流水行船
五年级奥数流水行船问题讲解及练习答案
流水行船问题讲座流水问题是探讨船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个根本公式:顺水速度=船的静水速+水速(1)逆水速度=船的静水速-水速(2)水速=顺水速度-船速(3)静水船速=顺水速度-水速(4)水速=静水速-逆水速度(5)静水速=逆水速度+水速(6)静水速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)例1:一艘每小时行25千米的客轮,在大运输河中顺水航行140千米,水速是每小时3千米,需要行几个小时?解析:顺水速度为25+3=28 (千米/时),需要航行140÷28=5(小时).例2:两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
解析:(352÷11-352÷16)÷2=5(千米/小时).例3:甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8船速:(26+16)÷2=21(千米/小时),水速:(26—16)÷2=5(千米/小时)例4:一位少年短跑选手,顺风跑90米用了10秒,在同样的风速下逆风跑70米,也用了10秒,则在无风时他跑100米要用多少秒.解析:本题类似于流水行船问题.根据题意可知,这个短跑选手的顺风速度为90÷10=9米/秒,逆风速度为70÷10=7米/秒,那么他在无风时的速度为(9+7)÷2=8米/秒.在无风时跑100米,需要的时间为100÷8=12.5秒.例5:一只小船在静水中的速度为每小时 25千米.它在长144千米的河中逆水而行用了 8小时.求返回原处需用几个小时?解析:船在144千米的河中行驶了8小时,则船的航行速度为144÷8=18(千米/时)因为船的静水速度是每小时 25千米,所以水流的速度为:25-18=7(千米/时)返回时是顺水,船的顺水速度是25+7=32(千米/时)所以返回原处需要:144÷32=4.5(小时)例6:(难度等级※)一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的间隔 ?解析:(船速+6)×4=(船速-6)×7,可得船速=22,两港之间的间隔为:6×7+6×4=66,66÷(7-4)=22(千米/时)(22+6)×4=112千米.例7:甲、乙两船在静水中速度一样,它们同时自河的两个码头相对开出,4小时后相遇.已知水流速度是6千米/时.求:相遇时甲、乙两船航行的间隔相差多少千米?解析:在两船的船速一样的状况下,一船顺水,一船逆水,它们的航程差是什么造成的呢?不妨设甲船顺水,乙船逆水.甲船的顺水速度=船速+水速,乙船的逆水速度=船速-水速,故:速度差=(船速+水速) -(船速-水速)=2×水速,即:每小时甲船比乙船多走6×2=12(千米).4小时的间隔差为12×4=48(千米)顺水速度-逆水速度速度差=(船速+水速) -(船速-水速)=船速+水速-船速+水速=2×6=12(千米)12×4=48(千米)例8:(难度等级※※)乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?解:乙船顺水速:120÷2=60(千米/小时).乙船逆水速:120÷4=30(千米/小时)。
小学奥数-流水行船问题的要点及解题技巧
小学奥数-流水行船问题的要点及解题技巧1、什么叫流水行船问题船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。
2、流水行船问题中有哪三个基本量?流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用.3、流水行船问题中的三个基本量之间有何关系?流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
船在水中的相遇及追及问题都与水速没有关系:相遇:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速。
追及:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速。
或:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速。
