高考数学易错题解题方法大全(2)

合集下载

高三数学学习中的错题集锦与解题思路

高三数学学习中的错题集锦与解题思路

高三数学学习中的错题集锦与解题思路数学在高中阶段是一门重要的学科,也是许多学生感到困惑的科目之一。

高三阶段对于学生来说尤其重要,因为这一年是他们备战高考的关键时刻。

然而,在学习过程中,同学们免不了会遇到一些难以解答的数学问题,这就是所谓的错题。

为了帮助大家更好地理解和解决高三数学学习中的错题,本文将给出一些常见错题的集锦,并提供相应的解题思路。

1. 一次函数相关错题在解决一次函数相关的错题时,我们通常会遇到以下问题:(1)如何确定直线的斜率?答:直线的斜率可以通过计算两个点的坐标差值来求得。

设直线上两点为(x₁,y₁)和(x₂,y₂),则直线的斜率k可以表示为k=(y₂-y₁)/(x₂-x₁)。

例如,对于一条直线过点(2,3)和(6,4),我们可以计算斜率k=(4-3)/(6-2)=1/4。

(2)如何确定直线的解析式?答:通过已知直线上的一点和斜率,可以确定直线的解析式。

设直线的斜率为k,直线上一点的坐标为(x₁,y₁),则直线的解析式为y-y₁=k(x-x₁)。

(3)如何确定直线与坐标轴的交点?答:要确定直线与x轴的交点,只需令y=0,并解方程求得交点的x坐标。

同理,要确定直线与y轴的交点,只需令x=0,并解方程求得交点的y坐标。

2. 平面几何相关错题平面几何是高中数学中的重点内容之一,也是同学们容易出错的部分。

下面我们来看几个常见的平面几何错题及解题思路。

(1)如何判断两条直线是否平行?答:两条直线平行的条件是斜率相同。

若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁是否等于k₂即可,若相等则两条直线平行。

(2)如何判断两条直线是否垂直?答:两条直线垂直的条件是斜率的乘积为-1。

若已知两条直线的解析式为y₁=k₁x₁+b₁和y₂=k₂x₂+b₂,那么只需判断k₁与k₂的乘积是否为-1即可,若成立则两条直线垂直。

(3)如何判断一个点是否在直线上?答:对于已知直线的解析式为y=kx+b,若一个点(x₀,y₀)在该直线上,则满足该点的横坐标x₀代入方程后,等式成立,即y₀=kx₀+b。

