(最新)八年级下册期中考试数学试题有答案

合集下载

人教版数学八年级下册《期中考试题》及答案解析

人教版数学八年级下册《期中考试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。

山东省济宁市任城区济宁学院附属中学2023-2024学年八年级下学期4月期中考试数学试题(解析版)

山东省济宁市任城区济宁学院附属中学2023-2024学年八年级下学期4月期中考试数学试题(解析版)

2023−2024学年第二学期期中考试初三数学试题一、选择题(每小题3分,共30分)1.是二次根式,则的值可以是( )A. B. C. 3 D. 【答案】C【解析】【分析】根据二次根式的被开方数为非负数可得出答案.则a 的值不能是负数,故C 符合题意;故选:C .【点睛】本题考查二次根式有意义的条件,掌握二次根式的被开方数为非负数是解题的关键.2. 如图,在中,,D 为中点,若,则的长是( )A. 6B. 5C. 4D. 3【答案】C【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得,进而可得答案.【详解】解:∵,D 为边的中点,∴,∵,∴,故选C .【点睛】本题主要考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.a 1-6-7-ABC 90ABC ∠=︒AC 2BD =AC 2AC BD =90ABC ∠=︒AC 2AC BD =2BD =224AC =⨯=3. 下列式子中,属于最简二次根式的是( )A. B. C. D. 【答案】B【解析】【分析】根据最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式,进行判断即可得.【详解】解:A不是最简二次根式,选项说法错误,不符合题意;B是最简二次根式,选项说法正确,符合题意;CD不是最简二次根式,选项说法错误,不符合题意;故选:B .【点睛】本题考查了最简二次根式.解题的关键是掌握最简二次根式必须满足两个条件.4. 如图,在菱形中,,,则( )A. B. C. D. 【答案】D【解析】【分析】本题考查了菱形的性质,三角形内角和定理,等腰三角形的性质,邻补角的性质,由菱形的性质得到,再根据三角形内角和定理及等腰三角形的性质得到,即可求出,掌握菱形的性质是解题的关键.3==ABCD 80ABC ∠= BA BE =AED =∠95o105 100 1101402ABD ABC ∠=∠=︒70BEA BAE ∠=∠=︒AED ∠【详解】解:∵四边形是菱形,∴平分,∴,∵,∴,∴,故选:.5. 下列计算正确的是( )A.B. =﹣2C.=﹣3 D. 【答案】B【解析】【分析】根据算术平方根的定义可判断A、D 两项、根据立方根的定义可判断B 项、根据平方根的定义可判断D 项,进而可得答案.【详解】解:A,所以本选项计算错误,不符合题意;B﹣2,所以本选项计算正确,符合题意;C=3≠﹣3,所以本选项计算错误,不符合题意;D 、,所以本选项计算错误,不符合题意.故选:B .【点睛】本题考查了平方根、算术平方根和立方根的定义,属于基础知识题型,熟练掌握三者的概念是解题的关键.6.用配方法解方程时,配方后正确的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查配方法,根据配方法的步骤进行求解即可.【详解】解:,ABCD BD ABC ∠11804022ABD ABC ∠=∠=⨯︒=︒BA BE =18040702BEA BAE ︒-︒∠=∠==︒18070110AED ∠=︒-︒=︒D 5==55=±≠2230x x --=()222x -=-()214x -=()212x -=-()224x +=2230x x --=∴,∴,∴;故选:B .7. 已知实数在数轴上的对应点位置如图所示,则化简的结果是( )A. B. C. 1 D. 【答案】D【解析】【分析】根据数轴上a 点的位置,判断出(a−1)和(a−2)的符号,再根据非负数的性质进行化简.【详解】解:由图知:1<a <2,∴a−1>0,a−2<0,原式=a−1-=a−1+(a−2)=2a−3.故选D .【点睛】此题主要考查了二次根式的性质与化简,正确得出a−1>0,a−2<0是解题关键.8. 若是方程的根,则的值为( )A. B. C. D. 【答案】A【解析】【分析】本题考查一元二次方程的解(使方程左右两边相等的未知数的值),根据题意可得,从而可得,然后代入式子中进行计算即可.掌握方程解的定义是解题的关键.也考查了求代数式的值.【详解】解:∵是方程的根,∴,∴,∴.故选:A .223x x -=2214x x -+=()214x -=a |1|a -32a-1-23a -2a -x m =240x x +-=22024m m ++2028202620242020240m m +-=24m m +=x m =240x x +-=240m m +-=24m m +=22024420242028m m ++=+=9. 如图,在矩形中,对角线交于点O ,过点O 作交于点E ,交于点F .已知,的面积为5,则的长为( )A. 2B. C. D. 3【答案】D【解析】【分析】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理以及三角形的面积问题.连接,由题意可得为对角线的垂直平分线,可得,,由三角形的面积则可求得的长,然后由勾股定理求得答案.【详解】解:连接,如图所示:由题意可得,为对角线的垂直平分线,,,.,,,,在中,由勾股定理得,故选:D .10. 如图,在正方形ABCD 中,E 为对角线AC 上一点,连接DE ,过点E 作EF ⊥DE ,交BC 延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .在下列结论中:①DE =EF ;②△DAE ≌△DCG ;③AC ⊥CG ;④CE =CF.其中正确的是( )ABCD AC BD ,EFAC ⊥AD BC 4AB =AOE △DECE OE AC AE CE =5AOE COE S S == AE CE OE AC AE CE ∴=5COE AOE S S == 210ACE AOE S S \== 1102AE CD \×=4AB CD == 5AE ∴=5CE ∴=Rt CDE△3DE ===A. ②③④B. ①②③C. ①②④D. ①③④【答案】B【解析】【分析】①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:根据正方形的性质得到∠BCD=90°,∠ECN=45°,推出四边形EMCN为正方形,由矩形的性质得到EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,根据全等三角形的性质得到ED=EF,故①正确;②利用已知条件可以推出矩形DEFG为正方形;根据正方形的性质得到AD=DC,∠ADE+∠EDC=90°,推出△ADE≌△CDG(SAS),故②正确;③根据②的结论可得∠ACG=90°,所以AC⊥CG,故③正确;④当DE⊥AC时,点C与点F重合,得到CE不一定等于CF,故④错误.【详解】解:①过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴NE=NC,∵∠EMC=∠ENC=∠BCD=90°,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN ≌△FEM (ASA ),∴ED =EF ,故①正确;②∵矩形DEFG 为正方形;∴DE =DG ,∠EDC +∠CDG =90°,∵四边形ABCD 是正方形,∵AD =DC ,∠ADE +∠EDC =90°,∴∠ADE =∠CDG ,在△ADE 和△CDG 中,,∴△ADE ≌△CDG (SAS ),故②正确;③根据②得∠DAE =∠DCG =45°,∴∠ACG =90°,∴AC ⊥CG ,故③正确;④当DE ⊥AC 时,点C 与点F 重合,∴CE 不一定等于CF ,故④错误,综上所述:①②③正确.故选:B .【点睛】本题考查了正方形的判定和性质,全等三角形的判定和性质,正确的作出辅助线是解(1)的关键.二、填空题(每小题3分,共15分)11.______.【答案】【解析】【分析】本题考查二次根式有意义的条件,注意被开方数大于等于0即可.,所以解得.DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩3a ≥-30a +≥3a ≥-故答案为:.12. 如图,的对角线相交于点O ,请你添加一个条件使成为矩形,这个条件可以是______.【答案】(答案不唯一)【解析】【分析】依据矩形的判定定理进行判断即可.【详解】解:∵四边形为平行四边形,∴当时,四边形为矩形.故答案为(答案不唯一).【点睛】本题主要考查矩形判定,熟悉掌握矩形判定条件是关键.13. 若关于的一元二次方程有实数根,则的取值范围是_______.【答案】且【解析】【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】关于的一元二次方程有实数根∴ ∴,即且.【点睛】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.14. 如图,在平面直角坐标系中,正方形的边长为2,,则点的坐标为______.的3a ≥-ABCD Y AC BD ,ABCD Y AC BD =ABCD AC BD =ABCD AC BD =x 2(2)210k x x --+=k 3k ≤2k ≠x 2(2)210k x x --+=()()2202420k k -≠⎧⎪⎨---≥⎪⎩23k k ≠⎧⎨≤⎩3k ≤2k ≠ABCD 60DAO ∠=︒C【答案】##【解析】【分析】本题考查了正方形的性质、三角形全等的判定与性质、坐标与图形,勾股定理的应用,含30度角的直角三角形的性质,由题意可得,,作轴于,证明得到,,即可得解,熟练掌握以上知识点并灵活应用是解此题的关键.【详解】解:∵正方形的边长为2,,,∴,,,,如图,作轴于,则,四边形是正方形,∴,,,在和中,+)11OA=OB =CE y ⊥E ADO DCE≌CE DO ==1DE AO ==ABCD 60DAO ∠=︒90AOD ∠=︒30ADO ∠=︒2AD CD ==1OA ∴=OD ==CE y ⊥E 90CED AOD ∠=∠=︒ ABCD 90ADC ∠=︒90ADO CDE ADO DAO ∴∠+∠=︒=∠+∠CDE DAO ∴∠=∠ADO △DCE △,,,,,点在第一象限,,故答案为:.15. 如图,矩形中,,,点、分别是对角线和边上的动点,且,则的最小值是____________.【答案】【解析】【分析】过点作,使,过点作,交的延长线于点,连接、、,交于点,根据矩形的性质及勾股定理得,,继而得到是等边三角形,证明,得到,继而得到,当、、三点共线时,取“”号,此时有最小值,最小值是线段的长,然后在中,根据角的直角三角形的性质及勾股定理得到,,最后再根据勾股定理计算即可.【详解】解:过点作,使,过点作,交的延长线于点,连接、、,交于点,∴,∵矩形中,,,CDE DAO AOD DEC AD DC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ADO DCE ∴≌CE DO ∴==1DE AO ==1OE OD DE ∴=+= C C ∴++ABCD 3AB =AD =E F AC CD AE CF =BE BF +A AG AC ⊥AG AD =G GM BA ⊥GM BA M EG BG BD BD AC O 6AC ==3BO AO AB ===ABO ()SAS AGE CBF ≌GE BF =BE BF BE GE BG +=+≥B E G =BE BF +BG Rt MAG △30︒12MG AG ==92AM ==BG =A AG AC ⊥AG AD =G GM BA ⊥GM BA M EG BG BD BD AC O 90GAE ∠=︒ABCD 3AB =AD =∴,,,∴,∴,∴等边三角形,∴,∴,在和中,∴,∴,∵点、分别是对角线和边上的动点,∴,当、、三点共线时,取“”号,此时有最小值,最小值是线段的长,在中,,,,∴,∴,∴,在中,,∴的最小值是,故答案为:是90ABC G B A F E C ∠=︒=∠∠=BC AD AG ===12BO AO AC ==6AC ===116322BO AO AC AB ===⨯==ABO 60BAO ∠=︒180180609030GAM BAO GAE ∠=︒-∠-∠=︒-︒-︒=︒AGE CBF V AG CBGAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩()SAS AGE CBF ≌GE BF =E F AC CD BE BF BE GE BG +=+≥B E G =BE BF +BG Rt MAG △90GMA ∠=︒30GAM ∠=︒AG =12MG AG ==92AM ===915322BM BA AM =+=+=Rt MBG △BG ===BE BF +【点睛】本题考查矩形的性质,勾股定理,等边三角形的判定和性质,全等三角形的判定和性质,角的直角三角形,三角形三边关系,两点之间线段最短等知识点,通过作辅助线构造全等三角形的是解题的关键.三、解答题(共55分)16. 计算(1(2)【答案】(1)1 (2)【解析】【分析】本题主要考查了二次根式混合运算,(1)根据二次根式乘除运算法则进行计算即可;(2)根据二次根式混合运算法则进行计算即可.【小问1详解】;【小问2详解】解:30︒((2222+-86⨯÷==÷1=((2222+--((((2222⎡⎤⎡⎤=++-+--⎣⎦⎣⎦.17. 解方程:(1)(2)【答案】(1) (2)【解析】【分析】本题主要考查了解一元二次方程:(1)先移项,然后利用因式分解法解方程即可;(2)利用公式法解方程即可.【小问1详解】解:∵,∴,∴,∴或,解得;【小问2详解】解:∵,∴,∴,∴,解得(2222=-+-+4=⨯=()()242++=+x x x 2310x x --=1223x x =-=-,12x x ==()()242x x x ++=+()()()2420x x x ++-+=()()2410x x ++-=20x +=410x +-=1223x x =-=-,2310x x --=131a b c ==-=-,,()()2Δ3411130=--⨯⨯-=>x ==12x x ==18. 如图,在中,D 是的中点,E 是的中点,过点A 作交的延长线于点F .(1)求证:;(2)连接,若,求证:四边形矩形.【答案】(1)见解析; (2)见解析;【解析】【分析】(1)根据两直线平行,内错角相等求出,然后利用“角角边”证明三角形全等,再由全等三角形的性质容易得出结论;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形是平行四边形,再根据一个角是直角的平行四边形是矩形判定即可.【小问1详解】证明:∵,∴,∵点E 为的中点,∴,在和中,,∴;∴,∵,∴;【小问2详解】是ABC BC AD AF BC ∥CE AF BD =BF AB AC =ADBF AFE DCE ∠=∠AFBD AF BC ∥AFE DCE ∠=∠AD AE DE =AEF △EDC △AFE DCE AEF DEC AE DE ∠∠⎧⎪∠∠⎨⎪⎩===AAS EAF EDC ≌()AF CD =CD BD =AF BD =证明:,∴四边形是平行四边形,∵,∴,∴平行四边形是矩形.【点睛】本题考查了矩形的判定,全等三角形的判定与性质,平行四边形的判定,是基础题,明确有一个角是直角的平行四边形是矩形是解本题的关键.19. 阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以为例,花拉子米的几何解法步骤如下:① 如图1,在边长为x 的正方形的两个相邻边上作边长分别为和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;② 一方面大正方形的面积为(x +)2,另一方面它又等于图中各部分面积之和,因为,可得方程,则方程的正数解是.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程的正数解的正确构图是 (填序号).【答案】(1)5,5,25,3 (2)①【解析】【分析】本题主要考查解一元二次方程−配方法,解题的关键是理解题意,灵活运用所学知识解决问题.(1)根据已知算式和图形可得答案.的AF BD AF BD = ∥,AFBD AB AC BD CD ==,90ADB ∠=︒AFBD 21039x x +=x 21039x x +=()239x +=+x =267x x -=(2)根据“在边长为x 的正方形的两个相邻边上作边长分别为和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形”,可得答案.【小问1详解】解:一方面大正方形的面积为,另一方面它又等于图中各部分面积之和,因为,可得方程,则方程的正数解是.故答案为:5;5;25;3.【小问2详解】解:由题意可得,能够得到方程的正数解的正确构图:在边长为x 的正方形的两个相邻边上作边长分别为和3的矩形,再补上一个边长为3的小正方形,最终把图形补成一个大正方形∴①符合.故答案为:①.20. 如图,在△ABC 中,AB=AC ,∠DAC 是△ABC 的一个外角.实践与操作:根据要求尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法).(1)作∠DAC 的平分线AM ;(2)作线段AC 的垂直平分线,与AM 交于点F ,与BC 边交于点E ,连接AE 、CF .猜想并证明:判断四边形AECF 的形状并加以证明.【答案】(1)作图见解析;(2)菱形,证明见解析【解析】【详解】解:(1)如图所示,(2)四边形AECF 的形状为菱形.理由如下:∵AB=AC , ∴∠ABC=∠ACB,x ()25x +21039x x +=()253925x +=+3x =267x x -=x∵AM 平分∠DAC ,∴∠DAM=∠CAM ,而∠DAC=∠ABC+∠ACB ,∴∠CAM=∠ACB ,∴EF 垂直平分AC ,∴OA=OC ,∠AOF=∠COE ,在△AOF 和△COE 中,,∴△AOF ≌△COE ,∴OF=OE ,即AC 和EF 互相垂直平分,∴四边形AECF 的形状为菱形.【点睛】本题考查①作图—复杂作图;②角平分线的性质;③线段垂直平分线的性质.21.的计算,将分母转化为有理数,这就是“分母有理化;.类似地,将分子转化为有理数,就称为“分子有理化;.FAO ECOOA OC AOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩======+=======根据上述知识,请你解答下列问题:(1;(2的大小,并说明理由.【答案】(1)2 (2,理由见解析【解析】【分析】本题考查的是分母有理化:(1)根据分母有理化是要求把分子分母同时乘以,再计算即可得到答案;(2)根据分子有理化的要求把原式变形为同分子的分数 ,再比较大小即可.【小问1详解】;【小问2详解】,22. 在菱形中,,点E ,F 分别是边,上的点.【尝试初探】<)2+=2=+2=====<<ABCD 60A ∠=︒AB BC(1)如图1,若,求证:;【深入探究】(2)如图2,点G ,H 分别是边,上的点,连接与相交于点O 且,求证:【拓展延伸】(3)如图3,若点E 为的中点,,,.①设,,请用关于x 的代数式表示y ;②若,求的长.【答案】(1)见解析;(2)见解析;(3)①;②.【解析】【分析】(1)连接,证明和都等边三角形,可得,证明,即可得出结论;(2)连接,过点D 作交于点P ,交于点Q ,可证,四边形和四边形都是平行四边形,得出,,由(1)可知,即可得证;(3)①过点B 作交于点M ,过点D 作交于点P ,交于点Q ,则四边形和四边形、四边形都是平行四边形,得出,,,,,由(1)可知,则,即可求解;②过点B 作于点N ,利用含的直角三角形的性质求出,利用勾股定理求出,根据可求,然后在中利用勾股定理求解即可.【详解】解:(1)如图1,连接,∵菱形、,是60EDF ∠=︒DE DF =CD AD EG FH 60EOF ∠=︒EG FH =AB 6AB =1BF =60EOF ∠=︒DH x =CG y =6CG DH +=EG 4y x =+BD ABD △BCD △ADE BDF ∠=∠ADE BDF ≌V V BD DP EG ∥AB DQ FH ∥BC 60PDQ EOF ∠=∠=︒DPEG DHFQ DP EG =DQ FH =DP DQ =BM EG ∥CD DP EG ∥AB DQ FH ∥BC BPDM BEGM DHFQ DM BP =GM BE =EG BM =HD FQ x ==1BQ x =+ADP BDQ ≌△△1CM AP BQ x ===+BN CD ⊥30︒132CN BC ==BN =6CG DH +=1MN =Rt BMN △BD ABCD 60A ∠=︒,,,,和都是等边三角形,,,,,,;(2)如图2,连接,过点D 作交于点P ,交于点Q则,四边形和四边形都是平行四边形,,,由(1)可知,(3)①如图3,过点B 作交于点M ,过点D 作交于点P ,交于点Q ,则四边形和四边形、四边形都是平行四边形,,,,,∵点E 为的中点,,,,,,AB AD CB CD ∴===60C ∠=︒AD BC ∥AB CD ∥∴ABD △BCD △AD BD ∴=60ADB ∠=︒60DBF ∠=︒60EDF ∠=︒ ADE BDF ∴∠=∠ADE BDF ∴ ≌DE DF ∴=BD DP EG ∥AB DQ FH ∥BC 60PDQ EOF ∠=∠=︒DPEG DHFQ DP EG ∴=DQ FH =DP DQ =EG FH∴=BM EG ∥CD DP EG ∥AB DQ FH ∥BC BPDM BEGM DHFQ DM BP ∴=GM BE =EG BM =HD FQ =AB 6AB =3BE ∴=3GM ∴=1BF = DH x =,,由(1)可知,,,,,,②过点B 作于点N ,,,,,,即,,,,,.【点睛】本题考查了菱形的性质,平行四边形的判定与性质,等边三角形的判定与性质,直角三角形的性质,全等三角形的判定和性质,勾股定理,二次根式的化简等知识,解题的关键是熟练掌握菱形的性质.FQ x ∴=1BQ x =+ADP BDQ ≌△△1AP BQ x ∴==+DM BP = AB CD =1CM AP x ∴==+4y CG CM GM x ∴==+=+BN CD ⊥60C ∠=︒ 30NBC ∴∠=︒132CN BC ∴==BN =6CG DH += 6y x +=46x x ∴++=1x ∴=12CM x =+=∴1MN ∴=EG BM ∴===。

八年级下期中考试数学试题附答案

八年级下期中考试数学试题附答案

1ABCP 第8题图八年级下学期期中考试数学试题一、填空题(3分×10=30分)1、当x 时,分式11+x 有意义.2、当m 时,函数()32--=m xm y 是反比例函数.3、已知当x =-2时,分式a x b x +-无意义,当x=6时,此分式的值为0,则=⎪⎭⎫⎝⎛ab a .4、已知关于x 的方程332=-+x mx 的解是正数,则m 的取值范围是 . 5、直角三角形的两边为3、4,则第三边长为 . 6、如图,A 为反比例函数xky =图象上一点,AB 垂直x 轴于点B ,若S △AOB =5,则k = . 7、若ba b a +=+411,则=+b a a b .8、点P 是等边三角形ABC 内一点,且PA=6,PB=8,PC=10,则∠APB= .9、如图,依次摆放着七个正方形,已知余放置的三个三角形的面积分别为1、2、3,正放着的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4= . 10、如果直线kx y =(k >0)与双曲线xy 6=交于A (x 1,y 1)、B (x 2,y 2)两点,则=-122172y x y x .二、选择题(3分×7=21分) 11、下列各式中5a 、m n 2、π21、1+b a 、3b a +、zy 15-、3-z 中分式有( )个. A.2 B.3 C.4 D.512、将281-⎪⎭⎫ ⎝⎛、08-、()52-这三个数按从小到大的顺序排列,正确的排序结果是( ).A.08-<281-⎪⎭⎫ ⎝⎛<()52- B.()52-<08-<281-⎪⎭⎫ ⎝⎛C.281-⎪⎭⎫ ⎝⎛<08-<()52-D.()52-<281-⎪⎭⎫ ⎝⎛<08-x第6题图S 11S 22S 33S 4第9题图213、如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN⊥AC 于点N ,则MN 等于( ).A.56B.59C.512D.51614、若关于x 的分式方程xx x x m x x 1112+=++-+有增根,则m 的值为( ) A.―1或―2 B.-1或2 C.1或2 D.0或-215、如图,地面上有一个长方体,一只蜘蛛在这个长方体的顶点A 处,一滴水珠在这个长方形的顶点C′处,已知长方体的长为6m ,宽为5m ,高为3m ,蜘蛛要沿着长方体的表面从A 处爬到C′处,则蜘蛛爬行的最短距离为( )A.m 130B.8mC.10mD.14m16、函数x y =1(x ≥0)、xy 42=(x >0)的图象如图,则结论 ①两函数图象的交点A 的坐标为(2,2) ②当x>2时,y 2>y 1 ③当x =1时,BC=3④当x 逐渐增大时,y 1随x 的增大而增大,y 2随x 的增大而减小 其中正确的是( ).A.①②B.①②③C.①③④D.①②③④ 17、如图,函数()xky x k y =+=与1在同一坐标系中,图象只能是下图中的( ). C第13题图 D′C ′B ′ CBDA′A第15题图xx4 xA xBCxD3三、解答题18、计算(5分×3=15分)(1)111326125.0221032-+⎪⎪⎭⎫ ⎝⎛-+⨯-⎪⎭⎫ ⎝⎛- (2)()33296422+∙+-÷++-a a a a a a(3)已知()111022222++--=-x x x x ,x 求代数式的值.19、解下列分式方程(5分)xx x -=+--2312320、(7分)如图,四边形ABCD 中,AB=20,BC=15,CD=7,AD=24,∠B=90°,求证:∠A+∠C=180°.DCBA421、(8分)如图,在长方形ABCD 中,AB=6,BC=8,P 是BC 边上一动点,过D 作DE ⊥AP 于E ,设AP=x ,DE=y ,试求出y 与x 之间的函数关系式,并画出函数图象.22、(8分)金泉街道改建工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书,从投标书中得知,甲单独完成这项工程所需天数是乙单独完成这项工程所需天数的32;若由甲队先做20天,剩下的工程再由甲、乙两队合作30天可以完成. (1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为0.84万元,乙队每天的施工费用为0.56万元,工程预算的施工费用为50万元,为缩短工期以减少对住户的影响,拟安排甲、乙两个工程队合作完成这项工程,则工程预算的费用是否够用?若不够用,需追加预算费用多少万元?请给出你的判断并说明理由.23、(8分)已知A (-4,n )、B (2,-4)是反比例函数xmy =图象和一次函数b kx y +=的图象的两个交点.(1)求反比例函数和一次函数的解析式; (2)求△AOB 的面积;ABDEPC5(3)求方程0=-+x mb kx 的解(请直接写出答案); (4)求不等式xmb kx -+>0的解集(请直接写出答案).24、(8分)已知如图,AC=5,AB=3,边BC 上的中线AD=2,求△ABC 的面积.25、(10分)如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O 点,训练时要求A 、B 两船始终关于O 点对标. 以O 为原点,建立如图所示的坐标系,x 轴、y 轴的正方向分别表示正东、正北方向,设A 、B 两船可近似看成在双曲线xy 4=上运动,湖面风平浪静,双帆远影优美,训练中当教练船与A 、B 两船恰好在直线x y =上,三船同时发现湖面上有一遇险的C 船. 此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为A ( )、B ( )和C ( ). (2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船的速度相等,教练船与A 船的速度之比为3∶4. 问教练船是否最先赶到?请说明理由.ABDCx (百米)D6参考答案1、x ≠-12、m =-23、914、m >-9且m ≠-65、5或76、k=-107、28、150°9、4 10、30 11—17、CBCDCCD 18、(1)-6 (2)2 (3)1 19、x =1 20、连结AD 21、xy 48=(6≤x ≤10) 22、(1)设乙队单独完成这项工程需要x 天,则甲队单独完成这项工程需要x 32天,则11321303220=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++x x x . 解之得105=x . 经检验105=x 是所列方程的根且符合题意的701053232=⨯=x ,故甲、乙两队单独完成这项工程各需70天、105天。

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试题(含答案)

