铜矿床、铁矿床、金矿床工业类型
金矿参考资料床成因类型及勘探类型
金矿床成因类型及勘探类型一、岩金矿床工业类型根据现行《岩金矿地质勘探规范》的岩金矿床分类资料,综合整理为七个类型,详见表1。
矿床工业类型成矿作用产出位置近矿围岩矿体形态产状矿物共生组合矿化特征及伴生组分蚀变作用矿床规模矿床实例1 2 3 4 5 6 7 8 9 10 含金石英多金属硫化物脉型变质地台边缘、古隆起边缘、拗陷区或沉降带各类变质岩,主要为变质砂岩、板岩、千枚岩、片岩、角闪斜长片麻岩、斜长角闪岩、变粒岩等呈脉状、复脉、网脉带产出。
沿走向及倾向具分枝、复合膨胀、侧现、再现等现象。
以陡倾斜为主。
矿体呈脉状、透镜状、扁豆状、囊状产于脉体中(1)金-黄铁矿建造自然金、黄铁矿、毒砂、黄铜矿、石英、绢云母、方解石。
(2)金-多金属建造自然金、黄铁矿、黄铜矿、方铅矿、闪锌矿、石英、绢云母、方解石。
(3)金-砷建造自然金、毒砂、磁黄铁矿、辉钼矿、电气石、萤石、磷灰石、石贡、钾长石。
(4)金-钨锑建造自然金、白钨矿、辉锑矿、黄铁矿、石英、绢云母金常分段富集,矿化很不均匀,主要为富矿、。
伴生硫、砷、钼、铅、锌、钨、锑等硅化、黄铁矿化、绢云母化、绿泥石化、高岭土化、碳酸盐化小型大型特大型夹皮沟、金厂峪、小营盘、秦岭、沃溪、古袍、桃花等金矿含铁硅质岩型热液地台隆起边缘拗陷带镁铁闪石类、含钨质沉积岩、砂质泥质板岩类矿体常与铁矿层伴生产出。
多产于铁矿层下部或底板,其产状基本与地层一致或稍有交角。
矿体呈层状,似层状、透镜状、扁豆状致密磁铁矿、磁黄铁矿、毒砂、黄铁矿、辉钴矿、红砷镍矿、自然金、铁闪石、透辉石、柘榴石、绿泥石、石英等金分布很不均匀,一般品位较低。
常伴生钴、砷、硫、镍等硅化、黄铁矿化、闪石化、绿泥石化、绢云母化、钠长石化中型大型特大型东风山金矿碳酸盐地层中的石英方解石脉网脉型热液地槽基底隆起边缘拗陷区或准地台区碳酸盐分布地区层状灰岩、白云岩、含碳质板岩、大理岩硅化蚀变带、角砾岩带,受岩层不同层面、层间构造、岩层裂隙构造控制。
矿床学复习资料 - 2矿床学基础
矿床学基础基本概念一、矿床的组成 1、概念(复习矿床)矿床(mineral deposit)是指在地壳中通过地质作用形成的,其有用组分的质和量达到工业要求,在现有 经济技术条件下能被开采利用的地质体。
矿床的组成:矿石 脉石矿物 矿体脉石 矿 床 围岩 Ore bodyCountry rock 矿体Wall rock矿石矿物Wall rock Ore body Wall rockOre bodyWall rockOre body矿体与围岩是矿床的基本组成单位。
而且关系非常密切,根据其二者的形成先后关系矿床可分为三大类:同生矿床:指矿体与围岩是在同一地质作用下,同时或近于同时形成的矿床。
如岩浆分结作用形成的矿床、沉积作用形成的矿床。
后生矿床:矿体形成明显晚于围岩,二者是在不同的地质作用下形成的。
如热液作用形成的脉状矿床。
叠生矿床:指有用组分由同生期富集和后期有用组分的叠加再富集而形成的矿床。
因此,此类矿床既具有同生矿床特点又具有后生矿床特点,属复成因的矿床,如层控矿床。
二、矿体与围岩1、矿体:指由矿石和脉石组成的独立地质体,是矿床的主要组成部分,是开采和利用的主要对象。
矿体具有一定的形状(form / morphology)、大小和产状(mode of occurrence),并占有一定的空间位置,被围岩所包围。
(矿体=矿石+脉石)2、围岩:泛指矿体周围的岩石,其界线有的很清楚(如脉状矿体),有的呈渐变过渡(如由细脉浸染状矿石组成的矿体)。
3、母岩:指矿床形成过程中,提供成矿物质来源的岩石。
与矿床在空间上和成因上具有密切联系。
如由岩浆结晶分异作用形成的富镁质超基性岩中的铬铁矿矿床,富镁质超基性岩即是铬铁矿矿床的母岩。
围岩和母岩是两个完全不同的概念。
对某些矿床而言矿体的围岩就是母岩,如多数岩浆矿床;在另一些矿床中矿体的围岩与母岩无关,如多数热液形成的脉状矿床。
4、矿体形态:根据矿体在三度空间延伸情况,形状可分为三种最基本的类型:等轴状矿体、板状矿体、柱状矿体(通常称矿体形态为层状、似层状、脉状、囊状、不规则状等)等轴状矿体:矿体的三轴在三度空间呈大致均衡延伸。
矿床类型矿种和矿物组合表
这类矿床的形成与变质作用有关,通常在高温高压环境下,岩石中的有用组分 在适当的条件下聚集形成矿床。常见的变质岩型矿床包括石墨、石棉、蓝晶石 等。
火山岩型矿床
总结词
火山岩型矿床是指由火山活动形成的矿床,通常与火山岩有关。
详细描述
这类矿床的形成与火山活动密切相关,通常在火山喷发过程中,火山岩中的有用 组分在适当的条件下聚集形成矿床。常见的火山岩型矿床包括硫磺、铜矿、金矿 等。
铜矿在全球范围内分布较广,主要用于电气、建 筑、机械、交通等领域,对国民经济发展具有重 要作用。
铜矿资源的合理利用和保护同样重要,应加强资 源勘查和科技研发,提高资源利用率和经济效益 。
锌矿
锌矿是一种重要的有色金属矿产,主 要成分为锌的硫化物或氧化物。根据 矿物成分和成因,锌矿可分为闪锌矿、 菱锌矿、异极矿等类型。
复杂的矿物组合。
煤矿物组合的形成与沉积作用、变质作 用等密切相关。不同的地质环境下,煤 矿物组合的种类和丰度也会有所不同。
煤矿物组合的开采和利用对于能源、化 工等领域具有重要意义。不同种类的煤 矿物具有不同的物理和化学性质,因此 在开采和加工过程中需要根据实际情况
采取相应的工艺和技术。
THANK YOU
煤矿
煤矿是一种重要的能源矿产,主要成分为碳的氧化 物或含碳矿物。根据煤化程度和成因,煤矿可分为 褐煤、烟煤、无烟煤等类型。
煤矿在全球范围内分布广泛,是全球能源消费的主 要来源之一,对国民经济和人类生活具有重要意义 。
煤矿的开采方法有露天开采和地下开采,选煤工艺 也较为成熟。煤矿的开采和使用过程中应采取相应 的环境保护措施。
矿床类型、矿种和矿物组合表
目
CONTENCT
录
• 矿床类型 • 矿种 • 矿物组合
铜矿床类型
铜矿床类型一、铜矿床分类矿床是指由地质作用形成的,有开采利用价值的有用矿物聚集体。