高考数学各题型答题技巧

高考数学各题型答题技巧

高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

高二数学常见易错题解析与纠错方法

高二数学常见易错题解析与纠错方法

高二数学常见易错题解析与纠错方法在学习数学的过程中,我们常常会遇到一些易错题,这也是非常正常的。

然而,如果我们能够找到这些易错题的共性,并且能够有效地纠正我们的错误,那么我们就能更好地提高我们的数学成绩。

本文将对高二数学常见的易错题进行解析,并提出相应的纠错方法。

一、函数与方程1. 解析式与定义域在处理函数与方程的题目时,最容易出错的地方之一就是对解析式和定义域的理解和运用。

很多同学对于函数的解析式和定义域的概念把握不准确,从而导致答案出错。

为了避免这种错误,我们可以采取以下纠错方法:- 仔细阅读题目,了解函数的性质及其定义域的限制条件。

- 确认解析式是否符合定义域的限制条件,避免给出超出定义域的解。

2. 求解方程时的辅助线在求解方程的过程中,我们经常需要引入一些辅助线来简化运算或者帮助我们找到解。

然而,有些同学在运用这些辅助线时容易出错。

为了避免这种错误,我们可以采取以下纠错方法:- 确定引入辅助线的合适时机和方法,避免适得其反导致问题更加复杂。

- 在引入辅助线后,要仔细检查每一步的推导是否正确,避免出现计算错误。

二、向量与几何1. 向量的平行与垂直关系在处理向量问题时,判断向量的平行与垂直关系是一个常见的易错点。

许多同学容易忽略向量的性质,导致判断错误。

为了避免这种错误,我们可以采取以下纠错方法:- 清楚掌握向量平行与垂直的定义和判定条件。

- 在题目中引入平行与垂直关系的附加条件,以加强判断依据。

2. 几何图形的性质解题时,对几何图形的性质理解不到位也是一个常见的问题。

有时候,我们可能会忽略一些图形性质导致答案出错。

为了避免这种错误,我们可以采取以下纠错方法:- 熟悉常见几何图形的性质,掌握它们的定义、特点和定理。

- 在解题过程中,仔细观察图形,并需要推导时画图加以辅助。

三、概率与统计1. 概率运算的注意事项在处理概率问题时,我们需要进行一系列的概率运算。

然而,在进行运算时,有些同学容易忽略一些细节,导致结果不准确。

高中数学错集锦典型错误与纠正方法

高中数学错集锦典型错误与纠正方法

高中数学错集锦典型错误与纠正方法在高中数学的学习过程中,同学们常常会出现各种各样的错误。

这些错误如果不及时加以整理和纠正,很可能会影响到后续的学习效果和成绩提升。

本文将对高中数学中常见的典型错误进行归纳总结,并提出相应的纠正方法,希望能对同学们有所帮助。

一、概念理解不清导致的错误1、函数概念很多同学在理解函数的定义时,容易忽略定义域、值域和对应关系这三个关键要素。

例如,对于函数$f(x) =\sqrt{x}$,如果不明确其定义域为$x\geq 0$,就可能在计算中出现错误。

纠正方法:重新回顾函数的定义,通过大量的实例练习来加深对定义域、值域和对应关系的理解。

2、导数概念在学习导数时,部分同学会将导数的几何意义和物理意义混淆,或者对导数的运算规则掌握不熟练。

纠正方法:结合图像直观理解导数的几何意义,通过实际问题理解导数的物理意义。

同时,加强对导数运算公式的记忆和练习。

二、运算错误1、四则运算在进行加减乘除运算时,粗心大意导致的符号错误、漏项等问题较为常见。

比如在多项式乘法中,忘记乘以某项或者符号出错。

纠正方法:养成认真细致的计算习惯,做完题目后进行仔细检查。

2、分式运算分式化简和求值时,通分、约分错误以及忽略分母不为零的条件是常见的错误。

纠正方法:熟练掌握分式的基本性质和运算规则,做题时时刻注意分母的取值范围。

三、逻辑推理错误1、证明题在证明数学定理和结论时,推理过程不严谨,缺乏必要的步骤或者使用未证明的结论作为依据。

纠正方法:学习逻辑推理的方法和技巧,按照严格的证明步骤进行推理,多做相关的练习来提高证明能力。

2、数学归纳法使用数学归纳法时,归纳假设运用不当或者归纳步骤不完整。

纠正方法:深入理解数学归纳法的原理和步骤,通过典型例题掌握正确的使用方法。

四、图形问题错误1、立体几何在解决立体几何问题时,空间想象力不足,对图形的位置关系判断错误,或者计算体积、表面积时公式使用错误。

纠正方法:通过制作模型、观察实物等方式增强空间想象力,牢记立体几何的相关公式和定理。

高中数学易错题大汇总及其解析

高中数学易错题大汇总及其解析

【目录】一、导言二、易错题汇总及解析1. 二次函数的基本性质及应用2. 数列与数学归纳法3. 平面向量的运算及应用4. 不定积分与定积分5. 空间几何与三视图6. 概率统计及应用三、总结与展望【正文】一、导言数学作为一门基础学科,对培养学生的逻辑思维能力、数学建模能力和问题解决能力有着举足轻重的作用。

而在高中阶段,数学的难度也相应提升,很多学生容易在一些常见的易错题上犯错。

本文将对高中数学易错题进行大汇总,并给出详细的解析,希望能够帮助同学们更好地理解和掌握这些知识点。

二、易错题汇总及解析1. 二次函数的基本性质及应用(1)易错题案例:已知二次函数f(x)=ax²+bx+c的图象经过点(1,2),且在点(2,1)处的切线斜率为3,求a、b、c的值。