北师大版八年级下册数学期中考试试卷一、单选题1.下列图形既是轴对称图形又是中心对称图形的是A .B .C .D .2.若a <b ,则下列结论不一定成立的是A .11a b -<-B .22a b <C .33a b ->-D .22a b <3.在三角形内部,且到三角形三边距离相等的点是A .三角形三条中线的交点B .三角形三条高线的交点C .三角形三条角平分线的交点D .三角形三边垂直平分线的交点4.不等式组2131x x +≥-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D .5.用反证法证明命题:“已知△ABC ,AB =AC ,求证:∠B <90°.”第一步应先假设A .∠B≥90°B .∠B >90°C .∠B <90°D .AB≠AC6.在△ABC 中,若∠A ∶∠B ∶∠C =3∶1∶2,则其各角所对边长之比等于A 1∶2B .1∶2C .12D .2∶17.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是A .AE =ECB .AE =BEC .∠EBC =∠BACD .∠EBC =∠ABE8.如图,在正方形网格中有△ABC,△ABC绕O点按逆时针旋转90°后的图案应该是().A.B.C.D.9.不等式组32210x ax+>⎧⎨-≤⎩,有解,则a的取值范围是A.a≤3B.a<3.5C.a<4D.a≤510.如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC的长为A.4B.6C.D.8二、填空题11.不等式3x+2<8的解集是_____.12.“全等三角形的对应边相等”的逆命题是:__.13.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,则x<________.14.在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B 关于原点O对称,则ab=_____.15.如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于点D、E,若∠DAE=50°,则∠BAC=____.16.若关于x ,y 的二元一次方程组3+1+33x y a x y =⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.17.安排学生住宿,若每间住4人,则还有15人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为___________18.如图,直线y =-x +m 与y =nx +b (n≠0)的交点的横坐标为-2,有下列结论:①当x =-2时,两个函数的值相等;②b =4n ;③关于x 的不等式nx +b >0的解集为x >-4;④x >-2是关于x 的不等式-x +m >nx +b 的解集,其中正确结论的序号是____.(把所有正确结论的序号都填在横线上)三、解答题19.(1)解不等式4x 32x 1-<+,并把解集表示在数轴上.(2)解不等式组()322442x x x x +>⎧⎨--≥⎩,并写出它的整数解.20.如图,在平面直角坐标系中, ABC 的三个顶点坐标分别为A(1,1),B(4,0),C(4,4)(1)图中线段AB 的长度为________;(2)按下列要求作图:①将 ABC 向左平移4个单位,得到 111A B C ;②将 111A B C 绕点1B 逆时针旋转90º,得到 222A B C21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.求证:△BDE是等腰三角形.23.已知关于x,y的不等式组523414x k xx x+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩,(1)若该不等式组的解为233x≤≤,求k的值;(2)若该不等式组的解中整数只有1和2,求k的取值范围.24.甲、乙两家超市以相同的价格出售同样的商品,五一期间,为了吸引顾客,各自推出了不同的优惠方案,在甲超市累计购买商品超出了400元后,超过部分按原价七折优惠;在乙超市购买商品只按原价的八折优惠;设顾客累计购物x元(x>400)在甲,乙两个超市所支付的费用分别为y1元,y2元.(1)写出y1,y2与x之间的关系式.(2)试比较顾客到哪家超市购物更优惠?说明你的理由.25.如图1,一副三角板的两个直角重叠在一起,∠A=30°,∠C=45°△COD固定不动,△AOB绕着O点逆时针旋转α°(0°<α<180°)(1)若△AOB绕着O点旋转图2的位置,若∠BOD=60°,则∠AOC=________;(2)若0°<α<90°,在旋转的过程中∠BOD+∠AOC的值会发生变化吗?若不变化,请求出这个定值;(3)若90°<α<180°,问题(2)中的结论还成立吗?并说明理由;参考答案1.D2.D3.C4.D5.A6.D7.C8.A9.C10.B11.x<2【解析】利用不等式的基本性质,将两边不等式同时减去2再除以3即可.【详解】解:不等式3x+2<8,移项得,3x<6,系数化为1得,x<2,故答案为:x<2.12.三边对应相等的三角形是全等三角形【详解】命题“全等三角形的对应边相等”的题设是:如果两个三角形是全等三角形,结论是:这两个三角形的对应边相等则此命题的逆命题是:三边对应相等的三角形是全等三角形故答案为:三边对应相等的三角形是全等三角形.13.1【详解】解: 由一次函数y=kx+b的图象可知,当x<1时,函数的图象在x轴上方,当y>0时,x<1.故答案为:1.14.12【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为12.15.115°.【详解】解:∵DM,EN分别垂直平分AB和AC,∴DA=DB,EA=EC,∴∠DAB=∠B,∠EAC=∠C,∠DAB+∠B+∠EAC+∠C+∠DAE=180°,∵∠DAE=50°,∴2(∠B+∠C)=130°,解得,∠B+∠C=65°,∴∠BAC=115°.故答案为115°.16.a<4【详解】解:31(1){33(2)x y ax y+=++=将(1)+(2)得444x y a+=+,则4144a ax y++==+<2∴a<4.17.8、9、10【解析】若每间住4人,则余15人无住处,设有x间宿舍,则有学生4x+15人;若每间住6人,则恰有一间不空也不满,说明人数应在1和5之间.即学生人数与(x-1)间宿舍住的人数的差,应该大于或等于1,并且小于或等于5.根据这个不等关系就可以列出不等式组.【详解】设有x间宿舍,则有学生4x+15人,∴第n间宿舍有4x+15-6(x-1)=21-2x,∵第n间宿舍不空也不满,∴1≤21-2x≤5,解得:8≤x≤10,∴宿舍的房间数量可能为8、9、10,故答案为8、9、10.18.①②③【解析】①由两直线交点的横坐标为-2,即可得出当x=-2时,两个函数的值相等,结论①正确;②由点(-4,0)在直线y=nx+b 上,可得出b=4n ,结论②正确;③当x >-4时,直线y=nx+b 在x 轴上方,由此可得出关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④观察函数图象,根据函数图象的上下位置关系可得出x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.综上所述即可得出结论.【详解】解:①∵直线y=-x+m 与y=nx+b (n≠0)的交点的横坐标为-2,∴当x=-2时,两个函数的值相等,结论①正确;②∵点(-4,0)在直线y=nx+b 上,∴-4n+b=0,∴b=4n ,结论②正确;③∵当x >-4时,直线y=nx+b 在x 轴上方,∴关于x 的不等式nx+b >0的解集为x >-4,结论③正确;④∵当x >-2时,直线y=nx+b 在直线y=-x+m 的上方,∴x >-2是关于x 的不等式-x+m <nx+b 的解集,结论④错误.故答案为:①②③.19.(1)2x <,数轴见解析;(2)13x -< ,整数解为0,1,2,3【解析】(1)先求出不等式的解集,再在数轴上表示出来即可.(2)先求出每个不等式的解集,再求出不等式组的解集,即可求得整数解.【详解】解:(1)移项得,4213x x -<+,合并同类项得,24x <,系数化为1得,2x <.在数轴上表示为:(2)()322442x x x x +>⎧⎪⎨--⎪⎩①② ,解①得:1x >-,解②得:3x ,故不等式的解集为:13x -< ,整数解为0,1,2,3.20.(1;(2)①见解析,②见解析【解析】(1)根据两点间距离公式求解即可得到AB 的值;(2)①根据平移的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;②分别作出A 1,C 1的对应点A 2,C 2即可.【详解】解:(1)∵A(1,1),B(4,0)∴AB ==;(2)作图如下:21.见解析.【详解】解:如图所示,∠AOB 的平分线与线段CD 的垂直平分线的交点P 就是所求的点:22.证明见解析.【详解】试题分析:直接利用平行线的性质得出∠1=∠3,进而利用角平分线的定义结合互余的性质得出∠B=∠BDE,即可得出答案.试题解析:∵DE∥AC,∴∠1=∠3,∵AD平分∠BAC,∴∠1=∠2,∴∠2=∠3,∵AD⊥BD,∴∠2+∠B=90°,∠3+∠BDE=90°,∴∠B=∠BDE,∴△BDE是等腰三角形.考点:等腰三角形的判定;平行线的性质.23.(1)k=﹣4;(2)﹣4<k≤﹣1.【详解】分析:(1)求出不等式组的解集,把问题转化为方程即可解决问题;(2)根据题意把问题转化为不等式组解决;详解:(1)523414x k xx x①②+≤-⎧⎪⎨⎛⎫-≥-⎪⎪⎝⎭⎩由①得:53k x-≤,由②得:23 x≥∵不等式组的解集为23 3x≤≤,∴533k -=,解得k=−4(2)由题意5233k -≤<,解得4 1.k -<≤-点睛:考查一元一次不等式组的整数解,解一元一次不等式组,掌握不等式组解集的求法是解题的关键.24.(1)y 1=0.7x+120;y 2=0.8x ;(2)当x=1200时,甲乙两家超市购买一样优惠;当400<x<1200时,乙超市购买更优惠;当x>1200时,甲超市购买更优惠.理由见解析.【分析】(1)根据题意写出y 1,y 2与x 之间的关系式;(2)分y 1=y 2,y 1>y 2,y 1<y 2三种情况列出方程或不等式,解方程或不等式即可.【详解】解:(1)y 1=400+(x-400)×0.7=0.7x+120,y 2=0.8x ;(2)由y 1=y 2,即0.7x+120=0.8x ,解得x=1200,由y 1>y 2,即0.7x+120>0.8x ,解得x <1200,由y 1<y 2得,0.7x+120<0.8x ,解得x >1200,因为x >400,所以,当x=1200时,甲,乙哪个超市购买所支付的费用相同,当400<x <1200时,乙超市购买更合算,当x >1200时,甲超市购买购买更合算.25.(1)120°;(2)∠BOD+∠AOC=180°,理由略.【详解】解:(1)如图2中,∵∠BOD=60°,∠DOC=∠AOB=90°,∴∠AOD=∠BOC=30°,∴∠AOC=∠AOD+∠DOC=30°+90°=120°,故答案为120°.(2)结论:即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.理由:如图2中,若0°<α<90°,∵∠AOD=α,∴∠AOC=∠AOD+∠DOC=90°+α,∠BOD=∠DOC-∠AOD=90°-α,∴∠BOD+∠AOC=90°+α+90°-α=180°,即在旋转的过程中∠BOD+∠AOC=180°,不发生变化.(3)结论仍然成立.理由:如图3中,∵∠AOB=∠COD=90°,又∵∠BOD+∠AOC+∠AOB+∠COD=360°,∴∠BOD+∠AOC=360°-∠AOB-∠COD=360°-90°-90°=180°.。

山东省烟台市招远市(五四制)2023-2024学年八年级下学期期中考试数学试题(含解析)

山东省烟台市招远市(五四制)2023-2024学年八年级下学期期中考试数学试题(含解析)

绝密★启用前2023-2024学年度第二学期期中考试初三数学试题说明:1.考试时间120分钟,满分120分.2.考试过程允许学生进行剪、拼、折叠等实验.一.选择题(本大题共10个小题,每小题3分,满分30分)1. 下列关于x的方程是一元二次方程的是( )A. B.C. D.答案:B解析:解:、,含有两个未知数,故本选项不符合题意;、,可化为,满足一元二次方程的定义,故本选项符合题意;、不是整式方程,故本选项不符合题意;、最高次数3,故本选项不符合题意;故选:.2. 下列二次根式中,属于最简二次根式的是()A. B. C. D.答案:C解析:解:、,故本选项不符合题意;、,故本选项不符合题意;、是最简二次根式,故本选项符合题意;、,故本选项不符合题意;故选:.3. 如图,的对角线交于点O,下列条件不能判定是菱形的是()A. B.C. D.答案:D解析:解:A.由、,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;B.由可得,根据邻边相等的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.由,根据对角线垂直的平行四边形是菱形可得:四边形是菱形,故该选项不符合题意;C.是的对边,不能说明四边形是菱形,故该选项符合题意.故选:D.4. 若关于x的方程有两个不相等的实数根,则m的值可能是()A. B. C. D. 7答案:A解析:关于x的方程有两个不相等的实数根,,解得,,,故选:A.5. 若,,则的值为()A. 3B.C. 6D.答案:D解析:解:∵,,∴.故选:D.6. 如图,在正方形中,点,分别在和边上,,,则的面积为()A. 6B. 5C. 3D.答案:C解析:四边形是正方形,四边形平行四边形,的面积为,故选:C7. 在对边不相等的四边形中,若四边形的两条对角线互相垂直,那么顺次连结四边形各边中点得到的四边形是()A. 平行四边形B. 矩形C. 菱形D. 正方形答案:B解析:解:如图,四边形中,于点,、、、分别是边、、、的中点,连接、、、,得到四边形,设交于点.,,、、、分别是边、、、的中点,∴,,,,,∴,,四边形是平行四边形,,,∴,,∵,平行四边形是矩形.故选:B.8. 对于实数定义新运算:,若关于的方程没有实数根,则的取值范围()A. B.C. 且D. 且答案:A解析:解:由题意可得方程:,即,∵该方程没有实数根,∴,解得:;故选:A.9. 当时,代数式的值是( )A. 19B. 21C. 27D. 29答案:B解析:解:,,故选:B10. 已知,如图,点为x轴上一点,它的坐标为,过点作x轴的垂线与直线:交于点,以线段为边作正方形;延长交直线于点,再以线段为边作正方形;延长交直线于点,再以线段为边作正方形….依此类推,的坐标为()A. B. C. D.答案:C解析:解:过点作x轴的垂线与直线交于点,,线段为边作正方形,,同理可得,,,故答案为:C;二.填空题(本大题共6个小题,每小题3分,满分18分)11. 若在实数范围内有意义,则的取值范围是_________ .答案:且解析:解:由题意得,且,解得且,故答案为:且;12. 关于x的一元二次方程有两个相等的实数根,则的值为__________ .答案:解析:关于x的一元二次方程有两个相等的实数根,,,,故答案为:13. 在矩形中,对角线、相交于点O,过点A作,交于点M,若,则的度数为______ .答案:##60度解析:四边形是矩形,,,,,,,,,,,,,,故答案为:.14. 已知a是方程的一个根,则的值为______.答案:2030解析:a是方程的一个根,,,故答案为:2030.15. 已知,则___________.答案:25解析:解:由题意知:,解得:,,,故答案为:25;16. 如图,正方形的边长,对角线、相交于点,将直角三角板的直角顶点放在点处,三角板两边足够长,与、交于、两点,当三角板绕点旋转时,线段的最小值为________ .答案:解析:解:四边形是正方形,,,,,,,,,,,故要使有最小值,即求的最小值,当时,有最小值,,,,,线段的最小值为.故答案为:.三.解答题(本大题共9个小题,共72分.请在答题卡指定区域内作答.)17. 计算:(1);(2).答案:(1)(2)【小问1解析:】解:,【小问2解析:】解:原式.18. 用合适的方法解方程:(1);(2).答案:(1)(2)【小问1解析:】解:移项得,配方得,∴.【小问2解析:】,整理得:,∵,∴,∴,∴,.19. 如图,有一张矩形的纸片,将矩形纸片折叠,使点A与点C重合.(1)请用尺规在图中画出折痕,其中,点M在边上,点N在边上;(不写作法,保留痕迹),并说明折痕所在的直线与对角线有怎样的位置关系?(2)在(1)的条件下,直接写出折痕的长度.答案:(1)见解析,折痕所在的直线是对角线的垂直平分线(2)【小问1解析:】线段就是所要求作的折痕;折痕所在的直线是对角线的垂直平分线;【小问2解析:】连接,设,则,四边形是矩形,,,,在中,,是对角线的垂直平分线,在中,,,解得,,在中,,,,,,,折痕的长度为.20. 关于的一元二次方程有实数根.(1)求的取值范围;(2)若为正整数,请用配方法求出此时方程的解.答案:(1)且(2),【小问1解析:】解:∵关于的一元二次方程有实数根,∴且,解得:且,∴的取值范围为且;【小问2解析:】∵且,且m为正整数,∴,∴原方程为,∴,∴,∴,∴,∴此时方程的解为:,.21. 如图,在菱形中,,点E,F分别在上,且.(1)求证:;(2)若,试求出线段的长,并说明理由.答案:(1)证明见解析(2)10,理由见解析【小问1解析:】证明:∵四边形是菱形,∴,∵,∴是等边三角形,∴,,∴是等边三角形,∴,∴,∵,∴,∴,和中,,∴.【小问2解析:】解:∵,∴,∵,∴是等边三角形.∴,∵,∴.22. 已知,.(1)分别求,的值;(2)利用(1)的结果求下列代数式的值:①;②.答案:(1),(2)①;②【小问1解析:】解:,,,;【小问2解析:】由(1)知,,①;②.23. 如图,菱形的对角线,相交于点O,过点D作,且,连接.(1)求证:四边形为矩形.(2)若菱形的面积是10,请求出矩形的面积.答案:(1)证明见解析(2)5【小问1解析:】证明:∵四边形是菱形,∴,,∵,∴,又∵,∴四边形为平行四边形,∵,∴四边形为矩形;【小问2解析:】∵菱形的面积是10,∴,∴,∵四边形是菱形,∴,∴,∴矩形的面积为5.24. 阅读理解:我们解决某些数学题的时候,经常会遇到题目中的条件比较含糊,它们常常巧妙地隐蔽在题设的背后,不易被发现和运用,导致我们解题受阻,因此,挖掘题设中的隐含条件,应该成为我们必备的一种能力.请阅读下面的解题过程,体会如何发现隐含条件,并依次解决所给的问题.化简:解:由题意可知隐含条件解得:,∴,∴.启发应用:(1)按照上面的解法,化简:;类比迁移:(2)已知的三边长分别为,,,请求出的周长.(用含有的代数式表示,结果要求化简)拓展延伸:(3)若,请直接写出的取值范围.答案:(1)2;(2);(3)解析:解:(1)由题意可知隐含条件解得:,∴,∴,(2)由题意可知隐含条件解得:,∴,∴,∴,∴的周长为;(3)由题意可知隐含条件,解得:,当时,,则,符合题意,当时,,则,不符合题意,综上所述,的取值范围为.25. 在学习了“特殊的平行四边形”这一章后,同学小明对特殊四边形的探究产生了浓厚的兴趣,他发现除了已经学过的特殊四边形外,还有很多比较特殊的四边形,勇于创新的他大胆地作出这样的定义:有一个内角是直角,且对角线互相垂直的四边形称为“双直四边形”.请你根据以上定义,回答下列问题:(1)下列关于“双直四边形”的说法,正确的有_______(把所有正确的序号都填上);①“双直四边形”的对角线不可能相等:②“双直四边形”的面积等于对角线乘积的一半;③若一个“双直四边形”是中心对称图形,则其一定是正方形.(2)如图①,正方形中,点、分别在边、上,连接,,,,线段、于点O,若,证明:四边形为“双直四边形”;(3)如图②,在平面直角坐标系中,已知点,,点在线段上,且,在第一象限内,是否存在点,使得四边形为“双直四边形”,若存在;请直接写出所有点的坐标,若不存在,请说明理由.答案:(1)②③(2)证明见解析(3)存在,点的坐标或小问1解析:】解:∵正方形是“双直四边形”,正方形的对角线相等.故①不正确.∵“双直四边形”的对角线互相垂直,∴“双直四边形”面积等于对角线乘积的一半.故②正确.∵中心对称的四边形是平行四边形,对角线互相垂直且有一个角是直角的的平行四边形是正方形.∴若一个“双直四边形”是中心对称图形,则其一定是正方形.故③正确.故答案为:②③;【小问2解析:】证明:如图,设与的交点为,∵四边形是正方形,,又,,,,,,,,,∴四边形为“双直四边形”.【小问3解析:】解:假设存在点在第一象限,使得四边形为“双直四边形”.如图,设的交点为∵,,,即,,解得,,是的中点,,设直线的解析式为则解得∴直线的解析式为设,①当时,则,,则;②当时,,是的垂直平分线,,,,,此时点坐标还是;③当时,,是等腰直角三角形,,,,∵,,∴,∴,整理得,,当时,,此时在第四象限,不符合题意.当时,,此时在第一象限,符合题意.综上,或.。

山东省菏泽市定陶区2023-2024学年八年级下学期期中考试数学试题(含答案)

山东省菏泽市定陶区2023-2024学年八年级下学期期中考试数学试题(含答案)

山东省菏泽市定陶区2023-2024学年八年级下学期期中考试数学试题注意事项:1.本试题满分120分,考试时间120分钟2.请将答案填写在答题卡上一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的序号涂在答题卡的相应位置)1.在实数,,,3.141523-π0.32 A .1B .2C .3D .42.下列计算正确的是()A B C D 3=-6=±3=2=-3.若直角三角形两直角边长分别为6和7,则其斜边长度的整数部分为()A .9B .10C .8D .74.如图所示,O 是矩形ABCD 的对角线AC 的中点,E 为AD 的中点.若,6AB =,则的周长为()8BC =BOE △A .10B .C .D .148+8+5.小聪用100元钱去购买笔记本和钢笔共30件.已知每本笔记本2元,每支钢笔5元,小聪最多能买x 支钢笔.可列出不等式()A .B .52(30)100x x +-<52(30)100x x +-≤C .D .52(30)100x x +-≥52(30)100x x +->6.若不等式组无解,则实数a 的取值范围是()0122x a x x +≥⎧⎨->-⎩A .B .C .D .1a ≤-1a <-1a ≤1a ≥-7.平行四边形ABCD 中,对角线,,交点为点O ,则边AB 的取值范围为12AC =8BD =()A .B .C .D .12AB <<420AB <<410AB <<210AB <<8.若方程组的解满足,则m 的取值中负整数的个数是()322222x y m x y m -=+⎧⎨-=-⎩1x y ->A .1个B .2个C .3个D .4个9.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,点P 为AB 边上一动点(不与点A ,B 重合),于点E ,于点F ,若,,则EF 的最小值PE OA ⊥PF OB ⊥8AC =6BD =为()A .3B .2C .D .1255210.如图,正方形ABCD 中,,点E 在边BC 上,,将沿DE 对12AB =BE EC =DCE △折至,DFE △延长EF 交边AB 于点G ,连接DG 、BF ,给出以下结论:①;②DAG DFG ≌△△;③;④;⑤.其中正确结论的个数是()2BG AG =120DGF S =△725BEF S =△//BF DEA .5B .4C .3D .2二、填空题(每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)11.若实数m ,n 满足的值是__________.2(4)0m -+=12.如图,的直角边AB 在数轴上,点A 表示的实数为0,以A 为圆心,AC 的Rt ABC △长为半径作弧交数轴的负半轴于点D .若,,则点D 表示的实数为1CB =2AB =__________.13.勾股数是指能成为直角三角形三条边长的三个正整数,世界上第一次给出勾股数公式的是中国古代数学著作《九章算术》.现有勾股数a ,b ,c ,其中a ,b 均小于c ,,,m 是大于1的奇数,则__________(用含m 的式子21122a m =-21122c m =+b =表示).14.关于x 的不等式组整数解共2个,则m 的取值范围是__________.0521x m x -<⎧⎨-≤⎩15.如图,在长方形ABCD 中,,,将沿对角线BD 翻折,点C 落6BC =3CD =BCD △在点处,交AD 于点E ,则线段DE 的长为__________.C 'BC '16.如图,已知等腰的直角边长为1,以的斜边为直角边,画第12Rt AA A △12Rt AA A △2AA 2个等腰,再以的斜边为直角边,画第3个等腰,23Rt AA A △23Rt AA A △3AA 34Rt AA A △…依此类推直到第100个等腰,则第100个等腰直角三角形的面积为100101Rt AA A △__________.三、解答题(本题共72分,把解答或证明过程写在答题卡的相应区域内)17.(8分)计算:(1)(2)21-+30(2)( 3.14)π-++-18.(8分)解下列不等式(组):(1),并把解集在数轴上表示出来;2132134x x -+≤-(2).231125123x x x x +≥+⎧⎪+⎨-<-⎪⎩19.(8分)已知:的立方根是,的算术平方根是3,c31a +2-21b -分.求的平方根.522a b c -+20.(8分)如图,在中,,点D 在AC 边上,以CB ,CD 为边作ABC △AB AC =,DE 交AB 于点F .DCBE (1)若,求的度数;50A ∠=︒E ∠(2)若,,求EF .3AD CD =6BC =21.(8分),如图,在四边形ABCD 中,,.过点D 分别作于//AB CD //AD BC DEAB ⊥点E ,于点F ,且.求证:四边形ABCD 是菱形.DF BC ⊥DE DF =22.(8分),如图,在中,E 、F 分别是AD 、BC 的中点,连接AC 、CE 、AF .ABCD Y (1);ABF CDE ≌△△(2),求证四边形AFCE 是矩形.AB AC =23.(本题12分)某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店预计用不多于1.8万元且不少于1.74万元的资金购进甲、乙两种型号的微波炉销售共20台,请问有几种进货方案?请写出进货方案;(3)该店计划购进甲、乙两种型号的微波炉销售共20台,其中甲型微波炉a 台,甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为.为了促销,公司决定甲型微波45%炉九折出售,而每售出一台乙型微波炉,返还顾客现金m 元,若全部售出购进的微波炉所获得的利润与a 无关.则m 的值应为多少?24.(本题12分)如图1,我们把对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD 中,,,问四边形ABCD 是AB AD =CB CD =垂美四边形吗?请说明理由;(2)性质探究:试探索垂美四边形ABCD 两组对边AB ,CD 与BC ,AD 之间的数量关系:.请写出证明过程(先画出图形,写出已知、求证,再写出证明);2222AB CD AD BC +=+(3)问题解决:如图3,分别以的直角边AC 和斜边AB 为边向外作正方形Rt ACB △ACFG 和正方形ABDE ,连接CE ,GE ,GB ,已知,,求GE 的长.4AC =5AB =八年级数学期中样题答案一、选择题(本大题共10小题,每小题3分,共30分)1-5CDACB 6-10ADBCB二、填空题(本大题共6小题,每小题3分,共18分)11.512.13.m 14.3m 4<≤15.3.7516.982三、解答题(本题共72分,写出解答或证明过程)17.(8分)解:解:(1)原式)31(2)=-+-312=-+-. (4)分2=-(2)原式.……4分=8315=9-++--18.(1)解:去分母得,,4(21)3(32)12x x -≤+-去括号得,,移项得,,合并同类项得,849612x x -≤+-896124x x -≤-+,2x -≤-把x 的系数化为1得,.……3分2x ≥在数轴上表示为:.……4分(2)解:231125123x x x x +≥+⎧⎪⎨+-<-⎪⎩①②解①得:……1分8x ≥解②得:……2分45x <在数轴上表示:……3分故原不等式组无解.……4分19.的立方根是,31a + 2-,解得,……2分318a ∴+=-3a =-的算术平方根是3,21b - 解得,……4分219b ∴-=5b =c .……6分6c ∴=,……7分52651542a b c ∴-+=--+=4的平方根是.……8分∴2±20..解:(1)在中,,,ABC △50A ∠=︒ AB AC =,()18050265C ABC ∴∠=∠=︒-︒÷=︒四边形BCDE 是平行四边形,;……3分65E C ∴∠=∠=︒(2),3AD CD = ..34AD AC ∴=34DF BC ∴=,.6BC = 92DF ∴=.……8分93622EF ED DF ∴=-=-=21.证明:于点E ,于点F ,,DE AB ⊥ DF BC ⊥9 0AED CFD ∴∠=∠=︒,,//AB CD //AD BC 四边形ABCD 是平行四边形,……3分∴,……4分A C ∴∠=∠在和中,ADE △CDF △,A C AED CFD DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,……6分(AAS)ADE CDF ∴≌△△,AD CD ∴=四边形ABCD 是菱形.……8分∴22.(1)四边形ABCD 是平行四边形,,,. AB CD ∴=AD BC =B D ∠=∠、F 分别是AD 、BC 的中点,E ,.,,12DE AE AD ∴==12BF CF BC ==BF DE ∴=CF AE =.……4分(SAS)ABF CDE ∴≌△△(2),.(SAS)ABF CDE≌△△AF CE ∴=又,CF AE = 四边形AFCE 是平行四边形.……6分∴,F 分别是BC 的中点,.AB AC = AF BC ∴⊥即.四边形AFCE 是矩形.……8分90AFC ∠=︒∴23.(1)解:设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,……1分,……2分22600234400x y x y +=⎧⎨+=⎩解得:,……3分1000800x y =⎧⎨=⎩答:甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元.……4分(2)解:设购进甲型号微波炉为a 台,则乙型号微波炉为台,由(1)及题意得:(20)a -……5分,……6分1000800(20)180001000800(20)17400a a a a +-≤⎧⎨+-≥⎩解得:,……7分710a ≤≤为正整数,的值为7、8、9、10,a a ∴有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型∴号9台则乙型号11台;甲型号10台则乙型号10台.……8分(3)解:设总利润为w ,则由(2)可得:,……10(14000.91000)(80045%)(20)(100)720020w a m a m a m =⨯-+⨯--=-+-分所获得的利润与a 无关,,解得:,……11分1000m ∴-=100m =答:要使所获得的利润与a 无关,则m 的值应为100.……12分24.(1)解:四边形ABCD 是垂美四边形.证明:如图连接AC ,BD 交于点E ,,AB AD = 点A 在线段BD 的垂直平分线上……1分∴,CB CD = 点C 在线段BD 的垂直平分线上,……2分∴直线AC 是线段BD 的垂直平分线,∴,即四边形ABCD 是垂美四边形.……3分AC BD ∴⊥(2)如图2,已知四边形ABCD 中,垂足为E ,求证:.2222AD BC AB CD +=+证明:,,AC BD ⊥ 90AED AEB BEC CED ∴∠=∠=∠=∠=︒由勾股定理得,,222222AD BC AE DE BE CE +=+++,222222AB CD AE BE CE DE +=+++.……6分2222AD BC AB CD ∴+=+(3)连接CG 、BE,如图:,,即,90CAG BAE ∠=∠=︒ CAG BAC BAE BAC ∴∠+∠=∠+∠GAB CAE ∠=∠在和中,,GAB △CAE △AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩.……8分GAB CAE ∴≌△△,又,ABG AEC ∴∠=∠90AEC AME ∠+∠=︒,即,90ABG AME ∴∠+∠=︒CE BG ⊥四边形CGEB 是垂美四边形,……10分∴由(2)得,,2222CG BE CB GE +=+在中,,,根据勾股定理可得:,Rt ABC △4AC =5AB =3BC =和BE 分别是正方形ACFG 和ABDG 的对角线,CG,CG ∴=BE =((2222222373GE CG BE CB∴=+-=+-=.……12分GE ∴=。