地质矿业工作者为了研究矿床的成因和开发利用则进行矿床分类。
中国铜矿床分类有文献记载的最早是丁文江(1917)将我国铜矿床划分为五种类型,其中将斑岩铜矿归入浸染型铜矿,并提出山西中条山铜矿产于“前寒武纪结晶岩中”,属“低品位浸染状矿石”。
其后,朱熙人(1935)也讨论过我国铜矿类型和分布,并提出长江中下游和云南为我国铜矿有希望的产地。
新中国成立后,对铜矿床的分类做了进一步地研究。
1953年,孟宪民、宋叔和等研究了我国铜矿的成矿地质条件、分布情况,提出普查勘探方向,并按工业类型将我国铜矿床分成斑岩铜矿型、黄铁矿型、层状交代矿床、接触交代矿床、多金属含铜矿床、石英含铜矿脉、铜镍矿床、含铜砂页岩、自然铜矿型、钛钒矿脉、铜钴矿层等类型。
1957年,谢家荣对中国铜矿床进行成因分类,划分为岩浆矿床、表生矿床、变质矿床等三大类,进而又分6类22式。
1959年,郭文魁对我国铜矿工业类型及分布规律进行研究,并按各类型占有储量排列,提出中国铜矿工业类型划分为八大类:层状铜矿(东川式)、细脉浸染型铜矿、接触交代夕卡岩型铜矿、黄铁矿型铜矿、脉状及复脉带铜矿、铜镍矿床、含铜砂页岩、安山玄武岩中之铜矿等,八大类中又按矿石建造、金属组合、矿体形状及产状和矿化时代等又进一步划分若干亚类。
70年代以来,铜矿床的分类从单纯以产状、成因及工业类型划分,转向结合矿石商品价值、成岩成矿作用等综合研究进行铜矿床分类。
其中有代表性的,郭文魁于1976年将我国铜矿床分为六大类:①与海相火山作用有关的铜矿床,进一步分为块状硫化物型铜矿(含铜黄铁矿型铜矿)及条带状浸染状铜矿两个亚类;②与基性-超基性岩体有关的铜镍硫化物矿床;③与中酸性火山-深成杂岩或浅成侵入岩有关的斑岩铜矿;④与中酸性侵入岩有关的夕卡岩型铜矿;⑤陆相沉积作用为主的铜矿床;⑥与海相沉积作用有关的铜矿(层状铜矿)。
铁矿石的工业类型
铁矿石的工业类型钢铁工业是国民经济的几处工业,铁矿石是钢铁工业的主要原料。
根据铁矿物的不同,有工业价值的铁矿石主要有:磁铁矿、褐铁矿、赤铁矿、菱铁矿和混合型铁矿石(如赤铁矿—磁铁矿混合矿石、含钛磁铁矿石以及含稀土元素铁矿石等。
)这些铁矿石的质量优劣(如含铁量、含杂质及其他有害成分、浸染粒度、氧化程度以及可选性等)直接影响选矿指标。
因此,根据矿石性质(特别是可选性)的具体条件不同,对入选的铁矿石管理,首先必须明确对铁矿石的划分标准。
1.根据矿石中含铁量分类可将矿山划分为贫矿和富矿:(1)f富矿。
品位较高,可以直接进行冶炼。
富矿又可分为高炉矿和平炉矿,前者用于炼铁,后者用于炼钢。
(2)贫矿。
必须经过选矿提高品位后,才能进行冶炼。
近年来为了提高高炉的入炉品位,或为了其他专门用途,对含铁量不到60%或65%的富矿,也要经选矿处理。
2.根据矿石中脉石成分的不同分类铁矿石分为四类:酸性矿石、半自溶性矿石、自溶性矿石、碱性矿石。
对于自溶性矿石,由于冶炼时可不搭配熔剂,故矿石中含铁量可低一些。
酸性矿石冶炼时需配碱性熔剂,或与碱性矿石搭配使用。
碱性矿石冶炼时需配酸性熔剂或酸性矿石搭配使用。
半自熔性矿石冶炼时需配部分碱性熔剂或与碱性矿石搭配使用。
3.根据氧化程度不同有可将铁矿石分为:磁铁矿石、氧化矿石、混合矿石。
应当指出的是当铁矿石中具有含铁的脉石矿物时,铁别是含有二价铁的脉石矿物,将会影响Feo/TFe 的比值,这就会使该比值不能确切反映出铁矿石的氧化程度。
4.根据矿石中所含应回收的有价成分分类为:单一铁矿石、复合铁矿石。
我国的铁矿资源丰富,总储量名列世界前茅。
为我国钢铁工业的发展提供了优越的条件。
我国铁矿资源的特点是:矿山类型多、分布广、储量大。
但贫矿多,而富矿少。
按原矿品位45%划分贫矿和富矿,贫矿约占86%,富矿约占14%,另外,弱磁性铁矿石多,而磁铁矿石少,特别是复合型铁矿石多,单一铁矿石少。
根据上述的特点,我国有85%以上的铁矿石需要选矿处理后才能更好地利用,而且还要采用较复杂的选矿流程才能获得较高的选矿指标和有价成分的综合利用。
主要矿种元素的矿床工业指标及相关用途
各主要矿种的用途及矿床工业指标有色金属:铜矿床工业指标一般要求项目硫化矿石氧化矿石坑采露采边界品位(ωB)% 0.2~0.3 0.2 0.5 最低工业品位(ωB)% 0.4~0.5 0.4 0.7 矿床平均品位(ωB)% 0.7~1.0 0.4~0.6 最低可采厚度m 1~2 2~4 1 夹石剔除厚度m 2~4 4~8 2铅锌矿床工业指标一般要求项目硫化矿石混合矿氧化矿石Pb Zn Pb Zn Pb Zn边界品位(ωB)% 1.3~0.5 0.5~1 0.5~0.7 0.8~1.5 0.5~1 1.5~2 最低工业品位(ωB)% 0.7~1 1~2 1~1.5 2~3 1.5~2 3~6 矿床平均品位(ωB)% 5~8 6~9 10~12 最低可采厚度m 1~2 1~2 1~2 夹石剔除厚度m 2~4 2~4 2~4铝土矿床一般工业指标项目硫化镍矿氧化镍-硅酸镍矿原生矿石氧化矿石坑采露采坑采露采边界品位(ωB)% 0.2~0.3 0.2~0.3 0.7 0.7 0.5 最低工业品位(ωB)% 0.3~0.5 0.3~0.5 1 1 1 矿床平均品位(ωB)% 0.5~2 0.6~1 1.5 1.2最低可采厚度m 1 2 1 2 1 夹石剔除厚度m ≥2≥3≥2≥31~2钨矿床工业指标一般要求表锡矿床工业指标一般要求表项目硫化矿石露采坑采边界品位(ωB)% 0.03 0.03~0.05 最低工业品位(ωB)% 0.06 0.06~0.08 矿床平均品位(ωB)% 0.08~0.1 0.1~0.12 最低可采厚度m 2~4 1~2 夹石剔除厚度m 4~8 2~4黑金属:需进行选矿的铁矿石一般工业指标化工及轻工部门对锰矿石的质量要求化学工业上主要用锰矿石制取二氧化锰、硫酸锰、高锰酸钾,其次用于制取碳酸锰、硝酸锰和氯化锰等。
化工级二氧化锰矿粉要求MnO2含量大于50%(见下表),制硫酸锰时,Fe≤3%、Al2O3≤3%、CaO≤0.5%、MgO≤0.1%;制高锰酸钾时,Fe≤5%、SiO2≤5%、Al2O3≤4%。