解析:首先利用已知条件列方程,得到三元一次方程组。

然后利用切线的斜率性质,得到关于a和b的关系式。

最后代入已知条件解方程组即可求得a、b、c的值。

(2)易错题案例:已知函数f(x)=ax²+bx+c的图象经过点a、b、c,求a、b、c的值。

解析:利用函数过定点的性质列方程,再利用函数在定点处的斜率为求得a、b、c的值。

2. 数列与数学归纳法(1)易错题案例:已知等差数列{an}的前n项和为Sn=n²,求an。

解析:利用等差数列的前n项和公式列方程,然后利用数学归纳法求得an的表达式。

(2)易错题案例:已知{an}是等比数列,且a₁=2,a₃=18,求通项公式。

解析:利用等比数列的通项公式列方程,再利用已知条件求出通项公式的值。

3. 平面向量的运算及应用(1)易错题案例:已知向量a=3i+4j,b=5i-2j,求a与b的夹角。

解析:利用向量的夹角公式求出a与b的夹角。

(2)易错题案例:已知平面向量a=2i+j,b=i-2j,求2a-3b的模。

解析:利用向量的运算规则,先求出2a和3b,然后再求它们的差向量,最后求出差向量的模。

高考数学中常见的易错知识点及解决方法

高考数学中常见的易错知识点及解决方法

高考数学中常见的易错知识点及解决方法高考数学是每个参加高考的学生必须面对的一门科目,而且数学成绩往往被认为是考生能否进入理想大学的重要标准之一。

多数学生都有很好的数学基础,但是在考试中却时常出现低分甚至失误现象。

这些出现的问题往往是由于一些常见的易错知识点造成的。

因此,了解高考数学中常见的易错知识点及解决方法就显得十分必要。

一、函数与解析几何中的易错知识点在高考数学中,函数与解析几何常常是被考查的知识点,而且实际上也是大部分同学最熟悉的知识点之一。

不过,还是会出现不少的错误点。

主要的易错知识点有:1、函数的零点和单调性。

许多学生考试中都容易把函数的零点或者单调性搞错。

为了正确理解和应用,必须深入理解函数的符号表、零点的概念,以及单调性所规定的条件。

2、解析几何中的直线和平面方程。

因为解析几何与平面几何关系密切,所以想要应对好这样的知识点,必须有很好地平面几何基础。

同时,对直线与平面的转化也要掌握。

在考试中,对方程的意义及构造清楚,能够活学活用,是完全掌握这一知识点的关键。

3、空间直线、平面和集合的误解。

由于学生在处理空间问题的过程中会更易犯发生错误,因此在处理时,必须首先清晰规划坐标系。

在后续处理中,必须注意直线、平面和集合的正确定义,特别是当定义体几何形状时,更需认真构思。

同时,学生应该在考前多模拟几组题目,尝试熟练掌握。

二、概率统计中的易错知识点概率统计是高中数学的最后一个知识模块,考点很多,容易出现失误。

以下为常见的易错知识点:1、概率的问题。

概率问题常常出现在高考试卷的第三部分中,包括抽样、事件、概率与数理统计这个部分。

当处理和运用概率时务必清楚和掌握概率的基础知识,了解实验的独立性和的合理性,再做题时注意分类讨论,做到心中有数。

2、估计和推断统计中的易错点。

在高考种,像正态分布、假设检验、置信区间等概念并不是完美易懂的,考生们考虑这些问题时,经常会犯错误,并且还有导致因果混乱的风险。

要在高考中获得好成绩,必须深入理解这些统计概念,活学活用,自信掌握。

高考数学大题与错题集的做题思路

高考数学大题与错题集的做题思路

高考数学大题与错题集的做题思路高考数学对于大部分考生来说都是比较难以掌控的,毕竟高考数学的难度和复杂度都是相当高的。

其中最考验学生的应该就是数学大题和错题集了。

那么如何才能在这些大题和错题中拿到高分呢?下面我将和大家分享一些做题思路。

1. 数学大题数学大题通常都是多项式、几何、三角函数、平面向量、立体几何等难度比较大的题目,因此在做题的过程中,首先要做的就是弄清楚题目的要求和方案,特别是图形题目要认真分析条件、图形比例、性质等,花时间理清楚各种关系。