小学奥数流水行船问题的要点及解题技巧例题精讲:例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?【思路导航】根据条件,用船在静水中的速度+水速=顺水速度,知道了顺水速度和顺水时间,可以求出甲乙两港之间的路程。
《流水行船问题》课件
目录 CONTENT
• 流水行船问题的概述 • 流水行船问题的数学模型 • 流水行船问题的解题技巧 • 流水行船问题的实际应用 • 流水行船问题的扩展和深化 • 总结与展望
01
流水行船问题的概述
定义与特点
定义
流水行船问题是指船只在河流中 顺流而下或逆流而上时所遇到的 问题,涉及到速度、时间和距离 的关系。
问题的历史与发展
历史
流水行船问题可以追溯到古代中国的水利工程和交通运输领域。在古代,人们已经意识到水流对船只航行的影响 ,并开始研究相关的规律和解决方法。随着科学技术的发展,流水行船问题的研究逐渐深入,涉及的领域也更加 广泛。
发展
现代流水行船问题研究涉及到更多的物理、数学和工程学原理,如流体动力学、线性代数和计算机模拟等。随着 计算机技术的发展,数值模拟和计算流体动力学等方法在流水行船问题研究中得到了广泛应用,为解决复杂问题 提供了更加精确和高效的手段。
求解微分方程
使用微积分的方法求 解微分方程,得到物 体的运动轨迹和相关 参数。
适用范围
适用于较为复杂的问 题,如多个物体之间 的相互作用、水流对 物体运动的影响等。
04
流水行船问题的实际应用
在交通工程中的应用
船只在河流中的航行调度
通过研究流水行船问题,交通工程师可以优化船只的航行路径和 时间,提高运输效率。
和距离等变量。
求解方程
使用代数方法(如消元法、代 入法等)求解方程,得到所需
的结果。
适用范围
适用于较为简单的问题,通常 涉及两个物体在静水中的相对
运动。
几何法求解
绘制速度图
根据题目描述,绘制出各个物 体的速度曲线或矢量图。
流水行船问题公式
流水行船问题公式
流水行船问题公式:
顺水
(船速+水速)×顺水时间=顺水行程
船速+水速=顺水速度
逆水
(船速-水速)×逆水时间=逆水行程
船速-水速=逆水速度
静水
(顺水速度+逆水速度)÷2=静水速度(船速)
水速
(顺水速度-逆水速度)÷2=水速
流水行船问题:
船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
船本身有动力,即使水不流动,船也有自己的速度,但在流动的水中,或者受到流水的推动,或者受到流水的顶逆,使船在流水中的速度发生变化,而竹筏等没有速度,它的速度就是水的速度。
超详细的流水行船问题讲解
超详细的流水行船问题讲解船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
例2 某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
(完整版)小升初奥数行程问题--流水行船
知识点梳理
(一)基本概念 船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情 况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。 古语:“逆水行舟不进则退”
船速:是指船本身的速度,也就是在静水中单位时间里所走过的路程 。 水速:是指水在单位时间里流过的路程 。 顺水速度和逆水速度:分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
水上追及问题
车辆同向:路程差=速度差×时间
如果两船逆向追赶时,也有:
两船同向:路程差=船速差×时间
甲船逆水速度-乙船逆水速度
推导:甲船顺水速度-乙船顺水速度
=(甲船速-水速)-(乙船速-水速)
=甲船速-乙船速。
=(甲船速+水速)-(乙船速+水速)
=甲船速-乙船速。
结论:水中追及问题与在静水中追及问题及两车在陆地上追及问题一样。
例6.一只小船从A地到B地往返一 次共用2小时,回来时顺水,比 去时的速度每小时多行驶8千米, 因此第二小时比第一小时多行 驶6千米,求AB两地间的距离。
看图解析
水速=(顺-逆)÷2=8÷2=4千米
逆
A
B
每小时多行8千米
顺
第二小时比第一小时多行6千米
解析
顺水比逆水每小时多行驶8千米,可知水流速度每小时4千米,
T逆=9÷(1+5)×5=7.5小时, 8/3× 7.5=20千米 答:甲乙两港相距20km。
例8. 有甲、乙两船,甲船和漂流物 同时从河西向东而行,乙船也同 时从河东向西而行。甲船行4小 时后与漂流物相距100千米,乙 船行12小时后与漂流物相遇, 两船的划速相同,河长多少千米?