各矿床类型主要特征简表
为酸碱、氧化复原地球化学障。
各矿床类型主要特征简表
四、高温岩浆热液型钨锡矿床
矿化特征
成矿地质体
成矿构造
成矿结构面
矿体及矿石特征
元素分带
蚀变特征
成矿阶段
流体特征
指与酸性、中酸性岩浆作用有密切关系的一类钨锡多金属矿,矿化类型包括斑岩型、云英岩型、伟晶岩型、矽卡岩型、变花岗岩型、石英脉型、破碎带蚀变岩型。空间上常与中低温热液型铅锌矿呈过渡关系。矿床常成群成带出现,以钨锡为主,共伴生有钼、铋、萤石、铜铅锌等矿产,岩浆岩型主要矿化为伲钽矿,部分出现钨、钼。
火山机构和次火山岩。
一般铁(铜)与中基性火山岩建造有关,基性系列为玄武岩和辉绿玢岩;中性系列为辉长闪长岩、闪长玢岩。
金(铜)矿床主要是中性岩,包括英安质-安山质火山岩、次火山岩。
银铅锌矿床主要是酸性岩,长石多为碱性长石。
陆相火山喷发盆地、火山机构、火山原生断裂构造、次火山岩体接触结构面和区域构造带叠加构造。为火山机构中次火山岩体侵位后热液流体成矿作用形成的成矿构造系统。断裂构造必须在火山热液流体影响范围内才能起作用。
原生金属硫化物主要有黄铁矿、黄铜矿、辉钼矿,少量斑铜矿、方铅矿、闪锌矿、辉铜矿、黝铜矿、磁黄铁矿、毒砂、自然金、辉锑铋矿、叶锑铋矿、碲银矿、碲金银矿等。金属氧化物常见磁铁矿、钛铁矿、赤铁矿、镜铁矿等,次生金属矿物包括褐铁矿、孔雀石、辉铜矿、铜蓝、蓝铜矿、赤铜矿、自然铜、钼华等。
原生矿石结构包括他形粒状、自形-半自形粒状结构、交代溶蚀结构、包含结构、固溶体别离结构等、矿石构造主要为细脉浸染状、浸染状、脉状、条带状、角砾状、块状、团块状构造。
接触交代型钨锡矿主要为矽卡岩和硫化物矿化,少数矿床岩体顶部出现云英岩型矿化。外带矽卡岩厚度一般小于100米,矽卡岩呈块状,常呈现W、Sn、Mo、Bi全岩矿化现象。硫化物矿化分布于矽卡岩外侧的大理岩或灰岩中,内带为铜锌或铜锡矿化,矿物组合为磁黄铁矿+铁闪锌矿+黄铜矿+黝锡矿〔+锡石〕;中带为铅锌锡矿化,矿物组合为黄铁矿+闪锌矿+方铅矿+毒砂〔+锡石〕;外带为铅锌银〔锑〕矿化,矿物组合为白铁矿+闪锌矿+方铅矿〔+辉锑矿〕。方解石、萤石为贯穿矿物。
矿床类型划分(1)
含金石英脉型
带型
石英硅化钾化蚀 变岩型 (东坪式)
斑岩型(团结沟式)
矽卡岩型
表 I.1 岩金矿床工业类型简表
表 I.1(续)
成矿地质特征
矿物共生组合
金属矿物
脉石矿物
形成于变质基底隆起区,区内以中 黄铁矿为主,次为黄铜矿、
酸性岩浆岩、混合岩、变质岩为主。 焦家式金矿受再生花岗质岩体与胶 东群接触带控制,矿化发育在主断 裂带下盘的角砾岩、碎裂岩、碎裂
✓岩浆型
—我国15%
✓夕卡岩型
—我国9.5%,占富铁矿的40%
✓热液型
—我国11%
基本概念
3. 矿床工业类型
铜矿床的主要工业类型
✓斑岩型
—世界>50%
✓火山-沉积块状硫化物型
—世界~22%
✓岩浆型铜镍硫化物矿床
—世界~ 2%,俄罗斯28%
✓矽卡岩型
—中国16.4%
✓沉积型
—世界~ 30%
基本概念
黄铁矿,次为黄铜矿、方铅 矿、自然金,少量闪锌矿、 辉铋矿、铜蓝、斑铜矿、辉 钼矿
石英、绿泥石、绿帘石,次 为方解石、钾长石、绢云母、 钠长石及少量黑云母、斜长 石、次闪石、阳起石、萤石
位于地台隆起的边缘拗陷区。含矿 地质体产于太古宙到元古宙的条带 状含铁硅质岩层中
磁铁矿、磁黄铁矿、黄铁矿、 毒砂、钛铁矿,少量自然金、 铁闪石、石英、镁铁闪石、 辉钴矿、黄铜矿、方铅矿、 碳酸盐矿物 闪锌矿
➢ (1)考虑确定同一种成矿地质体 ➢ (2)考虑采用同一种找矿预测工作方法。 ➢ (3)考虑地球化学特征的显著差异。
1.3.2 矿床 分类
表
3.1 成矿地质体研究
3.1.1 成矿地质作用/成矿地质体概念 3.1.2 成矿地质作用和成矿地质体类别 3.1.3 确定成矿地质体 3.1.4 确定成矿地质体空间位置 3.1.5 成矿地质体特征研究 3.1.6 成矿地质体和矿床关系研究 3.1.7 矿体剥蚀深度研究
金矿床的工业类型
书山有路勤为径,学海无涯苦作舟金矿床的工业类型对金矿床来说,根据其在工业上的使用价值和现实意义,特别是根据有关采矿、选矿、冶炼等矿石加工工艺方面的特征所划分的工业类型,称矿床的工业类型。
划分矿床的主要依据是:矿床的规模,矿体的形态、产状和围岩的性质,矿石的有益有害组分及含量,矿石的结构、构造、矿物共生关系等。
目前国内对金矿床工业类型的划分也无统一标准,一般参照“岩(砂)金地质勘规范”划分。
岩金(脉金)矿床 1.石英脉型金矿床是主要的岩金矿床类型,分布广,数量多,赋存条件多种多样,是我国当前黄金生产的重要工业类型。
围岩主要是变质岩和中-酸性岩浆岩。
石英脉常成群成带分,脉长由几米到几千米不等,厚度由几厘米至几十米不等,一般由零点几米至几米,沿断裂呈透镜状、脉状断续分布。
围岩蚀变因岩性不同而不同,常见的有硅化、绿泥石化、黄铁矿化、绢云母化等。
脉石矿物有石英、长石、云母、方解石、绿泥石、重晶石等;金属矿物以黄铁矿为主,其次是黄铜矿、方铅矿、闪锌矿、磁黄铁矿、毒砂、黑钨矿、白钨矿、磁铁矿等,金常与一定的硫化物有关,矿床规模大小不一,往往由几个矿床组成矿田,形成重要的产金地。
这种矿床按石英的形态又可细分为:石英单脉型金矿床;石英复脉型金矿床;石英网脉型金矿床。
2.破碎带蚀变岩型金矿床是我国近几年来发现的重要工业类型,其价值又次于石英脉型金矿床。
围岩是中-酸性岩浆岩、变质岩、混合岩。
矿体严格受断裂构造控制,既产于大的断裂带,也产于小的断裂带。
围岩蚀变以硅化为主,脉石矿物以石英、绢云母为主;金属矿物以黄铁矿为主,矿石多呈细脉浸染状,金多与硫化物连生。
构造发育程度高的矿体规模大,长几百米至千余米,厚几米至几十米,形态较简单,矿床多为中至较大型,如山东省招平断裂带的一些金矿就属这种类型的金矿床。
3.细脉浸染型金矿床又称斑岩型或火。
铁矿床主要工业类型简表
接 触 交 带 热 液 型 铁 矿 床
与 火 山 侵 入 活 动 有 关 的 铁 矿 床