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

2023~2024学年度第二学期期中检测八年级数学试题(本卷共4页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上)一、选择题(本大题有8小题,每题3分,共24分)1.徐州剪纸是一种江苏省的传统民俗工艺品,鱼与“余”同音,寓意生活富裕、年年有余.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是A .B .C .D .2.牛奶中含有蛋白质、脂肪、碳水化合物等多种营养成分,下列统计图,最能清楚地表示出牛奶中各种营养成分所占百分比的是A .条形统计图B .扇形统计图C .折线统计图D .频数分布直方图3.下列事件中,是不可能事件的是A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环C .没有水分,种子发芽D .3天内将下雨4.平行四边形的一边长为6,另一边长为12,则对角线的长可能是A .6B .5C .22D .105.今年某市有近5万名考生参加中考,为了解这些考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析,下列说法正确的是A .近5万名考生是总体B .这1500名考生是总体的一个样本C .每位考生的数学成绩是个体D .1500名考生是样本容量6.在复习特殊的平行四边形时,某小组同学画出了如下关系图,组内一名同学在箭头处填写了它们之间转换的条件,其中填写错误的是A .①对角相等B .③有一组邻边相等C .②对角线互相垂直D .④有一个角是直角7.如图,点E 在矩形纸片的边上,将纸片沿折叠,点C 的对应点F 恰好在线段上.若,,则的长是ABCD CD BE AE 5=AB 1=CE BCA .2B .3C .4D .1.58.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形二、填空题(本大题有8个小题,每题4分,共32分)9.小明在农贸市场购买葡萄时,为了解葡萄的甜度,他取了一颗品尝.这种了解方式属于________(填“普查”或“抽样调查”).10.一个不透明袋中装有5个红球、3个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出________球的可能性最大(填“红”、“黑”或“白”).11.“永不言弃”的英语翻译是 Never give up ,短语中“e ”出现的频率为________.12.在平行四边形中,,则的度数为________.13.如图,一、二两组同学将本组最近5次数学平均成绩分别绘制成折线统计图.由统计图可知,成绩进步幅度较大的组是________组.(填“一”或“二”)14.如图,,分别以A ,B 为圆心,5长为半径画弧,两弧相交于M ,N 两点.连接,,,,则四边形的面积为________.15.数学家笛卡尔在《几何》一书中阐述了坐标几何思想,主张取代数和几何中最好的东西,互相以长补短.如图,在平面直角坐标系中,矩形的顶点B 的坐标是,则的长是________.ABCD 130∠+∠=︒A C ∠B ︒8cm =AB cm AM BM AN BN AMBN 2cm OABC (1,3)AC16.如图,正方形的边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在上,且点D 的坐标为,点P 是上的一个动点,则的最小值是________.三、解答题(本大题有9个小题,共84分)17.(本题8分)科学教育是提升国家科技竞争力、培养创新人才、提高全民科学素质的重要基础,某学校计划在八年级开设“人工智能”、“无人机”、“创客”、“航模”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为50名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“创客”课程的学生占________%,所对应的圆心角度数为________;(3)若该校八年级一共有1000名学生,试估计选择“航模”课程的学生有多少名?18.(本题8分)下表是某校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 10001500200030004000发芽的种子粒数m 9461425189828533812发芽频率0.946x0.949y0.953(1)表中________,________;OABC OA (1,0)OB +PD PA ︒mn=x =y(2)任取一粒这种植物的种子,它能发芽的概率的估计值是________(精确到0.01);(3)若该学校劳动基地需要这种植物幼苗7600株,试估算该小组需要准备多少粒种子进行发芽培育.19.(本题10分)正方形网格中(网格中的每个小正方形边长是1,小正方形的顶点叫做格点),的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出绕点A 顺时针旋转的,并写出点C 的对应点的坐标为________;(2)画出关于点O 成中心对称的;(3)点D 为平面内一点,若以点A 、B 、C 、D 为顶点的四边形为平行四边形,则所有满足条件的点D 的坐标为________.20.(本题8分)已知:如图,在平行四边形中,点E 、F 在上,且.求证:四边形是平行四边形.21.(本题8分)如图,在平行四边形中,的平分线交于点E ,的平分线交于点F .求证:四边形是菱形.22.(本题10分)如图,在中,,点D 是边的中点,以、为邻边作平行四边形,连接、.(1)求证:四边形是矩形;(2)要使四边形是正方形,则需要满足的条件是________.ABC △ABC △90︒111A B C △1C ABC △222A B C △ABCD AC =AE CF EBFD ABCD ∠BAD BC ∠ABC AD ABEF ABC △=AB AC BC AB BD ABDE AD CE ADCE ADCE ABC △23.(本题10分)如图,在四边形中,,,M 、N 分别是、的中点,连接、、.(1)求证:;(2)若,平分,,求的长.24.(本题10分)如图,点O 是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点(要求:用无刻度的直尺和圆规作图,保留作图痕迹).小亮的作法如下:作,交于点T ,在射线上截取,在上截取,使得,连接,延长交于点P ,线段即为所求.(1)请证明小亮作法的正确性;(2)请你再设计另一种尺规作图的方法(保留作图痕迹,不写作法).25.(本题12分)【阅读理解】如图1,在矩形中,若,,则________(用含a 、b 的式子表示);【探究发现】如图2,小华发现在平行四边形中,若,,则上述结论依然成立,请你跟随小华的思路,帮他继续完成证明过程.证明:如图3,延长,过点B 、点C 分别作于点E ,于点F .在中,且,,..设,.……ABCD 90∠=︒ABC =AC AD AC CD BM MN BN =BM MN 60∠=︒BAD AC ∠BAD 2=AC BN ∠MAN PQ AM AN PQ ∥OT AN AM TO =OE OT AN AQ =AQ TE QO QO AM PQ ABCD =AB a =BC b 22+=AC BD ABCD =AB a =BC b DA ⊥BE AD ⊥CF AD ABCD =AB CD ∥AB CD ∴∠=∠BAE CDF ∴≌ABE DCF △△∴=AE DF ==AE DF d ==BE CF h________(请继续完成以上证明)【拓展提升】如图4,已知为的一条中线,,,.求证:.【尝试应用】如图5,在矩形中,若,,点P 在边上,则的取值范围为________.2023—2024学年度第二学期期中检测八年级数学试题参考答案及评分标准题号12345678选项DBCDCABC9.抽样调查 10.红 11.12.115 13.一14.24151617.(1)(2)20,72BO ABC △=AB a =BC b =AC c 222224+=-a b c BO ABCD 4=AB 6=BC AD 22+PB PC 311(3)名答:估计选择“航模”课程的学生有100名.18.(1)0.95,0.951(2)0.95(3),答:估算需要准备8000粒种子进行发芽培育.19.(1)如图为所画的三角形(字母标错或未标扣1分)的坐标为(2)如图为所画的三角形(字母标错或未标扣1分)(3)或或.20.证明:如图,连接,交于点O .四边形是平行四边形,∴,.∵,∴,即,∴四边形是平行四边形.21.证明:∵四边形是平行四边形,∴AD //BC ,∴∠DAE =∠AEB .∵∠BAD 的平分线交BC 于点E ,∴∠DAE =∠BAE ,∴∠BAE =∠AEB ,∴AB=BE .同理可得AB=AF ,∴AF=BE ,∵AF //BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形.22.(1)证明:∵四边形ABDE 是平行四边形,∴BD ∥AE .∵点D 是BC 中点,∴BD =CD ,∴AE ∥CD ,AE =CD ,∴四边形ADCE 是平行四边形.在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC ,即∠ADC=90°,∴平行四边形ADCE 是矩形.(2)∠BAC =90°23.(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN //AD ,MN=.5100010050⨯=76000.958000÷=111A B C △1C (2,3)-222A B C △(5,3)--(3,1)-(1,1)-BD BD AC ABCD OA OC =OB OD =AE CF =OA AE OC CF -=-OE OF =EBFD ABCD 12AD 第20题在Rt△ABC中,∵M是AC中点,∠ABC=90°,∴BM=.∵AC=AD,∴BM=MN.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC==30°.由(1)可知,BM=AM=MC=,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN//AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,.由(1)可知MN=BM==1,∴BN.24.(1)证明:连接EQ,∵OT//AN,TE=AQ,∴四边形ATEQ是平行四边形,∴AT//QE,∴∠QEO=∠PTO.∵OE=OT,∠QOE=∠POT,∴△QOE≌△POT(ASA),∴QO=PO,即点O是PQ的中点.(2)方法一:连接AO,延长AO到T,使得OT=OA,作TP//AN交AM于点P,连接PO,延长PO交AN于点Q,线段PQ即为所求.方法二:连接AO,作OR//AN,交AM于点R,在射线AM上截取RP=RA,连接PO,延长PO交AN于点Q,线段PQ即为所求.(画出其中一种即可)25.【阅读理解】【探究发现】在Rt△BED中,,即.同理.∴,整理得.在Rt△AEB中,,即.∴.【拓展提升】(法一)如图25-1,延长BO至点D,使BO=OD.∵BO为△ABC的中线,∴AO=CO.∴四边形ABCD为平行四边形.依上述结论,得.∴,即.12AC12BAD∠12AC222=∴+BN BM MN12AC2222a b+222BD BE DE=+222()BD h b d=++222()AC h b d=+-222222()()AC BD h b d h b d+=+-+++222222()2AC BD h d b+=++222AB AE BE=+222a h d=+222222AC BD a b+=+22222()AC BD AB BC+=+2222(2)2()c BO a b+=+222224a b cBO+=-(法二)如图25-2,过点B 作BE ⊥AC ,垂足于点E .设OE =d ,则,.在Rt △ABE 中,依勾股定理,得,∴,即①.同理②,③.①+②,得:④.④-③×2,得,∴.【尝试应用】.图25-1图25-212AE AC d =-12CE AC d =+222AB BE AE =+222()2ACAB BE OE =+-22212a BE c d ⎛⎫=+- ⎪⎝⎭22212b BE c d ⎛⎫=++ ⎪⎝⎭222BO BE d =+22222222c a b BEd +=++222222c a b BO +-=222224a b c BO +=-225068PB PC ≤+≤。

人教版数学八年级下册《期中考试试题》附答案解析

人教版数学八年级下册《期中考试试题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.二次根式1x -有意义的的取值范围是( ) A. 1x > B. 1x < C. 1x ≥ D. 1x ≤2.下列式子中是最简二次根式的是( )A. 8B. 22C. 23D. 1.5 3.下列计算正确的是( )A. 5335-=B. 222()-=-C. 1222÷=D. 235⋅= 4.若一个三角形的三边长为3,4,x ,则使得此三角形是直角三角形的的值是( )A. B. C. 7 D. 或7 5.下列条件中,不能判断ABC ∆为直角三角形是( )A 2a =,3b =,5c =B. ::1:2:3a b c =C. A B C ∠+∠=∠D. ::3:4:5A B C ∠∠∠=6.等腰三角形腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 647.如图,在ABCD 中,AC 与BD 相交于点O,则下列结论不一定成立的是( )A. BO=DOB. CD=ABC. ∠BAD=∠BCDD. AC=BD8.下列说法中错误的是( )A. 四边相等四边形是菱形B. 对角线相等的矩形是正方形C. 一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是菱形9.如图,正方形ABCD 内有两条相交线段MN ,EF ,M ,N ,E ,F 分别在边AB ,CD ,AD ,BC 上.小明认为:若MN =EF ,则MN ⊥EF ;小亮认为:若MN ⊥EF ,则MN =EF,你认为( )A. 仅小明对B. 仅小亮对C. 两人都对D. 两人都不对 10.如图,在菱形ABCD 中,对角线AC ,BD 相交于点,8AC =,6BD =,点,E F 分别为AO ,DO 的中点,则线段EF 的长为( )A. 2.5B. 3C. 4D. 5二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案填在题中的横线上. 11.已知112y x x =-+--,则x y -值为_________.12.24化简后与最简二次根式51a +的被开方数相等,则a =_________.13.如图,阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是_________.14.如图,在矩形ABCD 中,对角线AC ,BD 相交于点,已知8AB =,30ACB ∠=︒,则BD =_________.15.如图,在ABCD 中,按以下步骤作图:①以为圆心,以AB 长为半径作弧,交AD 于点;②分别以、为圆心,以大于12BF 的长为半径作弧,两弧相交于点;③作射线AG ,交边BC 于点.若16BF =,10AB =,则AE 的长为_________.16.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点,分别在BC 和CD 上,则正方形ABCD 的面积等于_________.三、解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.计算:(1)(4820)(3125)-;(22148330(223)5++. 18.已知32a =32b =求223a ab b a b ++-+的值.19.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?20.如图,在四边形ABCD 中,3BC DC ==,26AD =,AB 6=,且90C ∠=︒, 60A ∠=︒,求ADC ∠的度数.21.如图,在ABCD 中,BAD ∠的平分线交BC 于点,且5BE =,8EC =.(1)求ABCD 的周长;(2)连结AC ,若12AC =,求ABCD 的面积.22.如图,在菱形ABCD 中,60ABC ∠=︒,是CD 边上一点,作等边BEF ∆,连接AF .(1)求证:CE AF =;(2)EF 与AD 交于点,38DPE ∠=︒,求CBE ∠的度数.23.如图,矩形ABCD 中,点, E F 分别在边AB 与CD 上,点,G H 在对角线AC上,AG CH =,BE DF =.()1求证:四边形EGFH 是平行四边形.()2若EG EH =,8AB =,4BC =,求AE 的长.24.如图,在等边ABC ∆中,9cm AB =,射线//AG BC ,点从点出发沿射线AG 以1cm/s 的速度运动,同时点从点出发沿射线BC 以2cm /s 的速度运动,设点运动的时间为()t s .(1)当点在线段BC 上运动时,CF =_________cm ,当点在线段BC 的延长线上运动时,CF =_________cm (请用含的式子表示);(2)在整个运动过程中,当以点,,,为顶点的四边形是平行四边形时,求的值;(3)求当t =_________时,,两点间的距离最小.25.△ABC 是等边三角形,点D 是射线BC 上的一个动点(点D 不与点B ,C 重合),△ADE 是以AD 为边的等边三角形,过点E 作BC 的平行线,交射线AC 于点G ,连接BE .(1)如图1所示,当点D 在线段BC 上时,求证:四边形BCGE 是平行四边形;(2)如图2所示,当点D 在BC 的延长线上时,(1)中的结论是否成立?并请说明理由;(3)当点D 运动到什么位置时,四边形BCGE 是菱形?并说明理由.答案与解析一、选择题:(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填入题后的括号内.1.( )A. 1x >B. 1x <C. 1x ≥D. 1x ≤[答案]D[解析][分析]根据二次根式的被开方数为非负数,可得关于x 的不等式,解之即可.[详解],∴1-x ≥0,解得:x ≤1,故选:D .[点睛]本题考查二次根式的定义、解一元一次不等式,熟练掌握二次根式有意义的条件是解答的关键. 2.下列式子中是最简二次根式的是( )B. 2 [答案]B[解析][分析] 分析每个式子,根据最简二次根式的定义判断即可.[详解故A 错误;是最简二次根式,故B 正确;故C 错误;2,故D 错误; 故选:B .[点睛]本题主要考查了最简二次根式判定,准确利用二次根式的性质化简是解题的关键.3.下列计算正确的是( )A. 5= 2=- 2= = [答案]C[解析][分析]通过对二次根式的化简,利用二次根式的性质进行求解即可得到答案.[详解]=,故A 错误;2=,故B 错误;=,故C 正确;=故D 正确;故答案选C .[点睛]本题主要考查了二次根式性质的应用,准确计算是解题的关键.4.若一个三角形的三边长为3,4,x ,则使得此三角形是直角三角形的的值是()A. B.D. [答案]D[解析][分析]根据勾股定理即可求解.[详解]当4为斜边时,当x 为斜边是,5故选D. [点睛]此题主要考查勾股定理的应用,解题的关键是根据题意分情况讨论.5.下列条件中,不能判断ABC ∆为直角三角形的是( )A. 2a =,3b =,c =B. ::1:a b c =C. A B C ∠+∠=∠D. ::3:4:5A B C ∠∠∠= [答案]D[解析][分析]分别根据勾股定理的逆定理及三角形内角和定理对各选项进行逐一判断即可.[详解]A 、24a =,29b =,25c =,∵222a c b +=,∴△ABC 是直角三角形,故本选项错误;B 、∵2221+=, ∴△ABC 是直角三角形,故此选项不合题意;C 、∵A B C ∠+∠=∠,而180A B C ∠+∠+∠=︒,计算得∠A=90,∴△ABC 为直角三角形,故此选项不合题意;D 、∵180A B C ∠+∠+∠=︒,计算得∠A=45°,∠B=60°,∠C=75°,∴△ABC 不是直角三角形,故此选项符合题意;故选:D .[点睛]本题主要考查了勾股定理逆定理和三角形内角和定理,判断三角形是否为直角三角形可利用勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形就是直角三角形.6.等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B.7.如图,在ABCD中,AC与BD相交于点O,则下列结论不一定成立的是( )A. BO=DOB. CD=ABC. ∠BAD=∠BCDD. AC=BD [答案]D[解析]试题分析:根据平行四边形的性质判断即可:A、∵四边形ABCD是平行四边形,∴OB=OD(平行四边形的对角线互相平分),正确,不符合题意;B、∵四边形ABCD是平行四边形,∴CD=AB(平行四边形的对边相等),正确,不符合题意;C、∵四边形ABCD是平行四边形,∴∠BAD=∠BCD(平行四边形的对角相等),正确,不符合题意;D、根据四边形ABCD是平行四边形不能推出AC=BD,错误,符合题意.故选D.8.下列说法中错误的是()A. 四边相等的四边形是菱形B. 对角线相等的矩形是正方形C. 一组邻边相等的平行四边形是菱形D. 对角线互相垂直平分的四边形是菱形[答案]B[解析][分析]根据菱形、正方形的判定方法分别分析即可求解.[详解]解:A. 四边相等的四边形是菱形,正确,不合题意;B. 对角线相等的矩形是正方形,错误,符合题意;C. 一组邻边相等的平行四边形是菱形,正确,不合题意;D. 对角线互相垂直平分的四边形是菱形,正确,不合题意.故选B.[点睛]本题考查了菱形、正方形的判定方法,正确把握相关定义是解题关键.9.如图,正方形ABCD内有两条相交线段MN,EF,M,N,E,F分别在边AB,CD,AD,BC上.小明认为:若MN=EF,则MN⊥EF;小亮认为:若MN⊥EF,则MN=EF,你认为()A. 仅小明对B. 仅小亮对C. 两人都对D. 两人都不对[答案]C[解析][分析]分别过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,根据正方形的性质可得EG=MP;对于小明的说法,先利用“HL”证明Rt△EFG≌Rt△MNP,根据全等三角形对应角相等可得∠MNP=∠EFG,再根据角的关系推出∠EQM=∠MNP,然后根据∠MNP+∠NMP=90°得到∠NMP+∠EQM=90°,从而得到∠MOQ=90°,根据垂直的定义即可证得MN⊥EF;对于小亮的说法,先推出∠EQM=∠EFG,∠EQM=∠MNP,然后得到∠EFG=∠MNP,然后利用“角角边”证明△EFG≌△MNP,根据全等三角形对应边相等可得EF=MN.[详解]如图,过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,∵四边形ABCD 正方形,∴EG=MP ,对于小明的说法:在Rt △EFG 和Rt △MNP 中,MN EF EG MP ⎧⎨⎩==, ∴Rt △EFG ≌Rt △MNP (HL ),∴∠MNP=∠EFG ,∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG=∠MNP ,又∵∠MNP+∠NMP=90°,∴∠EQM+∠NMP=90°,在△MOQ 中,∠MOQ=180°-(∠EQM+∠NMP )=180°-90°=90°,∴MN ⊥EF ,故甲正确.对小亮的说法:∵MP ⊥CD ,∠C=90°,∴MP ∥BC ,∴∠EQM=∠EFG ,∵MN ⊥EF ,∴∠NMP+∠EQM=90°,又∵MP ⊥CD ,∴∠NMP+∠MNP=90°,∴∠EQM=∠MNP ,∴∠EFG=∠MNP ,在△EFG 和△MNP 中,90EFG MNP EGF MPN EG MP ∠∠⎧⎪∠∠︒⎨⎪⎩==== , ∴△EFG ≌△MNP (AAS ),∴MN=EF ,故小亮的说法正确,综上所述,两个人的说法都正确.故选C .[点睛]本题考查了正方形的性质、全等三角形的判定与性质、同角的余角相等的性质,作出辅助线,构造出全等三角形是解题的关键,通常情况下,求两边相等,或已知两边相等,都是想法把这两条线段转化为全等三角形的对应边进行求解.10.如图,在菱形ABCD 中,对角线AC ,BD 相交于点,8AC =,6BD =,点,E F 分别为AO ,DO 的中点,则线段EF 的长为( )A. 2.5B. 3C. 4D. 5[答案]A[解析][分析] 先依据菱形的性质求得OA 、OD 的长,然后依据勾股定理可求得AD 的长,最后依据三角形中位线定理求的EF 的长即可.[详解]∵四边形ABCD 为菱形,∴AC ⊥BD ,OA=OC=12AC=4,OB=OD=12BD=3 在Rt △AOD 中,依据勾股定理可知: 2222435AD OA OD∵点E ,F 分别为AO ,DO 的中点,∴EF 是△AOD 的中位线∴EF=12AD=2.5 故选:A[点睛]本题考查了菱形的性质:菱形的对角线互相垂直平分;三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题:(本大题共6个小题,每小题3分,共18分)请将每小题的答案填在题中的横线上. 11.已知2y =,则x y -的值为_________. [答案]3[解析][分析]由二次根式有意义的条件列不等式组,解不等式组求得,再求,从而可得答案.[详解]解:2y x =-1010x x -≥⎧∴⎨-≥⎩①② 由①得:1,x ≥由②得:1,x ≤1,x ∴=2,y ∴=-()12 3.x y ∴-=--=故答案为:[点睛]本题考查的是二次根式有意义的条件,掌握二次根式有意义的条件列不等式组是解题的关键.,则a =_________.[答案]5[解析][分析]化简为最简二次根式,继而利用题干信息“被开方数相同”列方程求解.[详解=其中被开方数为6;1a + ,故有:16a +=,则5a =.故本题答案为5.[点睛]本题考查最简二次根式的化简以及对二次根式概念的理解,需注意化简原则为被开方数不含分母,也不含能开的尽方的因数或因式.13.如图,阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是_________.[答案]25[解析][分析]先根据勾股定理算出大正方形的边长,再根据勾股定理的面积证明可得结果.[详解]由题可得大正方形的边长=2213-12=5,根据勾股定理的性质可得阴影部分的面积=25=25.故答案为25.[点睛]本题主要考查了勾股定理的理解,准确理解图形面积与勾股定理的关系是解题的关键.14.如图,矩形ABCD 中,对角线AC ,BD 相交于点,已知8AB =,30ACB ∠=︒,则BD =_________.[答案]16[解析][分析]根据直角三角形30°角所对的直角边等于斜边的一半可得AC =2AB ,再根据矩形的对角线相等解答.[详解]在矩形ABCD 中,∠ABC =90°,∵∠ACB =30°,AB =8,∴AC =2AB =2×8=16,∵四边形ABCD是矩形,∴BD=AC=16.故答案为:16.[点睛]本题考查了矩形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质是解题的关键.15.如图,在ABCD中,按以下步骤作图:①以为圆心,以AB长为半径作弧,交AD于点;②分别以、为圆心,以大于12BF的长为半径作弧,两弧相交于点;③作射线AG,交边BC于点.若16BF=,10AB=,则AE的长为_________.[答案]12[解析][分析]设AE交BF于点O.证明四边形ABEF是菱形,利用勾股定理求出OA即可解决问题.[详解]如图,设AE交BF于点O.由作图可知:AB=AF,AE⊥BF,∴OB=OF,∠BAE=∠EAF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠AEB,∴∠BAE=∠AEB,∴AB =BE =AF ,∵AF ∥BE ,∴四边形ABEF 是平行四边形,∵AB =AF ,∴四边形ABEF 是菱形,∴OA =OE ,OB =OF =8,在Rt △AOB 中,∵∠AOB =90°,∴OA =22221086AB OB -=-=,∴AE =2OA =12.故答案为:12.[点睛]本题考查平行四边形的性质,菱形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点,分别在BC 和CD 上,则正方形ABCD 的面积等于_________.[答案]23+[解析][分析]首先根据四边形ABCD 是正方形得出AB=AD ,∠B=∠D=90°,根据△AEF 是等边三角形得出AE=AF ,最后根据HL 即可证明△ABE ≌△ADF ;根据全等性质:CE=CF ,∠C=90°,从而得出△ECF 是等腰直角三角形,再根据勾股定理得出EC 的值,设BE x =,则2AB x =在Rt △ABE 中,222AB BE AE +=,求出的值,即可得出正方形ABCD 的边长,最后求出正方形ABCD 的面积.[详解]解:∵四边形ABCD 是正方形,∴AB=AD ,∠B=∠D=90°, ∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt△ADF 中,AB AD AE AF =⎧⎨=⎩, ∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,∴CE=CF ,∠C=90°,即△ECF 是等腰直角三角形,由勾股定理得222CE CF EF +=,∴EC =在Rt △ABE 中,2AE =,∴222AB BE AE +=,即(224x x +=,解得12x =或22x =(舍去),∴AB =∴2ABCD S =正方形故答案为2.[点睛]本题主要考查了正方形的性质、全等三角形的判定与性质、等边三角形的性质和等腰三角形的性质.解答本题的关键是对正方形和三角形的性质以及勾股定理的运用要熟练掌握.三、解答题:(本大题共有9个小题,共72分)解答应写出演算步骤或文字说明,并将答案写在对应的答题区域内.17.计算:(1)-;(22++.[答案](1);(2)15+[解析][分析](1)先逐个化简二次根式,再去括号合并同类二次根式即可;(2)先算乘方、再算乘除、最后算加减合并即可.[详解](1)原式=43256353523+-+=-; (2)原式=42684631526-+++=+.[点睛]本题考查了二次根式的混合运算,解答的关键是熟练掌握二次根式的混合运算法则,会利用二次根式的性质将二次根式化为最简根式.18.已知32a =-,32b =+,求223a ab b a b ++-+的值.[答案]1322+[解析]试题分析:先根据题意求出a-b 的值和ab 的值,然后把已知的式子变形为完全平方和a-b 及ab 的整体形式,然后整体代入即可.试题解析:∵32a =-,32b =+∴323222a b -=---=-,()()32321ab =-+= ∴223a ab b a b ++-+=()()25a b a b ab ---+=()()2222251---+⨯ =8225++=1322+19.如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?[答案]发生火灾住户窗口距离地面14米[解析][分析]在Rt △ACB 中,利用勾股定理求出BC 即可解答.[详解]由题意,AB=15,AC=DE=9,CD=AE=2,BD ⊥AC ,在Rt △ACB 中,由勾股定理得: 222215912BC AB AC =-=-=,∴BD=BC+CD=14(米),答:发生火灾的住户窗口距离地面14米.[点睛]本题考查勾股定理得应用,熟练掌握勾股定理在实际生活中的应用是解答的关键. 20.如图,在四边形ABCD 中,3BC DC ==,26AD =,AB 6=,且90C ∠=︒, 60A ∠=︒,求ADC ∠的度数.[答案]75︒[解析][分析]连接BD ,根据3BC DC ==,可得45BDC ∠=︒,223+3=32BD =,由26AD =,AB 6=,可得30ADB ∠=︒,即可求解.[详解]解:如图,连接BD ,∵3BC DC ==,∠C=90°∴45BDC ∠=︒,223+3=32BD =; ∵26AD =,AB 6=, ∴()22=26=24AD ,()2266AB ==,()223218BD ==, ∴△ABD 是直角三角形,且90ABD ∠=︒,又∵60A ∠=︒,∴30ADB ∠=︒,∴75ADC ADB CDB ∠=∠+∠=︒.故答案为75︒.[点睛]本题主要考查四边形的应用,灵活应用勾股定理及其逆定理,是解题的关键. 21.如图,在ABCD 中,BAD ∠的平分线交BC 于点,且5BE =,8EC =.(1)求ABCD 的周长;(2)连结AC ,若12AC =,求ABCD 的面积.[答案](1)36;(2)60.[解析][分析](1)根据AB ∥CD ,AE 平分∠BAD ,得∠BAE =∠AEB ,AB =BE =5,求得BC =5+8=13,据此可得平行四边形ABCD 的周长;(2)AB =5,BC =13,AC =12,得△ABC 为直角三角形,则平行四边形ABCD 的面积=AB ×AC =60. [详解]解:(1)如图,∵在平行四边形ABCD 中,AB ∥CD ,∴∠DAE =∠AED ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴AB =BE =5,∵EC =8,∴BC =5+8=13∴平行四边形ABCD 的周长为:2×(5+13)=36;(2)∵AB =5,BC =13,AC =12,AB 2+AC 2=BC 2,∴△ABC 为直角三角形,即AC ⊥AB ,∴平行四边形ABCD 的面积=AB ×AC =60. [点睛]本题考查了角平分线的性质,等腰三角形的性质和平行四边形的性质,熟悉相关性质是解题的关键. 22.如图,在菱形ABCD 中,60ABC ∠=︒,是CD 边上一点,作等边BEF ∆,连接AF .(1)求证:CE AF =;(2)EF 与AD 交于点,38DPE ∠=︒,求CBE ∠的度数.[答案](1)见解析;(2)12°. [解析][分析](1)根据四边形ABCD 是菱形,∠ABC=60°和等边△BEF ,可以证明△FAB ≌△ECB ,进而可得CE=AF ;(2)利用三角形的内角和定理可求∠CBE 的度数.[详解](1)证明:∵四边形ABCD 是菱形,∴AB =BC.∵△BEF 是等边三角形,∴BF =BE ,∠FBE =∠FEB =60°.∵∠ABC =60°,∴∠ABC =∠FBE ,∴∠ABC -∠ABE =∠FBE -∠ABE ,即∠EBC =∠FBA .∴△EBC ≌△FBC (SAS ).∴CE =AF .(2)解:∵四边形ABCD 是菱形,∴AD ∥BC ,∠D =∠ABC =60°.∴∠C =180°-∠D =120°.在△PDE 中,∠D +∠DPE +∠PED =180°,∴∠DEP =72°.由(1)得,∠FEB =60°,∴∠BED =∠DEP +∠BEP =72°+60°=132°.∴∠CBE =∠BED -∠C =132°-120°=12°.[点睛]本题考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.23.如图,矩形ABCD 中,点, E F 分别在边AB 与CD 上,点,G H 在对角线AC上,AG CH =,BE DF =.()1求证:四边形EGFH 是平行四边形.()2若EG EH =,8AB =,4BC =,求AE 的长.[答案](1)证明见详解;(2)5[解析][分析](1)依据矩形的性质,即可得出△AEG ≌△CFH ,进而得到GE=FH ,∠CHF=∠AGE ,由∠FHG=∠EGH ,可得FH ∥GE ,即可得到四边形EGFH 是平行四边形;(2)由菱形的性质,即可得到EF 垂直平分AC ,进而得出AF=CF=AE ,设AE=x ,则FC=AF=x ,DF=8-x ,依据Rt △ADF 中,AD 2+DF 2=AF 2,即可得到方程,即可得到AE 的长.[详解]解:(1)∵矩形ABCD 中,AB ∥CD ,∴∠FCH=∠EAG ,又∵CD=AB ,BE=DF ,∴CF=AE ,又∵CH=AG ,∴△AEG ≌△CFH ,∴GE=FH ,∠CHF=∠AGE ,∴∠FHG=∠EGH ,∴FH ∥GE ,∴四边形EGFH 是平行四边形;(2)如图,连接EF ,AF ,∵EG=EH ,四边形EGFH 是平行四边形,∴四边形GFHE 为菱形,∴EF 垂直平分GH ,又∵AG=CH ,∴EF 垂直平分AC ,∴AF=CF=AE ,设AE=x ,则FC=AF=x ,DF=8-x ,在Rt △ADF 中,AD 2+DF 2=AF 2,∴42+(8-x )2=x 2,解得x=5,∴AE=5.[点睛]此题考查了菱形的性质、矩形的性质、全等三角形的判定与性质以及勾股定理的运用.注意准确作出辅助线是解此题的关键.24.如图,在等边ABC ∆中,9cm AB =,射线//AG BC ,点从点出发沿射线AG 以1cm/s 的速度运动,同时点从点出发沿射线BC 以2cm /s 的速度运动,设点运动的时间为()t s .(1)当点在线段BC 上运动时,CF =_________cm ,当点在线段BC 的延长线上运动时,CF =_________cm (请用含的式子表示);(2)在整个运动过程中,当以点,,,为顶点的四边形是平行四边形时,求的值;(3)求当t =_________时,,两点间的距离最小.[答案](1)9-2t ,2t -9;(2)t 的值为3或9;(3)t =4.5.[解析][分析](1)求出运动路线BF 的长度,分当F 在线段BC 上时,CF =BC -BF ,当F 在线段BC 的延长线上运动时,CF =BF -BC ,求解即可;(2)分别从当点F 在C 的左侧时与当点F 在C 的右侧时去分析,由当AE =CF 时,以A 、C 、E 、F 为顶点四边形是平行四边形,可得方程,解方程即可求得答案;(3)当,两点间的距离最小时,即EF ⊥BC ,取线段BC 的中点D ,四边形ADFE 是矩形,利用AE =DF 可得方程,解方程即可得出答案.[详解]解:(1)∵运动时间为()t s ,∴2BF t =,∵△ABC 为等边三角形,∴AB =BC =AC =9,∴当点F 在线段BC 上运动时,CF =9-2t ,当点F 在线段BC 的延长线上运动时,CF =2t -9;故答案为:9-2t ,2t -9;(2)当点F 在C 的左侧时(含点C ),根据题意得:CF =9-2t ,AE =t ,∵AG ∥BC ,∴当AE =CF 时,四边形AECF 是平行四边形,即t=9-2t,解得:t=3;当点F在C的右侧时,根据题意得:CF=2t-9,∵AG∥BC,∴当AE=CF时,四边形AEFC是平行四边形,即2t-9=t,解得:t=9,综上可得:当以点A,C,E,F为顶点的四边形是平行四边形时,t的值为3或9;(3)若E,F两点间的距离最小,则EF⊥BC,过A作AD⊥BC于D,则AD也是BC边的中线,∵AB=BC=AC=9,∴BD=CD=4.5,∴DF=2t-4.5∵AD⊥BC∴四边形AEFD为矩形,∴此时AE=DF,∴t=2t-4.5,解得t=4.5,∴当t=4.5时,,两点间的距离最小;[点睛]本题主要考查了平行四边形的判定,矩形的判定,利用了分类讨论思想和方程的思想是解决本题的关键.25.△ABC是等边三角形,点D是射线BC上的一个动点(点D不与点B,C重合),△ADE是以AD为边的等边三角形,过点E作BC的平行线,交射线AC于点G,连接BE.(1)如图1所示,当点D在线段BC上时,求证:四边形BCGE是平行四边形;(2)如图2所示,当点D在BC的延长线上时,(1)中的结论是否成立?并请说明理由;(3)当点D运动到什么位置时,四边形BCGE是菱形?并说明理由.[答案](1)证明见解析;(2)结论仍成立,理由见解析;(3)当点D在BC的延长线上,CD=BC时,四边形BCGE 是菱形,理由见解析.[解析][分析](1)利用SAS定理证明△AEB≌△ADC,根据全等三角形的性质得到∠ABE=∠ACB=60°,得到BE∥CG,根据平行四边形的判定定理证明结论;(2)仿照(1)的证明方法解答;(3)分点D在BC上、点D在BC的延长线上两种情况,根据菱形的判定定理解答.[详解](1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=∠BAC=60°.∵△ADE是等边三角形,∴AE=AD,∠EAD=60°,∴∠EAB=∠DAC,在△AEB与△ADC中,∵AE ADEAB DAC AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△ADC(SAS),∴∠ABE=∠ACB=60°,∠EBC+∠ACB=∠ABE+∠ABC+∠ACB=180°, ∴BE∥CG,∵EG∥BC,∴四边形BCGE是平行四边形;(2)解:(1)中的结论仍成立,理由如下:由(1)可知,△ABE≌△ACD,∴∠BEA=∠CDA.∵EG∥BC,∴∠G=∠ACB=60°,∠GED=∠BDE,∴∠BEG+∠G=∠BEA+∠AED+∠GED+∠G=∠AED+(∠CDA+∠BDE) +∠G=180°,∴BE∥CG,又∵EG∥BC,∴四边形BCGE是平行四边形;(3)解:当点D在BC上时,由(2)可知,△ABE≌△ACD,∴BE=CD.∵BE=CD<BC,∴四边形BCGE不是菱形,当点D在BC的延长线上,CD=BC时,四边形BCGE是菱形,由(2)可知,△ABE≌△ACD,四边形BCGE是平行四边形,∴BE=CD=BC时,四边形BCGE是菱形.[点睛]本题考查平行四边形的判定、菱形的判定、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理、平行四边形、菱形的判定定理是解题的关键.。