在整理各种数据和思路的同时,还应该更加注重时间的掌控,毕竟数学大题较多,如果不能很好地分配时间,在试题上花费太多时间,还会导致其他题目的丢分。

2. 错题集错题集是高考数学复习的重点,不仅能帮助我们发现自己的疏漏和不足,还可以帮助我们找到自己的错题,并且从中学习和总结。

对于错题的学习,一定要从根本上找到问题的所在,弄清楚错解和对解的不同之处,然后在理解之后进行归纳和总结,通过不断练习巩固自己的知识点。

此外,为了更好地检测自己的学习效果,建议在复习的过程中做好错题集,不断总结自己的错题集,提高自己的学习效果和成绩。

3. 做题技巧在做高考数学试题的过程中,还有一些技巧也是需要掌握的。

例如:(1)多练习:王者荣耀里的名言就是:天赋决定上限,努力决定下限。

多练习可以帮助我们加深自己的理解和记忆,掌握更多的知识技巧,提高自己的应对能力和解题能力。

(2)巧用公式:高考数学中公式是我们解决大多数问题的基础,而对于不同的问题,我们还可以巧妙地运用公式,比如:金蝉脱壳、四边形面积公式、向量加法公式、三角函数基本公式等等,可以节省一定的时间和精力,更好地完成试题。

(3)分步骤解决问题:在解决具体的问题时,可以将问题逐一分解,先解决一个个小问题,然后再整合起来得出答案。

这样可以使问题变得更加清晰和简单,更容易解决。

(4)画图分析:高考数学涉及到的大多数是图形,因此在题目中,通过画出图像解决问题是非常重要的。

高考数学易错题解题方法大全

高考数学易错题解题方法大全

高考数学易错题解题方法大全(02)一.选择题【范例1】已知一个凸多面体共有9个面,所有棱长均为1, 其平面展开图如右图所示,则该凸多面体的体积V =( )A . 216+B . 1C .62 D .221+ 答案: A 【错解分析】此题容易错选为D ,错误原因是对棱锥的体积公式记忆不牢。

【解题指导】将展开图还原为立体图,再确定上面棱锥的高。

【练习1】一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为( )A .152πB .10πC .15πD .20π 【范例2】设)(x f 是62)21(x x +展开式的中间项,若mx x f ≤)(在区间⎥⎦⎤⎢⎣⎡2,22上恒成立,则实数m 的取值范围是( )A .[)+∞,0B .⎪⎭⎫⎢⎣⎡+∞,45 C . ⎥⎦⎤⎢⎣⎡5,45 D .[)+∞,5答案:D【错解分析】此题容易错选为C ,错误原因是对恒成立问题理解不透。

注意区别不等式有解与恒成立:max ()()a f x a f x >⇔>恒成立; min ()()a f x a f x <⇔<恒成立;min ()()a f x a f x >⇔>有解; max ()()a f x a f x <⇔<有解【解题指导】∵333623625)21()()(x x x C x f ==-,∴mx x ≤325在区间⎥⎦⎤⎢⎣⎡2,22上恒成立,即m x ≤225在区间⎥⎦⎤⎢⎣⎡2,22上恒成立,∴5≥m . 【练习2】若1()11nx -的展开式中第三项系数等于6,则n 等于( ) A. 4 B. 8 C. 12 D. 16【范例3】一只蚂蚁在边长分别为5,12,13的三角形区域内随机爬行,则其恰在离三个顶点距离都大于1的地方的概率为( ) A.54 B. 53 C. 60π D. 3π 答案:C【错解分析】此题容易错选为A ,错误原因是没有看清蚂蚁在三角形区域内随机爬行,而不是在三边上爬。