与陆相火山- 矿床与富钠质的中性 侵入活动有 (中偏基性或中偏酸 关的铁矿床 性)、基性火山-侵 入活动有关。矿床在 火山机构中的产出位 置可分为:产于火山 碎屑岩中的火山沉积 矿床;产于玢岩体内 部、顶部及其周围的 火山岩接触带中的铁 矿床;玢岩体与周围 沉积岩接触带中的铁 矿床 矿床与富钠质的中性 与海相火山- (中偏基性或中偏酸 侵入活动有 性)、基性火山-侵 关的铁矿床 入活动有关。产于地 槽褶皱带中的海底火 山喷发中心附近,矿 体赋存与一套有火山 碎屑岩-碳酸盐岩-熔
主要矿物 金属矿物以钛磁铁矿为 主,粒状钛铁矿为次,并 含少量磁黄铁矿、黄铁矿 及其他钴镍硫化物。脉石 矿物有辉石、基性斜长 石、橄榄石、磷灰石等
单个矿体长数米、数十 致密块状、浸染 大体与岩浆晚期分异型类 米至数百米不等,厚度 状构造 似,但常含有较多的斜长 数米至数十米,延深数 石、辉石、纤闪石、阳起 十米至数百米。矿床规 石、磷灰石,岩体中局部 可形成单独的铁磷矿体 一般为中小型,少数为 大型。矿体一般长数十 米至数百米,少数达数 千米,延深几十米至数 百米以上,厚度几米至 以块状构造为主 ,浸染状为次, 亦有角砾状构造 ;具有交代和粒 状结构 硫化物以黄铁矿为主,假 象赤铁矿为次,有的矿区 出现较多菱铁矿;硫化物 以黄铁矿为主,部分矿区 有黄铜矿、方铅矿、闪锌 矿、辉钼矿等。少数矿床 中含有锡石和“胶态锡” 。脉石矿物以透辉石、石 榴子石为主,角闪石、碳 酸盐矿物等次之。有的矿 区脉石矿物含蛇纹石较多 矿石矿物以磁铁矿、假象 赤铁矿、赤铁矿为主。脉 石矿物有透辉石、阳起石 、磷灰石、碱性长石、黄 铁矿及硬石膏等
矿体形态受地形和 一般小型,也有大型矿 构造影响,呈不规 床 则或扁豆状 矿体呈层状或似层 主矿体长2570m,宽460 状 m,最大垂厚430m
金属矿床参考工业要求及工业指标实例
0.7
1.0
1.0
2.0
1
2
锡铁山
0.5
1.0
1.0
3.0
1
2
三、锡矿
一般参考工业指标和工业指标实例见表7、表8。
表7锡矿床一般参考工业指标
矿床类型
边界
品位Sn/%
工业
品位Sn/%
可采
厚度/m
夹石剔
除厚度/m
备注
原生锡矿床
0.1~0.2
0.2~0.4
0.8~1
2
地下开采的原生锡矿,厚度小于0.8m时应考虑用米百分值指标
0.7
1.0
1.2
2
水口山
0.5
0.8
0.7
1.0
1
4
石灰岩中的
交代型铅锌矿床
凡口
0.8
1.0
1.0
1.5
1
2
关门山
0.5
0.7
1.0
2.0
1
2
层控型铅锌矿床
兰坪(金顶)
0.3
0.8
1.5
3
1~1.5
3~4
厂坝
0.5
0.8
0.7
1.2
1
2
栖霞山
0.5
0.8
1.0
1.0
1
2
充填型脉状铅锌矿
桃林
0.5
1.0
可采矿度
/m
夹石剔除厚度/m
备注
河南某银矿床
独立银矿床
50
120
伴生铅锌
广西某含金属的银、金矿床
单一的银矿床
50
150
金、银伴生矿床
50(Au3)
铜矿床的主要工业类型
一、斑岩铜矿1、成矿地质特征:产生在各种斑岩(花岗闪长斑岩、闪长斑岩、斜长花岗斑岩等)岩体及其周围岩层中2、常见金属矿物:以黄铜矿为主,少量辉铜矿、斑铜矿、黄铁矿、辉钼矿等3、矿体形状:层状、似层状、空心筒状、巨大透镜体等4、规模及品位(质量分数):中、大型至巨大型,品位一般偏低5、伴生组分:钼、硫、金、银、铼、铅、锌、钴等6、矿床实例:江西德兴富家坞铜厂,西藏玉龙,黑龙江多宝山,山西铜矿峪,内蒙古乌努格吐等二、矽卡岩型铜矿1、成矿地质特征:沿中酸性侵入岩和碳酸盐类岩石接触带的内外或离开岩体沿围岩的岩层产出2、常见金属矿物:以黄铜矿、黄铁矿、磁铁矿、磁黄铁矿为主,少量辉钼矿、辉铜矿、方铅矿、闪锌矿、白钨矿、锡石等3、矿体形状:以似层状、透镜状、扁豆状为主,还有囊状、筒状、脉状等4、规模及品位(质量分数):大、中、小型均有,品位一般〉1%5、伴生组分:铁、硫、钨、钼、铅、锌、锡、铍、镓、铟、锗、镉、金、银、硒、碲、铊、铼、钒、铂族6、矿床实例:安徽铜官山,湖北铜录山,江西永平、城门山,辽宁华铜,黑龙江弓棚子,河北寿王坟三、变质岩层状铜矿1、成矿地质特征:在变质岩(白云岩、大理岩、片岩、片麻岩等)中沿层产出2、常见金属矿物:以黄铜矿、斑铜矿、黄铁矿为主,少量辉铜矿、辉砷钴矿、方铅矿、闪锌矿、辉钼矿、磁铁矿等3、矿体形状:层状、似层状、透镜状、扁豆状4、规模及品位(质量分数):大、中型为主,品位一般大于1%5、伴生组分:硫、铅、锌、砷、钼、镍、钴、金、银、硒、铋、铂族6、矿床实例:云南东川汤丹、易门狮山、三家厂,山西中条胡家峪四、超基性岩铜镍矿1、成矿地质特征:产于超基性岩(纯橄榄岩、辉橄岩、橄辉岩等)岩体的中、下部或分布在脉状岩体中2、常见金属矿物:黄铜矿、方黄铜矿、磁黄铜矿、镍黄铁矿、紫硫镍铁矿等3、矿体形状:似层状,不连续大透镜状、大脉状4、规模及品位(质量分数):大、中、小型均有,品位一般小于1%5、伴生组分:铂族、钴、金、银、硒、碲等6、矿床实例:甘肃金川,吉林磐石红旗岭,四川力马河,云南金平,新疆克拉通克、黄山五、砂岩铜矿1、成矿地质特征:在红色砂岩中的灰至灰绿色砂岩(浅色砂岩)中沿层产出2、常见金属矿物:以辉铜矿为主,少量斑铜矿、黄铜矿、自然铜、黄铁矿、方铅矿等3、矿体形状:似层状、扁豆状、透镜状4、规模及品位(质量分数):中、小型为主,品位大部分大于1%5、伴生组分:硫、铅、银、钼、钨等6、矿床实例:云南大姚六直、郝家河,湖南车江,四川大铜厂六、火山岩黄铁矿型铜矿1、成矿地质特征:产于变质火山岩(石英角斑岩、细碧岩)中2、常见金属矿物:以黄铜矿、黄铁矿为主,其次辉铜矿、黝铜矿、铜蓝、方铅矿、闪锌矿、磁黄铁矿、磁铁矿等3、矿体形状:透镜状、大小不等的扁豆状,层状等4、规模及品位(质量分数):大、中、小型均有,品位一般1%5、伴生组分:硫、铅、锌、钼、金、银、砷、硒、碲、铟、镉、铊、镓、铋、贡等6、矿床实例:甘肃白银厂,青海红沟,云南大红山,河南刘山岩七、各种围岩中的脉状铜矿1、成矿地质特征:产于各种岩石(侵入岩、喷出岩、变质岩、沉积岩)的断裂带中,倾斜常陡2、常见金属矿物:以黄铜矿、斑铜矿、黄铁矿为主,其次有辉钼矿、闪锌矿、方铅矿、黝铜矿等3、矿体形状:板状、脉状、复脉带4、规模及品位(质量分数):中、小型,品位一般大于1%5、伴生组分:硫、铅、锌、金、银、钨、钼、钴等6、矿床实例:安徽穿山洞、铜牛井,江苏铜井,湖北石花街,吉林二道羊岔。
