diagnosis method is statistical analysis. This involves analyzing thestatistical properties of the data to identify any deviations from normal behavior. For example, if we have data on the temperature of a machine over time, we can use statistical techniques such as mean, median, and standard deviation to identify any abnormal temperature readingsthat may indicate a fault.Another data-driven fault diagnosis method is machinelearning. This involves training a model on historical data to learn the patterns and relationships between different variables. Once the model is trained, it can be used to predict the behavior of the system and identify any deviations from the expected behavior. For example, if we have data on the performance of a computer network, we can train a machine learning model to predict network performance based on factors such as network traffic, CPU usage, and memory usage. If the model detects any significant deviations from the predicted performance, it may indicate a fault in the network.Data-driven fault diagnosis methods can be applied to a wide range of systems and processes, including manufacturing processes, power systems, transportation systems, and healthcare systems. By analyzing the data generated by these systems, we can gain valuable insights into the underlying causes of faults and develop effective strategies for diagnosing and resolving them.中文回答:数据驱动的故障诊断方法体系是一种利用数据分析技术来识别和诊断系统或过程中故障或问题的方法论。
数控加工英文词汇
数控加工英文词汇1)计算机数值操纵(Computerized Numerical Control, CNC)用计算机操纵加工功能,实现数值操纵。
2)轴(Axis)机床的部件能够沿着其作直线移动或者回转运动的基准方向。
3)机床坐标系(Machine Coordinate Systern )固定于机床上,以机床零点为基准的笛卡尔坐标系。
4)机床坐标原点(Machine Coordinate Origin )机床坐标系的原点。
5)工件坐标系(Workpiece Coordinate System )固定于工件上的笛卡尔坐标系6)工件坐标原点(Wrok-piexe Coordinate Origin)工件坐标系原点。
7)机床零点(Machine zero )由机床制造商规定的机床原点。
8)参考位置(Reference Position )机床启动用的沿着坐标轴上的一个固定点,它能够用机床坐标原点为参考基准9)绝对尺寸(Absolute Dimension)/绝对坐标值(Absolute Coordinates)距一坐标系原点的直线距离或者角度。
10)增量尺寸( Incremental Dimension ) /增量坐标值(Incremental Coordinates)在一序列点的增量中,各点距前一点的距离或者角度值。
11)最小输人增量(Least Input Increment)在加工程序中能够输人的最小增量单位。
12)命令增量(Least command Increment)从数值操纵装置发出的命令坐标轴移动的最小增量单位。
13)插补(InterPolation)在所需的路径或者轮廓线上的两个已知点间根据某一数学函数(比如:直线,圆弧或者高阶函数)确定其多个中间点的位置坐标值的运算过程。
14)直线插补(Llne Interpolation)这是一种插补方式,在此方式中,两点间的插补沿着直线的点群来逼近,沿此直线操纵刀具的运动。
专业方向系列-01-大数据与故障诊断概述
专业⽅向系列-01-⼤数据与故障诊断概述天有不测风云,⼈有旦⼣祸福。
故障诊断就是为这句谚语做的预防准备,⽬前在这个知识海洋中,找出有⽤的知识,然后进⾏故障诊断,就是⼀个⼴义的概念。
本⽂主要只是做了⼀个简短的介绍,后续将引进更加专业的知识,构建⾃⼰的知识体系,完成专业⽅⾯的知识缺陷。
欢迎⼤家积极反馈,我将写出更出彩的博客。
名词列表名词英⽂⼈⼯智能Artificial Intelligence⼤数据Big data智能故障诊断Intelligent fault diagnosis微⼩故障incipient faults = mini-faults初始故障early faults故障诊断fault diagosis故障检测fault detection定性诊断qualitative diagnosis定量诊断quantitative diagnosis图论⽅法Graph theory method故障树分析法Fault tree analysis method专家系统Expert system状态估计法State estimation method数据驱动⽅法Data-driven method信号处理signal processing连续⼩波变换Continuous wavelet transform经验模式分解Empirical mode decomposition本征模态函数Intrinisic mode function统计分析法Statistical analysis method隐马尔可夫模型Hidden markov models⽀持向量机Support vector machines理解⽅式的改变随着理解信息的维度不断增加,我们对这个世界的看法也在发⽣着改变,追究其本质,其实各个维度之间存在着相互转化的关系。
信号可以转化为信息,信息可以转化为知识,知识可以服务于智能,智能⼜能输出海量数据,再从数据中提取信息,这是⼀个太极⼋卦,循环不断,逐渐逼近某个准则,促使着世界的改变。
数控系统常用英语
数控系统中常用的英语单词目前数控系统大多使用英语,为方便使用数控设备时查寻,在下面列出了数控系统中对比常用的英文词汇。
其中的汉语解释只侧重于它们在数控系统中的含义,而对其它含义那么予以忽略。
单词词义board n.板卡fine adj.周密的word n.字ABS(absolute) adj.尽对的absolute adj.尽对的AC n.交流accelerate v.加速acceleration n.加速度active adj.有效的adapter n.适配器,插头address n.地址adjust v.调整adjustment n.调整advance v.前进advanced adj.高级的,增强的alarm n.报警ALM(alarm) n.报警alter v.修改amplifier n.放大器angle n.角度APC n.尽对式脉冲编码器appendix n.附录,附属品arc n.圆弧argument n.字段,自变量arithmetic n.算术arrow n.箭头AUTO n.自动automatic adj.自动的automation n.自动auxiliaryfunction 辅助功能axes n.轴〔复数〕axis n.轴background n.背景,后台backlash n.间隙backspace v.退格backup v.备份bar n.栏,条battery n.电池baudrate n.波特率bearing n.轴承binary adj..二进制的bit n.位blank n.空格block n.撞块,程序段blown v.熔断bore v.镗boring n.镗box n.箱体,框bracket n.括号buffer n.v.缓冲bus n.总线button n.按钮cabient n.箱体calbe n.电缆calculate v.计算calculation n.计算call v.调用CAN(cancel) v.往除cancel v.往除cannedcycle 固定循环capacity n.容量card n.板卡carriage n.床鞍,工作台cassette n.磁带cell n.电池CH(chanel) n.通道change v.变更,更换channel n.通道check v.检查chop v.錾削chopping n.錾削circle n.圆circuit n.电路,回路circular adj.圆弧的clamp v.夹紧clear v.往除clip v.剪切clipboard n.剪贴板clock n.时钟clutch n.卡盘,离合器CMR n.命令增益CNC 计算机数字操纵code n.代码coder n.编码器command n,v.命令communication n.通讯compensation n.补偿computer n.计算机condition n.条件configuration n.配置configure v.配置connect v.连接connection n.连接connector n.连接器console n.操作台constant n.常数,adj.恒定的contour n.轮廓control v.操纵conversion n.转换cool v.冷却coolant n.冷却coordinate n.坐标copy v.拷贝corner n.转角correct v.改正,adj.正确的correction n.修改count v.计数counter n.计数器CPU n.中心处理单元CR n.回车cradlecreate v.生成CRT n.真空射线管CSB n.中心效劳板current n.电流,当前的,缺省的currentloop n.电流环cursor n.光标custom n.用户cut v.切削cutter n.〔元盘形〕刀具cycle n.循环cylinder n.圆柱体cylindrical adj.圆柱的data n.数据〔复数〕date n.日期datum n.数据〔单数〕DC n.直流deceleration n.减速decimalpoint n.小数点decrease v.