八年级数学下册期中考试卷(有答案)

八年级数学下册期中考试卷(有答案)

1八年级数学下册期中考试卷(有答案)(满分120分,考试时间120分钟)一、选择题:本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,将正确项编号填在题后括号内. 1. 下列格式中是二次根式的是( )A.38 B. 1- C. 2 D. )0(<x x2. 下列各组数中,不能满足勾股定理的是( )A. 3,4,5B. 6,8,10C. 5,12,13D. 7,5,10 3. 已知一个平行四边形两邻边的长分别为4和7,那么它的周长为( ) A. 11 B. 18 C. 22 D. 28 4. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOB = 60°, AO = 4,则AB 的长是( ) A. 4B. 5C. 6D. 85. 若代数式1-a 在实数范围内有意义,则a 的取值范围是( ) A. 0>a B. a ≥1 C. 0<a D. a ≤06. 下列二次根式中,属于最简二次根式的是( ) A.48 B.baC.44+aD.14 7. 在平行四边形、矩形、菱形、正方形中是轴对称图形的有( ) A. 4个 B. 3 个 C. 2个 D. 1个 8. 如图,在△ABC 中,AB = 8,BC = 10,AC = 6, 则BC 边上的高AD 为( ) A. 8 B. 9 C.524D. 109. 计算2343122÷⨯的结果是( ) A.22B. 33C. 32D. 2310. 顺次连接矩形四边中点得到的四边形一定是( )A. 正方形B. 矩形C. 平行四边形D. 菱形第4题图第11题图第8题图AB CD211. 如图△ABC 中,AB = AC ,点D ,E 分别是边AB ,AC 的中点,点G ,F 在BC 边上,四边形DEFG 是正方形. 若DE = 2cm ,则 AC 的长为 ( ) A. 2cmB. 52cmC. 4cmD. 8cm12. 如图在矩形ABCD 中,BC = 8,CD = 6,将△BCD 沿对角线BD 翻折,点C 落在点C ′处,BC ′交AD 于点E , 则△BD E 的面积为( )A. 475 B. 421C. 21D. 24二、填空题:本大题共6小题,每小题3分,共18分. 13. 化简:(3 )2 = .14. 已知菱形的两条对角线长分别是4和8,则菱形的面积为 . 15.“内错角相等,两直线平行.”的逆命题是.16. 计算2)252(-的结果是_______.17. 若直角三角形的两直角边长为a 、b ,且满足067=-+-b a ,则该直角三角形的斜边长为_______.(结果保留根号)18. 如图,正方形ABCD 的边长为5,E 是AB 上一点,且BE ∶AE = 1∶4,若P 是对角线AC 上一动点,则PB + PE 的最小值是_______.(结果保留根号)三、解答题:本大题共8小题,共66分. 解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分6分)计算:23218+-第12题图第18题图320.(本小题满分6分)计算:3)8512(+21.(本小题满分8分)先化简再求值.yx y x +•⎪⎪⎭⎫ ⎝⎛+611,其中13,13-=+=y x .22.(本小题满分8分)如图,E 、F 是平行四边形ABCD 的对角线AC 上的两点,AE = CF .求证:四边形DEBF 是平行四边形.第22题图423.(本小题满分8分)如图,在△ABC 中,AD 是BC 边上的高,∠B = 45°,∠C = 60°,AD = 2,求BC 的长.(结果保留根号)24.(本小题满分10分)如图,在△ABC 中,AB = 5,BC = 6,BC 边上的中线AD = 4. 求AC 的长.D CBA第24题图D第23题图525.(本小题满分10分)如图,在平行四边形ABCD 中,M 、N 分别是边AD 、BC 边上的中点,且△ABM ≌△DCM ;E 、F 分别是线段BM 、CM 的中点. (1)求证:平行四边形ABCD 是矩形。

人教版八年级下册数学《期中检测试题》附答案解析

人教版八年级下册数学《期中检测试题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第I 卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列各式:3,2x ,32,2)2(x x +≥-其中二次根式的个数为( )A. B. C. D.2. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,2, 3 3. 下列计算正确是( )A. 239-=B. ()233=C. ()233-=-D. 239=4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形5. 下列命题中,真命题是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 247. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π 8. 计算:()910232()3+⨯-=( ) A. 23+ B. 23- C. 23-+ D. 23--9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 83D. 310. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A. B. C. D.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.12. 若实数a 、b 满足240a b ++-=,则a b=_____. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. 14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.16. 如图,小明在A 时测得某树的影长为2m,B 时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.18. 如图,ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?22. 问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC 的面积.(2)在图2中画△DEF ,DE 、EF 、DF 三边的长分别为2、8、10①判断三角形形状,说明理由.②求这个三角形的面积.(直接写出答案)23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F 分别是梯形ABCD 的两腰AB 和CD 的中点,即EF 为梯形ABCD 的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.答案与解析第I卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.x≥-其中二次根式的个数为()2)A. B. C. D.[答案]C[解析][分析]根据二次根式的定义逐一进行判断即可得答案.[详解∵x2≥0,x≥-是二次根式,x≥-,∵x≥-2,∴x+2≥0,2)2)综上二次根式有三个,故选C.a≥的式子是二次根式是解题的关键.[点睛]本题考查了二次根式的判断,)02. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. , 3[答案]B[解析]试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、()2221233+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.3. 下列计算正确的是( )A. 239-=B. ()233=C. ()233-=-D. 239=[答案]B[解析][分析]根据二次根式运算法则即可求解.[详解]A .23-,二次根号下不能为负,故A 选项错误B .()233=,故B 选项正确 C .()233-=,故C 选项错误D .233=,故D 选项错误故选:B[点睛]本题考查了二次根式的运算法则,二次根式的性质,被开方数要大于零.4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形 [答案]A[解析][分析]连接BD 、AC ,根据中位线定理可得四边形是平行四边形,即可得到结果;[详解]如图所示,连接AC 、BD ,∵E 、F 、G 、H 是四边形ABCD 各边的中点,∴∥∥EH BD FG ,12EH FG BD ==, ∴四边形EFGH 是平行四边形,故答案选A .[点睛]本题主要考查了中点四边形的知识点,准确构造三角形,借助中位线求解是解题的关键. 5. 下列命题中,真命题的是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形[答案]D[解析][分析]根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.[详解]对角线互相垂直且平分的四边形是菱形,故A 是假命题;对角线互相垂直平分且相等的四边形是正方形,故B 是假命题;对角线相等且平分的四边形是矩形,故C 是假命题;对角线互相平分的四边形是平行四边形,故D 是真命题.故选D .[点睛]本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 24[答案]B[解析][分析] 根据平行四边形的性质可得出阴影部分的面积为平行四边形面积的14,再由平行四边形的面积得出答案即可.[详解]∵四边形ABCD 为平行四边形,∴OA =OC ,OB =OD ,∴111646244BOC ABC ABCD S S S ===⨯⨯=, 故选:B .[点睛]本题考查了平行四边形的面积和性质,解题的关键是掌握平行四边形的性质:对角线互相平分. 7. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π[答案]D[解析][分析]根据半圆面积公式结合勾股定理,知S 1+S 2等于以斜边为直径的半圆面积问题得解.[详解]∵在Rt ABC 中,90ACB ∠=︒,8AB =,∴22264AC BC AB +==, ∵22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, ∴()2222212111188888S S AC BC AC BC AB πππππ+=+=+==. 故选:D .[点睛]本题主要考查了勾股定理的应用,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8. 计算:(91022(+⨯-=( )A. 2B. 2C. 2-D. 2-[答案]B[解析][分析]逆用同底数幂的乘法法则把(102-转化成((922-⨯-,然后运用积的乘方运算法则以及平方差公式计算即可.[详解](91022(⨯99((222(=+⨯⨯ 9(222(⎡⎤=+⨯-⎣⎦2=-故选:B .[点睛]本题考查了同底数幂的乘法,积的乘方,二次根式,平方差公式的应用,逆用同底数幂的乘法法则把()1023-转化成()()92323-⨯-是解题的关键. 9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 3D. 3[答案]C[解析] [分析] 通过正方形的面积求出边长为48,根据图形之间的联系求出空白小正方形的边长3-233即可求解.[详解]解:∵正方形ABCD 的面积是48,∴3∵3∴333∴空白小正方形的边长333∴小正方形的周长为3故选C .[点睛]本题考查了正方形的面积与边长;解题的关键是能够观察出图形之间的联系. 10. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A.B. C. D.[答案]C[解析][分析] 首先分别求得几个平行四边形的面积,即可得到规律:第n 个平行四边形的面积为1922n ,继而求得答案. [详解]解:∵在矩形ABCD 中,AB=12,AC=20,∴22201216-=,∴S 矩形ABCD =AB•BC=192,OB=OC ,∵以OB ,OC 为邻边作第1个平行四边形OBB 1C ,∴平行四边形OBB 1C 是菱形,OA 1是△ABC 的中位线, 可知111122OA AB OB ==, ∴112OB AB ==, ∴111116129622OBB C S BC OB ==⨯⨯=, 111111111612482222A B C C S BC OB ==⨯⨯⨯=, ∴第n 个平行四边形面积为:1922n , ∴第6个平行四边形的面积是:619232=, 故选:C .[点睛]此题考查了平行四边形的性质以及矩形的性质,通过计算找到规律是解题的关键.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.[答案]x 2≥[解析][详解]试题分析:根据题意,使二次根式2x -有意义,即x ﹣2≥0,解得x≥2.故答案是x≥2.[点睛]考点:二次根式有意义的条件.12. 若实数a 、b 满足240a b ++-=,则a b =_____. [答案]﹣12 [解析]根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则a b =﹣12.故答案是﹣12. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. [答案]24[解析]已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm 2, 故答案为24.14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.[答案]90A ∠=︒ (答案不唯一)[解析][分析]根据矩形的判定条件进行添加即可;[详解]根据判定条件:有一个角是90︒的平行四边形是矩形,只要有一个内角是90︒即可得出答案, 故90A ∠=︒(答案不唯一).[点睛]本题主要考查了矩形的判定,准确理解判定条件是解题的关键.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.[答案][解析][分析]根据折叠的性质可得AE=A′E ,AB=A′B′,在Rt △A′B′E 中,根据勾股定理即可得到AE 的长.[详解]∵四边形ABCD 矩形,∴AB=CD=4,∠B=90,由折叠性质可得AE=A′E ,AB=A′B′=4,∠B′A′E=∠B=90,在Rt △A′B′E 中,A′B′2+A′E 2=B′E 2,42+A′E2=(10-2-A′E)2,解得A′E=3,即AE的长为3.故答案为:3.[点睛]本题考查了折叠的性质,矩形的性质以及勾股定理的应用,熟练掌握折叠的性质是关键.16. 如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.[答案]4[解析][分析]根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.[详解]如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°, ∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有EDDC=DCFD;即DC2=EDFD,代入数据可得DC 2=16,DC =4;故答案为4.[点睛]本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.[答案](1)25;(2)1[解析][分析](1)根据二次根式的加减运算法则计算即可;(2)根据二次根式的乘法运算法则结合平方差公式计算即可.[详解]解:()1原式53525=+- 4525=-25=.()2原式()()22227=- 87=-1=. [点睛]本题考查二次根式的运算,熟练掌握二次根式四则运算的法则是解题的关键.18. 如图,在ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.[答案]证明见解析.[解析][分析]根据平行四边形的性质可得//,//AD BC AB CD ,再通过//EF AB 可判定四边形ABFE 是平行四边形,可得EF=CD .[详解]证明:四边形ABCD 是平行四边形,//,//AD BC AB CD ∴//,EF AB//,EF CD ∴四边形CDEF 是平行四边形EF CD ∴=.[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.[答案](1)证明见解析;(2)菱形BDEF 的周长为20cm .[解析][分析](1)由D 、E 、F 分别是BC 、AC 、AB 边上的中点,根据三角形中位线的性质,可得EF ∥BC ,ED ∥AB ,EF=12BC ,DE=12AB ,又由AB=BC ,即可证得四边形BDEF 是菱形; (2) 由三角形中位线的性质,可求得BF 的长,进而求得周长为4BF .[详解]解:(1)证明:D E F 、、分别是BC AC AB 、、边上的中点,// ,//,EF BC DE AB ∴ 11,22EF BC DE AB ==, 四边形BDEF 是平行四边形,又,AB BC =,DE EF ∴=平行四边形BDEF 是菱形.(2)10,AB =且是AB 边上的中点,15,2BF AB cm ∴== 由(1)知,四边形BDEF 是菱形,菱形BDEF 的周长为44520=⨯=BF cm .故答案为:20cm .[点睛]此题考查了菱形的判定与性质以及三角形中位线的性质.注意掌握三角形中位线定理的应用是解此题的关键.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.[答案]这块空地的面积是224m .[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,那么△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]连接AC ,90ADC ∠=︒,222224325AC AD DC ∴=+=+=12,13BC m AB m ==,22222251216913AC BC AB ∴+=+===,90ACB ∴∠=︒,()211512342422ACB ACD S S m ∴-=⨯⨯-⨯⨯= 这块空地的面积是224m .[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键,同时考查了直角三角形的面积公式.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?[答案]相等,BE AF ⊥,理由见解析[解析][分析]由DE =CF 可得AE =DF ,则可得△DAF ≌△ABE ,然后根据全等三角形的对应角相等可得出BE 与AF 的关系.[详解]解:BE =AF ,BE ⊥AF ;理由:∵四边形ABCD是正方形,∴AD=CD,DE=CF,∴AE=DF,又∠BAE=∠D=90°,AB=AD,∴△BAE≌△ADF∴BE=AF,∠ABE=∠F AD,∵∠ABE+∠AEB=90°,∴∠F AD+∠AEB=90°,∴BE⊥AF.故BE=AF,BE⊥AF.[点睛]本题考察了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.22. 问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC的面积.(2)在图2中画△DEF,DE、EF、DF2、810①判断三角形的形状,说明理由.②求这个三角形的面积.(直接写出答案)[答案](1)72;(2)画图见解析;①△DEF 是直角三角形,理由见解析;②2 [解析] 试题分析:(1)根据题目设置的问题背景,结合图形进行计算即可;(2)根据勾股定理,找到DE 、EF 、DF 的长分别为2、8、10,由勾股定理的逆定理可判断△DEF 是直角三角形.解:(1)S △ABC =3×3﹣12×1×2﹣12×2×3﹣12×1×3=72; (2)如图所示:∵DE =2,EF =22,DF =10,∴DE 2+EF 2=DF 2,∴△DEF 是直角三角形.△DEF 的面积=111231122132222⨯-⨯⨯-⨯⨯-⨯⨯=. 点睛:本题考查了勾股定理及作图的知识,解答本题关键是仔细理解问题背景,构图法求三角形的面积是经常用到的,同学们注意仔细掌握.23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.[答案](1)证明见解析;(2)332EF =.[解析][分析](1)如图(见解析),先根据直角三角形的性质可得12CE AB =,12DE AB =,从而可得CE DE =,再根据等腰三角形的判定可得CDE △是等腰三角形,然后根据等腰三角形的三线合一即可得证;(2)先分别求出CE 、CF 的长,再结合(1)的结论,利用勾股定理即可得.[详解](1)如图,连接EC 和ED点是AB 的中点,90ACB ADB ∠=∠=︒在Rt ABC 中,12CE AB = 在Rt ABD △中,12DE AB = CE DE ∴=CDE ∴是等腰三角形又点是CD 的中点,即EF 是等腰CDE △的底边CD 上的中线EF CD ∴⊥;(2)26AB CD ==3CD ∴= 由(1)已证:132CE AB == 又点是CD 的中点1322CF CD ∴== 则在Rt CEF 中,由勾股定理得:22332EF CE CF =-=.[点睛]本题考查了直角三角形的性质、等腰三角形的判定与性质、勾股定理等知识点,掌握理解等腰三角形的三线合一是解题关键.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F分别是梯形ABCD的两腰AB和CD的中点,即EF为梯形ABCD的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:[答案]猜想:12EF AD BC;////EF AD BC;已知:如图,,E F分别是梯形ABCD的两腰AB和的中点;求证:12EF AD BC;////EF AD BC;证明见解析.[解析][分析]根据题意写出猜想、已知和求证.连接AF并延长交BC于点G,则△ADF≌△GCF,可以证得EF是△ABG 的中位线,利用三角形的中位线定理即可证得.[详解]猜想:12EF AD BC;////EF AD BC已知:如图,,E F分别是梯形ABCD的两腰AB和的中点.求证:12EF AD BC;////EF AD BC.证明:如图,连接AF并延长交BC于点G.∵AD∥BC,点F是CD中点,∴∠DAF=∠G,DF=FC,在△ADF和△GCF中,DAF G DFA CFG DF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GCF (AAS ),∴AF=FG ,AD=CG .又∵点E 是AB 中点,∴EF 是ABG 的中位线,∴EF ∥BG ,EF=12BG , 即EF ∥AD ∥BC ,EF=12(AD+BC). [点睛]本题是通过猜想并且证明梯形的中位线定理,考查了三角形中位线定理,全等三角形的判定和性质,通过辅助线转化成三角形的中位线的问题是解题的关键.25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.[答案](1),2,016t t t ≤≤;(2)966S t =-;(3)163t =;(4)当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形.[解析][分析](1)按照路程等于速度乘以时间,求解AQ ,BP ;时间最小为0,最大为点Q 动到点D 所花费的时间;(2)通过做垂直辅助线,根据已知条件并结合三角形面积公式求解本题(3)根据等腰三角形以及矩形的性质,结合三线合一以及路程公式求解本题;(4)本题需要根据动点情况分类讨论,并结合平行四边形性质列方程求解.[详解](1)∵距离=速度时间,Q 的运动速度为1,P 的运动速度为2,运动时间为t ,∴AQ=t ,BP=2t .∵AD=16,当点Q 运动到点D 时,动点停止运动,∴t 最大值为16,最小值为0,故016t ≤≤.(2)如图,过点作PM QD ⊥,∵//,90AD BC A ∠=︒,∴四边形ABPM 矩形,∴PM=AB=12.又∵AQ=t∴16QD t =-.()11161296622QDP S QD PM t t =••=⨯-⨯=-△. (3)由上一问可知四边形ABPM 是矩形,2AM BP t ∴==.又PD PQ =,2DM QM AM AQ BP AQ t t t ∴==-=-=-=,216AD AM DM t t =+=+=即316t =,163t ∴=. (4)当在线段BC 上时,因为平行四边形PCDQ ,则DQ PC =,∵16DQ t =-,212PC t =-,16212t t ∴-=-,解得:5t =;当在BC 延长线上时,同理:DQ=PC ,221PC t =-,16221t t ∴-=-, 解得:373t =; 综上所述:当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形. [点睛]本题考查几何动点问题,首先需要对运动路径有清晰理解,并且利用未知数表示未知线段,求解时具体问题具体分析,如本题主要利用面积公式,平行四边形性质求解,动点问题通常需要分类讨论.。

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.若a>b,则下列不等式成立的是( )A. a2>b2B. 1﹣a>1﹣bC. 3a﹣2>3b﹣2D. a﹣4>b﹣32.如图,在Rt△ABD中,∠BDA=90°,AD=BD,点E在AD上,连接BE,将△BED绕点D顺时针旋转90°,得到△ACD,若∠BED=65°,则∠ACE的度数为( )A. 15°B. 20°C. 25°D. 30°3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形4.下列命题是真命题是( )A. 如果x2>0,则x>0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等5.如图,在等边△ABC中,点D、E分别是BC、AB边上的点,且AE=BD,AD与CE交于点F,则∠DFC的度数为( )A. 45°B. 60°C. 65°D. 75°6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24 B. 20 C. D.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. 10.若31x x +-有意义,则x 的取值范围是__. 11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.13.若一个长方形长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.14.如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别是它的角平分线和中线,过点C 作CG ⊥AD ,垂足为点F ,连接EF ,则EF =__.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)19.在平面直角坐标系中,△ABC 位置如图所示,三个顶点的坐标分别为:A (1,2)、B (2,3)、C (3,0).(1)现将△ABC 先向左平移5个单位长度,再向上平移2个单位长度,得到△A 1B 1C 1,请在平面直角坐标系中画出△A 1B 1C 1.(2)此时平移的距离是 ;(3)在平面直角坐标系中画出△ABC 关于点O 成中心对称的△A 2B 2C 2.20.某市为治理污水,需要铺设一段全长为3000m污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).答案与解析一、选择题1.若a >b ,则下列不等式成立的是( )A. a 2>b 2B. 1﹣a >1﹣bC. 3a ﹣2>3b ﹣2D. a ﹣4>b ﹣3[答案]C[解析][分析]根据不等式的基本性质即可判断.[详解]A :当a b < 时不成立,错误;B :0a b <<时不成立,错误;C :符合不等式的基本性质,正确;D :33a b ->- ,错误.故答案选:C[点睛]本题考查不等式的基本性质,理解不等式的基本性质是解题关键.2.如图,在Rt△ABD 中,∠BDA=90°,AD=BD,点E 在AD 上,连接BE,将△BED 绕点D 顺时针旋转90°,得到△ACD ,若∠BED=65°,则∠ACE 的度数为( )A. 15°B. 20°C. 25°D. 30°[答案]B[解析][分析] 根据旋转的性质得出:65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形,从而求解.[详解]∵90BDA ∠=︒,将△BED 绕点D 顺时针旋转90°,得到△ACD ,∠BED=65°∴65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形∴45ECD ∠=︒∴20ACE ACD ECD ∠=∠-=︒故答案选:B[点睛]本题考查旋转的性质,掌握相关的线段与角度的转换是解题关键.3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形[答案]C[解析][分析]根据多边形的外角和为360︒和内角和公式()1802n ︒- 进行求算即可.[详解]∵一个多边形内角和与外角和的比为5:2,且多边形的外角和为360︒∴这个多边形的内角和为900︒∴()1802=900n ︒-︒∴7n =故答案选:C[点睛]本题考查多边形内角和公式与多边形外角和,掌握多边形内角和公式以及多边形的外角和为360︒是解题关键.4.下列命题是真命题的是( )A. 如果x 2>0,则x >0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等[答案]D[解析][分析]根据不等式的性质、轴对称图形、中心对称图形和全等三角形的判定进行一一判断即可.[详解]A :当0x <时,满足20x >,错误;B :根据轴对称图形的概念知:平行四边形不是轴对称图形,错误;C :根据中心对称图形的概念知:等边三角形不是中心对称图形,错误;D :如图:当,AC DF AG DH ==时:∴()ACG DFH HL ∆≅∆∴CG FH =∴CB FE =∴()ACB DFE SAS ∆≅∆ ,D 正确故答案选:D[点睛]本题考查不等式的性质、轴对称图形、中心对称图形和全等三角形的判定,掌握相关的性质与概念以及判定方法是解题关键.5.如图,在等边△ABC 中,点D 、E 分别是BC 、AB 边上点,且AE =BD ,AD 与CE 交于点F ,则∠DFC 的度数为( )A. 45°B. 60°C. 65°D. 75°[答案]B[解析][分析] 根据题目中的条件判断ABD CAE ∆≅∆,再利用外角定理得出DFC FAC ACF ∠=∠+∠,转化角度从而得出答案.[详解]∵ABC ∆是等边三角形,且AE BD =∴,60AB AC B EAC =∠=∠=︒∴ABD CAE ∆≅∆(SAS)∴BAD ACF ∠=∠∴=60DFC FAC ACF FAC BAD BAC ∠=∠+∠∠+∠=∠=︒故答案选:B .[点睛]本题考查等边三角形的性质以及全等三角形的判定,掌握相关的角度转化是解题关键.6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h [答案]D[解析][分析]设工作总量为单位“1”,分别表示出甲乙的工作效率,再根据工作总量=工作效率×工作时间建立方程即可求解.[详解]解:设工作总量为单位“1”, 设甲、乙两人一起完成这项工程所需的时间为xh∵甲独做ah 完成,乙单独做bh 完成 ∴甲乙的工作效率分别为11,a b根据题意可得:111x a b ⎛⎫+=⎪⎝⎭ 解得:ab x a b=+ 故答案选:D[点睛]本题考查一元一次方程工程问题,将工作总量设为单位“1”以及建立等量关系是解题关键. 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24B. 20C.D.[答案]A[解析]试题解析:∵x +y =3,2229x xy y ∴++=, 12xy =, ()223339124.x y ∴+=-=故选A.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9[答案]D[解析][分析] 连接AD ,根据等腰直角三角形的性质以及BE=AF 得出ADE CDF ∆≅,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.[详解]解:连接AD ,如图:∵∠A=90°,AB=AC=6,点D 是BC 中点,BE=AF∴,45,AE CF BAD B C AD BD DC =∠=∠=∠=︒==∴ADE CDF ∆≅(SAS )∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S ∆∆∆∆∆∆=+=+==四 又∵166182ABC S ∆== ∴1=92ABC AEDF S S ∆=四 故答案选:D[点睛]本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. [答案]1,2[解析][分析]分别解不等式求出公共部分,然后求正整数解.[详解]解:21023x x x +>⎧⎨>-⎩①②由①得:12x >- 由②得:3x < ∴不等式组的解集为:132x -<< ∴正整数解为:1,2故答案为:1,2.[点睛]本题考查一元一次不等式组的整数解,掌握不等式组的求解是解题关键.10.若1x -有意义,则x 的取值范围是__. [答案]x ≥﹣3且x ≠1[解析][分析]根据二次根式和分式有意义的条件进行求算.[详解]二次根式有意义的条件是被开方数是非负数:303x x +≥⇒≥-分式有意义的条件是分母不为零:101x x -≠⇒≠∴x 的取值范围是:3x ≥-且1x ≠故答案为:3x ≥-且1x ≠.[点睛]本题考查了式子有意义的条件,掌握二次根式有意义的条件是被开方数是非负数、分式有意义的条件是分母不为零是解题关键.11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.[答案]3+3[解析][分析]过点D 作DH AF ⊥交AF 于H,根据∠B =45°,∠C =30°,以及DE,FG 分别为AB,AC 的垂直平分线得出60,30AFD DAF ∠=︒∠=︒,再根据特殊角解直角三角形即可.[详解]过点D 作DH AF ⊥交AF 于H,如图:∵45,30B C ∠=︒∠=︒,DE,FG 分别为AB,AC 的垂直平分线∴,,,AD BD AF FC B BAD C FAC ==∠=∠∠=∠∴60,30AFD DAF ∠=︒∠=︒又∵1DF =∴13,222FH DH AD AH ====∴2AD BD AF FC AH HF ====+=∴BC 的长为:故答案为:[点睛]本题考查垂直平分线的性质以及直角三角形中特殊角的应用,掌握相关的线段与角的转化是解题关键.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.[答案]a >4[解析][分析]根据函数关系式求出与y 轴的交点,再根据图象与y 轴的交点在x 轴上方建立不等式求解.[详解]对于关于x 的一次函数y =x +3a ﹣12令0x =,解得:312y a =-∴该图象与y 轴的交点为()0,312a -又∵图象与y 轴的交点在x 轴上方∴3120a ->解得:4a >故答案为:4a >[点睛]本题考查了一次函数与y 轴的交点特征,掌握一次函数与y 轴的交点求算是解题关键.13.若一个长方形的长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.[答案]48[解析]分析]根据一个长方形长、宽分别为a 、b ,周长为12,面积为8,可以得到a+b 的值和ab 的值,从而可以得到a 2b+ab 2的值.[详解]解:∵一个长方形的长、宽分别为a、b,周长为12,面积为8,∴2(a+b)=12,ab=8,∴a+b=6,ab=8,∴a2b+ab2=ab(a+b)=8×6=48,故答案为:48.[点睛]本题考查因式分解的应用,解题的关键是明确题意,求出a+b的值和ab的值.14.如图,在△ABC中,AB=5,AC=3,AD、AE分别是它的角平分线和中线,过点C作CG⊥AD,垂足为点F,连接EF,则EF=__.[答案]1[解析][分析]首先证明AG=AC,再证明EF是△BCG的中位线,根据EF=12BG即可解决问题.[详解]解:∵∠DAG=∠DAC,AD⊥AFC,∴∠AFC=∠AFG=90°,∴∠AGC+∠GAF=90°,∠ACG+∠CAF=90°, ∴∠AGC=∠ACG,∴AG=AC=3,GF=FC,∵BE=CE,∴EF=12BG=12(ABAG)=12×(53)=1,故答案为:1.[点睛]本题考查三角形中位线定理、等腰三角形的判定和性质、角平分线的定义,中线的定义等知识,解题的关键是根据已知条件证明△AGC 是等腰三角形,属于中考常考题型.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.[答案]±6 [解析][分析]根据完全平方公式:()2222a ab b a b ±+=± 去分类讨论即可.[详解]完全平方公式:()2222a ab b a b ±+=± ∴()2293x mx x -+=±∴6m =±故答案为:6±[点睛]本题考查完全平方公式,掌握相关公式是解题关键.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.[答案]8[解析][分析]判断出△ADF 是等腰三角形,△ABE 是等腰三角形,DF 的长度,继而得到EC 的长度,在Rt △BGE 中求出GE ,继而得到AE ,求出△ABE 的周长,根据EF=12AE ,求出EF 即可得出△EFC 的周长. [详解]∵在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴∠BAF=∠DAF ,∵AB ∥DF ,AD ∥BC ,∴∠BAF=∠F=∠DAF ,∠BAE=∠AEB ,∴AB=BE=6,AD=DF=9,∴△ADF 是等腰三角形,△ABE 是等腰三角形,∵AD ∥BC ,∴△EFC 是等腰三角形,且FC=CE ,∴EC=FC=9﹣6=3,在△ABG 中,BG ⊥AE ,AB=6,BG=,∴=2,∴AE=2AG=4, 又∵12EF AE =, ∴EF=2,∴△CEF 的周长为EF+CE+CF=2+3+3=8.故答案为:8.[点睛]本题考查等腰三角形的判定与性质;平行四边形的性质和勾股定理的应用. 三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. [答案](1)﹣1≤x <2;(2)12a +,13[解析][分析](1)分别解每一个不等式,再求出公共部分;(2)先将式子进行化简,再代入求值.[详解](1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①② 由①得:()()2213516x x --+≤ ,解得:1x ≥- ;由②得:2x <∴不等式组的解集为:12x -≤<(2)原式=()()()()22222222a a a a a a a ⎡⎤-+--⨯⎢⎥-+-⎢⎥⎣⎦=()222a a a a a -⨯-+ =12a + 根据题意:不能取0,2 ∴当1a =时,原式=11=1+23 [点睛]本题考查一元一次不等式组以及分式的化简求值,注意分式化简求值最终取值需满足分母不为零. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)[答案](1)(x +3)2(x 2﹣4x ﹣9);(2)(m ﹣1)(m ﹣2)2[解析][分析](1)利用平方差公式进行因式分解,即可得到答案;(2)先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.[详解]解:(1)原式=(x 2+x +5x +9)(x 2+x ﹣5x ﹣9)=(x +3)2(x 2﹣4x ﹣9);(2)原式=(m ﹣1)[(m ﹣1)2﹣2(m ﹣1)+1]=(m ﹣1)(m ﹣2)2.[点睛]本题考查了因式分解,解题的关键是熟练掌握提公因式、平方差公式、完全平方公式进行因式分解.19.在平面直角坐标系中,△ABC的位置如图所示,三个顶点的坐标分别为:A(1,2)、B(2,3)、C(3,0).(1)现将△ABC先向左平移5个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1.(2)此时平移的距离是;(3)在平面直角坐标系中画出△ABC关于点O成中心对称的△A2B2C2.[答案](1)见解析;(229[解析][分析](1)利用点平移的坐标规律写出点A、B、C平移后的对应点A1、B1、C1,然后描点即可得到△A1B1C1.(2)利用勾股定理计算;(3)利用关于原点对称的点的坐标特征写出点A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2.[详解]解答:解:(1)如图,△A1B1C1为所作;(2)225229+=29(3)如图,△A2B2C2为所作.[点睛]本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20.某市为治理污水,需要铺设一段全长为3000m的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?[答案]实际每天铺设25m长管道.[解析]试题分析:解:设原计划每天铺设x m管道,则实际每天铺设5 (125%)4x x +=,故300030003054x x-=,解得x=20.经检验,x=20是原方程的解,且符合题意,5254x∴=,∴实际每天铺设25m长管道.考点:分式方程应用点评:本题难度中等,主要考查学生运用分式方程解决工程问题的实际应用能力.注意检验增根情况.21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?[答案]①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社[解析][分析]设甲旅行社的收费为y1,乙旅行社的收费为y2,然后讨论:若y1>y2,y1=y2,y1<y2,分别求出对应的x的取值范围,即可判断选择哪家旅行社.[详解]解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×1000+0.7×1000x=700x+2000,y2=(x+2)×0.8×1000=800x+1600,若y1>y2,即700x+2000>800x+1600,解得x<4;若y1=y2,即700x+2000=800x+1600,解得x=4;若y1<y2,即700x+2000<800x+1600,解得x>4.∴①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.[点睛]本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.[答案](1)见解析;(2)见解析.[解析][分析](1)利用垂直的定义结合角平分线的性质以及互余的性质得出∠4=∠5,进而得出答案;(2)根据题意分别得出CF∥EH,CF=EH,进而得出答案.[详解]证明(1)如图所示:∵∠ACB=90°,CD⊥AB垂足为D,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE;(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EB,由(1)知,CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EHB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.[点睛]本题考查了平行四边形的性质、角平分线性质等知识点的应用,熟练应用等腰三角形的性质是解题关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).[答案](1)见解析;(2)AD=CF,且AD⊥CF;(3)见解析;(4)不可能[解析][分析](1)∠CAB=∠CBA=45︒,且BF∥AC,则∠FBE=∠CAB=45︒,则∠DBF=90︒,又DE⊥AB,则∠BDE=45︒,则△BDF为等腰直角三角形,∴DB=BF,又D为BC中点,所以CD=BF.即可证明△ACD≌△CBF.(2)由△ACD≌△CBF可判断,AD=CF,又∠CAD=∠BCF,则∠CGD=90︒,所以AD⊥CF.(3)由(1)知AB垂直平分DF,由三线合一知△ADF是等腰三角形,则AD=AF,由(2)知AD=CF,所以AF=CF,即可证明.(4)在Rt△A C D中易知,AD>AC,又AD=AF=CF,所以△ACF不可能是等边三角形.[详解](1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,CD BF ACD CBF AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF ;(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD=∠BCF ∴∠CAD+∠CDA=∠BCF+∠CDA=90︒ ∴AD ⊥CF故答案为:AD =CF 且AD ⊥CF ;(3)由(2)知∵DF ⊥AE ,DE =EF ,由三线合一可知,△ADF 是等腰三角形 ∴AD =AF ,∵AD =CF ,∴AF =CF ,∴△ACF 是等腰三角形;(4)在Rt △ACF 中,AC <AD , 由(2)知,AD=AF∴AC <AF ,∴△ACF 不可能是等边三角形, 故答案为:不可能.[点睛]本题考查了三角形的全等的判定和性质,等腰三角形的判定等知识点,熟练掌握相关知识点是解题关键.。