主要金属矿成矿规律
古元古代不同类型铁矿床产出特点对比
成矿构造环境 类型 浅海相沉积 海相火山沉 积 沉积受变质型 与海底洼地有 关的火山岩沉 积变质热液改 造型(简称火 山沉积型) 粘土-硅质岩建造 中酸性火山岩(变粒 岩)碳酸盐-铁硼建 造 磁铁矿-绿泥石-石英 硼镁铁矿-稀土-磁铁 矿-黄铁矿(铀) 浪子山组 里尔峪组 灵山寺式 翁泉沟式 建造类型 矿石矿物共生组合 地层层序 代表矿床
表16
地层顺序 上鞍山群 樱桃组
鞍山群各组地层中条带状铁矿床特征
中鞍山群 大峪沟组 茨沟 组二 段 茨沟组一段 下鞍山群 通什村组 城子疃组
变质相
绿片岩相—低 角闪岩相
主要为角闪岩相
角闪岩—麻粒岩相
主要岩石类型
绢云母一白云 母石英绿泥片 岩、千枚岩、 二云母片岩、 黑云变粒岩
细粒黑云变粒岩、斜长角闪岩、云 母片岩、石榴绿泥片岩
太古代:鞍山式条带状铁矿;元古代:灵山寺式、翁泉沟式、杨林式、大安口式、仰 山式等铁矿; 小房身式铁矿产出青白口系钓鱼台组石英岩、南芬组紫色页岩下部 ;四海式铁矿产于蓟县系铁岭组;延庆式铁矿产于与铁岭组呈整合接触的下马岭组。 另外,还发现有基性岩浆型铁矿及矽卡岩型铁矿,但规模较小。岩浆热液型、与火山侵入活动有关的铁矿不发育。
金属矿床找矿
金属矿产分类:
黑色金属矿产: 铁、锰、铬、钛、钒 有色金属矿产: 铜、铅、锌、钼、镍、钴、钨、锡、锑、铋、汞 (轻金属矿产 :铝、镁) 贵金属矿产 :金、银、铂族金属(铂、钯、铑、铱、钌、锇) 稀有金属矿产:钽、铌、锂、铍、铷、铯、锆、铪、锶 稀土金属矿产:钪、钇和镧系元素总称。镧系元素:镧、鈰、镨、 钕、钷、钐、铕;钆、铽、镝、钬、铒、铥、镱、镥、钇。 稀散元素矿产: 锗、镓、铟、铊、铼、镉、钪、硒、碲 放射性金属矿产: 铀、钍
矿产一般工业指标
目录一、冶金、化工石灰岩及白云岩、水泥原料矿床 (1)二、岩金矿床及其伴生组分 (3)三、铜、铅、锌、银、镍、钼矿床 (4)四、硫铁矿床 (9)五、高岭土、膨润土、耐火粘土矿床 (11)六、钨、锡、汞、锑矿床 (13)七、盐湖和盐类矿产 (18)八、磷矿 (20)九、砂矿(金属矿产) (22)十、玻璃硅质原料、饰面石材、石膏、温石棉、硅灰石、滑石、石墨矿 (24)十一、重晶石、毒重石、萤石、硼矿 (31)十二、铝土矿、冶镁菱镁矿 (35)十三、铁、锰、铬矿 (37)十四、煤矿 (41)十五、稀有金属矿产 (42)十六、稀土矿产 (45)十七、铀矿 (50)矿产一般工业要求汇编(据新版规范附录资料汇编)一、冶金、化工石灰岩及白云岩、水泥原料矿床(DZ/T0213—2002)1、黑色冶金熔剂石灰岩化学成分一般要求类别品位界限化学成分质量分子数%CaO CaO+MgO MgO SiO2P S石灰岩边界品位≥48 ≤3.0 ≤4.0 ≤0.04 ≤0.15 工业品位≥50 ≤3.0 ≤4.0 ≤0.04 ≤0.15白云质灰岩(高镁石灰岩)边界品位≥49 ≤8.0 ≤4.0 ≤0.03 ≤0.12 工业品位≥51 ≤8.0 ≤4.0 ≤0.03 ≤0.122、有色冶金熔剂、电石、制碱石灰岩化学成分一般要求品位界限化学成分质量分子数%冶金熔剂石灰岩电石石灰岩制碱石灰岩CaO MgO SiO2CaO MgO SiO2R2O3P S CaCO3MgO 酸不溶物R2O3边界品位≥50 ≤1.5≤2.0≥52 ≤1.0≤1.0≤1.0≤0.06≤0.1≥88≤1.9≤3.0≤1.0工业品位≥53 ≤1.5≤2.0≥54 ≤1.0≤1.0≤1.0≤0.06≤0.1≥90≤1.9≤3.0≤1.03、耐火材料衬炉用、熔剂用白云岩化学成分一般要求品位界限化学成分质量分子数%耐火材料炉衬用白云岩熔剂用白云岩MgO Al2O3+Fe2O3+Mn3O4+SiO2其中SiO2MgO Al2O3+Fe2O3+Mn3O4+SiO2其中SiO2边界品位≥18 ≤3.0 ≤1.5 ≥15 ≤10 ≤4 工业品位≥20 ≤3.0 ≤1.5 ≥16 ≤40 ≤44、冶金用石灰岩粒度要求用途粒度范围mm最大粒度mm允许波动的范围 %上限下限烧结≤3 ≤6 ≤10炼铁15-60 ≤80 ≤10 ≤65、冶金用白云岩粒度要求粒度mm 块度(mm)限制,所占比例(%)0-5 最大不大于6,大于5的不大于5%5-20 最小不小于3,小于3的不大于10%;最大不大于25,大于20的不大于5%10-40 最小不小于8,小于10的不大于10%;最大不大于45,大于40的不大于5%40-80 最小不小于30,小于40的不大于10%;最大不大于100,大于80的不大于10% 30-100 最小不小于20,小于30的不大于10%;最大不大于120,大于100的不大于10%6、水泥用石灰质原料矿石化学成分一般要求类别化学成分质量分子数%CaO MgO K2O+Na2O SO3fSiO2石英质燧石质Ⅰ级品≥48 ≤3 ≤1.6 ≤1 ≤6 ≤4 Ⅱ级品≤45 ≤3.5 ≤0.8 ≤1 ≤6 ≤47、粘土质、硅质原料矿石化学成分一般要求类别化学成分粘土质原料硅质原料硅酸率(SM)铝氧率(AM)MgO K2O+Na2O SO3SiO2MgO K2O+Na2O SO3一类≥3~4 1.5~3.5≤3% ≤4% ≤2% ≤80% ≤3% ≤2% ≤2% 二类2~<3 不限注:SM=ω(SiO2)/ω(Al2O3+Fe2O3),AM=ω(Al2O3)/(Fe2O3)注:当采用预热器窑和预分解窑时,要求水泥石灰质原料、粘土质原料、硅质原料中氯质量分数不大于0.015%。
铜、金、钼、铅、锌矿床主要类型以及找矿标志
铜、金、钼、铅、锌矿床主要类型以及找矿标志。