减少deep adj.深的define v.定义deg. n.度degree n.度DEL(delete) v.删除delay v,n.延时delete v.删除deletion n.删除description n.描述detect v.检查detection n.检查device n.装置DGN(diagnose) v.诊断DI n.数字输进DIAG(diagnosis) n.诊断diagnosis n.诊断diameter n.直径diamond n.金刚石digit n.数字dimension n.尺寸,〔坐标系的〕维DIR n.名目direction n.方向directory n.名目disconnect v.断开disconnection n.断开disk n.磁盘diskette n.磁盘display v,n.显示distance n.距离divide n,v除,v.划分DMR n.检测增益DNC 直截了当数据操纵DO n.数字输出dogswitch n.回参考点减速开关DOS n.磁盘操作系统DRAM n.动态随机存储器drawing n.画图dress v.修整dresser n.修整器drill v.钻孔drive v.驱动driver n.驱动器dryrun 空运行duplicate v.复制duplication n.复制dwell n,v.延时edit v.编辑EDT(edit) v.编辑EIA n.美国电子工业协会标准electrical adj.电气的electronic adj.电子的emergency n.紧急情况enable v.使能encoder n.编码器end v,n.结束enter n.回车,v.输进,进进entry n.输进equal v.等于equipment n.设备erase v.擦除error n.误差,错误,故障Esc=escape v.退出exact adj.精确的example n.例子exchange v.更换execute v.执行execution n.执行exit v.退出external adj.外部的failure n.故障FANUC n.〔日本〕法那克fault n.故障feed v.进给feedback v.相应feedrate n.进给率figure n.数字file n.文件filt(filtrate) v.过滤filter n.过滤器Fin(finish) n.完成〔应答信号〕fine adj.周密的fixture n.夹具FL 〔回参考点的〕低速flashmemory n.闪存flexible adj.柔性的floppy adj.软的foreground n.前景,前台format n.格式,v.格式化function n.功能gain n.增益GEFANUC GE法那克gear n.齿轮general adj.总的,通用的generator n.发生器geometry n.几何gradient n.倾歪度,梯度graph n.图形graphic adj.图形的grind v.磨削group n.组guidance n.指南,指导guide v.指导halt n,v.暂停,间断handle n.手动,手摇轮handy adj.便携的handyfile 便携式编程器hardware n.硬件helical adj.螺旋上升的help n,v.关心history n.历史HNDL(handle) n.手摇,手动hold v.维持hole n.孔horizontal a.水平的host n.主机hour n.小时hydraulic adj.液压的I/O n.输进/输出illegal adj.非法的inactive adj.无效的inch n.英寸increment n.增量incremental adj.增量的index 分度,索引initial adj.原始的initialization 初始化initialize v.初始化input n.v.输进INS(insert) v.插进insert v.插进instruction n.讲明interface n.接口internal adj.内部的interpolate v.插补interpolation n.插补interrupt v.中断interruption n.中断intervent n.间隔,间歇involute n.渐开线ISO n.国际标准化组织jog n.点动jump v.跳转key n.键keyboard n.键盘label n.标记,标号ladderdiagram 梯形图language n.语言lathe n.车床LCD n.液晶显示least adj.最小的length n.长度LIB(library) n.库library n.库life n.寿命light n.灯limit n.极限limitswitch n.限位开关line n.直线linear adj.线性的linearscale n.直线式传感器link n,v.连接list n,v.列表load n.负荷,v.装载local adj.本地的locate v.定位,插销location n.定位,插销lock v.锁定logic n.逻辑lookahead v.预,超前loop n.回路,环路LS n.限位开关LSI n.大规模集成电路machine n.机床,v.加工macro n.宏macroprogram n.宏程序magazine n.刀库magnet n.磁体,磁magnetic a.磁的mainprogram n.主程序maintain v.维护maintenance n.维护MAN(manual) n.手动management n.治理manual n.手动master adj.要紧的max adj.最大的,n.最大值maximum adj.最大的,n.最大值MDI n.手动数据输进meaning n.意义measurement n.测量memory n.存储器menu n.菜单message n.信息meter n.米metric adj.米制的mill n.铣床,v.铣削min adj.最小的,n.最小值minimum adj.最小的,n.最小值minus v.减,adj.负的minute n.分钟mirrorimage n.镜像miscellaneousfunction n.辅助功能MMC n.人机通讯单元modal adj.模态的modalGcode n.模态G代码mode n.方式model n.型号modify v.修改module n.模块MON(monitor) v.监控monitor v.监控month n.月份motion n.运动motor n.电机mouse n.鼠标MOV(移动〕v.移动move v.移动movement n.移动multiply v.乘Nnumber n.程序段号n.牛顿.米name n.名字NC n.数字操纵NCK n.数字操纵核心negative adj.负的nest v,n.嵌进,嵌套nop n.空操作NULL n.空number n.号码numeric adj.数字的Onumber n.程序号octal adj.八进制的OEM n.原始设备制造商OFF adv.断offset n.补偿,偏移量ON adv.通oneshotGcode 一次性G代码open v.翻开operate v.操作operation n.操作OPRT(operation) n.操作origin n.起源,由来original adj.原始的output n,v.输出overtravel 超程overvoltage 过电压overcurrent 过电流overflow v,n.溢出overheat n.过热overload n.过负荷override n.〔速度等的〕倍率page n.页pagedown 下翻页pageup 上翻页panel n.面板PARA(parameter) n.参数parabola n.抛物线parallel adj.平行的,并行的,并联的parameter n.参数parity n.奇偶性part n.工件,局部password n.口令,密码paste v.粘贴path n.路径pattern n.句型,式样pause n.暂停PC n.个人电脑PCB n.印刷电路板per prep.每个percent n.百分数pitch n.节距,螺距plane n.平面PLC n.可编程序逻辑操纵器plus n.增益,prep.加,adj.正的PMC n.可编程序逻辑操纵器pneumatic adj.空气的polar adj.两极的,n.极线portable adj.便携的POS(position) v,n.位置,定位position v,n.位置,定位positionloop n.位置环positive adj.正的power n.电源,能量,功率powersource n.电源preload v.预负荷preset v.予置pressure n.压力preview v.予览PRGRM(program) v.编程,n.程序print v.打印printer n.打印机prior adj.优先的,全然的procedure n.步骤profile n.轮廓,剖面program v.编程,n.程序programmable adj.可编程的programmer n.编程器protect v.保卫protocol n.协议PSW(password) n.密码,口令pulse n.脉冲pump n.泵punch v.穿孔puncher n.穿孔机pushbutton n.按钮PWM n.脉宽调制query n.咨询题,疑咨询quit v.退出radius n.半径RAM n.随机存储器ramp n.歪坡rampup v.〔计算机系统〕自举range n.范围rapid adj.快速的rate n.比率,速度ratio n.比值read v.读ready adj.有预备的ream v.铰加工reamer n.铰刀record v,n.记录REF(reference) n.参考reference n.参考referencepoint n.参考点register n.存放器registration n.注册,登记relative adj.相对的relay v,n.中继remedy n.解决方法remote adj.远程的replace v.更换,代替reset v.复位restart v.重启动RET(return) v.返回return v.返回revolution n.转rewind v.卷绕rigid adj.刚性的RISC n.精简指令集计算机roll v.滚动roller n.滚轮ROM n.只读存储器rotate v.旋转rotation n.旋转rotor n.转子rough adj.粗糙的RPM n.转/分RSTR(restart) v.重启动run v.运行sample n.样本,例如save v.存储saveas 另存为scale n.尺度,标度scaling n.缩放比例schedule n.时刻表,清单screen n.屏幕screw n.丝杠,螺杆search v.搜索second n.秒segment n.字段select v.选择selection n.选择self-diagnostic 自诊断sensor n.传感器sequence n.顺序sequencenumber 顺序号series n.系列,adj.串行的seriesspindle n.数字主轴servo n.伺服set v.设置setting n.设置shaft n.轴shape n.