船速:(26+16)÷2=21(千米/小时) 水速:(26—16)÷2=5(千米/小时)
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
杯赛专题——流水行船
杯赛专题——流水行船比赛介绍流水行船是一项集速度、技巧、体力和配合于一体的赛艇比赛。
比赛分为两种形式:单人划船和团体划船。
单人划船比赛的选手需要在规定时间内完成赛道,时间最短者获胜;团体划船比赛的选手需要充分配合,同步划动艇桨,时间最短者获胜。
流水行船比赛在全世界范围内广受欢迎,每年都有世界级的比赛,吸引着数以千计的选手和赛事爱好者前来观赛和参赛。
赛艇类型流水行船比赛中,主要有两种类型的赛艇:皮划艇和板艇。
皮划艇是最常见的赛艇类型,通常由一个选手操控,使用双桨划动。
板艇则较小,无舱室设计,通常由一名选手操控,使用单桨划动。
赛道规格不同级别的流水行船比赛赛道规格有所不同。
一般来说,规格较大的赛道长度达到2000米以上,宽度约为100米左右。
这种赛道规格主要用于国际流水行船比赛,也是世界流水行船锦标赛的标准比赛赛道。
规格较小的赛道长度一般在200-500米之间,宽度约为10-30米左右,这种赛道主要用于国内流水行船比赛。
训练技巧作为一项高强度的体育运动,流水行船需要选手进行严格的训练,从而提高技巧和体能水平。
在训练过程中,选手需要注重以下技巧细节:1.正确握桨姿势:选手应该使用稳固的握桨姿势,以提高划动效率和控制艇的能力。
2.强化核心肌群:强化核心肌群有助于提高平衡和划动效率。
3.稳定呼吸节奏:选手应该每分钟保持相对稳定的呼吸节奏,以便更好地控制自己的状态和提高耐力水平。
4.良好的配合能力:团体划船比赛需要选手之间有很好的配合能力,从而保证同步性,提高速度。
5.合理的营养补给:选手要在训练和比赛前,根据个人需要补充足够的营养,以保证体能充足。
名人堂流水行船运动历史悠久,有很多优秀的选手和教练为这项运动做出了杰出的贡献。
以下是一些流水行船领域的名人:1.Mahe Drysdale:新西兰著名的流水行船选手,多次获得世界级赛事的金牌,是流水行船界的传奇人物之一。
2.Ivan Dinev:保加利亚流水行船名将,曾在多次世界流水行船锦标赛中获得金牌和其他奖项,同时也是一名资深教练。
流水行船问题
流水行船问题【知识点睛】1基本公式:相遇问题:路程和=速度和×相遇时间追及问题:路程差=速度差×追及时间2行船问题:船的静水速度:船在静止水中行驶的速度,简称船速水流速度:水在河流中流淌的速度,简称水速顺水速度:船顺流而行时的总速度,即顺水速度=静水速度+水速逆水速度:船逆流而行时的总速度,即逆水速度=静水速度-水速3推导公式静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2【例题精讲】例1:四个速度游轮以每小时30千米的速度,在水速每小时5千米的水中顺流航行5小时,共行了多少千米?【练习1】1.一艘船每小时行25千米,在大河中顺水航行140千米。
已知水速是每小时3千米,这艘船行完全程需要航行几小时?2.一条河的水速为2千米/小时,一艘船顺水航行6小时走了60千米,若它逆水航行66千米需要多少小时?3.一条河的水速为4千米/小时,一艘船顺水航行11小时走了121千米,若它逆水航行39千米需要多少小时?例2:甲乙两港相距100千米,一只船从甲港往乙港顺流出发,4小时到达,从乙港返回甲港,10小时到达,求船在静水中的速度是多少?【练习2】1.甲乙两港相距180千米,一只船从甲港往乙港顺流出发,6小时到达,从乙港返回甲港,9小时到达,求水流的速度是多少?2.甲乙两港之间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度各是多少?3.一艘飞艇,顺风6小时行驶了900公里,在同样的风速下,逆风行驶600公里,也用了6小时,那么在无风的时候,这艘飞艇行驶1000公里要用多少小时?例3:一艘轮船在河流的两个码头之间航行,顺流需要6小时,逆流需要8小时,水流速度为2.5千米/小时。
求轮船在静水中的速度。
1.一艘轮船在河流的两个码头间航行,顺流需要4小时,逆流需要5小时,水流速度为1.5千米/时。
完整版)行程问题流水行船问题
完整版)行程问题流水行船问题本讲将研究流水行船问题。
在江河里航行时,船只除了本身的速度外,还受到流水的推动或顶逆,这就是流水行船问题。
另外,还有一种与之类似的问题是“在风中跑步或行车”的问题,处理方法与流水行船问题一致。
行船问题是一类特殊的行程问题,它的特殊之处在于船只要考虑水流速度的影响。
船速是指在静水中行船,单位时间内所走的路程。
逆水速度是指逆水上行的速度,顺水速度是指顺水下行的速度。
水速是指船只在水中不借助其他外力,只借助水流力量单位时间所漂流的路程,也就是水流速度。
顺水速度等于船速加上水速,逆水速度等于船速减去水速。
顺水行程等于顺水速度乘以顺水时间,逆水行程等于逆水速度乘以逆水时间。
船速等于顺水速度和逆水速度的平均值,水速等于顺水速度和逆水速度的差值的一半。
下面列举几个例子:1.甲、乙之间的水路长234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,求船速和水速各为每小时多少千米。
2.A、B两港相距560千米,甲船往返两港需要105小时,逆流航行比顺流航行多了35小时,乙船的静水速度是甲船静水速度的2倍,那么乙船往返两港需要多少小时?3.甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米。
一艘船沿甲河顺水航行7小时,行了133千米到达乙河,在乙河中还要逆水航行84千米,问这艘船还要航行几小时?4.一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时,求这两个港口之间的距离。
5.某船从甲地顺流而下,5天到达乙地;该船从乙地返回甲地用了7天,求水从甲地流到乙地用了多少时间?6.一艘小船在XXX,第一次顺流航行33千米,逆流航行11千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米,求这艘小船的静水速度和水流速度。
7.一只船在河里航行,顺流而下每小时行18千米,已知这只船下行2小时恰好与上行3小时所行的路程相等,求船速和水速。
行程问题流水行船问题
---流水行船
流水行船问题基本关系式:
顺水速度=船速+水速 逆水速度=船速-水速 船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
牛刀小试: 船在静水中的速度为每小时15千米,水流速度是 每小时3千米,船从上游乙港到下游甲港航行了12小时, 甲、乙两港间距离多少千米?