人教版数学八年级下册《期中考试题》含答案解析

人教版数学八年级下册《期中考试题》含答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第Ⅰ卷一、选择题1.下列运算正确的是( )A.2=- B. =C.x =D.=2.下列式子是最简二次根式的是( )A.B.C.D.3.,则x 的取值范围是( ) A. 2x ≤B. 2x ≥-C. 2x <-D. 2x >-4.下列二次根式中,是同类二次根式的是( )A.B.C.D.5.下列计算正确的是( ) A.=±2B. 23=6C.D.6.下列计算正确的是( )x B. 2510x x x =C. 236()x x ==7.下列各组数据不是勾股数的是( ) A. 2,3,4B. 3,4,5C. 5,12,13D. 6,8,108.如图,正方形ABCD 的面积是( )A. 5B. 25C. 7D. 19.如图,数轴上的点A 表示的数是-2,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A. 13B. 132+C. 132-D. 210.由下列条件不能判断△ABC 是直角三角形是( ) A. ∠A :∠B :∠C =3:4:5 B. AB :BC :AC =3:4:5 C. ∠A +∠B =∠CD. AB 2=BC 2+AC 211.如图,ABC ∆中,90ACB ∠=︒,2AC =,3BC =.设AB 的长是,下列关于的四种说法,其中,所有正确说法的序号是( )①是无理数 ②是13的算术平方根③23m << ④可以用数轴上的一个点来表示 A ①②B. ①③C. ①②④D. ②③④12.如图,高速公路上有,两点相距10km ,,为两村庄,已知4km DA =,6km CB =.DA AB ⊥于,CB AB ⊥于,现要在AB 上建一个服务站,使得,两村庄到站的距离相等,则EB 的长是( ).A 4km B. 5km C. 6km D. 20km第Ⅱ卷二、填空题13.将二次根式50化为最简二次根式____________.14.化简:1=_______.3a-是同类二次根式,那么a=________.15.如果最简二次根式1+a与4216.已知a11=-1,则a2+2a+2的值是_____.17.如图,两树高分别为10米和4米,相距8米,一只鸟从一树树梢飞到另一树的树梢,问小鸟至少飞行_______米.18.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为___________.三、解答题19.计算:23)(1)(775)(2)220.计算:(1) 24812+⨯(2)12322768÷+-⨯21.计算:(3-7)(3+7)+2(2-2).22.已知a=32-,分别求下列代数式的值:+,b=32(1)a2﹣b2(2)a2﹣2ab+b2.∆的顶点都在格点上.23.如图,在平面直角坐标系中,正方形网格的每个小方格都是边长为1的正方形,ABCA B C的坐标;(1)直接写出点,,∆是不是直角三角形,并说明理由.(2)试判断ABC24.如图,梯子长25米,斜靠在一面墙上,梯子底端离墙7米.(1)这个梯子顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?25.如图,小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端9米处,发现此时绳子底端距离打结处约3米,请算出旗杆的高度.26.任选一题作答,只计一题的成绩:一、如图,某工厂和一条笔直的公路AB ,原有两条路AC ,BC 可以到达AB ,经测量600m AC =,800m BC =,1000m AB =,现需要修建一条新公路,使到AB 的距离最短.请你帮设计一种方案,并求新建公路的长.二、如图,90ADC ∠=︒,4=AD ,3CD =, 13AB =,12BC =. (1)试判断以点,,为顶点的三角形的形状,并说明理由; (2)求该图的面积.答案与解析一、选择题(共12道小题,每小题3分,共36分)1. ,则x 的取值范围是( )A. x >1B. x ≥1C. x <1D. x ≤1[答案]B [解析] [分析]根据被开方数大于等于0列式计算即可得解. [详解]解:由题意得,x ﹣1≥0, 解得x ≥1. 故选:B .[点睛]本题主要考查了二次根式有意义的条件,掌握被开方数大于等于0是解题的关键. 2.[ ]B.2C. D. [答案]C [解析]相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.故选C . 考点:相反数.3. 3b =-,则( ) A. 3b > B. 3b <C. 3b ≥D. 3b ≤[答案]D [解析]等式左边为非负数,说明右边3b 0-≥,由此可得b 的取值范围. [详解]解:2(3b)3b -=-,3b 0∴-≥,解得b 3.≤故选D .[点睛]()0a 0≥≥()a a 0=≥. 4. 下列式子中,为最简二次根式的是( )[答案]B [解析] [分析]判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.[详解]解:2被开方数含有分母,不是最简二次根式,不合题意;B. ,符合题意;C. =2被开方数含能开得尽方的因数,不是最简二次根式,不符合题意;D.被开方数含能开得尽方的因数,不是最简二次根式,不符合题意.故选:B[点睛]本题考查最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式. 5. 下列计算正确的是( ) A. ()222a b a b -=- B. ()322x x 8x ÷=+C. 1a a a a÷⋅= 4=-[答案]B[分析]根据完全平方公式,整式的除法,分式的乘除法,二次根式的性质和化简运算法则逐一计算作出判断.[详解]解: A .()222a b a 2ab b -=-+,选项错误;B .()3322x x 8x x 8x ÷=÷=,选项正确; C .111a a 1a a a÷⋅=⋅=,选项错误; D .()2444-=-=,选项错误.故选:B .6. 下列二次根式中,不能与3合并的是( ) A. 23 B. 12C. 18D. 27[答案]C [解析]A 选项中,因为23与3是同类二次根式,所以两者可以合并;B 选项中,因为1223=,与3是同类二次根式,所以两者可以合并;C 选项中,因为1832=,与3不是同类二次根式,所以两者不能合并;D 选项中,因为2733=,与3是同类二次根式,所以两者可以合并. 故选C.7. 如图,Rt △ABC 中,∠ACB =90°,若AB =15cm ,则正方形ADEC 和正方形BCFG 的面积之和为( )A. 150cm 2B. 200cm 2C. 225cm 2D. 无法计算[答案]C [解析]小正方形的面积为AC 的平方,大正方形的面积为BC 的平方.两正方形面积的和为AC 2+BC 2,对于Rt △ABC ,由勾股定理得AB 2=AC 2+BC 2.AB 长度已知,故可以求出两正方形面积的和. [详解]解:正方形ADEC 的面积为AC 2, 正方形BCFG 的面积为BC 2;在Rt △ABC 中,AB 2=AC 2+BC 2,AB =15, 则AC 2+BC 2=225cm 2. 故选:C .[点睛]本题考查了勾股定理.勾股定理应用的前提条件是在直角三角形中.8. 在△ABC 中,AB =1,AC =2,BC 则该三角形为( ) A. 锐角三角形 B. 直角三角形C. 钝角三角形D. 等腰直角三角形[答案]B [解析]解:在△ABC 中,AB =1,AC =2,BC 22212+=,∴△ABC 是直角三角形. 故选B .点睛:本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9. 已知一个直角三角形的两边长分别为3和5,则第三边长是( )A. 5B. 4D. 4[答案]D [解析][详解]解:∵一个直角三角形的两边长分别为3和5,∴①当5是此直角三角形的斜边时,设另一直角边为x ,则由勾股定理得到:x ;②当5是此直角三角形的直角边时,设另一直角边为x ,则由勾股定理得到:x 故选:D10. 如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A. 48B. 60C. 76D. 80 [答案]C[解析]试题解析:∵∠AEB=90°,AE=6,BE=8,∴AB=22226810AE BE+=+=∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168 2⨯⨯=100-24=76.故选C.考点:勾股定理.11. 如图5,一棵大树在一次强台风中于离地面5米处折断倒下,倒下部分与地面成30°夹角,这棵大树在折断前的高度为()A. 10米B. 15米C. 25米D. 30米[答案]B[解析][分析]如图,在Rt△ABC中,∠ABC=30°,由此即可得到AB=2AC,而根据题意找到CA=5米,由此即可求出AB,也就求出了大树在折断前的高度.[详解]解:如图,在Rt△ABC中,∵∠ABC=30°,∴AB=2AC,而CA=5米,∴AB=10米,∴AB+AC=15米.所以这棵大树在折断前的高度为15米.故选B.[点睛]本题主要利用定理--在直角三角形中30°角所对的直角边等于斜边的一半,解题关键是善于观察题目的信息,利用信息解决问题.12. 如图,有一块直角三角形纸片,两直角边AB=6,BC=8,将△ABC折叠,使AB落在斜边AC上,折痕为AD,则BD的长为( )A. 6B. 5C. 4D. 3[答案]D[解析][分析]设点B落在AC上的E点处,连接DE,如图所示,由三角形ABC为直角三角形,由AB与BC的长,利用勾股定理求出AC的长,设BD=x,由折叠的性质得到ED=BD=x,AE=AB=6,进而表示出CE与CD,在直角三角形DEC中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可确定出BD的长.[详解]解:∵△ABC为直角三角形,AB=6,BC=8,∴根据勾股定理得:2210=+=,AC AB BC设BD=x,由折叠可知:ED=BD=x,AE=AB=6,可得:CE=AC-AE=10-6=4,CD=BC-BD=8-x,在Rt△CDB'中,根据勾股定理得:(8-x )2=42+x 2,解得:x=3,则BD=3.故答案为3.[点睛]此题考查了勾股定理,利用了方程的思想,熟练掌握勾股定理的解本题的关键.二、填空题(共6道小题,每小题3分,共18分.把正确的答案写在答题卡相应的横线上) 13. 已知2a =则代数式21a -的值是________. [答案]1[解析][分析] 直接把2a =[详解]∵2a =∴222)1211a --=-=.故答案为:1.[点睛]此题主要考查了二次根式的性质,注意:2(0)a a a =≥.14. 23(1)0m n -+=,则m -n 的值为_____.[答案]4[解析][分析]根据二次根式与平方的非负性即可求解.[详解]依题意得m-3=0,n+1=0,解得m=3,n=-1,∴m-n=4[点睛]此题主要考查二次根式与平方的非负性,解题的关键是熟知二次根式与平方的非负性.15. 计算:528-=______.[答案]32[解析][分析]先化简二次根式,再合并即可.[详解]528522232-=-=;故答案是:32.16. 直角三角形两直角边长分别为和,则它斜边上的高为____________________.[答案]12 5[解析][分析]设斜边为c,斜边上的高为h,利用勾股定理可求出斜边的长,根据面积法即可得答案, [详解]设斜边为c,斜边上的高为h,∵直角三角形两直角边长分别为和,∴2234+,∴此直角三角形的面积=12×5h=12×3×4,解得:h=125.故答案为:12 5[点睛]本题考查了利用勾股定理求直角三角形的边长及利用面积法求直角三角形的高,熟练掌握面积法是解题关键.17. 如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm2,10cm2,14cm2,则正方形D的面积是__________cm2.[答案]17[解析]试题解析:根据勾股定理可知,∵S 正方形1+S 正方形2=S 大正方形=49,S 正方形C +S 正方形D =S 正方形2,S 正方形A +S 正方形B =S 正方形1,∴S 大正方形=S 正方形C +S 正方形D +S 正方形A +S 正方形B =49.∴正方形D 的面积=49-8-10-14=17(cm 2).18. 如图,Rt △ABC 的面积为20cm 2,在AB 的同侧,分别以AB ,BC ,AC 为直径作三个半圆,则阴影部分的面积为_____.[答案]20cm 2[解析][详解]解:由图可知,阴影部分的面积=12π(12AC )2+12π(12BC )2+S △ABC ﹣12π(12AB )2, =8(AC 2+BC 2﹣AB 2)+S △ABC , 在Rt △ABC 中,AC 2+BC 2=AB 2,∴阴影部分的面积=S △ABC =20cm 2.故答案为20cm 2.三、解答题(共8小题,共66分.解答应写出必要的文字说明或演算步骤.)19. 计算下列各题:(1)545842+-+(2)|1|+()02020π-(3)( -[答案](1)(24;(3). [解析][分析](1)先化为最简二次根式,后合并同类项;(2)先求绝对值,零次幂,立方根,再合并同类项;(3)括号内的部分先化为最简二次根式,合并同类项,再计算除法,最后进行分母有理化.详解](1)==(2)|1|+()02020π-114=+-4=(3)( -)(23=⨯⨯==[点睛]本题考查了二次根式,绝对值,零次幂的混合运算,熟知以上运算法则是解题的关键.20. 已知11x y ==,,求下列各式的值: (1)222x xy y ++;(2)22x y -.[答案][解析][分析]观察可知:(1)式是和的完全平方公式,(2)是平方差公式.先转化,再代入计算即可.[详解](1)当x =3+1,y =3-1时, 原式=(x +y )2=(3+1+3-1)2=12;(2)当x =3+1,y =3-1时,原式=(x +y )(x -y )=(3+1+3-1)(3+1-3+1)=43.21. 先化简,再求值,已知=2+1 求+1-21x x -的值. [答案]化简得1212x -=-- [解析][分析]首先把原式化成21111x x x ---- ,然后进行通分,相减即可对分式进行化简,然后代入数值化简求值即可. [详解]+1-21x x -=21111x x x ----=2211111x x x x x --=---- 当x=2+1时,原式=112=-=-22+1-12. [点睛]此题考查分式的化简求值,解题关键在于掌握运算法则.22. 如图所示,∠B =∠OAF =90°,BO =3 cm ,AB =4 cm ,AF =12 cm ,求图中半圆的面积.[答案]图中半圆的面积是169π8cm 2. [解析][分析] 先根据勾股定理求出AO,FO 的长,再根据半圆面积计算公式计算半圆面积即可.[详解]解:如图,∵在直角△ABO 中,∠B =90°,BO =3 cm ,AB =4 cm , ∴AO =22BO AB +=5 cm. 则在直角△AFO 中,由勾股定理,得到FO =22AO AF +=13 cm ,∴图中半圆的面积=12π×2FO ⎛⎫ ⎪⎝⎭2=12π×169π169π88=(cm 2). 答:图中半圆的面积是169π8cm 2. [点睛]此题重点考察学生对勾股定理的实际应用能力,熟练掌握勾股定理是解题的关键.23. 如图,△ABC 中,∠C =90º,AD 是角平分线,CD =15,BD =25.求AC 的长.[答案]30[解析][分析]作DE AB ⊥于E ,利用角平分线的性质得DE=CD=15,AE=AC ,在Rt BED 中,求出BE ,在Rt ABC 中,求出AC .[详解]作DE AB ⊥于E ,如图所示∵AD 为CAB ∠的角平分线,且90︒∠=C ,∴DE=CD=15,AE=AC ,在Rt BED 中,2220BE BD DE =-=,在Rt ABC 中,222AC BC AB +=,即222()()AC CD BD AE BE ++=+,∴22240(20)AC AC +=+,解得30AC =.[点睛]本题考查了角平分线的性质,勾股定理的计算,熟知以上知识,是解题的关键.24. 如图,在△ABC 中,∠B=30°,∠C=45°,AC=22.求BC 边上的高及△ABC 的面积.[答案]2,3[解析][分析]先根据AD⊥BC,∠C=45°得出△ACD是等腰直角三角形,再由2得出AD及CD的长,由∠B=30°求出BD的长,根据三角形的面积公式即可得出结论.[详解]∵AD⊥BC,∠C=45°,∴△ACD是等腰直角三角形,∵AD=CD.∵2,∴2AD=AC,即2AD=8,解得AD=CD=2.∵∠B=30°,∴AB=2AD=4,∴2222=4-2=23AB AD,∴3+2,∴S ABC=12BC⋅AD=123+2)×3.[点睛]此题考查勾股定理,解题关键在于求出BD的长.25. 如图所示,在四边形ABCD中,5BC=2,CD=1,AD=5,且∠C=90°,求四边形ABCD的面积.[答案]四边形ABCD的面积是6.[解析][分析]连接BD,根据勾股定理可计算出BD的长度,再由勾股定理逆定理可判断出△ABD为直角三角形,分别计算出△ABD和△BCD的面积,求和即可.[详解]连接BD,∵∠C=90°,∴△BCD为直角三角形,∴BD2=BC2+CD2=22+1252,BD>0,∴BD5在△ABD中,∵AB2+BD2=20+5=25,AD2=52=25,∴AB2+BD2=AD2,∴△ABD直角三角形,且∠ABD=90°,∴S四边形ABCD=S△ABD+S△BCD=12×5×512×2×1=6.∴四边形ABCD的面积是6.[点睛]本题关键在于利用勾股定理逆定理判定出直角三角形,从而求出三角形的面积.26. 观察下列各式及其验算过程:2 2+323,22+323+2332323(1)按照上述两个等式及其验证过程的基本思路,的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为大于1的整数)表示的等式并给予验证.[答案](1)见解析;(2)见解析.[解析]试题分析:(1)利用已知,的值,再验证;(2)由(1)根据二次根式的性质可以总结出一般规律.解:(1),,正确;(2)由(1)中的规律可知3=22﹣1,8=32﹣1,15=42﹣1,=,正确.。

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)

重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。

黑龙江省牡丹江市2023-2024学年八年级下学期期中数学试题(含答案)

黑龙江省牡丹江市2023-2024学年八年级下学期期中数学试题(含答案)

2023-2024学年度第二学期八年级期中考试数学试卷考生注意:1.考试时间90分钟2.全卷共分三道大题,总分120分3请在答题卡上作答,在试卷上作答无效一、选择题(每小题3分,满分30分)1.下列根式是最简二次根式的是( )A .9B .12C .0.1D .32.下列各式中,运算正确的是( )A .2(2)2-=-B .284⨯=C .2810+=D .222-= 3.下列条件中,不能判定四边形为平行四边形的是( )A .AB //CD ,AD =BCB .∠A =∠C ,∠B =∠D C .AB =CD ,AD =BCD .AB //CD ,AB =CD 4.下列命题的逆命题是真命题的是( ) A .对顶角相等 B .等边三角形是锐角三角形C .矩形的对角线相等D .平行四边形的对角线互相平分 5.如图:在△ABC 中,CE 平分∠ACB ,CF 平分∠ACD ,且EF //BC 交AC 于M ,若CM =5,则CE 2+CF 2等于( )A .75B .100C .120D .1256.如图,在矩形COED 中,点D 的坐标是(1,3),则CE 的长是( )A .3B .22C 10D .47.已知a <b ,则化简二次根式3a b -的正确结果是( ) A .a ab -- B .a ab - C .a ab D .a ab -8.如图,在矩形ABCD 中,E ,F 分别是边AB ,CD 上的点,AE =CF ,连接EF ,BF ,EF 与对角线交于点O ,且BE =BF ,∠BEF =2∠BAC , FC =2,则AB 的长为( )A .83B .8C .43D .69.如图,在△ABC 中,AE ⊥BC 于点E ,BD ⊥AC 于点D ;点F 是AB 的中点,连接DF ,EF ,设∠DFE =x °,∠ACB =y °,则( )A .y =xB .y =-12x +90C .y =-2x +180D .y =-x +9010.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,AE 平分∠BAD ,分别交BC ,BD 于点E ,P ,连接OE ,∠ADC =60°,AB =12BC =1,则下列结论: ①∠CAD =30°;②BD =7;③ABCD S AB AC =⋅;④OE =14AD ;⑤38APO S =,正确的个数是( )A .2B .3C .4D .5二、填空题(每小题3分,共30分)11.1x +x 的取值范围是 . 12.如图,已知四边形ABCD 的对角线AC 与BD 相交于点O ,∠DAC =∠BCA ,添加一个条件 ,使四边形ABCD 为平行四边形(填一个即可).13.已知△ABC 的三边长分别为a 、b 、c ,且a 、b 、c 满足2694|5|0a a b c -++-+-=,则△ABC 的形状是 三角形.14.计算:152+= . 15.如图,在矩形ABCD 中,AB =5,AD =3,动点 P 满足 13PAB ABCD SS =矩形,则点 P 到A 、B 两点距离之和P A +PB 的最小值为 .16.如图,每个小正方形的边长为1,在△ABC 中,点D 为AB 的中点,则线段CD 的长为 .17.在Rt △ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a ∶b =2∶3,c =65,则a = . 18.如图,在四边形ABCD 中,CD =7,∠C =30°,M 为AD 中点,动点P 从点B 出发沿BC 向终点C 运动,连接AP ,DP ,取AP 中点N ,连接MN ,则线段MN 的最小值为 .19.在平行四边形ABCD 中,BC 边上的高为4,AB =5,AC 5=ABCD 周长等于 . 20在矩形ABCD 中,AD =9,点G 在边AD 上,AB =GD =4,边BC 上有一点H ,将矩形沿边GH 折叠,点C 和D 的对应点分别是C '和D ',若点A , D '和C '三个点恰好在同一条直线上时,AC '的长为 .三、解答题(满分60分)21.计算(每小题6分,共18分)(1)2(32218310)⨯-+; (2)2(4236)22(31)-÷--;(3)先化简,再求值:2111x y x y xy y ⎛⎫+÷ ⎪+-+⎝⎭,其中52,52x y =+=-. 22.(6分)已知平行四边形ABCD 中,AE ⊥BC 于E ,CF ⊥AD 于F .图1 图2(1)如图1,求证:四边形AECF 为矩形;(2)如图2,连接BF ,DE 分别交AE ,CF 于M ,N 两点,请直接写出图中的所有平行四边形. 23.(6分)矩形ABCD 中,AB =10,BC =3,E 为AB 边的中点,P 为CD 边上的点,且△AEP 是腰长为5的等腰三角形,请你画出图形,直接写出线段AP 长.24.(8分)如图,在ABCD 中,∠BAD =32°,分别以BC ,CD 为边向外作△BCE 和△DCF ,使BE =BC , DF =DC ,∠EBC =∠CDF ,延长AB 交边EC 于点H ,点H 在E ,C 两点之间,连接AE ,AF .(1)求证:△ABE ≌△FDA ;(2)当AE ⊥AF 时,求∠EBH 的度数.25.(10分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.实践操作:如图1,在矩形纸片ABCD 中,AB =4cm .第一步:如图2,对折矩形纸片ABCD ,使AD 与BC 重合,得到折痕EF ,把纸片展平;第二步:如图3,再一次折叠纸片,使点A 落在EF 上点N 处,折叠BM 过点B 交AD 于M ,连接BN .图1 图2 图3解决问题(1)在图3中,EN 与AB 的关系是 ,EN = cm ;(2)在图3中,连接AN ,试判断△ABN 的形状,并给予证明;拓展应用(3)已知,在矩形ABCD 中,AB =4cm ,AD =8cm ,点P 在边AD 上,将△ABP 沿着BP 折叠,若点A 的对应点A '恰落在矩形ABCD 的对称轴上,则AP = cm .26.(12分)如图,点O 为坐标原点,四边形OABC 为矩形,边OC 、OA 分别在x 轴、y 轴上,A (0,a ),C(c ,0),且a 、c 满足2|4|(8)0a c -+-=.(1)求B ,C 两点的坐标;(2)把△ABC 沿AC 翻折,点B 落在B '处,线段AB 与x 轴交于点D ,求CD 的长;(3)在平面内是否存在点P ,使以A ,D ,C ,P 为顶点的四边形是平行四边形,若存在,请直接写出点P 的坐标;若不存在,请说明理由.2023-2024学年度第二学期八年级期中考试数学试卷参考答案一、选择题(每小题3分,满分30分)1.D2.B3.A4.D5.B6.C7.A8.D9.B 10.C二、填空题(每小题3分,满分30分)11.x ≥-1且x ≠2 12.AD =BC (答案不唯一) 13.直角 1452 4116.262 17.25或213 18.74 19.20或12 20.7或1三、解答题(共60分)21解:(1)原式=64236320-+……(2分)=8-12+65-……(2分)=65--4……(2分)(2)原式=323(3231)2---+……(2分) =3234232--+……(2分) =322-……(2分) (3)解:原式=1()()()()()x y x y x y x y x y x y y x y ⎡⎤-++÷⎢⎥+-+-+⎣⎦=2()()()x y x y x y x y ⋅++- =2xy x y-.………………(4分) 当52,52x y =+=-时,原式=2(52)(52)21425252+-==+-+.………………(2分) 22.(1)证明:∵四边形ABCD 为平行四边形,∴AD ∥BC .∵AE ⊥BC 于E ,CF ⊥AD 于F ,∴∠AEB =∠EAD =∠BCF =∠CFD =90°.∴四边形AECF 为矩形.………………(2分)(2)解:图中所有的平行四边形为:四边形FDEB ,四边形ABCD ,四边形AECF ,四边形MFNE .……(4分)23.如图,AP =10=或5或310=1分,答案1分24.(1)在平行四边形ABCD 中,AB =DC .又DF =DC ,∴AB =DF .同理,EB =AD .……(2分)在平行四边形ABCD 中,∠ABC =∠ADC .又∠EBC =∠CDF ,∴∠ABE =∠ADF .∴△ABE ≌△FDA (SAS ).……(2分)(2)∵△ABE ≌△FDA .∴∠AEB =∠DAF .∵∠EBH =∠AEB +∠EAB ,∴∠EBH =∠DAF +∠EAB . ∵AE ⊥AF .∴∠EAF =90°……(2分)∵∠BAD =32°,∴∠DAF +∠EAB =90°-32°=58°. ∴∠EBH =58°……(2分)25.解:EN 垂直平分AB ,4分)(2)解:△ABN 为等边三角形;理由如下:∵EN 垂直平分AB ,∴AN =BN .……(2分)又∵AB =BN ,∴AB =BN =AN .∴△ABN 为等边三角形;……(2分)(3)AP 的长为4cm ……(2分) 26.解:(1)∵|a -4|+(8-c )2=0,∴a -4=0,8-c =0解得a =4,c =8……(2分)∴A (0,4),C (8,0).∵四边形AOCB 是矩形,∴AB =OC =8,BC =AO =4∴B (8,4).…………(1分)(2)∵四边形ABCD 是矩形,∴AB ∥CD .∴∠BAC =∠ACO .……(2分)∵由轴对称的性质得∴,BAC B AC BC B C ∠∠'='=.∴∠DAC -∠DCA .∴DA =DC .……(2分)设DA =DC =x ,则8DB AB AD x '=='--.在Rt DB C '中,222DB B C DC ''+= ,即222(8)4x x =-+,解得x =5,即CD =5……(2分)(3)P (-5,4)或P (5,4)或P (11,-4).……(3分)。