外形shift v.移位SIEMENSE 〔德国〕西门子公司sign n.符号,标记signal n.信号skip v,n.跳步slave adj.附属的SLC n.小型逻辑操纵器slide n.滑台,v.滑动slot n.槽slow adj.慢softkey n.软键盘software n.软件space n.空格,空间SPC n.增量式脉冲编码器speed n.速度spindle n.主轴SRAM n.静态随机存储器SRH(search) v.搜索start v.启动statement n.语句stator n.定子status n.状态step n.步stop v.停止,n.挡铁store v.储存strobe n.选通stroke n.行程Subprogram n.子程序sum n.总和surface n.外表SV(servo) n.伺服switch n.开关switchoff v.关断switchon v.接通symbol n.符号,标记synchronous adj.同步的SYS(system) n.系统system n.系统tab n.制表键table n.表格tail n.尾座tandem adv.一前一后,串联tandemcontrol n.纵排操纵〔加载预负荷的操纵方式〕tank n.箱体tap n,v.攻丝tape n.磁带,纸带tapereader n.纸带阅读机tapping n.攻丝teachin 示教technique n.技术,工艺temperature n.温度test v,n.测试thread n.螺纹time n.时刻,次数tolerance n.公差tool n.刀具,工具toolpot n.刀杯torque n.扭矩tower n.刀架,转塔trace n.轨迹,踪迹track n.轨迹,踪迹tranducer n.传感器transfer v.传输,传送transformer n.变压器traverse v.移动trigger v.触发turn v转动,n转,回合turnoff v.关断turnon v.接通turning n.转动,车削unclamp v.松开unit n.单位,装置unload n.卸载unlock v.解锁UPS n.不间断电源user n.用户value n.值variable n.变量,adj.可变的velocity n.速度velocityloop n.速度环verify v.效验version n.版本vertical a.垂直的voltage n.电压warning n.警告waveform n.波形wear n,v.磨损weight n.重量,权重wheel n.轮子,砂轮window n.窗口,视窗workpiece n.工件write v.写进wrong n.错误,adj.错的year n.年zero n.零,零位zone n.区域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Incremental Fault Diagnosis Jiang Brandon Liu,Member,IEEE,and Andreas Veneris,Member,IEEEAbstract—Fault diagnosis is important in improving the circuit-design process and the manufacturing yield.Diagnosis of today’s complex defects is a challenging problem due to the explosion of the underlying solution space with the increasing number of fault lo-cations and fault models.To tackle this complexity,an incremental diagnosis method is proposed.This method captures faulty lines one at a time using the novel linear-time single-fault diagnosis algo-rithms.To capture complex fault effects,a model-free incremental diagnosis algorithm is outlined,which alleviates the need for an explicit fault model.To demonstrate the applicability of the pro-posed method,experiments on multiple stuck-at faults,open-in-terconnects and bridging faults are performed.Extensive results on combinational and full-scan sequential benchmark circuits con-firm its resolution and performance.Index Terms—Circuit simulation,fault diagnosis,open-intercon-nect,very large scale integration(VLSI).I.I NTRODUCTIONT ODAY’S world has been revolutionized by the rapid advancement of very large scale integration(VLSI)inte-grated circuit(IC)engineering.As the IC process technology becomes more complex and minimum feature size approaches nanometer range,manufacturing quality and yield are becoming more sensitive to physical defects.These defects are usually caused by mask contamination,process variation in fabrication, and spurious material[7],[10].Defects can be modeled on the logic level by a fault that affects single or multiple circuit lines, and produces failing output responses for one or more input test vectors.Unraveling the location and cause of the defect, a process known as failure analysis,helps improve the circuit design and manufacturing process leading to a lower cost, improved yield and shorter time-to-market.Failure analysis usually consists of two tasks:fault diagnosis and defect analysis.Fault diagnosis uses the observed failing re-sponses and the structure of the circuit under diagnosis(CUD)to search for locations that are potentially faulty.This information is used in defect analysis,where the CUD is physically exam-ined to determine and/or eliminate the mechanism of the failure [7],[10].Because physical examination is inevitably slow and resource intensive,the efficiency of failure analysis depends on the resolution(i.e.,accuracy)of diagnosis.Manuscript received April28,2003;revised September20,2003and March 30,2004.This research was supported by a grant from Communications and Information Technology Ontario(CITO).This paper was recommended by As-sociate Editor N.K.Jha.J.B.Liu is with the High-Performance Tools and Methodology Group, Freescale,Austin,TX78729USA(e-mail:brandon.liu@).A.Veneris is with the Department of Electrical and Computer Engineering and the Department of Computer Science,University of Toronto,Toronto,ON M5S3G4,Canada(e-mail:veneris@).Digital Object Identifier10.1109/TCAD.2004.841070Single-fault diagnosis is a well-studied problem with various linear-time techniques[10].Although helpful,single-fault di-agnosis may not be adequate for defects in modern devices that tend to cluster and affect multiple lines in the failing chip[2], [3],[8],[12],[13],[20],[21].This is also confirmed in recent ex-periments from a real-life diagnosis environment,which show that more than41%of defects found in failing chips cannot be diagnosed using the single stuck-at fault model[8].Diagnosis of such circuits is a difficult problem because,in theory,the so-lution space grows exponentially with the number of defective circuit lines[7],[20],[24].Furthermore,a