(附铜、铅、锌、钼、金主要金属矿物特征及鉴定方法)目录一、铜矿床主要类型及找矿标志(一)斑岩铜矿床(二)矽卡岩型铜矿床(三)火山岩黄铁矿型铜矿床(四)脉状铜矿床(五)沉积型铜矿床二、金矿床类型及找矿标志(一)砂金矿床(二)含金石英脉矿床(三)火山岩、次火山岩金矿床(四)含金砾岩型金矿床(五)铁帽型金矿床(六)卡林型金矿床三、钼矿床类型及找矿标志(一)斑岩型钼矿床(二)矽卡岩型钼矿床(三)石英脉型钼矿床四、铅锌矿床类型及找矿标志(一)矽卡岩型铅锌矿床(二)碳酸盐岩层控制铅锌矿床(三)热液脉状铅锌矿床(四)黄铁矿型铅锌矿床一、铜矿床主要类型及找矿标识铜的主要矿物:自然界中含铜矿物的有170种,但最常见的有:自然铜、黄铜矿、斑铜矿、铜蓝、辉铜矿、赤铜矿、孔雀石、蓝铜矿、黑铜矿、胆矾等等。
还有黝铜矿、砷黝铜矿、硫砷铜矿。
(一)斑岩铜矿是目前世界铜矿中最重要的矿床类型。
其特点是:规模大、埋藏浅、品位低一硫化矿石为主,易采易选,金属回收率高。
因而成为备受重视的重要的铜矿资源。
在我国斑岩铜矿储量居第一。
与斑岩铜矿成矿作用有关的主要是陆相火山作用和侵入作用。
有关的侵入岩主要是属钙碱性系列的中—酸性浅成和超浅成相岩石。
如石英二长斑岩。
石英闪长斑岩等。
围岩蚀变具分带性。
由外向内为青盘岩化带、泥化带、绢英岩化带(有人称千枚岩化带),中心为钾长石化带。
铜矿化主要是在绢英岩化带和钾长石化带。
矿体主要产于侵入体的内外接触带中。
矿体常受侵入体的形态和产状以及环带状裂隙等所控制。
铜矿化以细脉侵染状矿石为特征。
金属矿物主要为黄铜矿、斑铜矿、黄铁矿、辉钼矿等。
矿石品位较低,一般为0.4—0.8%,高者达1%以上,但次生富集带可达1—2%。
伴生元素有金和钼等。
斑岩铜矿模式有:石英—二长石模式、闪长岩模式、正长岩模式。
找矿标志:1.寻找母岩和围岩:花岗闪长斑岩、钠长斑岩、二长斑岩是重要的成矿母岩。
铜矿床类型、特征及资源评价
火山岩型铜矿床
总结词
火山岩型铜矿床是一种较为特殊的铜矿床类型,主要形成于火山岩地区,具有品 位较高、规模较小、埋藏较深的特点。
详细描述
火山岩型铜矿床通常形成于中新生代的火山岩地区,由火山岩浆活动和后期的热 液作用所形成。该类型铜矿床的品位较高,但规模较小,埋藏较深,开采难度较 大。在全球范围内,火山岩型铜矿床的资源量相对较少。
矿床类型之一。
砂页岩型铜矿床
总结词
砂页岩型铜矿床是一种较为常见的铜矿床类型,主要形成于 沉积岩环境中,具有分布广泛、品位中等、规模较大的特点 。
详细描述
砂页岩型铜矿床通常形成于古生代的沉积岩环境中,由含铜 砂页岩和页岩经过变质作用和后期改造而成。该类型铜矿床 的品位通常在1%左右,分布广泛,规模较大,是全球重要的 铜矿床类型之一。
评价原则
科学性、客观性、实用性、综合性。
评价内容与指标
评价内容
铜矿床地质特征、矿石质量、开采条 件、经济意义等。
评价指标
资源量、品位、储量、采选能力、预 期效益等。
资源潜力评价
资源潜力分类
大型、中型、小型铜矿床。
资源潜力评价方法
地质类比法、统计分析法、成矿规律研究等。
资源潜力评价结果
为铜矿资源开发提供决策依据。
不同类型铜矿床的成矿时 代有所不同,但总体上主 要集中在中新生代。
成矿环境
铜矿床的形成与特定的地 质环境密切相关,如板块 俯冲带、陆内造山带和陆 表海沉积盆地等。
成矿物质来源
铜的成矿物质来源多样, 既可以是岩浆岩,也可以 是沉积岩或变质岩。
03
铜矿资源评价
评价方法与原则
评价方法
地质分析法、经济分析法、统计预测法等。
古生代的矿物宝藏
古生代的矿物宝藏古生代是地球历史上的一个重要时期,它持续了将近4亿年,从约4.6亿年前到2.5亿年前。
在这个时期,地球上发生了许多重要的地质事件,包括大规模的地壳运动、拼合和裂解、火山活动以及岩浆侵入等现象。
这些地质事件为各种矿物宝藏的形成提供了丰富的条件。
本文将重点介绍古生代的矿物宝藏。
一、金属矿床1. 铁矿床古生代是铁矿床形成的重要时期。
早古生代时期,地球上发生了大规模的构造运动,造成了一系列的地壳变形和岩浆活动。
这些地质作用使得地壳中的铁元素富集,并形成了大型的铁矿床。
例如,古生代的瑞典北部地区发现了世界著名的铁矿石矿床——基尔矿床。
这些铁矿床对于古生代的经济发展和贸易活动有着重要的影响。
2. 铜矿床古生代的铜矿床主要分布在花岗岩岩浆活动带和盆地中。
大规模的火山活动和岩浆侵入为铜矿床的形成提供了有利条件。
例如,中国的四川盆地和云南地区就有丰富的古生代铜矿床。
这些铜矿床不仅为当地的冶炼和制造业提供了资源支持,也对于经济的发展和社会的进步有着积极的影响。
二、非金属矿床1. 煤矿床古生代的煤矿床是煤炭资源的重要来源之一。
煤矿床的形成主要与生物遗体的富集和保存有关。
在古生代的湖泊、河流和沉积盆地中,生物遗体经过长时间的埋藏和压实作用,形成了大规模的煤矿床。
例如,美国的阿巴拉契亚山脉地区就有大量的古生代煤矿床。
2. 盐矿床古生代的盐矿床广泛分布于世界各地,尤其是在沉积盆地和盐湖中。
古生代的海侵使得海水进入内陆盆地,并在随后蒸发的过程中形成了一系列的盐矿床。
这些盐矿床中富含的盐类资源对于冶炼、化学工业和食品加工等领域起到了重要的作用。
例如,中国的四川盆地就是一个重要的古生代盐矿床区。
三、稀有金属矿床1. 锂矿床古生代是锂矿床形成的重要时期。
由于古生代的构造运动和火山岩浆活动,地壳中的锂元素在地质过程中被富集。
锂矿床广泛分布于岩浆活动带和大规模的火山喷发区域。
今天,锂矿床中的锂资源对于新能源和电子工业有着重要的意义。
矿产勘查学复习资料
1、矿床成因类型的概念答:按照矿床的形成作用和成因划分的矿床类型2、矿床工业类型的概念答:在矿床成因类型的基础上,从工业利用的角度来进行的矿床分类3、我国铝土矿床、磷矿床、铁矿床、钮矿床、铜矿床、岩金矿床的工业类型各是如何划分的答:铁矿床:岩浆晚期铁矿床(岩浆晚期分异型铁矿床、岩浆晚期贯入式铁矿床)、接触交代一一热液型铁矿床、与火山一一侵入有关的铁矿床(陆相、海相)、沉积铁矿床(浅海相、海陆交替一湖相)、受变质铁矿床、风化淋滤型铁矿床、其他类型铁矿床(白云鄂博铁矿、石碌铁矿)。