例1: 游轮从A城市到B城市顺流而下需要48小时,游轮 在静水中的速度是每小时30千米,水流速度是每小时 6千米,游轮从B城市返回A城市需要多少小时?
练习: 某轮船在相距216千米的两个港口间往返运送货物, 已知轮船在静水中每小时21千米,两个港口间的水流 速度是每小时3千米,那么,这只轮船往返一次需要多 长时间?
例2 : 甲、乙两港间的航线长360千米,一只船从甲港求船在静水中的速度和水流速度?
练习: 某架飞机顺风飞行每小时飞1320千米,逆风飞 行每小时飞1080千米,这架飞机的速度和风速分别是 多少?
例3: A、B两码头间河流长为90千米,甲、乙两船分别 从A、B码头同时起航,如果相向而行3小时相遇;如 果同向而行15小时甲船追上乙船,求两船在静水中的 速度?
练习: 两个港口相距342千米,甲、乙两支轮船同时从 两个港口相对开出,甲船顺流而下,乙船逆流而上, 9小时后正好相遇,已知甲船每小时比乙船慢4千米。 甲、乙两船的速度分别是多少?
谢谢观赏
WPS Office
Make Presentation much more fun
@WPS官方微博 @kingsoftwps
例5: 静水中,甲乙两船的速度分别为每小时20千米 和每小时16千米,两船先后自同一港口顺水开出, 乙船比甲船早出发2小时,若水速是每小时4千米, 甲船开出几小时后追上乙船?
流水行船问题
流水行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2(7)水速=(顺水速度-逆水速度)÷2(8)例1 一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
例2 一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
人教版五年级数学上册【详解】5年级第09讲_流水行船问题
第九讲 流水行船问题例题1. 答案:21千米/时;5千米/时详解:顺水速度为208826÷=千米/时,逆水速度为2081316÷=千米/时,船的静水速度为2616221+÷=()千米/时,水流速度为261625-÷=()千米/时.例题2. 答案:6小时详解:船在甲河中顺水航行的速度是133719÷=千米/时.而甲河水速是3千米/时,所以船速是19316-=千米/时.乙河水速是2千米/时,因此船在乙河中逆水航行的速度是16214-=千米/时,所以航行84千米还需要84146÷=小时.例题3. 答案:24天详解:假设从A 城到B 城的距离是24千米,那么轮船顺水航行的速度是2438÷=千米/天,而逆水航行的速度是2446÷=千米/天,由和差关系可知,水速为()8621-÷=千米/天,也就是木筏漂流的速度.因此木筏从A 城漂流到B 城需要24124÷=天.例题4. 答案:72千米;90千米详解:如图所示:(1)甲船的逆水速度是15312-=千米/时,乙船的逆水速度是1239-=千米/时.两船的路程差即为乙船先出发2小时逆水行驶的距离,也就是9218⨯=千米,所以甲船追上乙船需要()181296÷-=小时.这6小时内,甲船行驶了12672⨯=千米.因此甲船追上乙船时已经离开A 港72千米.(2)甲船追上乙船的地点与B 港相距18072108-=千米,那么它行驶到B 港还需要108129÷=小时.此时乙船又航行了9981⨯=千米,距离B 港1088127-=千米.甲船返回后,与乙船相向而行.此时甲船顺水行驶,速度是每小时15318+=千米.因此两船还需要()271891÷+=小时相遇.从图中可以看出,甲、乙相遇地点与追及地点的距离正好是乙行驶的路程,为()99190⨯+=千米.水流方向 A例题5.答案:33千米/时;27千米/时详解:甲、乙两船的速度和为300560÷=千米/时,甲、乙两船的速度差为+÷=千米/时,乙船的静水÷=千米/时,则甲船的静水速度为(606)233300506速度为603327-=千米/时.例题6.答案:50米/分详解:根据分析,游泳者发现丢水壶之前,与水壶相背而行,游泳者的速度是静水速度与水速的差,水壶的速度就是水速,所以他们的速度和是游泳者的静水速度,也就是60米/分.所以20分钟后,人⨯=米.他返回追水壶时,游泳者的速度是静水速度与水速的和,而水壶的速与水壶相距60201200÷=分钟.水壶一共度还是水速,二者的速度差仍然是15米/分,所以他追上水壶还需要12006020+=分钟,漂流的路程是2千米,而水速就是水壶的漂流速度,因此水速就是漂流了202040÷=米/分.20004050练习1.