robust diagnosis al-gorithm should be able to identify defects whose behavior may not be modeled accurately by a fault model[2]–[4].Clearly,a brute-force approach that exhaustively enumerates all possible locations will need to search a prohibitively large solution space. To meet these challenges,a simulation-based effect-cause in-cremental diagnosis approach for clustered defects that affect multiple circuit lines is proposed[17],[25].Incremental diag-nosis is an iterative process where a single faulty location is identified at each iteration.Fault effects are forced on this line and its fanout cone.These effects can capture either that of a specific fault model(fault-modeled diagnosis)or that of any fault model(model-free diagnosis).Model-free diagnosis is per-formed by simulating a logic unknown[4]on the candidate fault line.This type of diagnosis is important when the defects’be-havior cannot be accurately described by existing fault models [2],[4].Incremental diagnosis is repeated until the netlist with forced values emulates the behavior of the faulty -pared to previous incremental approaches[3],[8],[12],[13],the proposed work differs in the novelty of its algorithms,heuristics, and decision process when it searches the solution space.To demonstrate the applicability of the proposed work,proto-type computer-aided design(CAD)tools are developed for mul-tiple stuck-at fault,open-interconnect fault,and bridging fault diagnosis.We select stuck-at faults because in multiplicity,they can model other types of faults[19]and various types of de-sign errors[24].Therefore,efficient model-based diagnosis al-gorithms for multiple stuck-at faults may helpfind solutions for other fault/error models as well[10].Open-interconnect is caused by a break in interconnect wiring due to material or processing defects,electromigration, and thermal stress[5],[11].It has been reported that it is the dominant failure infield returns of process chips[22].Further-more,the total length of interconnect wires grows rapidly as the International Technology Roadmap for Semiconductors[9] in Fig.1,predicts.This trend may increase the failure rates attributed to opens in the near future.Open-interconnect is a fault with a complex behavior[5],[11],[19],[26].To tackle this complexity model-free incremental diagnosis is used.0278-0070/$20.00©2005IEEEFig.1.ITRS on interconnect length.An extensive suite of experiments using the incremental di-agnosis method presented here con firm its ef ficiency in terms of runtime and resolution.Therefore,it can act as a cost-effective front-end tool to failure analysis to help reduce the number of suspect lines the test engineer has to probe.This work is organized as follows.The next section describes the motivation and goals of incremental diagnosis.It also out-lines the basic components of the algorithm as a sketch for an operating incremental diagnosis framework.In Section III,this framework is tailored to the diagnosis of multiple stuck-at faults (model-based)and multiple open-interconnect (model-free)faults.Experiments for a variety of faults are found in Sec-tion IV and the conclusion follows in Section V .II.I NCREMENTAL D IAGNOSISIncremental diagnosis is an iterative process that identi fies one faulty location in each pass.Upon completion,it returns asetofcircuit lines,where fault effects can be forced to em-ulate the observed faulty CUD behavior for all input test vec-tors used.Fault effects are speci fied either by a set of predeter-mined fault model(s)or by using the logic unknown value(s).A logic unknown conservatively captures any faulty behavior on the line and it may diagnose defects whose behavior cannot be accurately fault modeled [2],[4].Section II-A gives the motivation behind incremental diag-nosis.An operational framework for the overall procedure is described in Sections II-B,–II-E.We use this framework to de-velop a model-based diagnosis tool for multiple stuck-at faults and a model-free one for multiple open-interconnect faults in Section III.Experiments demonstrate the applicability of the ap-proach for these fault types and for cases where the circuit under test is corrupted with different defect types.A.MotivationAs transistor density increases and feature size reduces,single-fault diagnosis may not be adequate for modern designs,where compound defects can affect more than one line in the circuit.Recent empirical data from a real-life design environ-ment for 453failing devices show that 41%of the defects found cannot be modeled with a single fault [8].Additionally,22%of the remaining 59%defect cases cannot be modeled using the single stuck-at fault model.Therefore,in more than 60%of the cases where a chip is returned for defect analysis,multiplefault diagnosis is required and the classical single stuck-at fault model may be inadequate.Ef ficient multiple-fault diagnosis algorithms are useful in other areas of the VLSI design