铜矿床:斑岩铜矿床、矽卡岩型铜矿床、变质岩层状铜矿床、超基性岩铜锲矿床、砂岩铜矿床、火山岩黄铁矿型铜矿床、各种围岩中的脉状铜矿床。
磷矿床:硅质及硅酸盐型磷矿床、混合型磷矿床、碳酸盐型磷矿床。
钮矿床:海相沉积钮矿床、沉积变质钻矿床、层控铅锌钮矿床、风化钮矿床。
铝土矿床:沉积型、堆积型、红土型。
岩金矿床:破碎带蚀变岩型、含金石英脉型、斑岩型、矽卡岩型、角砾岩型、硅质岩层中的含金铁建造型、含金火山岩型、微细粒侵染型。
5、矿产勘查类型的概念,划分目的和划分依据概念:在矿体地质研究和对以往矿床勘查经验总结的基础上,按照矿床的主要地质特点及其对勘查工作的影响,将特点相似的矿床加以理论综合与概括而划分的类型,称矿床的勘查类型。
划分的目的:在于总结矿床勘查的实践经验,以便指导与之相类似矿床的勘查工作,为合理的选择勘查技术手段,确定合理的勘查研究程度及勘查工作部署提供依据。
划分依据:矿体规模的大小,主矿体形态的变化程度、主矿体厚度的稳定性、矿体受构造和脉岩的影响程度以及矿体中主要的有用组份的分布均匀程度等。
6、矿产勘查类型的划分原则追求最佳勘查效益的原则、从实际出发的原则、以主矿体为主的原则、类型三分,允许过度的原则、在实践中验证并及时修正的原则。
7、铝土矿床的勘查类型划分依据8、铁、钮、铭的勘查类型划分依据矿体的规模、矿体的形态复杂程度、构造复杂程度、矿床有用组份的分布均匀程度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿床学铁、铜、金矿床主要工业类型系别:地科专业:地质1201姓名:张闻翔学号:032120108中国地质大学长城学院2014年11月23日铜矿床主要工业类型1:斑岩铜矿含义及特征斑岩铜矿床通常是指与具有斑状结构的花岗岩类侵入体共生的浸染状、细脉浸染状和细脉状铜和钼—铜组分的富集体。
И.Г.帕夫洛娃提出了可以与其它内生矿床相区别的斑岩铜矿床10大特征:(1)具网状细脉浸染成矿特征;(2)主要金属矿物(黄铁矿、磁铁矿、黄铜矿、辉铜矿,在有些矿床中为斑铜矿、硫砷铜矿和挥铜矿)和与其伴生的非金属矿物(石英、绢云母、钾长石、黑云母、高岭石类矿物等)的成分稳定;(3)铜的平均含量在原生矿石中比较低(0.3—0.8%),而在氧化矿石中明显较高(达1—1.5%),而钼在原生氧化矿石中的分布都比较均匀(0.005—0.05%),在这种情况下,矿石中铜与钼的比值变化很大,形成一系列重要的铜、铜—金和铜—钼矿床;(4)矿化与以中性成分为主的斑岩侵入体(花岗闪长斑岩、石英二长斑岩),以及少数偏酸性(花岗斑岩、和偏基性的侵入体(闪长斑岩)有空间联系;(5)矿化或直接发生在斑岩侵入体中,或发生在紧靠侵入体的外接触带围岩——火山岩、侵入岩和变质岩中;(6)矿体发育在广泛出现热液蚀变岩的地带,蚀变岩石为绢云母—石英质、黑云母—钾长石质、泥质以及青磐岩型交代岩;(7)根据金属元素出现最大值①和主要共生的非金属矿物②,可用如下顺序写出矿体和热液岩中稳定分带性;① Fe3+一Mo(Cu)一Cu(Mo)一Cu(Ag)一Fe2+(Au)一Pb一Zn一(Au、Ag);②黑云母—钾长石,绢云母、石英,蒙脱石,高岭土,青磐岩;(8)矿床储量巨大,可保障矿石的大规模采挖,成本低廉并有露天采矿的可能性;(9)与氧化作用有关的富矿的出现,形成了覆盖较贫原生矿的次生硫化物富集带;(10)斑岩铜矿床形成于地槽褶皱区的不同发育阶段.既可随着地槽的岩浆作用在褶皱主期之前(在岛弧阶段)形成,又可在其后与造山阶段和活化阶段的斑岩侵入体和火山岩有关。
在许多斑岩铜矿床的现代分类中,利用了如下一些特征,不仅要考虑单个特征,而且还要考虑各种特征的组合:(1)所处大地构造和古构造的位置;(2)含矿岩浆建造及其所形成的含矿斑岩相的成分(3)含矿岩浆建造所侵入的地壳厚度和成分;(4)由R.H.西利托所划分的斑岩铜矿系统中矿体的产状(5)含矿岩浆岩体形成的深度,(6)是否存在角砾岩简;(7)主要矿石和台有掺入组分的矿石的成分;(8)金属矿的分带特征,(9))热液蚀变岩的成分及其分带性,(10)含矿侵入体及矿体体的形态特征。
时空分布斑岩铜矿在时间上主要集中分布于新生代,大约占59.5%,其次为中生代,大约占35%,中生代之前的超大型斑岩铜矿仅限于中亚-蒙古的古生代造山带和某些前寒武纪的克拉通造山带。
世界上90%的超大型斑岩铜矿集中在环太平洋带,特别是在东太平洋带的被动大陆边缘,太平洋西岸,作为超大型斑岩铜矿的仅有中国的德兴铜厂铜矿和印尼的格拉斯贝格。
近年来在中国西藏冈底斯成矿带和西南三江成矿带发现了驱龙、甲玛、多龙、普朗等超大型铜矿。
岩石学与地球化学特征岩石学:斑岩铜矿在空间上、时间上和成因上,主要与钙碱系列的斑岩侵入体密切相关,即与闪长玢岩-花岗闪长斑岩-石英二长斑岩-花岗斑岩-石英斑岩有关,特别是花岗闪长斑岩和石英二长斑岩占绝大多数。
斑岩体一般与安山岩和英安岩等钙碱性系列火山喷发活动有关。
侵入体主要是浅成、超浅成相,极少数为中深成相。
与斑岩铜矿有关的斑岩体,是受构造控制的被动侵位,而且斑岩体的出露面积不大,一般不超过10平方公里。
地球化学:斑岩体在地球化学方面的特点是:一般CaO+Na2O+K2O>Al2O3>Na2O+K2O(摩尔数),通常k2O>Na2O,锶的初始比值较小,一般为0.703~0.706,少数可到0.709(Sillitoe,1987;芮宗瑶等,1984;2004),而上地幔的现今的比值为0.704±0.002;富铂族元素(唐仁理等,1995),矿石硫化物的值变化范围窄(-0.5~5.5);平均值为0,地幔硫同位素虽然具有不均一性,但它的变化范围为-3~3(Chaussidon and Lorand, 1990);稀土模式为轻稀土富集型,铕异常不明显,总量多数较高,含矿斑岩的REE特征介于大洋玄武岩与地壳花岗质岩石,接近大洋玄武岩。
总的来说,斑岩铜矿的源区应该是以洋壳或上地幔的物质为主,并有地壳物质的混染。