高考重要数学答题技巧归纳

高考重要数学答题技巧归纳

高考重要数学答题技巧归纳高中数学常考题型答题技巧1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。

具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。

②零点分段讨论法:适用于含一个字母的多个绝对值的情况。

③两边平方法:适用于两边非负的方程或不等式。

④几何意义法:适用于有明显几何意义的情况。

2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。

因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。

配方法的主要根据有:4、换元法解某些复杂的特型方程要用到“换元法”。

换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。

适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。

其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。

①因式分解型:(-----)(----)=0两种情况为或型②配成平方型:(----)2+(----)2=0两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。

即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。

11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。

解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。

高考数学答题技巧与套路精选

高考数学答题技巧与套路精选

高考数学答题技巧与套路精选高考数学答题技巧一、难题先跳过手热好得分周洁娴,毕业于华师一附中理科班,高考664分。

说到去年高考数学和理科综合,周洁娴仍心有余悸。

数学开考时不顺,她几道选择题拿不准,十几分钟后越做越慌。

她决定跳过这几题往后面做,没想到思路打开了,答题很顺利,之前拿不准的题也好上手了。

“我感觉脑袋也像机器,需要预热!”二、开头最易错回头可救分“基础题得分和丢分都很容易。

”去年毕业于武汉三中的黑马陈野介绍,越容易的题越要仔细。

陈野说,自己能超常发挥,很大程度因为考试时基础题得分高,特别是理科综合和数学两门。

做选填题时,无论题目多简单,都会保证做完后再检查一遍,确保能做的题目不出错。

“既然得不到难题分,一定要保证简单题不错。

”周洁娴回忆,考数学时,离交卷还剩10分钟,她开始回头检查。

结果重新算了算看上去不对劲的答案,发现真有错误,救回10多分。

三、时间很宝贵掐表做综合对于综合考试的时间,受访学生均认为,一定要学会合理分配时间。

周洁娴回忆,做综合试卷的物理部分时,最后一题有点难。

当时她做前面部分花的时间已超出预算,结果越做越急,无奈之下只得放弃物理最后一题。

好在自己做化学时挤出了一些时间,最后回头才完成物理这道压轴题。

毕业于武汉一中的黑马梁巾认为,综合科目的答题没必要刻意按照统一的答题模式,但最好分科进行,不交叉答题。

答题时,应先做自己最拿手的科目。

四、审题别偷懒用时别吝啬“不集中精力仔细审题,一不留神就丢分。

”去年全市理科状元,武汉三中学生徐懋祺以685分考入北大。

他建议考生,不要小看题干中的每个隐含条件和细节,审题一定要非常仔细。

“要留意题目的所有条件。

”毕业于武汉四中的黑马刘恋念说,物理题有时会给出很多物理量。

这时不妨把已知的物理量都圈起来,做题时如发现所给物理量没用,肯定是答题思路有问题,一定要重新思考。

“文科综合更是重在审题。

”毕业于武汉十二中的黑马佘晔介绍,文科综合里的选择题干扰项特别多。

高考数学最易混淆知识点及大题解题方法

高考数学最易混淆知识点及大题解题方法

高考数学最易混淆知识点及大题解题方法随着高考的临近,很多学生对数学成绩总体表现不错,但是对某些难点容易混淆,往往导致失分。

这篇文章将会介绍一些高考数学最易混淆的知识点,并提供解题方法,帮助学生在考试中避免犯错误,提高得分。

1. “导数”与“导函数”的关系在高考中,很多学生容易混淆“导数”和“导函数”的概念。

导数是一个函数在某一点处的斜率,而导函数是原函数的导数。

在解题的过程中,首先要明确这两个概念的区别,并熟悉它们之间的关系。

解题方法:1) 在理解“导数”和“导函数”概念的基础上,学生应该熟悉导数的计算方法,掌握导数的基本性质;2) 对于涉及导数和导函数混淆的题目,可以通过绘制函数图像、使用函数的符号表示来确定函数的导数和导函数,并进一步化简问题。