【人教版】数学八年级下学期《期中考试试题》(附答案解析)

【人教版】数学八年级下学期《期中考试试题》(附答案解析)

人教版八年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个 2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( ) A . 1683-B. 1283-+C. 843-D. 423- 4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 2B. 2C. 8D. 66. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y (米)与 时间x (秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________. 8. 若二次根式25x +与3能合并,则x 可取的最小正整数是_________.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.11. 如图,在菱形ABCD 中,点E 为AB 上一点,DE =AD ,连接EC .若∠ADE =36°,则∠BCE 的度数为_____.12. 如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标________________.三.解答题(共11小题)13. 计算:(1)1 21231263+-⨯(2)8123|265|2-÷+--14. 已知y﹣3与2x﹣1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式.(2)当x=2时,求y的值.(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.15. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是千米;乙车到达B地所用的时间a的值为;(3)行驶过程中,两车出发多长时间首次后相遇?17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:322)2,善于思考的小明进行了以下探索:设2)2(其中a、b、m、n均为整数),则有2=m2+2n22.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7+43化成一个完全平方式.(3)若a是216的立方根,b是16的平方根,试计算:2.a b20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.23. 在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.答案与解析一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个【答案】B【解析】【分析】根据二次根式的定义形如a (a ≥0)的式子叫做二次根式,对被开方数的符号进行判断即可得.【详解】解:在所列式子中是二次根式的有 3.14π-,22a b +,21m +,||ab 这4个, 故选:B .【点睛】本题主要考查二次根式的定义.准确记忆二次根式的定义是解题的关键2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 【答案】B【解析】【分析】 对于直角三角形的判定我们可以从角的方面去判断,也可以利用勾股定理的逆定理来进行判断.【详解】解: A 、∠A+∠C=∠B ,则∠B=90°,则为直角三角形;B 、当三边比值为1:2:3时,则无法构成三角形;C 、根据题意可知:222+=a b c ,满足勾股定理的逆定理,则这个三角形就是直角三角形;D 、根据题意可知()()()22222222mn m n m n -+=+,满足勾股定理的逆定理,则这个三角形就是直角三角形.3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( )A. 1683-B. 1283-+C. 843-D. 423-【答案】B【解析】【分析】 分别表示出空白矩形的长和宽,列式计算即可.【详解】解:空白矩形的长为12=23,宽为1612423-=-,∴面积=()23423=83-12-故选:B .【点睛】本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b 【答案】C【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 82B. 42C. 8D. 6【答案】C【解析】【分析】首先由正方形ABCD的对角线长为22,即可求得其边长为2,然后由折叠的性质,可得A′M=AM,D′N=DN,A′D′=AD,则可得图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD,继而求得答案.【详解】解:∵正方形ABCD的对角线长为22,即2,∠A=90°,AB=AD,∠ABD=45°,∴AB=BD•cos∠2×22=2,∴AB=BC=CD=AD=2,由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,∴图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8.故选C.【点睛】此题考查了折叠的性质与正方形的性质.此题难度适中,注意数形结合思想与整体思想的应用.6. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y(米)与时间x(秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】 【详解】在100秒时甲,乙的距离是0,则起跑后100秒甲追上乙,故②说法正确;甲每100秒比乙多跑100m ,所以经过50秒时甲乙相距50米,故③说法正确;甲每100秒比乙多跑100m ,则在400秒时,相距300米,④说法正确;甲的速度为2000÷400=5m/s ,故可以得出甲的速度为5m/s ,故①正确. 故选A .【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________.【答案】k>12. 【解析】【分析】根据正比例函数的图像和性质进行解答即可.【详解】解:∵正比例函数(21)y k x =-的图像经过原点和第一、第三象限,∴2k-1>0,∴k>12. 故答案为: k>12. 【点睛】本题考查正比例函数的性质,解题关键是掌握正比例函数的图像经过第一、第三象限时,比例系数k>0的性质.8. 25x +3x 可取的最小正整数是_________.【分析】根据题意,它们化简后的被开方数相同,列出方程求解即可【详解】∵二次根式25x +与3能合并,∴253x +=,解得–1x = (舍去),2512x +=,解得 3.5x = (舍去),2527x +=,解得11x =.即当x 取最小正整数11时,二次根式25x +与3能合并.【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解,【详解】如图所示:AB=22+=.345故答案是:5.【点睛】考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.11. 如图,在菱形ABCD中,点E为AB上一点,DE=AD,连接EC.若∠ADE=36°,则∠BCE的度数为_____.【答案】18°.【解析】【分析】由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形∴AD=CD,∠A=∠BCD,CD∥AB∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°∵CD∥AB∴∠CDE =∠DEA =72°,且DE =DC =DA∴∠DCE =54°∵∠DCB =∠DAE =72°∴∠BCE =∠DCB ﹣∠DCE =18°故答案为:18°【点睛】本题考查了菱形的性质,等腰三角形的性质.熟练掌握菱形边及对角线的性质,等腰三角形的性质是解题的关键.12. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC=6,BD=8,E 为AD 中点,点P 在x 轴上移动.若△POE 为等腰三角形,请写出所有符合要求的点P 的坐标________________.【答案】(2.5,0)或(-2.5,0)或(4,0)或(2516,0). 【解析】【分析】 根据菱形的对角线互相垂直平分求出OA 、OD ,再利用勾股定理列式求出AD ,然后根据直角三角形斜边上的中线等于斜边的一半求出OE ,然后分①OE=OP 时,求出点P 的坐标,②OE=PE 时点P 和点D 重合,③OP=OE 时,点P 在OE 的垂直平分线上,求出OP 的长度,然后写出点P 的坐标即可.【详解】解:∵在菱形ABCD 中对角线AC=6,BD=8,∴OA=3,OD=4,∴22OA OD +22345+=,∵E 为AD 中点,∴OE=12AD=12×5=2.5, ①OE=OP 时,OP=2.5,∴点P的坐标为(2.5,0)或(-2.5,0),②OE=PE时点P和点D重合,P(4,0),③③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,∴EK∥OA,∴EK:OA=ED:AD=1:2,∴EK=12OA=32,∴OK=2,∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK,∴OP:OE=OF:OK,即OP:52=54:2,解得:OP=25 16,∴点P(2516,0),综上所述,点P的坐标为(2.5,0)或(-2.5,0)或(4,0)或(2516,0).故答案为:(2.5,0)或(-2.5,0)或(4,0)或(2516,0).【点睛】本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分的性质,等腰三角形的性质,难点在于要分情况讨论.三.解答题(共11小题)13. 计算:(1)1 21231263(28123|2652-【答案】(1)(22+【解析】【分析】(1)先化简二次根式,进行乘法计算,再进行减法计算;(2)先根据二次根式和绝对值进行化简得到22(2+-,再去括号进行有理数的加减计算即可得到答案.【详解】(1)=3==(2|2-=22(2-=222+-+=2【点睛】本题考查二次根式的化简、有理数的四则运算和绝对值,解题的关键是掌握二次根式的化简、有理数的四则运算和求绝对值.14. 已知y ﹣3与2x ﹣1成正比例,且当x =1时,y =6.(1)求y 与x 之间的函数解析式.(2)当x =2时,求y 的值.(3)若点A (x 1,y 1),B (x 2,y 2)都在该函数的图象上,且y 1>y 2,试判断x 1,x 2的大小关系.【答案】(1)y =6x ;(2)12;(3)12x x >.【解析】【分析】(1)利用正比例函数的定义得到y ﹣3=k (2x ﹣1),然后把已知的对应值代入求出k ,从而得到y 与x 之间的函数解析式;(2)把x =2代入(1)中的解析式中计算出对应的函数值;(3)利用61x >62x ,可得到1x ,2x 的大小关系.【详解】解:(1)设y ﹣3=k (2x ﹣1),把x =1,y =6代入得6﹣3=k (2×1﹣1),解得k =3,则y ﹣3=3(2x ﹣1), 所以y 与x 之间的函数解析式为y =6x ;(2)由(1)知,y =6x∴当x =2x 时,y =62⨯=12;(3)∵11226,6y x y x ==,而12y y >,∴1266x x >∴12x x >【点睛】本题综合考查了一次函数的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征等知识,一次函数图象上的点的坐标都满足该函数的解析式15. 如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.【答案】(1)详见解析;(2)24【解析】【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•A C=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是 千米;乙车到达B 地所用的时间a 的值为 ; (3)行驶过程中,两车出发多长时间首次后相遇?【答案】(1)60y x =;(2)68,5.4;(3)4.5小时【解析】 试题分析:(1)由题意设函数关系式为,根据待定系数法即可求得结果;(2)把x=2.8代入(1)中的函数关系式即可得到甲车的路程,从而得到甲、乙两车之间的距离;先求出乙车开始的行驶速度,即可得到修好后乙车的行驶速度,从而得到a 的值;(3)设修好后乙车距离A 地的路程(千米)与行驶时间(时)的函数关系式为,根据待定系数法求得函数关系式后,再与(1)中的函数关系式组成方程组求解即可.(1)设函数关系式为 ∵图象过点(6,360) ∴,∴甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式为60y x =;(2)在60y x =中,当x=2.8时,千米;则甲、乙两车之间的距离由图可得乙车开始的行驶速度为千米/时则修好后乙车的行驶速度为千米/时所以;(3)设修好后乙车距离A地的路程(千米)与行驶时间(时)的函数关系式为∵图象过点(2.8,100),(5.4,360)∴,解得∴函数关系式为由题意得,解得答:行驶过程中,两车出发4.5小时时间首次后相遇.考点:一次函数的应用点评:一次函数是常用的解答实际问题的数学模型,本题即是利用一次函数的有关知识解答实际应用题,是中考的常见题型.17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连接AC,BD交于点O,连接EO并延长交CD于点F,则点F即为所求;(2)连接AC,交BD于点O,延长AE交CD于点G,连接GO并延长交AB于点H,连接HC交BD于点F,则四边形AFCE即为所画的菱形.【详解】解:(1)如图,点F即为所求;(2)如图,四边形AFCE即为所画的菱形.【点睛】本题主要考查无刻度直尺作图,掌握正方形的性质和菱形的判定方法是解题的关键.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由平行四边形的性质易得AC=BM=BD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性质得出结论;(2)连接EH,HF,FG,GE,E,F,G,H分别是AB,CD,AC,BD的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得▱HFGE 为菱形,易得EF 与GH 互相垂直平分.【详解】证明:(1)过点B 作BM ∥AC 交DC 的延长线于点M ,如图1,∵AB ∥CD∴四边形ABMC 为平行四边形.∴AC =BM =BD ,∠BDC =∠M =∠ACD .在△ACD 和△BDC 中,===AC BD ACD BDC CD DC ⎧⎪∠∠⎨⎪⎩,∴△ACD ≌△BDC (SAS ),∴AD =BC ;(2)连接EH ,HF ,FG ,GE ,如图2,∵E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,∴HE ∥AD ,且HE =12AD ,FG ∥AD ,且FG =12, ∴四边形HFGE 为平行四边形,由(1)知,AD =BC ,∴HE =EG ,∴▱HFGE 为菱形,∴EF 与GH 互相垂直平分.【点睛】此题考查中点四边形和三角形中位线定理,平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解题的关键.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3)2,善于思考的小明进行了以下探索:设)2(其中a、b、m、n均为整数),则有=m2+2n2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7(3)若a是216的立方根,b是16【答案】(1)m2+3n2;2mn;(2)7+)2;(3)2.【解析】【分析】(1)根据完全平方公式展开,根据题意寻找恒等对应关系;(2)根据完全平方公式,从积的2倍入手,将看成2⨯,从而确定“首平方”底数和“尾平方”底数;(3)先求出a、b的值,再代入求值.【详解】解:(1)2am+=+(,22332a b m n+=++2232.a m nb mn∴=+=,(2)22272222+=++⨯=+(;(3)21616a b是的立方根,是的平方根,64a b∴==±,,2===±【点睛】本题考查了平方根、立方根、完全平方公式、算术平方根等知识点,能灵活运用完全平方公式进行变形是解此题的关键.20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.【答案】(1)证明见解析;(2)2【解析】试题分析:(1)由△BEC≌△DFA得到BE=DF,则结合已知条件证得结论;(2)根据矩形的性质计算即可.试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BE C与△DFA中,∵∠BEC=∠DFA,∠BCE=∠DAF,BC=AD,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图,∵AB⊥AC,AB=4,BC=213,∴AC=6,∴AO=3,∴Rt△BAO 中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.考点:1.平行四边形的判定与性质;2.全等三角形的判定与性质;3.矩形的性质.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?【答案】(1)4cm;(2)6cm2;(3)15cm2;(4)17秒【解析】【分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=3cm,可以计算出△ABP的面积,即可得到a的值;(3)分析图形可得,甲中的图形面积等于AB×AF﹣CD×DE,根据图象求出CD,DE,AF的长,代入数据计算可得答案;(4)计算BC+CD+DE+EF+F A的长度,又由P的速度,计算可得b的值.【详解】解:(1)动点P在BC上运动时,对应的时间为0到4秒,易得:BC=1cm/秒×4秒=4cm;故图甲中的BC长是4cm.(2)由(1)可得,BC=4cm,则:a=12×BC×AB=6cm2;图乙中的a是6cm2.(3)由图可得:CD=2×1=2cm,DE=1×3=3cm,则AF=BC+DE=7cm,又由AB=3cm,则甲图的面积为AB×AF﹣CD×DE=3×7﹣2×3=15cm2,图甲中的图形面积为15cm2.(4)根据题意,动点P共运动了BC+CD+DE+EF+F A=4+2+3+1+7=17cm,其速度是1cm/秒,则b=171=17秒,图乙中的b是17秒.【点睛】本题主要考查动点问题的函数图象,能够从图象中获取信息是解题的关键.22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【答案】(1)32)菱形,理由见解析(3)t=5.2或t=7时,△BEM为等腰三角形【解析】【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【详解】(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC223AD CD又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×33(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.∵∠EMC=∠ACD=90°,∴DC∥EF.∵BC∥AD,∴四边形DCEF是平行四边形,∠BCA=∠DAC.由(1)可知:CD=4,AC=43.∵点M为AC的中点,∴CM=23.在Rt△EMC中,∠CME=90°,∠BCA=30°.∴CE=2ME,可得ME2+(23)2=(2ME)2,解得:ME=2.∴CE=2ME=4.∴CE=DC.又∵四边形DCEF是平行四边形,∴四边形DCEF是菱形.(3)点E在运动过程中能使△BEM为等腰三角形.理由:如图2,过点B作BG⊥AD与点G,过点E作EH⊥AD于点H,连接DM.∵DC∥AB,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°−30°−90°=60°.∴∠ABG =30°.∴AG =12AB =2,BG. ∵点E 的运动速度为每秒1个单位,运动时间为t 秒,∴CE =t ,BE =8−t .在△CEM 和△AFM 中BCM MAF MC AMCME AMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CEM ≌△AFM .∴ME =MF ,CE =AF =t .∴HF =HG−AF−AG =BE−AF−AG =8−t−2−t =6−2t .∵EH =BG =∴在Rt △EHF 中,ME =12EF =1212∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM =BM .∵在Rt △DBG 中,DG =AD +AG =10,BG =∴=故BM =12×= 要使△BEM 为等腰三角形,应分以下三种情况:当EB =EM 时,有(8−t)2=14[12+(6−2t)2], 解得:t =5.2.当EB =BM 时,有8−t=,解得:t =.当EM =BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t =5.2或t =时,△BEM 为等腰三角形.【点睛】本题主要考查的是平行四边形的性质、菱形的性质和判定、全等三角形的性质和判定、含30度直角三角形的性质、等腰三角形的性质、勾股定理的应用,分三种情况EB =EM ,EB =BM ,EM =BM 讨论是解题的关键.23. 在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°. (1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF 2=2BE 2+2DF 2.【解析】试题分析:(1)根据旋转的性质可知AF=AG ,∠EAF=∠GAE=45°,故可证△AEG≌△AEF ;(2)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,连结GM .由(1)知△AEG≌△AEF ,则EG=EF .再由△BME 、△DNF 、△CEF 均为等腰直角三角形,得出CE=CF ,BE=BM ,2DF ,然后证明∠GME=90°,MG=NF ,利用勾股定理得出EG 2=ME 2+MG 2,等量代换即可证明EF 2=ME 2+NF 2;(3)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,根据旋转的性质可以得到△ADF≌△ABG ,则DF=BG ,再证明△AEG≌△AEF ,得出EG=EF ,由EG=BG+BE ,等量代换得到EF=BE+DF .试题解析:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG ,∴AF=AG ,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE 与△AFE 中,{45AG AFGAE FAE AE AE=∠===,∴△AGE≌△AFE (SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,2,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,22,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题。

华师大版八年级下册数学期中考试试题含答案

华师大版八年级下册数学期中考试试题含答案

华师大版八年级下册数学期中考试试卷一、单选题1.在下列各式:2xyπ,2a ,2a b -,5ab ,2x ﹣2y 中,是分式的共有()A .1个B .2个C .3个D .4个2.若分式211x x -+的值为0,则x 的值为()A .0B .1C .﹣1D .±13.下列各分式中,最简分式是()A .34()51()x y x y -+B .2222x y x y xy ++C .22y x x y-+D .22222-++x y x xy y4.要使式子1m -有意义,则m 的取值范围是()A .m >﹣1B .m≥﹣1C .m >﹣1且m≠1D .m≥﹣1且m≠15.若把分式22x yxy+中的x 和y 都扩大10倍,那么分式的值()A .扩大10倍B .不变C .缩小10倍D .缩小100倍6.若()252m y m x -=+是反比例函数,则m 的值为()A .2B .﹣2C .±2D .无法确定7.函数y ax a =-与(0)ay a x=≠在同一坐标系中的图象可能是()A .B .C .D .8.周末,小李8时骑自行车从家里出发,到野外郊游,16时回到家里.他离家的距离s (千米)与时间t(时)之间的关系可以用图中的折线表示.现有如下信息:①小李到达离家最远的地方是14时;②小李第一次休息时间是10时;③11时到12时,小李骑了5千米;④返回时,小李的平均速度是10千米/时.其中,正确的有()A.1个B.2个C.3个D.4个9.反比例函数6yx=图象上有三个点(x1,y1),(x2,y2),(x3,y3),其中x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y1<y2<y3C.y3<y1<y2D.y3<y2<y110.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3B.4C.5D.611.某校为了丰富学生的校园生活,准备购买一批陶笛,已知A型陶笛比B型陶笛的单价低20元,用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,设A型陶笛的单价为x元,依题意,下面所列方程正确的是()A.270020x-=4500xB.2700x=450020x-C.270020x+=4500xD.2700x=450020x+12.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx=图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A .(12,0)B .(1,0)C .(32,0)D .(52,0)二、填空题13.用科学记数法表示0.000000025=_____.14.在正比例函数y=﹣3mx 中,函数y 的值随x 值的增大而增大,则P (m ,5)在第___象限.15.一次函数y=kx+b (k ,b 为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为________.16.如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行,且经过点A (1,﹣2),则kb=__.17.若关于x 的方程222x mx x-+--=﹣2有增根,则m 的值是_____.18.如图,在x 轴的正半轴上依次间隔相等的距离取点A 1,A 2,A 3,A 4,…,A n ,分别过这些点做x 轴的垂线与反比例函数y =1x的图象相交于点P 1,P 2,P 3,P 4,…P n ,再分别过P 2,P 3,P 4,…P n 作P 2B 1⊥A 1P 1,P 3B 2⊥A 2P 2,P 4B 3⊥A 3P 3,…,P n B n ﹣1⊥A n ﹣1P n ﹣1,垂足分别为B 1,B 2,B 3,B 4,…,B n ﹣1,连接P 1P 2,P 2P 3,P 3P 4,…,P n ﹣1P n ,得到一组Rt △P 1B 1P 2,Rt △P 2B 2P 3,Rt △P 3B 3P 4,…,Rt △P n ﹣1B n ﹣1P n ,则Rt △P n ﹣1B n ﹣1P n 的面积为_____.三、解答题19.(1)计算(﹣12)﹣1π﹣3.14)0﹣2|(2)化简:(222m mm m -+-)÷24m m -.20.解分式方程:(1)2393x x x +--=1.(2)2x x -﹣1=284x -.21.先化简,再求值:22x 4x 31(x 1)(x 2)x 1⎡⎤-++÷⎢⎥+--⎣⎦,其中x =6.22.若分式方程2311x x ++-=21m x -的解是正数,求m 的取值范围.23.小米手机越来越受到大众的喜爱,各种款式相继投放市场,某店经营的A 款手机去年销售总额为50000元,今年每部销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 款手机每部售价多少元?(2)该店计划新进一批A 款手机和B 款手机共60部,且B 款手机的进货数量不超过A 款手机数量的两倍,应如何进货才能使这批手机获利最多?A ,B 两款手机的进货和销售价格如下表:A 款手机B 款手机进货价格(元)11001400销售价格(元)今年的销售价格200024.如图,已知A 14,2⎛⎫- ⎪⎝⎭,B (-1,2)是一次函数y kx b =+与反比例函数m y x =(0,0m m ≠<)图象的两个交点,AC ⊥x 轴于C ,BD ⊥y 轴于D .(1)根据图象直接回答:在第二象限内,当x 取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB 面积相等,求点P 坐标.25.某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC 做匀速直线运动的模型.甲、乙两车同时分别从A,B 出发,沿轨道到达C 处,在AC 上,甲的速度是乙的速度的1.5倍,设t 分后甲、乙两遥控车与B 处的距离分别为d 1,d 2(单位:米),则d 1,d 2与t 的函数关系如图,试根据图象解决下列问题.(1)填空:乙的速度v 2=________米/分;(2)写出d 1与t 的函数表达式;(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探究什么时间两遥控车的信号不会产生相互干扰参考答案1.C 【分析】根据分式的概念:一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A B叫做分式即可求解.【详解】解:2a,5ab,2x﹣2y是分式,共3个,故选:C.2.B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式211xx-+的值为零,∴21010xx⎧-=⎨+≠⎩,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键. 3.B【解析】【分析】利用约分可对各选项进行判断.【详解】解:A、34()2()51()3()x y x yx y x y--=++,故A错误;B、2222x yx y xy++是最简分式,故B正确;C、22()()y x y x y x y xx y x y-+-==-++,故C错误;D、22222()()2()x y x y x y x yx xy y x y x y-+--==++++,故D错误.【点睛】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.4.D 【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】根据题意得:1010m m +⎧⎨-≠⎩,解得:m≥﹣1且m≠1.故选D 【点睛】此题主要考查二次根式的性质和分式的有意义的条件,熟练掌握二次根式的性质和分式的有意义的条件即可解题.5.C 【解析】【分析】利用分式的基本性质,x 和y 都扩大10倍,则分子扩大10倍,分母扩大100倍,则分式的缩小10倍.【详解】解:把分式22x yxy+中的x 和y 都扩大10倍,得2101010(2)12210101002102x y x y x yx y xy xy⨯+++==⨯⨯ ,∴分式的值缩小10倍.故选:C .【点睛】本题考查了分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式6.A【解析】【分析】利用反比例函数的定义得到m+2≠0且m2﹣5=﹣1,然后解方程即可.【详解】解;根据题意得m2﹣5=﹣1,解得m=2或m=-2.又∵m+2≠0,即m≠-2,∴m=2故选:A.【点睛】本题考查了反比例函数的定义:形如y=kx(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.7.B【解析】【分析】首先知道直线经过定点(1,0),讨论a与0的关系,得到各自经过的象限,得到答案.【详解】解:根据函数y=ax−a经过定点(1,0),a>0时经过1,3,4象限,而ayx=在1,3象限;a<0时,函数y=ax−a经过定点(1,0),经过1,2,4象限,而ayx=在2,4象限;故选:B.【点睛】本题考查了一次函数与反比例函数图象;正确从a的符号讨论图象的可能性是关键.8.C【解析】【分析】(1)从图象上可以知道,小亮到达离家最远的地方是在14时,最远距离是30千米;(2)在图象开始处于水平状态的时刻就是小亮第一次休息的时刻;(3)在这段时刻,我们看纵坐标时,两点对应的路程差即是小亮骑车的路程;(4)由图形可知,回去时小亮是匀速行驶,中间没有休息,故速度是路程除以所用的时间.【详解】(1)由图象知,在图形的最高点就是小亮到达离家最远30千米的地方.此时对应的时刻是14时.正确;(2)休息的时候路程为0,即开始出现的第一个水平状态的时刻,由图象可知,小亮第一次休息的时刻是在10时.正确;(3)由图象知,在这段时间内,小亮只在11时到12时运动,对应的路程差为5km.正确;(4)返回时,小亮为匀速运动,路程为30千米,所用时间是2小时,故速度为15千米/小时.错误.所以,共3个信息正确.故选C.【点睛】考查函数的图象问题,关键是考查学生的识图能力,要求学生学会使用数形结合的思想.9.A【解析】【详解】解:k=6>0,所以反比例函数图像位于一三象限,并且当x<0时,y随着x的增大而减小,所以y2<y1<y3.故选A.【点睛】已知反比例函数解析式和点的横坐标要比较纵坐标大小,可以数形结合,借助图像的性质进行比较.10.D【解析】【分析】欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S2.【详解】∵点A、B是双曲线y=4x上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4-1×2=6.故选D.11.D【解析】【分析】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,根据用2700元购买A型陶笛与用4500购买B型陶笛的数量相同,列方程即可.【详解】设A型陶笛的单价为x元,则B型陶笛的单价为(x+20)元,由题意得2700450020 x x=+故选:D【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==,解得:k=-1,b=52,∴直线AB 的解析式是y=-x+52,当y=0时,x=52,即P (52,0),故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.13.2.5×10﹣8【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000025=2.5×10﹣8,故答案为:2.5×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.二【解析】【详解】∵正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,∴﹣3m>0,解得m<0,∴点P(m,5)在第二象限.故答案为二15.x=-1【解析】【分析】先根据题意求出一次函数解析式,然后求出其与x轴的交点坐标即可.【详解】解:∵一次函数y=kx+b过(2,3),(0,1)点,∴321k bb=+⎧⎨=⎩,解得:11kb=⎧⎨=⎩.∴一次函数的解析式为:y=x+1.∵一次函数y=x+1的图象与x轴交于(-1,0)点,∴关于x的方程kx+b=0的解为x=-1,故答案为:x=-1.【点睛】本题考查一次函数图像与方程之间的联系,掌握函数与方程之间的关系是解题关键.16.-8【解析】【分析】根据两条平行直线的解析式的k值相等求出k的值,然后把点A的坐标代入解析式求出b 值,再代入代数式进行计算即可.【详解】解:∵y=kx+b的图象与正比例函数y=2x的图象平行,∴k=2,∵y=kx+b的图象经过点A(1,﹣2),∴2+b=﹣2,解得b=﹣4,∴kb=2×(﹣4)=﹣8.故答案为:﹣8.17.0【解析】【分析】先把方程化为2﹣(x﹣m)=﹣2(x﹣2),解得x=2﹣m,利用增根的定义得到2﹣m=2,从而得到m的值.【详解】解:去分母得2﹣(x﹣m)=﹣2(x﹣2),解得x=2﹣m,当x=2时,原方程有增根,即2﹣m=2,解得m=0.故答案为0.【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.18.12(1) n n-【解析】【详解】解:设OA1=A1A2=A2A3=…=A n-2A n-1=A n-1A n=a,∵当x=a时,1ya=,∴P1的坐标为(a,1a),当x=2a时,12ya=,∴P2的坐标为(2a,12a),……∴Rt△P1B1P2的面积为111() 22aa a-,Rt△P2B2P3的面积为111() 223aa a-,Rt△P3B3P4的面积为111() 234aa a-,……∴Rt △P n -1B n -1P n 的面积为1111111··1()2(1)212(1)a n a na n n n n ⎡⎤-=⨯⨯-=⎢⎥---⎣⎦.故答案为:12(1)n n -19.(11;(2)m ﹣6【解析】【分析】(1)根据负整数指数幂、零指数幂、绝对值的意义和二次根式的性质计算;(2)先把括号内通分和除法运算化为乘法运算,然后把分子分母因式分解后约分即可.【详解】解:(1)原式=﹣2+4﹣2﹣1;(2)原式=2(2)(2)(2)(2)(2)(2)m m m m m m m m m--++-+- =22242m m m m m---=26m m m-=m ﹣6.【点睛】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了实数的运算.20.(1)x =﹣4;(2)无解【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)去分母得:3+x (x+3)=x 2﹣9,解得:x =﹣4,经检验:x =﹣4是分式方程的解;(2)去分母得:x (x+2)﹣x 2+4=8,解得:x =2,经检验x =2是增根,分式方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21.解:原式=()()()2(x 1)(x 2)+2x 4x+3x 2(x 1)(x 1)x +x 6x 1x 1===x 1(x 1)(x 2)x 3x 2x 3x 2x 3+---+----⋅⋅⋅-+-+-+-+.当x =6时,原式=6-1=5.【解析】【详解】分式的化简求值.【分析】先把括号里面的分子分解因式,再约分化简,然后再通分计算,再把括号外的除法运算转化成乘法运算,再进行约分化简,最后把x=6代入即可求值.22.m >1且m≠6【解析】【分析】先把方程化为整式方程,解整式方程得到x =15m -,再利用原方程的解为正数得到15m ->0且15m -≠1,然后求出两不等式的公共部分即可.【详解】解:去分母得2(x ﹣1)+3(x+1)=m ,解得x =15m -,∵原方程的解为正数,∴x >0且x≠1,即15m ->0且15m -≠1,∴m >1且m≠6.【点睛】本题考查了分式方程的解:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.23.(1)今年A款手机每部售价1600元;(2)进A款手机20部,B款手机40部时,这批手机获利最大.【解析】【分析】(1)设今年A款手机的每部售价x元,则去年售价每部为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A款手机a部,则B款手机(60-a)部,获利y元,由条件表示出y与a 之间的关系式,由a的取值范围就可以求出y的最大值【详解】解:(1)设今年A款手机每部售价x元,则去年售价每部为(x+400)元,由题意,得()50000120% 50000400x x-=+,解得:x=1600.经检验,x=1600是原方程的根.答:今年A款手机每部售价1600元;(2)设今年新进A款手机a部,则B款手机(60﹣a)部,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000.∵B款手机的进货数量不超过A款手机数量的两倍,∴60﹣a≤2a,∴a≥20.∵y=﹣100a+36000.∴k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B款手机的数量为:60﹣20=40部.∴当新进A款手机20部,B款手机40部时,这批手机获利最大.【点睛】考查一次函数的应用,分式方程的应用,读懂题目,找出题目中的等量关系列出方程是解题的关键.24.(1)当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)一次函数的解析式为y=12x+52;m=﹣2;(3)P 点坐标是(﹣12,54).【解析】【分析】(1)根据一次函数图象在反比例函数图象上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式以及m 的值;(3)设P 的坐标为(x ,12x+52)如图,由A 、B 的坐标可知AC=12,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣12x ﹣52),由△PCA 和△PDB 面积相等得,可得答案.【详解】解:(1)由图象得一次函数图象在反比例函数图象上方时,﹣4<x <﹣1,所以当﹣4<x <﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b ,y=kx+b 的图象过点(﹣4,12),(﹣1,2),则1422k b k b ⎧-+=⎪⎨⎪-+=⎩,解得1252k b ⎧=⎪⎪⎨⎪=⎪⎩一次函数的解析式为y=12x+52,反比例函数y=m x图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC 、PD ,如图,设P 的坐标为(x ,12x+52)如图,由A 、B 的坐标可知AC=12,OC=4,BD=1,OD=2,易知△PCA 的高为x+4,△PDB 的高(2﹣12x ﹣52),由△PCA 和△PDB 面积相等得1 2×12×(x+4)=12×|﹣1|×(2﹣12x﹣52),x=﹣52,y=12x+52=54,∴P点坐标是(﹣52,54).25.(1)40;(2)当0≤t≤1时,d1=﹣60t+60;当1<t≤3时,d1=60t﹣60;(3)当0≤t<2.5时,两遥控车的信号不会产生相互干扰.【解析】【分析】(1)根据路程与时间的关系,可得答案;(2)根据甲的速度是乙的速度的1.5倍,可得甲的速度,根据路程与时间的关系,可得a 的值,根据待定系数法,可得答案;(3)根据两车的距离,可得不等式,根据解不等式,可得答案.【详解】(1)乙的速度v2=120÷3=40(米/分),(2)v1=1.5v2=1.5×40=60(米/分),60÷60=1(分钟),a=1,d1=6060(01) {6060(13)t tt t-+≤-≤≤<;(3)d2=40t,当0≤t<1时,d2-d1>10,即-60t+60+40t>10,解得0≤t<2.5,∵0≤t<1,∴当0≤t<1时,两遥控车的信号不会产生相互干扰;当1≤t≤3时,d2-d1>10,即40t-(60t-60)>10,当1≤t<52时,两遥控车的信号不会产生相互干扰综上所述:当0≤t<2.5时,两遥控车的信号不会产生相互干扰.。