含矿斑岩体有关围岩与斑岩铜矿有关的围岩主要有两类:一类为硅铝质岩—主要为千枚岩、片岩、片麻岩、中-酸性侵入岩或喷出岩、火山碎屑岩、泥质粉砂岩以及各种角砾岩等;另一类为碳酸盐岩—有石灰岩、白云岩及泥灰岩等。
共同的特点是硬、脆和碎,有利于矿液的运移和沉淀。
蚀变特征斑岩铜矿有其特征的蚀变组合及其分带形,俗称“大白菜模式”,由内到外是:钾化带(黑云母-钾长石带) →绢英带(绢云母-石英带) →泥化带→青磐岩带。
黑云母-钾长石带:钾长石的交代现象是一种阳离子交换反应;石英-绢云母带:此带围绕和部分叠加与钾化带上,由于它与泥化带往往赋存在内部钾化带和外部青磐岩带之间,故也称之为中间带。
其特点是钾长石和斜长石均绢云母化。
角闪石和部分黑云母也变成了绢云母、黄铁矿和白钛矿、金红石。
泥化带(高岭石-蒙脱石化):斜长石变化最为特征,靠近矿体的斜长石多蚀变成高岭石。
成矿构造背景从大地构造来说,斑岩铜矿主要位于板块边缘,也可产于内陆造山带。
从已有的资料来看,控制斑岩铜矿就位的主要地质因素是断裂—岩浆作用。
也就是说,斑岩铜矿是在张性构造环境下,成矿岩浆沿断裂通道上升形成的。
并且含矿岩体一般赋存在深断裂带的次级断裂或背(向)斜之中。
芮宗瑶等(1984)对中国40个斑岩铜矿进行了统计,发现57.5%受多组断裂交汇的控制,22.5%受两组断裂交切及褶皱的控制,12.5%受断裂旁侧的配套构造的控制。
未来研究方向斑岩铜矿床的研究虽然取得了许多重大成果, 但有些方面的研究还需加强。
如含矿斑岩岩浆的成因机制, 含矿岩浆中成矿物质的析离过程, 矿化分带机制, 脉体特征及成因机制, 斑岩铜矿床中物质演化、应力演化、蚀变矿化作用之间的成因关系等等。
此外, 斑岩铜矿床还要加强系统的成矿作用动力学研究, 它包括岩浆形成的动力学、岩浆侵位的动力学、岩浆结晶演化的动力学、蚀变与矿化作用动力学、应力演化的动力学、脉体形成的动力学和应力与化学反应藕合作用的动力学。
斑岩铜矿床中成岩成矿作用以及脉体的形成实际上是一复杂的动力学过程, 而耗散结构理论、协同论、浑沌学等复杂性科学正是研究复杂动力学过程的新理论。
借助这些理论可以更深刻地认识上述斑岩铜矿床研究中的一些间题, 这对斑岩铜矿床的、甚至整个矿床成因理论的研究均具有重要意义。
2:矽卡岩铜矿矽卡岩型铜矿指在中酸性- 中基性浸入岩类与碳酸盐(或其它钙镁质岩石) 的接触带上或其附近, 由含矿汽水溶液进行交代作用而形成的矿床。
矿石品位一般较富, 具有重要开采价值。
所以, 深化矽卡岩型铜矿成矿地质环境和成矿演化研究、系统总结找矿标志对于找矿地质勘查具有重要的实际意义。
矽卡岩铜矿的时空分布环太平洋成矿域矽卡岩铜矿主要分布在环太平洋成矿域及其外带。
在中国主要分布在以下几个构造单元:(1)下扬子坳陷带,以铜、铁(金) 型为主, 其次为铜、钼型, 如湖北铁山、铜录山、石头咀、铜山口、丰山洞, 江西的武山、城门山, 安徽的凤凰山、大团出、狮子山、铜官山、滁县等;(2) 滇东坳陷带,如云南个旧(铜、锡) ; (3) 华南褶皱系, 如广东石录、广西钦甲、湖南宝山、江西村前; (4) 燕山坳陷带(寿王坟) ; (5) 辽东台隆(垣仁) ; (6) 吉黑褶皱系(弓棚子) 等。
大型铜矿主要集中在下扬子坳陷带, 其它构造单元均为中、小型。
成矿时代, 环太平洋东带主要为中- 新生代(拉拉米期) ;西带内带为新生代, 西带外带在我国为中生代燕山期, 在俄罗斯为新生代。
特提斯成矿域在我国有与西藏玉龙斑岩铜矿共生的矽卡岩铜矿(新生代) 和滇中的红山铜矿(中生代)。
古亚州成矿域有中哈萨克斯坦地区的萨亚克、阿克格尔铜矿等。
我国有西天山喇嘛苏铜矿。
成矿时代均为海西期。
此外还有加拿大地盾东边的古生代褶皱区的马德莱娜(成矿时代为志留纪- 中泥盆世) ,海地的梅梅(成矿时代为晚白垩世) 铜矿及西班牙塞维利亚省的卡拉铜矿。
矽卡岩铜矿的成矿环境与形成条件岩浆岩条件有利于形成大型矽卡岩铜矿的岩浆岩, 主要为中酸性岩浆岩, 其岩性主要为钙碱系列的花岗岩—斜长花岗闪长岩—花岗闪长岩—石英闪长岩—闪长岩。
具有多期次活动特点, 常组成复式岩体。
总的来看, 大型矽卡岩矿床的岩体化学组成与同类岩石平均值比较, 钾、钠含量偏高(一般Na2O + K2O = 6.5%~9% ) , 镁、铁及钙的含量偏低, 并且铜的背景值相对较高。
如印尼的埃茨伯格指出, 个旧铜矿矿质可能部分来自于矿区发育的辉绿岩体。
与矽卡岩矿床有关的岩体多为小型侵入体, 如城门山为0.8km 2、武山为0.6km2、个旧新山只有0.318km2。
其形态的重要性依次为蘑菇状、箱状、锥状、枝叉状和层间岩墙状。
围岩条件有利于形成大型铜矿的围岩常为泥质岩, 白云质灰岩或碳质灰岩, 如中国南方矽卡岩铜矿围岩为含白云质灰岩。
在膏岩层和高硫层存在地区则更有利于成矿, 如长江中下游, 凡浸入或穿过蒸发岩层段或高硫层段(中石炭统黄龙组) 的岩浆岩则常有利于成矿。
围岩为由硅铝质蚀变形成的角岩的大型矽卡岩铜矿一般少见, 加拿大的马德莱娜铜矿属此类。
构造条件矽卡岩铜矿区发育断裂、裂隙、网脉、角砾和可渗透的岩层构成的成矿流体运移通道是不可缺少的。
矽卡岩铜矿的形成, 与区域和矿区的构造发育程度有关。
我国长江中下游, 区内褶皱和断裂特别发育。
如城门山铜矿位于长山—城门山背斜倾伏端北翼, 在EW 或NEE、NW、NE 或NNE 等多组断裂变汇处;武山矿床位于界道—大桥背斜倾伏端的南翼, 为NEE、NE、NW 等多组断裂交汇处;印尼的埃茨伯格位于褶皱带内, 断裂发育, 四组不同方向的断裂的破碎带提供了有利空间。
温度、深度和压力条件矽卡岩铜矿形成的温度范围很广, 以简单的矽卡岩化开始到矿化结束, 温度不断下降。
一般认为矽卡岩矿物形成的温度在650℃~ 300℃之间, 其中无水硅酸盐(进化矽卡岩) 650℃~400℃, 含水硅酸盐(退化矽卡岩) 450℃~ 300℃, 而金属矿物的形成温度一般在500℃~ 200℃之间。
矿床一般形成深度在1~ 4. 5km 之间。
压力一般为3×107~ 3×108Pa。