cycle as well.In design-error diagnosis and correction [1],[25],[28],the designer uses diagnosis techniques to debug a netlist that fails veri fication due to the presence of a few bug(s).These bugs can have a low cardinality if they occur during logic synthesis or they may have large multiplicity as in the extraction of error de-bugging for test-model generation [28].Logic debugging is a task that is strongly related to the more general problem of engineering change [16],where one is required to modify a netlist to meet a new speci fimon ways to carry out engineering changes use a traditional diagnosis/correction debugging approach [16].In all cases,diagnosis for logic debugging and engineering change is a procedure symmetric to the one examined here [20].Furthermore,diagnosis tools are utilized in design rewiring for design optimization [23].The optimization gain of these methods depends on the ability of the underlying tool to perform multiple fault diagnosis [23].Therefore,advances in multiple-fault diagnosis may aid logic debugging,engineering change and design rewiring.Multiple-fault diagnosis is a challenging problem because,in theory,the search space grows exponentially with an increasing number of faulty lines [7],[24].Additionally,straightforward implementations of a single stuck-at fault algorithm may not capture defects on multiple locations with effects that converge and/or mask each other [7],[3],[8],[17],[25].To illustrate the last point,an experiment is performed to show multiple-fault interaction in combinational ISCAS ’85and ITC ’99benchmarks and full-scan versions of ISCAS ’89cir-cuits.Open faults are randomly selected and injected one by one,and the number of erroneous primary outputs is recorded after each fault.To model open interconnects,we use the fault model presented in [26]which is also described in Section III-B of this paper.In almost one third of the runs,the number of erroneous pri-mary outputs does not increase monotonically as new faults are injected in the circuit.We present these cases in Table I.For each run,its fault injection sequence and the number of erroneous primary outputs is shown in the table.This phenomenon indi-cates the presence of fault convergence and fault masking that may misguide algorithms designed exclusively for single faults.A similar experiment from [18]using design errors also con-firms the presence of error effect interaction with an increasing number of errors.Design errors are relevant to this work because they can be modeled using multiple stuck-at faults [1].To meet these challenges,the incremental diagnosis method described in this paper uses linear-time algorithms to identify one faulty location one at a time and various heuristics and data structures that guide the search in the solution space.The ra-tionale behind the approach comes from the fact that often,the majority of the failing input vectors can be attributed to a single faulty location [3],[8],[17],[25].The following computation describes a desired runtime behavior for incremental diagnosis.Consider a circuitwith linesanddistinct faulty lines,where.Further,let be the maximum number of fault manifestations on a single line.For example,in stuck-atTABLE IN ONMONOTONIC B EHA VIOR OF F AILING P RIMARY OUTPUTSdiagnosis,is 2because we can have stuck-at 0or stuck-at 1on the line.If the faults are identi fied incrementally and the computation at each iteration remains proportional to the circuitsize,the total solution space probedequals.If a cycle-based simulator is used thatneeds time units for a single vector simulation then the total time for diagnosisistime units.In the aboveexpressions,is the average cost incurred by a wrong decision during each stage of the incremental diagnosis.Ideally,is 1and a fault is identi fied at each iteration.In such a case,the complexity reduces to a linear factor in terms of the number of faulty lines.In the worst theoreticalcase,is poly-nomialto and the complexity of the solution increases expo-nentially.Experiments showthat is upper-bounded by a small constant for the approach developed here.B.Definitions and Algorithm OverviewIncremental diagnosis takes as inputs a CUD,its structural speci fication netlist,a set of test vectors ,including some with failing responses,and aninteger ,which indicates the max-imum cardinality of faulty locations to search.The netlists con-sidered are combinational ones consisting of logic primitives AND ,OR ,NOT ,NAND ,and NOR ,and full-scan sequential cir-cuits with a fault-free scan-chain.It returns sets of circuit lines,each ofcardinalityor less,that some fault effects on them can explain the faulty behavior for the failing device.Due to fault equivalences,the solution to diagnosis may not be unique.Since the number of faults is unknown prior to thediagnosis,is speci fied by the user as a conservative guess.If the algorithm fails to return a solution (i.e.,the number of faulty lines