2. 反比例函数和比例函数在高考数学中,反比例函数和比例函数是常出现的题型,它们之间的区别容易被忽略。

在比例函数中,一个变量的增加导致另一个变量的增加,而在反比例函数中,一个变量的增加导致另一个变量的减少。

解题方法:1)在解决反比例函数和比例函数的问题时,首先要明确概念,并熟悉函数图像的形状。

2)要掌握基本的计算公式和性质,如当x为0时,反比例函数的值为无穷大,y与x的乘积为一定的常数等。

3. 向量运算在高考数学中,向量的基本概念、共线、共面、垂直等概念是必须掌握的,但是在应用向量做题时,很容易犯一些常见的错误,如错误的计算向量的模长、错误的计算向量的点积和叉积,以及误用向量的坐标等。

解题方法:1)在解决向量的问题之前,首先要熟悉向量的基本概念,掌握向量的点积、叉积、模长的计算方法,了解向量所代表的几何意义;2)在解题过程中,应该仔细审题,注意题目中的限制条件,例如向量共线、垂直等,避免犯低级错误;3)在解题时,可以根据题目中的信息绘制向量图,并结合几何意义进行思考,有时候通过画图可以更直观地解决问题。

4. 三角函数三角函数是高考数学考试的重要考点,但是在解题时很容易犯错误,比如在计算角度时忘记换算为弧度制、误认为三角函数值具有唯一性等。

高考数学错题答题方法

高考数学错题答题方法

高考数学错题答题方法整理错题集就是把自己平常和考试时做错过的题目抄下来,不仅要把正确的答案写上去,还要把错误的答案加上,然后分析做错的原因,是知识点没掌握,还是忽略了使用的条件范围,或者因为粗心计算错误。

数学的知识点繁多而且相对独立,考试前复习时总是不知道从哪里下手才好,回想一下好像自己基本原理都懂了,但考试要用到时却总是想不起来。

而错题集,就像一张药方,既有症状描述,还有对症下的药。

对比错题集,能够很快找到自己的不够,加以巩固,避免再犯同样的错误。

跌倒一次不可怕,可怕的是在同一个地方连续跌倒两次。

错题集的升级版就是不仅有错题,还有好题。

相信阅尽题海的同学都会对一些题记忆深入。

有的必须要全面细致的分类讨论,略微合计不周就会坠入陷阱;有的看似计算量庞大得吓人,其实反向思维,将答案代入其中也不过小菜一碟(这种状况在选择题中尤为特别);有的条件众多,刁钻古怪,不知道从何下手(如最后的附加题),其实放下畏惧,步步为营,也可以得到大部分的步骤分。

收集好题可以让你摸清出题者的思路和惯用的考查手法,识破其中的陷阱和伎俩。

其实不少同学已经有把错题集合起来再做一遍的习惯,但难能可贵的是保持。

错题集不仅适用于数学,也同样适用于政治、历史等其他学科。

它为你提供了一个知识的框架,提醒你考查的重点和自己尚存的缺点。

更重要的是,每个人的错题集都是独一无二的,它是属于你自己的武林秘笈。

2学好高一数学的方法调整好状态,控制好自我(1)坚持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才干保证考试时清醒。

(2)按时到位。

要求答在答题卷上,但发卷时间应在开考前5-10分钟内。

建议同学们提前15-20分钟到达考场。

限时答题,先提速后改正错误很多同学做题慢的一个重要原因就是平常做作业习惯了拖延时间,导致形成了一个不太好的解题习惯。

所以,提升解题速度就要先解决"拖延症'。

高考数学易错点整理及解题的方法技巧

高考数学易错点整理及解题的方法技巧

高考数学易错点整理及解题的方法技巧高考数学是一门需要深入理解和掌握的科目,但据统计,许多学生在高考数学考试中出现人人谈虎色变的现象,这大多数是因为考生对于数学知识的理解不够深入和考试技巧的不够熟悉。