答案:8小时简答:顺风速度为9006150÷=千米/时,飞÷=千米/时,逆风速度为6006100艇在无风的速度为1501002125+÷=()千米/时,飞艇行驶1000公里要用÷=小时.10001258练习2.答案:12.5简答:甲船的顺水速度是24千米/时,逆水速度是16千米/时.那么往返一次所用的时间是120241201612.5÷+÷=小时.练习3.答案:15小时简答:假设从A地到B地的距离是60千米,那么这艘船的漂流速度为÷=千米/时,顺水速度为÷=千米/时,逆水航行的速度是6030260601+⨯=千米/时,因此这艘船从A地开到B地需要604152124÷=小时.练习4.答案:5简答:货船的顺水速度和客车的逆水速度都是12千米/小时,因此他们会在两个码头的中点相遇,相遇时离A码头90千米;货船还需要走()÷-=909315小时,客船还需要走()÷-=小时,时间差是5小时.9012310作业1.答案:8小时简答:顺流速度为每小时90615-⨯=千米.它÷=千米,所以逆流速度为每小时15525逆流航行要4058÷=小时.作业2.答案:5小时简答:由题目条件可求出从乙地到甲地的逆水速度为160820÷=千米/时,则水速为-=千米/时.返回时水速变为8千米/时,顺水速度为32千米/时,需用160325÷= 24204小时.作业3.答案:12.5秒简答:由题目条件可求出顺风速度为9米/秒,逆风速度为7米/秒,由此可知无风的速度为8米/秒.因此跑100米要用12.5秒.作业4.答案:40天简答:可设甲乙两地之间路程为60千米,可求出顺流速度为每天5千米,逆流速度为每天3千米,船速为每天4千米,水速为每天1千米.梅雨季节时,水速变为每天2千米,顺流速度为每天6千米,逆流速度为每天2千米.往返需要40天.作业5.答案:18千米/时简答:由题目条件可求出两船的静水速度和为30千米/时,静水速度差为6千米/时,由此可求出甲船的速度为18千米/时.。
流水行船问题的公式和例题(完整版)
流水行船问题的公式和例题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:顺水速度=船速+水速(1)逆水速度=船速-水速(2)这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速(3)船速=顺水速度-水速(4)由公式(2)可得:水速=船速-逆水速度(5)船速=逆水速度+水速(6)这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2 (7)水速=(顺水速度-逆水速度)÷2 (8)*例1一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?(适于高年级程度)解:此船的顺水速度是:25÷5=5(千米/小时)因为“顺水速度=船速+水速”,所以,此船在静水中的速度是“顺水速度-水速”。
5-1=4(千米/小时)综合算式:25÷5-1=4(千米/小时)答:此船在静水中每小时行4千米。
*例2一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时多少千米?(适于高年级程度)解:此船在逆水中的速度是:12÷4=3(千米/小时)因为逆水速度=船速-水速,所以水速=船速-逆水速度,即:4-3=1(千米/小时)答:水流速度是每小时1千米。
(完整版)行程问题流水行船问题
基本的流水行船问题知识点:在行程问题的基础上,这一讲我们将研究流水行船的问题.船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.另外一种与流水行船问题相类似的问题是“在风中跑步或行车”的问题,其实处理方法是和流水行船完全一致的.行船问题是一类特殊的行程问题,它的特殊之处就是多了一个水流速度,船速:在静水中行船,单位时间内所走的路程叫船速;逆水速度:逆水上行的速度叫逆水速度;顺水速度:顺水下行的速度叫顺水速度;水速:船在水中不借助其他外力只借助水流力量单位时间所漂流的路程叫水流速度(以下简称水速),顺水速度=船速+水速;逆水速度=船速-水速 .顺水行程=顺水速度×顺水时间逆水行程=逆水速度×逆水时间船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2 .(可理解为和差问题)【例1】甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?