exceeds the initial guess),it automatically increases the valueof and restarts until a solution is found.Definition 1:A diagnostic configuration is a partially diag-nosed circuit during diagnosis.It is represented by the struc-tural circuit netlist,injected faults,and the current logic simu-lation values stored in an indexed bit-list (see below).If at least one of its primary outputs has different simulation value(s)than the CUD,the con figuration is said to be active .Otherwise,it is called inactive and the design behaves identically to the speci-fication for all the input test vector stimuli.For an input testvector ,a line whose value changes in the presence of afault is said to be sensitized to thefault byvector .A path consisting of sensitized lines is called a sensi-tized path .In a diagnostic con figuration,if a primary output does not have the same logic value as the CUD,it is called an erro-neous primary output (EPO).Otherwise,it is a correct primary output (CPO).Logic simulation values of all input test vectors are kept in two indexed bit-lists for every line in the circuit as in [24].One bit-list corresponds to nonfailing vectors and the other to failing vectors.Both assist diagnosis and they are prop-erly updated at each diagnostic con figuration.Definition 2:A circuit line under consideration by diagnosis is referred to as a suspect line.The combination of a suspect line and a fault model on this line is called a candidate .A set of candidates is called a candidate tuple (pair,triples,etc.)and the candidate tuple(s)returned by the algorithm is called a solution tuple(s).Fig.2illustrates the overall flow of the approach.The algo-rithm proceeds by iteratively identifying suspect locations one at a time.First,path-trace routine is performed to quickly prune the diagnosis space (Section II-C).Suspects are ranked according to theorems and heuristics found in Section II-D and the top one is selected.A fault effect is injected on the line (i.e.,the logic values that re flect the fault effect are forced on the line)in the netlist and it is resimulated to yield a new diagnostic con figura-tion.This completes one iteration of the algorithm.Subsequent iterations are conducted on the diagnostic con figuration until it becomes inactive.All candidate lines selected in this process make up a solution tuple.Fig.2.Incremental diagnosis flow.The flow above is ideal in the sense that it assumes after each iteration an original (or equivalent)faulty line is successfully found.In practice,a number of suspects are discovered.Due to fault convergence and fault masking,ranking does not guar-antee that the original fault(s)is placed atop the list.To accom-modate this,the algorithm bases its decision flow on a search tree ,which is described in Section II-E.This tree allows the al-gorithm to search the solution space ef ficiently and capture the actual and/or equivalent fault locations.C.Path-TracePath-trace is a linear-time routine in the effect-cause direction [27],which is similar to critical path tracing [10]It starts from an EPO and pessimistically marks lines that may belong to a sensitized path.If the output of a gate has been marked and the gate has one or more fanin(s)with controlling values,then one of the controlling fanins is marked.If a gate has all fanins with noncontrolling inputs,then all fanins are marked.Finally,if a branch is marked,then the stem of the branch is marked.An example of path-trace is illustrated in Fig.3,where it starts fromEPO and it marks lines with an asterisk “*.”Path-trace is important in diagnosis due to the following the-orem [24]that stipulates that each run of path-trace marks at least one line from each solution tuple.Theorem 1:Letbe a CUDwith faulty locationsand be any solution tuple.The set of lines markedby path-trace for some failing vector contains at least one linefrom .Path-trace is conducted over multiple failing vectors and the number of times it visits each line is recorded.All lines marked at least once are in the list of current suspects.Path-trace is generalized in Section III-B2to accommodate model-free di-agnosis.D.Suspect RankingEach iteration of incremental diagnosis needs to discover only one candidate line.Even though the suspect list returned by path-trace is much smaller than the number of circuit lines,itis still inef ficient to examine each of its members exhaustively.To shorten this list,the following corollary stipulates a lower bound for how frequently a line needs to be marked so it quali-fies.The corollary is an immediate consequence of Theorem 2that follows.Corollary 1:In a circuitwith defective lines,if path-traceis conductedforfailing input vectors,then one or more line(s)from each solution tuple will be marked atleasttimes.The number of suspect lines that pass this simple screening test is usually small.These lines are visited in descending order of path-trace counts and a faulty effect is injected for