为了能够在高考数学中取得优异的成绩,我们不仅要通过日常学习来深入了解数学知识,同时也要认真掌握各种解题的方法技巧, 这样才能在考场上应对自如,迎刃而解。

本文将从数学中易错的点及其解决方法,以及高考数学解题技巧这两个方面进行分析。

易错的点及解决方法1. 函数的单调性函数的单调性是高考数学中比较重要的一个知识点,很多同学在应对单调性问题时会出现混淆的情况。

通常来说,若函数在某一区间内的导函数始终大于等于0,则说明这个函数在该区间内单调递增;反之,若函数在某一区间内的导函数始终小于等于0,则说明这个函数在该区间内单调递减。

在解单调性维护描述时,同学们需要根据题目的要求,清晰地确定问题所在区间,并清晰的列出函数的导函数表达式,从而来判断函数的单调性。

2. 解不等式解不等式是考查高考数学的重点,因此在解题过程中经常会出现错误。

解不等式的关键是需要讲不等式转化为相等式,根据等式的性质来判断式子的解集。

在解题过程中,我们还需要注意到不等式的特殊情况,例如在乘方根式中,出现除0、无理根号、模值符号和绝对值符号等特殊情况,这些都需要我们灵活掌握,注重判断。

3. 几何题的画图在高考数学中,几何题占比较大的一个比例。

为了应对这种题目,我们需要注意几点,即清晰的画出几何图形并进行标注,根据要求选择出合适的定理,采用证明或利用巧妙的看图找切入点等方法。

高考数学解题技巧在平时学习中,我们不仅需要重视对于知识点的掌握,同时也需要注意各种具体的解题技巧,下面就针对这方面来进行分析。

1. 分段函数分段函数是高考数学中比较基础的知识之一,我们需要了解其定义及特点,并且在解题过程中灵活掌握分析函数的性质。

在一些问题中,函数以不同方式给出,我们需要根据题目的描述,对其分段处理,并确定下每一个分段的特征。

高考数学答题技巧方法及易错知识点

高考数学答题技巧方法及易错知识点

高考数学答题技巧方法及易错知识点高考即将来临,数学想得高分,要讲究方法技巧,不能盲目,今天小编在这给大家整理了一些高考数学答题的技巧及方法_高考数学易错的知识点,我们一起来看看吧!高考数学答题的技巧及方法1.调整好状态,控制好自我(1)保持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)按时到位。