八年级下册期中数学试题附答案

八年级下册期中数学试题附答案

八年级(下)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12.下列二次根式是最简二次根式的是()A.B.C.D.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 125.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 137.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是488.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤二、填空题(共8小题,每小题2分,满分16分)9.= .10.计算:= .11.若是整数,则正整数n的最小值是.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 时∠ACB=90°.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|18.计算:﹣÷+(3﹣)(3).四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥A B,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠1考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.解答:解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.点评:考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.下列二次根式是最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含分母,不是最简二次根式;C是最简二次根式;D、=2,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a考点:二次根式的性质与化简.分析:分别利用二次根式的性质化简求出即可.解答:解:A、﹣=﹣=﹣6,故此选项正确;B、(﹣)2=3,故此选项错误;C、=16,故此选项错误;D、=|a|,故此选项错误;故选:A.点评:此题主要考查了二次根式的化简,正确利用二次根式的性质得出是解题关键.4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 12考点:勾股定理.分析:可先设AB=5x,BC=3x,在该三角形中,由勾股定理可求出AC关于x的代数式,由于直角三角形ABC的周长=AC+AB+BC=24,据此列出方程求出x的值,代入AC的关于x的代数式中,即可求出AC的值.解答:解:设AB=5x,BC=3x,在Rt△ACB中,由勾股定理得:AC2=AB2﹣BC2,AC===4x,直角三角形ABC的周长为:5x+4x+3x=24,x=2,所以,AC=2×4=8,故选B.点评:本题主要考查了勾股定理的运用,关键在于用含有x的式子分别表示出三边的值,代入周长公式求解,属于常考的考点.5.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形考点:命题与定理.分析:根据矩形的判定方法对A进行判断;根据正方形的判定方法对B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直平分且相等的四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分的四边形是菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 13考点:勾股定理;直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.解答:解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.7.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是48考点:平行四边形的性质.分析:利用平行四边形的性质结合勾股定理和平行四边形的面积求法分别分析得出即可.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=8,∴选项A正确,不合题意;∵AB=10,BC=8,AC⊥BC,∴AC=6,故选项C正确,不合题意,故▱ABCD的面积是:6×8=48,AC与BD相交于点O,∴AO=CO=3,∴BO==,∴BD=2,故选项B错误,符合题意;故选:B.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用勾股定理得出AC的长是解题关键.8.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:由①得对角线相等的平行四边形是矩形,加上④得,有一组邻边相等的矩形是正方形,故选C.点评:本题考查了正方形的判定方法,是基础知识较简单.二、填空题(共8小题,每小题2分,满分16分)9.= 2.考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可.解答:解:原式===2.故答案为:2.点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键.10.计算:= .考点:分母有理化.专题:计算题.分析:根据﹣1的有理化因式为+1,进行计算即可.解答:解:原式=,=+1,故答案为+1.点评:主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.11.若是整数,则正整数n的最小值是 3 .考点:二次根式的定义.分析:首先化简二次根式,进而得出n的最小值.解答:解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.点评:此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 16 时∠ACB=90°.考点:勾股定理的逆定理.分析:先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.解答:解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.点评:本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为10 .考点:矩形的性质.分析:根据四边形ABCD是矩形,得到OA=OC,OB=OD,AC=BD,推出OA=OB,再由两条对角线的夹角是60°,得出△OAB是等边三角形,即可求对角线长.解答:解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,∴AC=BD=2×5=10.故答案为:10.点评:本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键,题型较好,难度适中.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是6cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:可先依据题意作出简单的图形,进而结合图形,由题中数据可得三角形是一直角三角形,进而再由中位线的性质即可求解.解答:解:由题中数据可得三角形是一直角三角形,如图,设BC=6cm,AB=8cm,AC=10cm,∵DE、EF、DF分别是三角形的中位线,∴DE=3cm,EF=4cm,DF=5cm,∵DE2+EF2=DF2,故△DEF是直角三角形,S△DEF=DE×EF=6c m2.故答案为:6cm2.点评:本题主要考查了中位线的性质以及勾股定理的运用,要求同学们熟练掌握中位线的性质及勾股定理的逆定理.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=22.5 度.考点:正方形的性质;等腰三角形的性质.分析:连接BD,根据正方形的对角线平分一组对角可得∠ABD=45°,再根据正方形的对角线相等可得AC=BD,然后求出BD=BE,再根据等边对等角可得∠BDE=∠BED,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解答:解:如图,连接BD,∵四边形ABCD是正方形,∴∠ABD=45°,AC=BD,∵BE=AC,∴BD=BE,∴∠BDE=∠BED,根据三角形的外角性质,∠ABD=∠BDE+∠BED,∴∠BED=∠ABD=×45°=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,正方形的对角线相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为 6 cm.考点:翻折变换(折叠问题).专题:计算题.分析:在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=12,DE=DC,∠AED=∠C=90°,所以BE=AB﹣AE=8,设CD=x,则BD=16﹣x,然后在Rt△BDE中利用勾股定理得到82+x2=(16﹣x)2,再解方程求出x即可.解答:解:在Rt△ABC中,∵AC=12,BC=16,∴AB==20,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=12,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=20﹣12=8,设CD=x,则BD=16﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴82+x2=(16﹣x)2,解得x=6,即CD的长为6cm.故答案为6.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|考点:二次根式的加减法.分析:先把各根式化为最减二次根式,再合并同类项即可.解答:解:原式=﹣2+﹣1=﹣1.点评:本题考查的是二次根式的加减,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.18.计算:﹣÷+(3﹣)(3).考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的除法运算,再利用平方差公式进行乘法运算,然后把各二次根式化为最简二次根式后合并即可.解答:解:原式=4﹣+9﹣3=4﹣3+6=+6.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.考点:分式的化简求值.专题:计算题.分析:由a与b的值,求出a+b与ab的值,原式变形后代入计算即可求出值.解答:解:∵a=+1,b=﹣1,∴a+b=2,ab=1,则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?考点:函数的图象.分析:(1)由于骑摩托车前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.解答:解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟;(2)依题意得:王老师吃早餐用了10分钟;(3)吃早餐以前的速度为:5÷10=0.5km/分钟,吃完早餐以后的速度为:(10﹣5)÷(25﹣20)=1km/分钟=60km/小时,∴王老师吃完早餐以后速度快,最快时速达到60km/小时.点评:此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.专题:证明题;几何综合题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.解答:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)考点:勾股定理的应用.分析:首先过C作CD⊥AB交AB延长线于点D,然后可得∠BCD=30°,再根据直角三角形的性质可得BD=10米,然后利用勾股定理计算出CD长,再次利用勾股定理计算出AC长即可.解答:解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.点评:此题主要考查了勾股定理的应用,关键是正确掌握直角三角形中,两直角边的平方和等于斜边的平方.23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;勾股定理;菱形的判定与性质.专题:几何综合题;开放型.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥A B,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。

华师大版八年级下册数学期中考试试题附答案

华师大版八年级下册数学期中考试试题附答案

华师大版八年级下册数学期中考试试卷一、单选题1.若分式1xx -有意义,则x 的取值范围是()A .x≠1B .x≠﹣1C .x =1D .x =﹣12.在平面直角坐标系中,一次函数y=2x ﹣3的图象不经过()A .第一象限B .第二象限C .第三象限D .第四象限3.若把分式xx y2+中的x 和y 同时扩大为原来的3倍,则分式的值()A .扩大3倍B .缩小6倍C .缩小3倍D .保持不变4.一次函数y =kx ﹣k 与反比例函数y =kx在同一直角坐标系内的图象大致是()A .B .C .D .5.反比例函数y =kx(k >0),当x <0时,图象在()A .第一象限B .第二象限C .第三象限D .第四象限6.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s (m )与时间t (min )的大致图象是()A B C D7.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则x 1,x 2,3x 的大小关系是()A .123x x x <<B .213x x x <<C .231x x x <<D .321x x x <<8.直线y =-32x +3与x 轴、y 轴所围成的三角形的面积为()A .3B .6C .34D .329.如图,把直线y =﹣2x 向上平移后得到直线AB ,直线AB 经过点(a ,b ),且2a+b =6,则直线AB 的解析式是()A .y =﹣2x ﹣3B .y =﹣2x ﹣6C .y =﹣2x+3D .y =﹣2x+610.如图,点P 在反比例函数y =kx的图象上,PA ⊥x 轴于点A ,若△PAO 的面积为4,那么k 的值为()A .2B .4C .8D .﹣4二、填空题11.已知反比例函数y=kx(k≠0)的图象在第二、四象限,则k 的值可以是:____(写出一个满足条件的k 的值).12.将y=2x ﹣3的图象向上平移2个单位长度得到的直线表达式为_____.13.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.14.一次函数y =(m +2)x +3-m ,若y 随x 的增大而增大,函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是____.15.若反比例函数()2221my m x -=-的图象在第二、四象限,则m 的值是________.16.如图,直线l 1:y=x+1与直线 l 2:y=mx+n 相交于点P(1,b ),则关于x 、y 的方程组100x y mx y n -+=⎧⎨-+=⎩的解为__________.三、解答题17.计算(1)1211|32|5(2019)2π-⎛⎫-+-+-⨯- ⎪⎝⎭(2)2221211a a aa a a --÷+++(3)32422a b c bc c ab a ⎛⎫⎛⎫⎛⎫⋅÷ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭(4)23243a a bb b a⎛⎫-÷⋅⎪⎝⎭18.解分式方程:25431x x x x x++=--.19.先化简,再求值:22211(2)x x x x x-+÷+-,其中21x =.20.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,回答下列问题:(1)李师傅修车用了多时间;(2)修车后李师傅骑车速度是修车前的几倍.21.已知3(1)(2)12Ax B Cx x x x+=++-+-,求A、B、C的值.22.已知点P在(m,n)直线y=﹣x+2上,也在双曲线y=1x上,求m2+n2的值.23.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长的对应数值:鞋长16192427鞋码22283844(1)分析上表,“鞋码”与鞋长之间的关系符合你学过的哪种函数;(2)设鞋长为x,“鞋码”为y,求y与x之间的函数关系式;(3)如果你需要的鞋长为26cm,那么应该买多大码的鞋?24.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.25.如图所示,已知一次函数y kx b=+(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数myx=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.26.如图,已知A(−4,n),B(2,−4)是一次函数y=kx+b的图象和反比例函数myx的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB与x轴的交点C的坐标及△AOB的面积;(3)求不等式kx+b−mx<0的解集(请直接写出答案).参考答案1.A【分析】根据分母不能为零,可得答案.【详解】解:由题意,得x﹣1≠0,解得x≠1,故选A.2.B【分析】根据一次函数的性质可知一次函数y=2x﹣3的图象经过哪几个象限,不经过哪个象限,从而可以解答本题.【详解】∵2>0,∴y 随x 的增大而增大;∵-3<0,∴图像与y 轴的负半轴相交,∴该函数的图象经过第一、三、四象限,不经过第二象限,故选B .【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b (k 为常数,k≠0),当k >0,b >0,y=kx+b 的图象在一、二、三象限;当k >0,b <0,y=kx+b 的图象在一、三、四象限;当k <0,b >0,y=kx+b 的图象在一、二、四象限;当k <0,b <0,y=kx+b 的图象在二、三、四象限.3.D 【解析】根据题意把分式xx y2+中的x 和y 同时扩大为原来的3倍,将其化简后与原分式进行比价即可做出判断.【详解】解:∵分式xx y2+中的x 和y 同时扩大为原来的3倍∴()23322333x x xx y x y x y⋅⋅==+++则分式的值保持不变.故选:D 4.C 【解析】分别根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.【详解】解:A.∵由反比例函数的图象在一、三象限可知,k >0∴0k -<∴一次函数y kx k =-的图象经过一、三、四象限.故本选项错误;B.∵由反比例函数的图象在二、四象限可知,0k <∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误;C.∵由反比例函数的图象在二、四象限可知,0k <∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项正确;D.∵由反比例函数的图象在二、四象限可知,0k <∴0k ->∴一次函数y kx k =-的图象经过一、二、四象限.故本选项错误.故选:C 5.C 【解析】首先利用k 的符号确定反比例函数图象的分布,进而利用x 的符号确定所在象限.【详解】解:∵反比例函数()0ky k x=>∴图象分布在第一、三象限∵0x <∴图象在第三象限.故选:C 【点睛】本题主要考查了反比例函数的性质,正确记忆反比例函数图象的分布规律是解题关键.6.C 【详解】小明从家到学校,先匀速步行到车站,因此S 随时间t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S 又随时间t 的增长而增长,故选:C .7.B 【解析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据A 、B 、C 三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.【详解】解:∵反比例函数y =12x中,k=12>0,∴此函数的图象在一、三象限,在每一象限内y 随x 的增大而减小,∵y 1<y 2<0<y 3,∴213x x x <<.故选B .8.A 【解析】根据一次函数图象上点的坐标特点,直线y =-32x +3与x 轴、y 轴分别交于(2,0),(0,3),故可求出三角形的面积.【详解】当x=0时,y=3,即与y 轴的交点是(0,3),当y=0时,x=2,即与x 轴的交点是(2,0),所以直线y =-32x +3与x 轴、y 轴所围成的三角形的面积为12332⨯⨯=.故选A.【点睛】本题主要考查一次函数图象与x 轴、y 轴的交点.9.D 【解析】平移时k 的值不变,只有b 发生变化.再把相应的点的坐标代入即可得解.【详解】解:∵直线AB 经过点(),a b ,且26a b +=∴直线AB 经过点(),62a a -∵直线AB 与直线2y x =-平行∴设直线AB 的解析式是:12y x b =-+把(),62a a -代入函数解析式得:1622a a b -=-+则16b =∴直线AB 的解析式是26y x =-+.故选:D 【点睛】本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移k 值不变.10.C 【解析】【分析】由△PAO 的面积为4可得12|k|=4,再结合图象经过的是第一、三象限,从而可以确定k 值.【详解】解:∵S △PAO =4,∴12|x•y|=4,即12|k|=4,则|k|=8,∵图象经过第一、三象限,∴k >0,∴k =8,故选:C .【点睛】本题主要考查了反比例函数ky x=中k 的几何意义,解题的关键是要明确过双曲线上任意一点引x 轴、y 轴垂线,所得三角形面积为12|k|.11.-2(答案不唯一)【解析】【分析】由反比例函数的性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限可写出一个满足条件的k的值.【详解】解:∵函数图象在二四象限,∴k<0,∴k可以是-2.故答案为-2(答案不唯一).【点睛】本题考查了反比例函数图象的性质(1)反比例函数y=kx(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.12.y=2x﹣1【解析】【分析】根据“上加下减,左加右减”的原则进行解答即可.【详解】由“上加下减”的原则可知,将函数y=2x﹣3的图象向上平移2个单位所得函数的解析式为y=2x﹣3+2,即y=2x﹣1.故答案为y=2x﹣1.【点睛】本题考查了一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.13.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.14.-2<m<3【解析】【详解】解:由已知得:20 30 mm>>+⎧⎨-⎩,解得:-2<m<3.故答案为:-2<m<3.15.1-【解析】【分析】让未知数的指数为-1,系数小于0列式求值即可.【详解】∵是反比例函数,∴m2-2=-1,解得m=1或-1,∵图象在第二、四象限,∴2m-1<0,解得m<0.5,∴m=-1,故答案为-1.【点睛】考查反比例函数的定义及性质:一般形式为y=kx(k≠0)或y=kx-1(k≠0);图象在二、四象限,比例系数小于0.16.12 xy=⎧⎨=⎩【解析】【分析】首先利用待定系数法求出b的值,进而得到P点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】解:∵直线y=x+1经过点P(1,b),∴b=1+1,解得b=2,∴P(1,2),∴关于x的方程组10x ymx y n-+=⎧⎨-+=⎩的解为12xy=⎧⎨=⎩,故答案为:12 xy=⎧⎨=⎩.【点睛】此题主要考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.17.(1)﹣2(2)1a;(3)833ab c-;(4)89.【解析】【分析】(1)先根据乘方法则、绝对值意义、负整数指数幂法则、零指数幂法则进行化简再根据实数加减乘除混合运算法则进行计算即可得解;(2)先将分式的除法运算转化为分式乘法运算、同时将能够因式分解的分子或分母进行因式分解,最后再进行约分即可得解;(3)先根据分式的乘方运算法则进行计算,再将分式乘除运算统一成分式乘法运算,最后进行约分即可得解;(4)先根据分式的乘方运算法则进行计算,再将分式乘除运算统一成分式乘法运算,最后进行约分即可得解.【详解】解:(1)()-10211+-52019-2π⎛⎫-⨯ ⎪⎝⎭=12251-+-⨯=1225-+-2=-(2)2221211a a a a a a --÷+++()()()()211111a a a a a a +-+=⋅-+1a=;(3)32422a b c bc c ab a ⎛⎫⎛⎫⎛⎫⋅÷ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭634443224a b c b c c a b a=⋅÷-634432244a b c a c a b b c =⋅⋅-833a b c=-;(4)23243a a b b b a ⎛⎫-÷⋅ ⎪⎝⎭224233a b b a ab =⋅⋅89=.【点睛】本题考查了实数的混合运算、分式的混合运算,体现了数学运算的核心素养,熟练掌握各项运算法则是解决问题的关键.18.1x =是增根,原分式方程无解【解析】【分析】先确定分式方程最简公分母,然后方程两边乘最简公分母,从而将分式方程转化为整式方程,再解整式方程,最后检验即可得解.【详解】解:25431x x x x x++=--()54311x x x x x ++=--方程两边同时乘以()1x x -()5143x x x -+=+5543x x x -+=+88x =1x =检验:∵当1x =时,()()11110x x -=⨯-=∴1x =是增根,原分式方程无解.【点睛】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验;(3)去分母时要注意符号的变化.19.11x +,2.【解析】【分析】括号内先通分,进行分式加减法运算,再把除法运算化为乘法运算,约分后得到结果,再把x 的值代入计算.【详解】解:原式=2(1)(1)21(1)x x x x x x x+-++÷-=2(1)(1)(1)(1)x x x x x x +-⋅-+=11x +,当1x =时,原式2.考点:分式的化简求值.20.(1)5分钟;(2)2倍【解析】【分析】(1)观察图象可得李师傅离家10分钟时开始修车、离家15分钟修完车,两数相减即可得解;(2)观察图象可得李师傅修车前后行驶的路程和时间,即可求得相应的行驶速度,两速度相除即可得解.【详解】解:(1)由图可得,李师傅修车用了15105-=(分钟);(2)∵修车后李师傅骑车速度是200010002002015-=-(米/分钟),修车前速度为100010010=(米/分钟)∴2001002÷=∴修车后李师傅骑车速度是修车前的2倍.【点睛】本题考查了从图象中读取信息的数形结合的能力,需要注意分析其中的“关键点”,还要善于分析各部分图象的变化趋势.21.A =0,B =﹣1,C =1.【解析】【分析】先将已知等式右边两项进行通分、并利用同分母分式的加法法则进行计算,再利用分式相等的条件列出关于A 、B 、C 的方程组,解方程组即可得解.【详解】解:∵3(1)(2)12Ax B C x x x x +=++-+-∴()()()213(1)(2)(1)(2)Ax B x C x x x x x +-++=+-+-∴()()()213Ax B x C x +-++=∴()2223Ax B C A x B C ++--+=∴02023A B C A B C =⎧⎪+-=⎨⎪-+=⎩∴011A B C =⎧⎪=-⎨⎪=⎩.【点睛】本题考查了分式的加减法以及解三元一次方程组,熟练掌握相关知识点是解决本题的关键.22.2【解析】【分析】先利用一次函数图象上点的坐标特征、以及反比例函数图象上点的坐标特征得出n m +、mn 的值,再利用完全平方公式将原式变形即可得到答案.【详解】解:∵点(),P m n 在直线2y x =-+上∴2n m +=∵点(),P m n 在双曲线1y x=上∴1mn =∴()2222422m n m n mn +=+-=-=.【点睛】本题考查了一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征、完全平方公式以及整体代入法求代数式的值,灵活运用相关知识点是解决问题的关键.23.(1)一次函数;(2)y =2x ﹣10;(3)应该买42码的鞋.【解析】【分析】(1)由表格可知,给出了四对对应值,鞋长每增加3cm ,鞋码增加6,即鞋码与鞋长之间的关系是一次函数关系;(2)设y kx b =+,把表中任意两对值代入即可求出y 与x 的关系;(3)当26x cm =时,代入函数关系式即可计算出鞋码的值.解:(1)根据表中信息得“鞋码”与鞋长之间的关系是一次函数;(2)设y kx b=+则由题意得22162819k b k b=+⎧⎨=+⎩解得:210k b =⎧⎨=-⎩∴210y x =-;(3)当26x cm =时,2261042y =⨯==答:应该买42码的鞋.【点睛】本题考查了识表能力、利用待定系数法求一次函数解析式、利用函数解决实际问题的能力,难度不大属于简单题型.24.(1)y =x ﹣1;(2)x <1.【解析】【分析】(1)先根据反比例函数图象上点的意义求出()3,2A 、()2,3B --,用待定系数法即可求得一次函数解析式;(2)根据0y <可得10x -<,即1x <.【详解】解:(1)设一次函数的解析式为y kx b=+∵当3x =时,2y =,即()3,2A ;当3y =-时,2x =-,即()2,3B --∴把点()3,2A 、()2,3B --分别代入y kx b =+得,3223k b k b +=⎧⎨-+=-⎩∴解得11k b =⎧⎨=-⎩∴1y x =-.(2)∵0y <∴1x <∴当1x <时,一次函数的函数值小于零.【点睛】本题考查了用待定系数法求一次函数解析式、一次函数与不等式的关系等知识点,熟练掌握相关知识点是解决本题的关键.25.(1)A (-1,0),B (0,1),D (1,0)(2)一次函数的解析式为y x 1=+反比例函数的解析式为2y x=【解析】【分析】(1)根据OA=OB=OD=1和各坐标轴上的点的特点易得到所求点的坐标;(2)将A 、B 两点坐标分别代入y kx b =+,可用待定系数法确定一次函数的解析式,由C 点在一次函数的图象上可确定C 点坐标,将C 点坐标代入m y x =可确定反比例函数的解析式.【详解】解:(1)∵OA=OB=OD=1,∴点A 、B 、D 的坐标分别为A (-1,0),B (0,1),D (1,0).(2)∵点A 、B 在一次函数y kx b =+(k≠0)的图象上,∴k b 0{b 1-+==,解得k 1{b 1==.∴一次函数的解析式为y x 1=+.∵点C 在一次函数y=x+1的图象上,且CD ⊥x 轴,∴点C 的坐标为(1,2).又∵点C 在反比例函数m y x=(m≠0)的图象上,∴m=1×2=2.∴反比例函数的解析式为2y x =.26.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【解析】【分析】(1)先把B 点坐标代入代入m y x=求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx+b−m x <0可得kx+b<m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.。

辽宁省沈阳市第七中学2023-2024学年八年级下学期期中考试数学试题(含详解)

辽宁省沈阳市第七中学2023-2024学年八年级下学期期中考试数学试题(含详解)