simulation.If a fault model is used,depending on its cardinality,a wrong se-lection may still impede the performance with the costly search of nonsolution space.Therefore,in model-based diagnosis The-orem 2gives a necessary condition a fault model must obey.Theorem 2:Let circuitwithdefective lines andlet be a set of failing input vectors for this circuit.Any valid fault model for suspect line needs to complement atleastentries in the bit-list for failing vectors of .Proof:Letbe a minimal set of lines such that some fault effects on these lines can explain completely thefaulty chip behavior for the vectorsin.De fine to be the maximum subset of vectorsfrom that produce a faulty logic value on and propagates this difference to some primary output(s)via one or more sensitized paths.By de finition,eachvectorinsensitizes one or more such paths.In other words,each vectorin is attributed to at least onesubset forsome.Using the pigeonhole principle,the min-imum size of thesetwith the maximum cardinality among all such sets cannot be lessthan.In other words,there is at least one linein thathasor more incorrect logic values in its bit-list.Therefore,any validfault model for needs tocomplementor more logic values in ’s faulty vectorbit-list.Despite its simplicity,experiments show that the theorem pro-vides a reliable guide to fault-model selection in model-based diagnosis.This theorem is not used in model-free diagnosis,where faulty effects are captured via logic unknowns.After an appropriate fault effect is selected for a line,its fanout cone is simulated to obtain the updated diagnostic con figuration.In this new con figuration,the sensitized paths of the diagnosed fault are captured (i.e.,emulated)and re flected at the primary outputs.However,as experimentally con firmed in Section II-A,the number of EPOs may not monotonically reduce as we identify new faulty lines due to fault convergence and/or fault masking.To alleviate this problem,some leniency is allowed by the algorithm and a qualifying candidate may sensitize a small number of new paths to previously correct pri-mary outputs.The rationale behind this heuristic is illustrated with an example.Example 1:Fig.3depicts the situation where two faults onlinesand sensitize two paths that converge ingate with faulty values 0and 1,respectively.All simulated pairs of values in this paper are fault-free/faulty circuitvalues.masks such that the primaryoutput remains correct.If the algorithm corrects the faulty valueon,itallows to be sensitizedto and it introduces an additionalFig.3.Diagnosis in the presence of faultmasking.Fig.4.Search tree and its traversal.EPO.Notice,now that the faulton is observed,it can be diagnosed in subsequent iterations of the algorithm.The number of increased EPOs depends on the defect type/lo-cation and the circuit structure.An empirical limit of 5%–15%additional EPOs is used in implementation unless the netlist contains many XOR gates.For these circuits,experiments show that we may need to allow for a larger number (15%–20%)of new erroneous primary outputs to ensure success.E.Search TreeBecause numerous suspect lines may exist for each active diagnostic con figuration,a tree is maintained to facilitate the search of the solution space.In the example of Fig.4(a),each node (represented by an ellipse)of the tree represents a diag-nostic con figuration.For each active diagnostic con figuration (active node),a ranked list of suspect lines is compiled.Suspect lines are named by a single letter in this figure.The root nodeof thetreehas threecandidates:and .Node is inactive and has no suspect lines.To go from a node to one of its branches,a suspect line is chosen,represented by a labeled arrow.A suitable fault effect is selected for this line and its fanout cone is simulated to produce the new diagnostic con figuration.Whenever an inactive node isreached,a solution is found(e.g.,).A depthbound is set for the tree so it is not allowed to grow beyond it.An active node is automatically labeled as a “leaf ”when the depth bound is reached.Ineffect,indicates that there are atmost faults in the CUD.The suspect lines identi fied along the path between the root and an inactive leaf form a solution set,suchas in Fig.4(a).Considering the large amount of suspect lines that can poten-tially model the fault effects at each iteration,a traversal orderthat is a tradeoff between DFS and BFS is devised.The tree is traversed in breadth and depth simultaneously in rounds .During each round,all active nodes are extended by one child.Fig.4(b)shows a search tree after four traversal rounds.Numbers in tree nodes indicate the round in which it is instantiated.This type of traversal is similar to the one described in [15]and it is guaran-teed to reach a solution,provided suf ficient time to enumerate the actual and all equivalent faulty locations.A tree without a depth bound grows exponentially because the number of nodes doubles in