【例2】A、B两港相距560千米,甲船往返两港需要105小时,逆流航行比顺流航行多了35小时,乙船的静水速度是甲船静水速度的2倍,那么乙船往返两港需要多少小时?【例3】甲河是乙河的支流,甲河水速为每小时3千米,乙河水速为每小时2千米.一艘船沿甲河顺水航行7小时,行了133千米到达乙河,在乙河中还要逆水航行84千米,问:这艘船还要航行几小时?【例4】一艘轮船在两个港口间航行,水速为每小时6千米,顺水下行需要4小时,返回上行需要7小时.求:这两个港口之间的距离.【例5】某船从甲地顺流而下,5天到达乙地;该船从乙地返回甲地用了7天.问:水从甲地流到乙地用了多少时间?【例6】一艘小船在河中航行,第一次顺流航行33千米,逆流航行11千米,共用11小时;第二次用同样的时间,顺流航行了24千米,逆流航行了14千米.这艘小船的静水速度和水流速度是多少?【例7】一只船在河里航行,顺流而下每小时行18千米.已知这只船下行2小时恰好与上行3小时所行的路程相等.求船速和水速.流水行船中的相遇及追及问题知识点:流水行船问题中的相遇与追及(1)两只船在河流中相遇问题.当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和.这是因为:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速.这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系.(2)同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关.这是因为:甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速.也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.这说明水中追及问题与在静水中追及问题一样.由上述讨论可知,解流水行船问题,更多地是把它转化为已学过的相遇和追及问题来解答.【例8】甲、乙两船在静水中的速度分别为33千米/小时和25千米/小时. 两船从相距232千米的两港同时出发相向而行,几小时后相遇?如果同向而行,甲船在后乙船在前,几小时后甲船可以追上乙船?【例9】甲、乙两船的船速分别为每小时22千米和每小时18千米.两船先后从同一港口顺水开出,乙船比甲船早出发2小时,如果水速是每小时4千米,问:甲船开出后几小时能追上乙船?【例10】某河上、下两埠相距45千米,每天定时有甲、乙两艘船用相同的船速分别从两埠同时出发相向而行.有一天甲船从上埠刚出发时掉下一物,此物浮于水面顺流而下,2分钟后与甲船相距0.5千米.问:预计乙船出发后几小时与此物相遇?【例11】有一个小孩不慎掉进河里,他抱住了一根圆木沿河向下漂流. 有3条船逆水而上,在对应着河岸上的A处同时与圆木相遇,但是都没有发现圆木上有小孩. 3条船的速度是已知的而且大小不同,当3条船离开A处一小时以后,船员们同时从无线电中听到圆木上有小孩,要求营救的消息,因此3条船同时返回,去追圆木. 当天晚上,孩子的父母被告知,小孩已在离A处6千米的下游B处,被救起. 问:是3条船中的哪条船首先来到孩子抱住的圆木处救起了孩子?【例12】某人畅游长江,逆流而上,在A处丢失一只水壶,他向前又游了20分钟后,才发现丢失了水壶,立即返回追寻,在离A处2千米的地方追到,则他返回寻水壶用了多少分钟?随堂练习:1.一条河上的两码头相距195千米,一只轮船在两码头间往返一趟下行需13小时,上行需15小时,求船速和水速.2.一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。
流水行船
(一)流水行船船在流水中航行的问题叫做行船问题。
行船问题是行程问题中比较特殊的类型,它除了具备行程问题中路程、速度和时间之间的基本数量关系,同时还涉及到水流的问题,因船在江、河里航行时,除了它本身的前进速度外,还会受到流水的顺推或逆阻。
行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。
船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺水而行的速度叫顺水速度;船从下游往上游逆水而行的速度叫逆水速度。
除了行程问题中路程、速度和时间之间的基本数量关系在这里要反复用到外,行船问题还有几个基本公式要用到。
顺水速度=船速+水速逆水速度=船速-水速如果已知顺水速度和逆水速度,由和差问题的解题方法,我们可以求出船速和水速。