辽宁省沈阳市第七中学2023-2024学年八年级下学期期中考试数学试题一.选择题(每题3分,共30分)1.(3分)勾股定理是几何学中一颗光彩夺目的明珠,现发现约有400种证明方法.下面四个图形是证明勾股定理的图形,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.2.(3分)使分式有意义的x的取值范围是( )A.x≠3B.x>3C.x<3D.x=33.(3分)若a>b,则下列不等式不一定成立的是( )A.>B.﹣2a<﹣2b C.a2>b2D.a﹣m>b﹣m4.(3分)如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是( )cm2.A.24B.27C.30D.335.(3分)下列从左边到右边的变形,属于因式分解的是( )A.6a2b2=3ab•2ab B.(x+1)(x﹣1)=x2﹣1C.x2﹣4x+4=(x﹣2)2D.x2﹣x﹣4=x(x﹣1)﹣26.(3分)不等式6﹣2x≥3x﹣4的正整数解有( )A.1个B.2个C.3个D.4个7.(3分)如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x <kx+b<0的解集为( )A.x<﹣2B.﹣2<x<﹣1C.﹣2<x<0D.﹣1<x<08.(3分)下列真命题中,它的逆命题也是真命题的是( )A.全等三角形的对应角相等B.等边三角形是锐角三角形C.两直线平行,同位角相等D.对顶角相等9.(3分)如图,在△ABC中,已知点D在BC上,且BD+AD=BC,则点D在( )A.AC的垂直平分线上B.∠BAC的平分线上C.BC的中点D.AB的垂直平分线上10.(3分)如图,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△ADE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25°,则旋转角α的度数是( )A.40°B.50°C.60°D.70°二.填空题(每题3分,共15分)11.(3分)分解因式:y2+2y= .12.(3分)已知4x2+ax+16是完全平方式,则a的值为 .13.(3分)等腰三角形ABC的底边BC长为6,面积是21,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则BM+DM的最小值为 .14.(3分)分式方程+=1的解为 .15.(3分)如图,平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,∠BAO=60°,点C (﹣4,0),点D(﹣5,3)在线段AB上,将线段CD沿射线AB方向平移,平移过程中的线段记为C1D1,点G是y轴上一个动点,当△C1D1G为等腰直角三角形(G点在C1D1右侧)时,平移的距离为 .三.解答题(本题共8小题,共75分)16.(6分)解不等式组:.17.(10分)因式分解:(1)m2(a﹣b)+4n2(b﹣a);(2)﹣a3+2a2b﹣ab2.18.(7分)先化简,再求值÷(a+2﹣),其中a=﹣2.19.(8分)如图所示,AD是∠BAC的平分线,DE⊥AB,垂足为E,DF⊥AC垂足为F,且BD=CD.(1)求证:BE=CF;(2)若BD∥AC,AB=5,DF=4,则AC= .20.(10分)某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10至25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,然后给予其余游客八折优惠.设该单位参加这次旅游的人数是x人,选择甲旅行社时,所需的费用为y1元;选择乙旅行社时,所需的费用为y2元.(1)请分别写出y1,y2与x之间关系式;(2)该单位选择哪一家旅行社支付的旅游费用较少?21.(10分)对于平面直角坐标系xOy中的线段AB及点P,给出如下定义:若点P满足PA=PB,则称P为线段AB的“轴点”,其中,当0°<∠APB<60°时,称P为线段AB的“远轴点”;当60°≤∠APB<180°时,称P为线段AB的“近轴点”.(1)如图1,点A,B的坐标分别为(﹣2,0),(2,0),则在P1(﹣1,3),P2(0,2),P3(0,﹣1),P4(0,4)中,线段AB的“轴点”是 ;线段AB的“近轴点”是 .(2)如图2,点A的坐标为,0),点B在y轴正半轴上,∠OAB=45°,若P为线段AB的“近轴点”,当P点横坐标取最大值时,求PO长.22.(12分)某中学为了丰富学生的校园生活,准备从体育用品商店购买一些足球和篮球,经调查发现,每个篮球的价钱比足球的价钱高出60%,用1760元购买篮球的个数比用850元购买足球的个数多5个.(1)购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买两种球共96个,且购买两种球的总费用不超过5720元,求这所中学最多可以购买多少个篮球?23.(12分)阅读下面材料,并解决问题:(1)如图①,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为1,,,求∠APB 的度数.为了解决本题,我们可以以AP为一边在AP右侧做等边三角形APP′,连接CP′,此时可证△ACP′≌△ABP,这样就可以将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB= ;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题.已知,如图②,点P为等边△ABC外一点,∠APC=30°,BP=,AP=3,求PC长.(3)能力提升如图③,在Rt△ABC中,∠ACB=90°,BC=2,∠BAC=30°,点D是AC上一点,线段BD绕点D顺时针旋转60°,点B的对应点为点E,当△ABE为直角三角形时,求△ABE面积.参考答案与试题解析一.选择题(每题3分,共30分)1.(3分)勾股定理是几何学中一颗光彩夺目的明珠,现发现约有400种证明方法.下面四个图形是证明勾股定理的图形,其中既是轴对称图形又是中心对称图形的是( )A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形.故本选项不合题意;B、既是轴对称图形,又是中心对称图形.故本选项符合题意;C、不是轴对称图形,是中心对称图形.故本选项不合题意;D、不是轴对称图形,是中心对称图形.故本选项不合题意.故选:B.2.(3分)使分式有意义的x的取值范围是( )A.x≠3B.x>3C.x<3D.x=3【解答】解:由分式有意义,得x﹣3≠0,解得x≠3,故选:A.3.(3分)若a>b,则下列不等式不一定成立的是( )A.>B.﹣2a<﹣2b C.a2>b2D.a﹣m>b﹣m【解答】解:A.∵a>b,∴,故A不符合题意;B.∵a>b,∴﹣2a<﹣2b,故B不符合题意;C.a>b,不妨设a=1,b=﹣2,则a2<b2,故C符合题意;D.∵a>b,∴a﹣m>b﹣m,故D不符合题意;故选:C.4.(3分)如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是( )cm2.A.24B.27C.30D.33【解答】解:过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,∵OB平分∠ABC,OD⊥BC,OE⊥AB,∴OE=OD=3,同理可得OF=OD=3,∴S△ABC=S△OAB+S△OBC+S△OAC=×OE×AB+×OD×BC+×OF×AC=(AB+BC+AC),∵△ABC的周长是18,∴S△ABC=×18=27(cm2).故选:B.5.(3分)下列从左边到右边的变形,属于因式分解的是( )A.6a2b2=3ab•2ab B.(x+1)(x﹣1)=x2﹣1C.x2﹣4x+4=(x﹣2)2D.x2﹣x﹣4=x(x﹣1)﹣2【解答】解:A.6a2b2=3ab•2ab,等式的左边不是一个多项式,不属于因式分解,故本选项不符合题意;B.(x+1)(x﹣1)=x2﹣1,从等式的左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;C.x2﹣4x+4=(x﹣2)2,由左边到右边的变形属于因式分解,故本选项符合题意;D.x2﹣x﹣4=x(x﹣1)﹣2,不是把一个多项式化成几个整式的积的形式,不属于因式分解,故本选项不符合题意.故选:C.6.(3分)不等式6﹣2x≥3x﹣4的正整数解有( )A.1个B.2个C.3个D.4个【解答】解:6﹣2x≥3x﹣4,移项,得﹣2x﹣3x≥﹣4﹣6,合并同类项,得﹣5x≥﹣10,系数化为1,得x≤2,所以,该不等式的正整数解为1,2,共计2个.故选:B.7.(3分)如图,直线y=kx+b经过点A(﹣1,﹣2)和点B(﹣2,0),直线y=2x过点A,则不等式2x <kx+b<0的解集为( )A.x<﹣2B.﹣2<x<﹣1C.﹣2<x<0D.﹣1<x<0【解答】解:不等式2x<kx+b<0体现的几何意义就是直线y=kx+b上,位于直线y=2x上方,x轴下方的那部分点,显然,这些点在点A与点B之间.故选:B.8.(3分)下列真命题中,它的逆命题也是真命题的是( )A.全等三角形的对应角相等B.等边三角形是锐角三角形C.两直线平行,同位角相等D.对顶角相等【解答】解:A、逆命题为:对应角相等的三角形全等,错误,为假命题,不符合题意;B、逆命题为:锐角三角形是等边三角形,错误,为假命题,不符合题意;C、逆命题为:同位角相等,两直线平行,正确,为真命题,符合题意;D、逆命题为:相等的角为对顶角,错误,为假命题,不符合题意;故选:C.9.(3分)如图,在△ABC中,已知点D在BC上,且BD+AD=BC,则点D在( )A.AC的垂直平分线上B.∠BAC的平分线上C.BC的中点D.AB的垂直平分线上【解答】解:∵BD+DC=BC,BD+AD=BC,∴DC=DA,∴点D在AC的垂直平分线上,故选:A.10.(3分)如图,将△ABC绕点A逆时针旋转角α(0°<α<180°)得到△ADE,点B的对应点D恰好落在BC边上,若DE⊥AC,∠CAD=25°,则旋转角α的度数是( )A.40°B.50°C.60°D.70°【解答】解:根据题意,∵DE⊥AC,∠CAD=25°,∴∠ADE=90°﹣25°=65°,由旋转的性质可得∠B=∠ADE,AB=AD,∴∠ADB=∠B=65°,∴∠BAD=180°﹣65°﹣65°=50°,∴旋转角α的度数是50°;故选:B.二.填空题(每题3分,共15分)11.(3分)分解因式:y2+2y= y(y+2) .【解答】解:y2+2y=y(y+2).故答案为:y(y+2).12.(3分)已知4x2+ax+16是完全平方式,则a的值为 ±16 .【解答】解:∵4x2+ax+16=(2x)2+ax+42,∴ax=±2×2×4x=±16x,解得m=±16,故答案为:±16.13.(3分)等腰三角形ABC的底边BC长为6,面积是21,腰AB的垂直平分线EF分别交AB,AC于点E、F,若点D为底边BC的中点,点M为线段EF上一动点,则BM+DM的最小值为 7 .【解答】解:如图,连接AD.∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=•BC•AD=×6×AD=21,∴AD=7,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,最小值为7.故答案为:7.14.(3分)分式方程+=1的解为 x=3 .【解答】解:去分母得:3﹣x﹣1=x﹣4,解得:x=3,经检验x=3是分式方程的解,故答案为:x=3.15.(3分)如图,平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,∠BAO=60°,点C (﹣4,0),点D(﹣5,3)在线段AB上,将线段CD沿射线AB方向平移,平移过程中的线段记为C1D1,点G是y轴上一个动点,当△C1D1G为等腰直角三角形(G点在C1D1右侧)时,平移的距离为 2或4或6 .【解答】解:当∠C1D1G=90°时,过点D1作x轴的垂线,过点C1作C1N⊥MN于点N,过点G作GM ⊥MN于点M,过点D作DP⊥MN于点P,由题意得:C1N=1,D1N=3,∵△C1D1G为等腰直角三角形,∴∠C1D1G=90°,C1D1=GD1,∵∠MGD1+∠MD1G=90°,∠MD1G+∠ND1C1=90°,∴∠MGD1=∠ND1C1,∴△MGD1≌△ND1C1(AAS),∴MG=D1N=3,∴D1的横坐标为﹣3,∴DP=2,∴DD1=4,∴平移的距离为4;当∠D1C1G=90°时,同理可得:D1的横坐标为﹣4,∴DD1=2,∴平移的距离为2;当∠D1GC1=90°时,同理可得:△MGD1≌△NC1G(AAS),∴MG=NC1=a,MD1=GN=3﹣a=a+1,∴a=1,∴D1的横坐标为﹣2,∴DD1=6,∴平移的距离为6;综上所述,平移的距离为2或4或6.三.解答题(本题共8小题,共75分)16.(6分)解不等式组:.【解答】解:解不等式①,得x>﹣3,解不等式②,得x≤2,∴不等式组的解集为﹣3<x≤2.17.(10分)因式分解:(1)m2(a﹣b)+4n2(b﹣a);(2)﹣a3+2a2b﹣ab2.【解答】解:(1)原式=m2(a﹣b)﹣4n2(a﹣b)=(a﹣b)(m2﹣4n2)=(a﹣b)(m+2n)(m﹣2n);(2)原式=﹣a(a2﹣2ab+b2)=﹣a(a﹣b)2.18.(7分)先化简,再求值÷(a+2﹣),其中a=﹣2.【解答】解:原式=﹣÷=﹣÷=﹣•=﹣=﹣,当a=﹣2时,原式=﹣=﹣.19.(8分)如图所示,AD是∠BAC的平分线,DE⊥AB,垂足为E,DF⊥AC垂足为F,且BD=CD.(1)求证:BE=CF;(2)若BD∥AC,AB=5,DF=4,则AC= 11 .【解答】(1)证明:∵AD是∠BAC的平分线,DE⊥AB,垂足为E,DF⊥AC垂足为F,∴DE=DF,又∵BD=CD,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:∵BD∥AC,∴∠EBD=∠BAC,又∵AD平分∠BAC,∴∠EBD=2∠EAD,又∵∠BAD+∠BDA=∠EBD,∴∠BAD=∠BDA,∴BD=BA=5,在Rt△BED中,DE=DF=4,BD=5,∴BE=,∴CF=BE=3,在Rt△AED与Rt△AFD中,,∴Rt△AED≌Rt△AFD(HL),∴AF=AE=AB+BE=5+3=8,∴AC=AF+CF=8+3=11,故答案为:11.20.(10分)某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10至25人,甲、乙两家旅行社的服务质量相同,且报价都是每人200元.经过协商,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,然后给予其余游客八折优惠.设该单位参加这次旅游的人数是x人,选择甲旅行社时,所需的费用为y1元;选择乙旅行社时,所需的费用为y2元.(1)请分别写出y1,y2与x之间关系式;(2)该单位选择哪一家旅行社支付的旅游费用较少?【解答】解:(1)由题意可知:y1=200×75%×x=150x,(10≤x≤25),y2=200×80%(x﹣1)=160x﹣160,(10≤x≤25),答:y1=150x(10≤x≤25),y2=160x﹣160(10≤x≤25).(2)当150x=160x﹣160时,解得:x=16.即人数为16时,两家费用一样.当150x<160x﹣160时,解得:x>16.即16<x≤25时,甲旅行社费用较少.当150x>160x﹣160时,解得:x<16.即10≤x<16时,乙旅行社费用较少.答:当人数为16人时,两家均可选择,当人数10≤x<16时选择乙旅行社,当人数16<x≤25时,选择甲旅行社.21.(10分)对于平面直角坐标系xOy中的线段AB及点P,给出如下定义:若点P满足PA=PB,则称P为线段AB的“轴点”,其中,当0°<∠APB<60°时,称P为线段AB 的“远轴点”;当60°≤∠APB<180°时,称P为线段AB的“近轴点”.(1)如图1,点A,B的坐标分别为(﹣2,0),(2,0),则在P1(﹣1,3),P2(0,2),P3(0,﹣1),P4(0,4)中,线段AB的“轴点”是 P2、P3、P4 ;线段AB的“近轴点”是 P2、P3 .(2)如图2,点A的坐标为,0),点B在y轴正半轴上,∠OAB=45°,若P为线段AB的“近轴点”,当P点横坐标取最大值时,求PO长.【解答】解:(1)∵点A,B的坐标分别为(﹣2,0),(2,0),∴点A、点B的轴点是y轴上的点,∵AB=4,以AB为边的等边三角形的第三个顶点的纵坐标绝对值为=2,∴远近轴点的分界点为(0,2)或(0,﹣2),当点P在以AB为边的等边三角形内部时,60°≤∠APB≤180°,点P的纵坐标﹣2≤y≤2,点P为近轴点,当点P在以AB为边的等边三角形外部时,0<∠APB≤60°,点P的纵坐标y<﹣2或y>2,点P为远轴点,∴P1(﹣1,3),P2(0,2),P3(0,﹣1),P4(0,4)中,是轴点的有P2(0,2),P3(0,﹣1),P4(0,4),∵﹣2<﹣1<0,点P3为近轴点,0,点P2为近轴点,2<4,点P4为远轴点.故答案为:P2、P3、P4;P2、P3.(2)如图,作线段AB的垂直平分线OP,∵点A的坐标为,0),点B在y轴正半轴上,∠OAB=45°,∴点B的坐标为(0,),由轴点定义可知,线段AB的轴点分布在直线y=x图象上,当点P为线段AB的“近轴点”,且P点横坐标取最大值时,点P在如图所示位置,此时∠APB=60°,AB==2,△ABP为等边三角形,∴OP=OD+DP=1+.22.(12分)某中学为了丰富学生的校园生活,准备从体育用品商店购买一些足球和篮球,经调查发现,每个篮球的价钱比足球的价钱高出60%,用1760元购买篮球的个数比用850元购买足球的个数多5个.(1)购买一个足球、一个篮球分别需要多少元?(2)该中学根据实际情况,需从该体育用品商店一次性购买两种球共96个,且购买两种球的总费用不超过5720元,求这所中学最多可以购买多少个篮球?【解答】解:(1)设购买一个足球需要x元,则购买一个篮球需要(1+60%)x元,由题意得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴(1+60%)x=1.6×50=80,答:购买一个足球需要50元,购买一个篮球需要80元;(2)设这所中学可以购买m个篮球,则购买(96﹣m)个足球,依题意得:80m+50(96﹣m)≤5720,解得:m≤30,又∵m为正整数,∴m的最大值为30,答:这所中学最多可以购买30个篮球.23.(12分)阅读下面材料,并解决问题:(1)如图①,等边△ABC内有一点P,若点P到顶点A、B、C的距离分别为1,,,求∠APB 的度数.为了解决本题,我们可以以AP为一边在AP右侧做等边三角形APP′,连接CP′,此时可证△ACP′≌△ABP,这样就可以将三条线段PA、PB、PC转化到一个三角形中,从而求出∠APB= 150° ;(2)基本运用请你利用第(1)题的解答思想方法,解答下面问题.已知,如图②,点P为等边△ABC外一点,∠APC=30°,BP=,AP=3,求PC长.(3)能力提升如图③,在Rt△ABC中,∠ACB=90°,BC=2,∠BAC=30°,点D是AC上一点,线段BD绕点D 顺时针旋转60°,点B的对应点为点E,当△ABE为直角三角形时,求△ABE面积.【解答】解:(1)∵△APP'和△ABC都是等边三角形,∴AB=AC,AP=AP'=PP'=1,∠BAC=∠PAP'=60°,∴∠BAP=∠CAP',∴△ABP≌△ACP'(SAS),∴BP=P'C=,∠APB=∠AP'C,∵P'P2+P'C2=1+2=3,PC2=3,∴PP'2+P'C2=PC2,∴∠PP'C=90°,∴∠AP'C=150°,∴∠APB=150°,故答案为:150°;(2)如图②,将△BCP绕点C顺时针旋转60度,得到△ACE,连接PE,AE,∴BP=AE=,CP=CE,∠PCE=60°,∴△PCE是等边三角形,∴PE=PC,∠CPE=60°,∵∠APC=30°,∴∠APE=90°,∴PE===2,∴CP=2;(3)当点D与点A重合时,∵线段BD绕点D顺时针旋转60°,∴DB=BE,∠DBE=60°,∴△DBE是等边三角形,∴∠EDB=∠EBE=60°,∴∠BAE<60°,∠ABE<60°,∵△ABE为直角三角形,∴∠AEB=90°,∵∠ACB=90°,BC=2,∠BAC=30°,∴AB=2BC=4,如图③,延长BC至F,使CF=BC,连接DF,AF,∵AC⊥BC,CF=BC,∴AB=AF,∵∠ABC=60°,∴△ABF是等边三角形,∴AB=BF,∵△DBE是等边三角形,∴DB=BE,∠DBE=60°=∠ABC,∴∠ABE=∠DBF,∴△ABE≌△FBD(SAS),∴AE=DF,∠AEB=∠FDB=90°,S△AEB=S△BDF,又∵BC=CF=2,∴BC=CF=DC=2,∴S△AEB=S△BDF=×2×4=4.。

北京市首都师范大学附属苹果园中学分校2023-2024学年八年级下学期期中数学试题(解析版)

北京市首都师范大学附属苹果园中学分校2023-2024学年八年级下学期期中数学试题(解析版)

首师附苹中分校2023-2024学年度(二)期中考试初二数学试卷一、选择题(本题共16分,每小题2分)下面各题均有四个选项,符合题意的选项只有一个.1. 下列图形中,是中心对称图形但不是轴对称图形的是( )A.B. C. D.【答案】C【解析】【分析】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.【详解】解:A 、不是中心对称图形,是轴对称图形,故本选项不合题意;B 、既是中心对称图形,又是轴对称图形,故本选项不符合题意;C 、是中心对称图形,不是轴对称图形,故本选项合题意;D 、不中心对称图形,不是轴对称图形,故本选项不合题意;故选:C .2. 一个多边形的内角和是它外角和的2倍,则这个多边形是( )A. 四边形B. 五边形C. 六边形D. 七边形【答案】C【解析】【分析】本题主要考查了多边形的内角和与外角和的问题.设这个多边形的边数是n ,根据“一个多边形的内角和是它外角和的2倍”,列出方程,即可求解.【详解】解:设这个多边形的边数是n ,根据题意得:,解得:,即这个多边形是六边形.故选:C3. 一次函数的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D.第四象限是()21802360n -⨯︒=⨯︒6n =23y x =-【答案】B【解析】【分析】先判断k 、b 的符号,再判断直线经过的象限,进而可得答案.【详解】解:∵,∴一次函数的图象经过第一、三、四象限,不经过第二象限;故选:B .【点睛】本题考查了一次函数的系数与其图象的关系,属于基础题型,熟练掌握一次函数的图象与其系数的关系是解题的关键.4. 已知正比例函数,下列说法不正确的是( )A. 它的图象经过点B. 它的图象是经过原点的一条直线C. 点是它的图象上的点D. 它的图象经过第二、第四象限【答案】D【解析】【分析】此题考查的是正比例函数图像性质,掌握比例系数与正比例函数图像的关系是解决此题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期中考试试题初二数学(1)本试卷分试题和答题卡两部分,所有答案一律写在答题卡上. (2)本卷满分120分,考试时间为100分钟.一、选择题(本大题共10小题,每题3分,共30分)1.下列图形中,是中心对称图形的是 ( ▲ )A .B .C .D .2.下列调查适合做普查的是 ( ▲ )A .了解初中生晚上睡眠时间B .了解某中学某班学生使用手机的情况C .百姓对推广共享单车的态度D .了解初中生在家玩游戏情况3.下列各式:2+πx ,pp 25,222b a -,m m +1,其中分式共有 ( ▲ )A .1个B .2个C .3个D .4个4.如图,在菱形ABCD 中,对角线AC 、BD 交于点O ,下列说法错误..的是 ( ▲ ) A .AB ∥DC B .AB =BD C .AC ⊥BD D .OA =OC5.如图,在□ABCD 中,∠ODA =︒90,AC =10 cm ,BD =6 cm ,则AD 的长为( ▲ ) A .4 cm B .5 cm C .6 cm D .8 cm6.顺次连接矩形各边中点得到的四边形是 ( ▲ ) A .平行四边形 B .矩形 C .菱形 D .正方形7.下列命题中,真命题是 ( ▲ ) A .一组对边平行且另一组对边相等的四边形是平行四边形 B .有两条边相等的平行四边形是菱形C .对角线互相垂直且相等的四边形是正方形D .两条对角线互相垂直平分的四边形是菱形 8.如果把分式ba ab+中的a 、b 都扩大为原来的2倍,那么分式的值一定 ( ▲ ) A .是原来的2倍 B .是原来的4倍 C .是原来的 倍 D .不变 9.对4000米长的大运河河堤进行绿化时,为了尽快完成,施工队每天比原计划多绿化10米,结果提前2天完成.若设原计划每天绿化x 米,则所列方程正确的是 ( ▲ )A .21040004000=+-x x B .24000104000=--x x C .24000104000=-+x x D .21040004000=--x x10.如图,在四边形ABCD 中,AB ∥CD ,∠C =90°,AB =8,AD =CD =5,点M 、N 分别为BC 、(第5题图)(第4题图)OOACDA21EF DCB A M NAB 上的动点(含端点),E 、F 分别为DM 、MN 的中点,则EF 长度的最小值为( ▲ )A .3B . 2.5C . 2D .1二、填空题(本大题共8小题,每空2分,共16分) 11.为了了解某区八年级6000名学生的体重情况,从中抽查了500名学生的体重,在这个问题中,样本为 ▲ .12.某同学期中考试数学考了100分,则他期末考试数学考100分属于 ▲ 事件.(选填“不可能”“可能”或“必然”)13.若分式751y -的值为12,则y = ▲ .14.当x = ▲ 时,分式2212+-x x 的值为0.15.我们所学过的图形中,既是轴对称图形,又是中心对称图形的是 ▲ .(填一个即可) 16.若解关于x 的方程产生增根,则m = ▲ .17.已知:如图,正方形纸片ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,若BE =1,则EF 的长为 ▲ .18.已知:如图,l 1∥l 2∥l 3,l 1、l 2的距离为1,l 2、l 3的距离为5,等腰Rt △ABC 的顶点A 、B 、C 分别在l 1、l 2 、l 3上,那么斜边AC 的长为 ▲ .三、解答题(本大题共9小题,共74分.) 19.(本题满分8分)计算或解方程:(1)b a ba b -++2;(2)xx x 212112--=-.20.(本题满分6分)先化简2223311211x x x x x x x --÷--++-,然后从32<<-x 的范围内选取一个你认为合适的整数..,作为x 的值代入求值.抽检件数 50 100 200 300 400 500次品件数0 4 16 19 24 30l 1l 2l 3(第18题图)(第17题图)G B xm x x 33112-+=-+/kg(1) 求从这批衬衣中任抽1件是次品的概率;(2) 如果销售这批衬衣1000件,估计有多少件次品衬衣?22.(本题满分8分)某校为了了解初二年级1000名学生的身体健康情况,从该年级随机抽 取了若干名学生,将他们按体重(均为整数,单位:kg )分成五组(A :39.5~46.5;B : 46.5~53.5;C :53.5~60.5;D :60.5~67.5;E :67.5~74.5),并依据统计数据绘制了如 下两幅尚不完整的统计图. 23.(本题满分8分)已知:甲、乙两人制作某种机械零件,甲每小时比乙多做3个,甲做96个所用时间与乙做84个所用时间相等.(1)求甲、乙两人每小时各做多少个零件?(2)如果甲、乙两人合做2天(每天工作时间按8小时计算),共完成多少个零件?24.(本题满分8分)已知:如图,在□ABCD 中,点E 、F 分别在AD 、BC 上,EF 与BD 相交于点O ,AE =CF .(1)求证:OE =OF ;(第24题图)BA (2)连接BE 、DF ,若BD 平分∠EBF ,试判 断四边形EBFD 的形状,并给予证明.25.(本题满分10分)已知:如图,矩形ABCD 的对角线AC 、BD 相交于点O ,将线段AC 绕点A 逆时针旋转一定角度到AE ,连接CE ,点F 为CE 的中点,连接OF . (1)求证:OF =OB ;(2) 若OF ⊥BD ,且AC 平分∠BAE ,求∠BAE .26.(本题满分10分)我们定义:只有一组对角相等的凸四边形叫做等对角四边形....... (1)四边形ABCD 是等对角四边形,∠A ≠∠C ,若∠A =60°,∠B =80°,则∠C = ▲ °,∠D = ▲ °. (2)图①、图②均为4×4的正方形网格,线段AB 、BC 的端点均在格点上,按要求以AB 、BC 为边在图①、图②中各画一个等对角四边形ABCD .要求:四边形ABCD 的顶点D 在格点上,且两个四边形不全等.(3)如图③,在平行四边形ABCD 中,∠A =60°,AB =12,AD =6,点E 为AB 的中点,过点E 作 EF ⊥DC ,交DC 于点F .点P 是射线FE 上一个动点,设FP =x ,求以点A 、D 、E 、P 为顶点的四边形为等对角四边形时x 的值.图12图图3备用图B CB FE AFEA ACA DBCC B D27.(本题满分10分) 【基础探究】(1)已知:如图①,在正方形A BCD 中,点M 、N 分别是AB 、CD 的中点,对角线AC 交MN 于点O ,点E为OM 的中点,连接BE 、MC ,ME =m .① 用含m 的代数式表示BE= ▲ ,CM = ▲ ; ② CMBE = ▲ .【拓展延伸】(2)已知:如图②,在△ABC 中(∠ABC >90°),AB =CB ,点O 是AC 的中点,OM ⊥AB 于点M ,点E 为线段OM 的中点,连接BE 、CM .若ME =m ,AM =4m , 求CMBE 的值.(第25题图)F E O D A B初二数学一、选择题(每题3分,共30分)1.C 2.B 3.B 4.B 5.A 6.C 7.D 8.A 9.A 10.C 二、填空题(每空2分,共16分)11.被抽查500名学生的体重; 12.可能; 13.3; 14.1; 15.略; 16.8; 17.25; 18.132. 三、解答题(本大题共9小题,共74分) 19.(本题满分8分)化简或解方程:解:(1)b a b a b -++2 (2)122112-+=-x x x =b a b a b a b a b +-+++))((2…………2分 212+-=x x , =b a b a b +-+222 1=-x ,=ba a +2. ………………4分 1-=x . ………………3分 检验:当x =—1时,2x —1≠0, ∴1-=x . ………………4分 20.(本题满分6分)解:2223311211x x x x x x x --÷--++- =11)3()1()1)(1(32---+⋅-+-x x x x x x x ………………1分 =)1(1--+x x x x ………………………………………………………………………2分 =)1(1-x x . ………………………………………………………………………3分 ∵ —2<x <3且x ≠±1,x ≠0,x 为整数,∴x =2. …………………………4分 ∴当x =2时,原式=21. ……………………………………………………6分 21.(本题满分6分)解:(1)抽查总体数m =50+100+200+300+400+500=1550,次品件数n =0+4+16+19+24+30=93, P (抽到次品)=155093≈0.06.…3分(直接用最后一次抽查结果计算同样给分)(2)根据(1)的结论:P (抽到次品)=0.06, 则1000×0.06=60(件). 答:估计有60件次品衬衣.…………6分 22.(本题满分8分)解:(1)50;图形(略);…………2分 (2)0.32;72.………4分(3)样本中体重超过60kg 的学生是10+8=18(人),该校初二年级体重超过60kg 的学生=5018×100%×1000=360(人)答该校初二年级体重超过60kg 的学生为360人.………………8分 23.(本题满分8分)解:(1)设乙每小时做x 个零件,则甲每小时做(x +3)个零件,由题意得:xx 84396=+………2分 解得x =21. ……………………3分 经检验x = 21是方程的解,x +3=24. ………………………4分答:甲乙两人每小时各做24和21个零件. ……………………5分(2)(24+21)×8×2=720. ……………………………………7分 答:甲乙共完成720个零件. ……………………………………8分 24.(本题满分8分)(1)证明:连接BE 、DF ,∵四边形ABCD 为平行四边形, ∴AD =BC ,AD ∥BC .…………………1分 又∵AE=CF ,∴DE =BF ………………2分∴四边形EBFD 为平行四边形. ……4分(其他方法参照给分) (2)解:四边形EBFD 是菱形. 证明:∵BD 平分∠EBF , ∴∠1=∠2,…………………………5分∵AD ∥BC ,∴∠3=∠2,…………………………6分∴BE=ED . ………………………7分 ∴平行四边形EBFD 是菱形. ……8分 25.(本题满分10分)(1)证明:∵四边形ABCD 是矩形,∴AC =BD ,OB =OD =BD 21,OA =OC =AC 21,∴OB =AC 21. …………………………………………………2分∵ OA =OC =AC 21,点F 为CE 的中点,∴OF =AE 21.…………………………4分 又由旋转可知AE =AC ,∴OB =OF . ……………………………………………5分 (2)解:∵AC 平分∠BAE ,∴∠1=∠2 . 设∠1=∠2=x ° ,∵OA =OC =AC 21,点F 为CE 的中点,∴OF ∥AE .………6分 ∴∠3=∠1=x °.……………………………7分∵AC =BD ,OB =OD =BD 21,OA =OC =AC 21,∴OA =OB ,∴∠5=∠2=x °,∴∠4=2x °.…8分 ∵OF ⊥BD ∴∠BOF =90°∴x °+2x °=90°, ∴x =30,∴∠BAE =2x °=60°. ………………10分26.(本题满分10分) (1)∠C =140°,∠D =80°;………………………………………………………2分(2)…………………………6分(3)如图,作DH ⊥AB∵Rt △ADH 中,∠A =60°, ∴∠ADH =30°,∴AH =AD 21=3,∴DH =33.∵点E 为AB 的中点,图(1) 图(2)DDB A CB A C132(第24题图)F A O B E 54321(第25题图)FEO AB HFE AF EAD B C BD PP∴AE =AB 21=6,∴DF =HE =6—3=3. 如图③,当∠ADP =∠AEP =90°时∠DPE =120°,∴∠DPF =60°,易得FP =3.…8分 如图④,连接DE .∵AD=AE =6,∠A =60°,∴△ADE 为等边三角形. 当∠APE =∠ADE =60°时,易得EP =32,∴x =32+33=35.综上,x =3或35. ………………………………………………………………10分27.(本题满分10分)解:(1) ①用含m 的代数式表示BE=m 5、CM =m 52;……………………………4分②CMBE =21;…………5分 (2)延长AM 到F ,使MF =AM ,连接FC ∵MF=AF ,OA =OC∴OM=FC 21,OM ∥FC∴∠F =∠AMO =90°.………6分∵E 为MO 的中点, ∴OM =2ME=2m ,∴FC =2OM=4m .…………7分 设BM=x ,∵MF= AM =4m , ∴BF =4m -x ,BC=AB =4m +x , 在Rt △BFC 中,222)4)4()4x m m x m +=+-(( ,∴x=m .…………………………8分∴Rt △BME 中,BE =m m m 222=+.Rt △MFC 中,CM =m m m 244422=+)()(,∴41242==m m CMBE .……………10分(其他解法酌情给分)图12图FN B AB。

相关文档
最新文档