each round.When a depth bound isasserted,the number ofnodesat tree level afterround is describedby(1)for(2)(3)(4)Let be the maximum number of nodes visited atround in a search tree with depthbound.can be computed if we sum the nodes at each level of thetree(5)(6)Fig.5illustrates the growth of the search tree for different valuesof .It grows exponentially at the very beginning,but curbs linearly soon after.This theoretical upper bound is notFig.5.Growth of searchtree.Fig.6.Fault modeling in stuck-at diagnosis.reached in practice and branches terminate as soon as solutions are found.III.F AULT -D IAGNOSIS A LGORITHMSThe previous section outlines an incremental framework for multiple fault diagnosis.In this section,this general formula-tion is tailored to model-based and model-free diagnosis.We de-scribe the model-based approach using stuck-at faults because they have a deterministic and simple behavior.The model-free algorithm is presented for open-interconnect faults because they have a rather complex behavior which is hard to model.Exper-iments are presented for these fault types as well as for the situ-ation where both opens and bridges are simultaneously present in the circuit.A.Stuck-At Fault DiagnosisSince manifestation of a stuck-at fault consists of only two possible cases,the model-based algorithm does not follow the tree traversal from Section II-E,but it visits the tree with depthboundin a depth-first manner.To improve performance,it considers lines with candidate stuck-at faults that are struc-turally fault collapsed [10].As in Fig.2,each iteration starts with a path-trace that marks suspect lines.For each one of them,it decides on the stuck-at fault model(s)to inject and simulate using Theorem 2.When the behavior of the CUD is completely emulated for the set of test vector stimuli,a solution tuple is found.Example 2:In Fig.6,the logic values on two different sus-pect lines are compared against the two stuck-at values.Sup-pose it is suspected that there are three faults in the circuit.By Theorem 2,a valid fault model inverts local logic values for at least 6/3=2vectors.In the table,inverted values for each fault case are underlined.In case I,stuck-at 0fault inverts net value for one vector and stuck-at 1fault for five vectors.Stuck-at 1model is chosen for this suspect line and stuck-at 0does not qualify.For case II,it can be shown,both faultsqualify.Fig.7.Open fault on a stem.B.Open-Interconnect Fault DiagnosisOpen-interconnect is a fault of great interest today.Its be-havior depends on many physical circuit parameters-a fact that may prevent an accurate deterministic logic fault model.A phys-ical open defect on an interconnect can cause different logic-level behaviors.1)It may cause some lines to float.2)It may slow down signal propagation.3)It may amplify the effect of crosstalk [19].The focus here is on opens that cause floating behavior.A major dif ficulty in diagnosing open-interconnects is the ab-sence of a simple deterministic logic fault model.As illustrated in Fig.7,a stem with an open can have its value interpreted dif-ferently by its branches even for the same vector [5],[11].This behavior can be seen as having all fanout branches of a stem behave at random and independent from each other.For a stemwithfanouts,different combination of values may occur [17],[19],[26].Although this net diagnostic model,originally proposed by [26],covers all possibly faulty behavior,its size is often large for traditional diagnosis methods.To handle such complexity,we tailor the incremental approach to a model-free environment in which fault effects are captured with a logic un-known(s).1)Algorithm Overview:Unlike diagnosis algorithms that explicitly model fault effects [3],[13],[21],[25],model-free diagnosis [2],[4],[17]simulates a logicunknown on candi-date lines to capture any faulty behavior as well as interaction between different fault effects.The proposed algorithm differs from model-free approaches such as [4]as it works incre-mentally.It does not also assume a region-based fault locality model.Instead,faults can be (structurally)located anywhere in the circuit.The following example illustrates the basic idea behind model-free incremental diagnosis.Example 3:Fig.8(a)displays a circuit with two open faultslocated onlinesand .Both primary outputs are erroneous for this input vector.Suppose incremental diagnosis locates faultonfirst.The diagnostic con figuration after placinganon and simulating its fanout cone is shown in (b).It is seenthat propagatesto ,which is originally an EPO.In thesecond iteration of diagnosis,all the lineswithin Fig.8(b)are ignoredandis identi fied as a potential fault location.In the con figuration obtained after simulationof online [Fig.8(c)],every EPO hasan on it.Consequently,is identi fied as a candidate tuple.Diagnosis proceeds in two phases.At first,model-free incre-mental diagnosis (MFID)identi fies a set of candidate tuples.If。