船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2一、例题与方法指导例1. 船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?例2. 一艘小船往返于一段长120千米的航道之间,上行时行了15小时,下行时行了12小时,求船在静水中航行的速度与水速各是多少?例3. 甲、乙两港相距200千米。
一艘轮船从甲港顺流而下10小时到达乙港,已知船速是水速的9倍。
这艘轮船从乙港返回甲港用多少个小时?二、巩固训练1. A、B两港间相距360千米,一艘轮船往返两港需35小时,逆流航行比顺流航行多花了5小时。
另有一艘机帆船,静水中速度是每小时12千米,这艘机帆船往返两港要多少小时?2. 甲、乙两只小船在静水中速度分别为每小时12千米和每小时16千米,两船同时从相距168千米的上、下游两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时乙船追上甲船?3. 一艘轮船从上游的甲港到下游的乙港,两港间的水路长72千米。
已知这艘船顺水4小时能行48千米,逆水6小时能行48千米。
流水行船
流水行船基本概念:船速:船在静水的速度水速:水流的速度,或船不受任何动力,在水中漂流的速度。
顺水速度:船顺水而下的速度。
逆水速度:船逆水而上的速度。
基本关系式:顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2顺水路程=顺水速度×顺水时间逆水路程=逆水速度×逆水时间流水行船问题中的相遇与追及:(1)两船在流水中的相遇问题与在静水中及两车在陆地上的相遇问题一样,与水速没有关系。
(2)两只船在河流中同向运动,一只船追上另一只船所用的时间,也只与路程和船速有关,与水速无关。
在流水行船问题中还经常运用到一条性质:河流漂流物体速度=水流速度.例61、甲、乙两艘游艇,静水中甲艇每小时3.3千米,乙艇每小时2.1千米。
现在甲、乙两游艇于同一时刻相向出发,甲艇从下游上行,乙艇从相距27千米的上游下行,两艇于途中相遇后,又经过4小时,甲艇到达乙艇的出发地。
水流速度是每小时多少千米?分析:分两个步骤,第一是甲、乙的相遇问题;第二是甲艇的流水行船问题解题:甲艇与乙艇的相遇时间:27÷(3.3+2.1)=5(小时)甲艇走完全程的时间:5+4=9(小时)甲艇逆水的速度:27÷9=3(千米/小时)水流的速度: 3.3-3=0.3(千米/小时)2、某人畅流长江,逆流而上,在A处丢失一只水壶,他向前又游了20分钟后,才发现丢失了水壶,立即返回追寻,在离A处2千米的地方追到,则他返回寻水壶用了多少分钟?分析:分两个步骤,第一是人、壶各自的流水行船问题(壶的速度是水速)第二是人、壶的追击问题解题:设人的速度是V千米/小时,水的速度是X千米/小时人20分钟逆流游的路程:(V-X)×20水壶20分钟漂流的路程:X×2020分钟后,人、水壶相离的路程:(V-X)×20+ X×20= V×20人开始返回追击:(路程差=20分钟后,人、水壶相离的路程)V×20÷(V+X-X)=20(分)。
奥数行程问题——流水行程 练习题
行程——流水行船问题流水问题是研究船在流水中的行程问题,因此,又叫行船问题。
在小学数学中涉及到的题目,一般是匀速运动的问题。
这类问题的主要特点是,水速在船逆行和顺行中的作用不同。
流水问题有如下两个基本公式:(1)顺水速度=船速+水速(2)逆水速度=船速-水速这里,顺水速度是指船顺水航行时单位时间里所行的路程;船速是指船本身的速度,也就是船在静水中单位时间里所行的路程;水速是指水在单位时间里流过的路程。
公式(1)表明,船顺水航行时的速度等于它在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:(3)水速=顺水速度-船速(4)船速=顺水速度-水速由公式(2)可得:(5)水速=船速-逆水速度(6)船速=逆水速度+水速这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:(7)船速=(顺水速度+逆水速度)÷2(8)水速=(顺水速度-逆水速度)÷21、一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是多少?2、一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是多少千米每小时?3、一只船,顺水每小时行20千米,逆水每小时行12千米。
水流的速度是多少千米每小时?4、两个码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河的水流速度为4千米/小时,求逆水行完全程需多少小时?5、某船在静水中每小时行18千米,水流速度是每小时2千米。
七年级数学流水行船知识点
七年级数学流水行船知识点数学是一门重要的学科,能帮助我们培养逻辑思维和解决问题的能力。
而在七年级数学课程中,流水行船是一个重要的知识点。
本文将介绍流水行船的相关知识点,帮助大家更好地掌握该题型。
一、什么是流水行船?流水行船是指一个物体在水中静止或运动时,它头部所受到的水阻力比尾部大,从而使该物体有一个转动的趋势。
这个趋势被称为流水行船。
二、如何画流水行船示意图?在做流水行船的数学题目时,画出示意图可以更好地理解问题。
画图的步骤如下:1. 画出整个图形的边界,通常表示为一个矩形或平行四边形。
2. 画出船的位置和船的朝向。
3. 画出水面的流向。
4. 根据流向,画出水在船体不同位置处的流速和流向。
通常将水的流速用箭头表示,箭头的长度表示流速的大小。
5. 根据水对船体的作用力,画出船在水中的倾斜情况,这样就画出了流水行船的示意图。
三、如何求解流水行船的题目?在流水行船的数学题目中,通常需要求解船的航向、速度、朝向等问题。
解决这些问题需要掌握以下知识点:1. 垂直折线法:根据船在水中的倾斜情况,可以引入一个垂直折线,将船分成上下两部分,求出两部分的水阻力和速度,从而求出船的朝向和速度。
2. 图形变换法:当流速发生变化时,可以将整个图形进行等比例变换,从而方便求解船的速度和朝向。
3. 相对速度法:当船与水流的相对速度发生变化时,可以通过相对速度法求解船的航向和速度。
四、注意事项在进行流水行船的题目时,需要注意以下几点:1. 将船的面积看作一定值,船在水中的倾斜角度越小,所受到的水阻力就越小。
2. 在求解船的速度时,应该从整体和局部两个层面求解。
3. 当船的速度方向与水流的方向相同时,船的速度应该减去水流的速度;当速度方向相反时,应该将水流的速度加上船的速度。
总之,流水行船是七年级数学中的一个重要的知识点,通过掌握相关的知识和练习,我们可以更好地应对流水行船相关的数学题目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流水行船
1、某船顺水每小时行18千米,逆水每小时行14千米,那么此船在静水中的速度和水流速度各是多少?
2、一货船顺水航行每小时行20千米,逆水行驶每小时行14千米,那么此船在静水中的速度和水流速度各是多少?
3、一货船在静水中每小时行24千米,在水中逆水航行7小时,水流速度是每小时行4千米,则货船行了多少千米?
4、一艘船逆流而上,水流速度是每小时2千米,船在静水中的速度22千米,那么此船航行6小时行了多少千米?(路程)
5、一艘货船在一条河中顺流而下,3小时行63千米,船在静水中每小时行驶19千米,在这条河中,货船若逆水行驶3小时,能航行多少千米?
6、一船在静水中每小时航行24千米,船从A地到B地逆流而行,6小时行96千米到达B 地,那么这艘船从B地到A地需要多少时间?
7、甲、乙两码头相距560千米,货船由甲码头顺流而下20小时到达乙码头,如果水流速度是每小时4千米,那么该船返回甲码头需要多少时间?
8、A、B两码头相距288千米,一艘货船从A码头逆流而上,16小时到达B码头,已知船在静水中的速度是每小时行21千米,那么该货船返回A码头需要多少时间?
9、一艘货船在静水中的速度是每小时16千米,它从出发地逆流而上,12小时航行了96千米,这艘船返回出发地需要多少时间?
10、一条河上两个码头相距120千米,一船顺水每小时航行30千米,此船在两码头之间往返三次,求此船的平均速度?
11、一艘船航行于一段240千米长的江中,逆流而上要用24小时,顺流而下要用20小时,求船在静水中的速度和水流速度?
12、甲乙两港间的水路长280千米,一艘轮船从甲港顺流而下14小时到达乙港,返回时用了20小时到达甲港,求轮船在静水中的速度?
13、100千米长的水路,甲船顺流而下要用5小时,逆流而上要用10小时,求水流速度?
14、一艘船在河里航行,顺流每小时行18千米,已知船顺流航行2小时的路程正好是逆流航行3小时,求船在静水中的速度?
15、有一段河道长100千米,甲船顺流而下要4小时,逆流而上要10小时,如果乙船顺流而下要5小时,那么乙船逆流而上要用多少时间?。