今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。

建议同学们提前15-20分钟到达考场。

2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。

答题时,见到简单题,要细心,莫忘乎所以。

面对偏难的题,要耐心,不能急。

3.提高解选择题的速度、填空题的准确度数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。

选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。

填空题也是只要结果、不要过程,因此要力求“完整、严密”。

4.审题要慢,做题要快,下手要准题目本身就是破_这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。

找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。

答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。

5.保质保量拿下中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。

谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。

6.要牢记分段得分的原则,规范答题会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。

高考数学易错题型总结归纳

高考数学易错题型总结归纳

高考数学易错题型总结归纳高考数学是考查学生数学基础和解题能力的重要科目,常常有一些特定题型容易让学生犯错。

本文将总结归纳高考数学中常见的易错题型,并提供解题技巧和注意事项,帮助考生避免犯错,取得更好的成绩。

一、二次函数与一元二次方程二次函数和一元二次方程是高考数学中经常出现的重点内容。

在解题过程中,容易出错的地方主要有以下几个方面:1. 对二次函数的图像、性质和变换不熟悉。

考生应该牢记二次函数的标准形式,掌握对称轴、顶点坐标、开口方向等基本知识。

此外,需要熟悉二次函数的平移、伸缩等变换。

2. 不熟悉一元二次方程的解法。

考生应该掌握二次方程求解的基本方法,包括配方法、公式法等。

在实际解题中,要根据题目的要求和条件选择合适的方法,避免盲目套公式或者错误的求解方法。

二、数列与数列极限数列是高中数学中的重要内容,也是高考数学中常见的考点。

容易让考生犯错的地方主要有以下几个方面:1. 不熟悉数列的定义和性质。

考生应该掌握等差数列、等比数列的定义和通项公式。

另外,需要熟悉数列求和公式和极限的概念。

2. 不注意数列题中的条件和要求。

在解数列题时,考生常常忽略题目中给出的条件,或者没有满足题目要求的计算步骤。

因此,考生在解题时应该仔细分析题目要求,注意条件的运用。

三、平面向量与解析几何平面向量和解析几何是高考数学中的难点和重点,也是容易出错的地方。

考生容易在以下几个方面犯错:1. 平面向量的计算错误。

平面向量的乘法、加法、数量积等计算是解题的基础,考生应该熟悉向量的性质和计算规则,特别是在进行向量运算时要注意方向和模长的计算。

2. 解析几何的基本概念理解不清。

考生应该掌握平面直角坐标系和空间直角坐标系的建立方法,并了解直线、平面的方程和相关性质。

在解析几何题目中,考生要准确理解题目的要求和条件,运用相应的知识进行求解。

四、概率与统计概率与统计是高考数学中的复习重点,也是易错题型中的一部分。

容易让考生出错的地方主要有以下几个方面:1. 概率计算错误。

新高考专用备战2024年高考数学易错题精选专题02函数及其应用指对幂函数学生版

新高考专用备战2024年高考数学易错题精选专题02函数及其应用指对幂函数学生版

专题02函数及其应用、指对幂函数易错点一:对函数定义域、值域及解析式理解存在偏差(定义域、值域及解析式的求算)已知函数的具体解析式求定义域的方法法1:若()f x 是由一些基本初等函数通过四则运算构成的,则它的定义域为各基本初等函数的定义域的交集.法2:复合函数的定义域:先由外层函数的定义域确定内层函数的值域,从而确定对应的内层函数自变量的取值范围,还需要确定内层函数的定义域,两者取交集即可.函数解析式的常见求法法1:配凑法:已知(())()f h x g x ,求()f x 的问题,往往把右边的()g x 整理或配凑成只含()h x 的式子,然后用x 将()h x 代换.法2:待定系数法:已知函数的类型(如一次函数、二次函数)可用待定系数法,比如二次函数()f x 可设为2()(0)f x ax bx c a ,其中,,a b c 是待定系数,根据题设条件,列出方程组,解出,,a b c 即可.法3:换元法:已知(())()f h x g x ,求()f x 时,往往可设()h x t ,从中解出x ,代入()g x 进行换元.应用换元法时要注意新元的取值范围.法4:解方程组法:已知 f x 满足某个等式,这个等式除f (x )是未知量外,还有其他未知量,如1f x(或()f x -)等,可根据已知等式再构造其他等式组成方程组,通过解方程组求出 f x .分段函数第一步:求分段函数的函数值时,要先确定要求值的自变量属于哪一区间,然后代入该区间对应的解析式求值.第二步:当出现 f f a 的形式时,应从内到外依次求值.第三步:当自变量的值所在区间不确定时,要分类讨论,分类标准应参照分段函数不同段的端点。

结论:复合函数:一般地,对于两个函数()y f u 和()u g x ,如果通过变量,u y 可以表示成x 的函数,那么称这个函数为函数()y f u 和()u g x 的复合函数,记作(())y f g x ,其中()y f u 叫做复合函数(())y f g x 的外层函数,()u g x 叫做(())y f g x 的内层函数.抽象函数的定义域的求法:(1)若已知函数()f x 的定义域为[,]a b ,则复合函数(())f g x 的家义域由()a g x b 求出.(2)若已知函数(())f g x 的定义域为[,]a b ,则()f x 的定义域为()g x 在[,]x a b 时的值域.易错提醒:函数的概念①一般地,给定非空数集A ,B ,按照某个对应法则f ,使得A 中任意元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B 的一个函数.记作:()x y f x ,②函数的实质是从一个非空集合到另一个非空集合的映射.③函数表示法:函数书写方式为()y f x ,x D ④函数三要素:定义域、值域、对应法则.⑤同一函数:两个函数只有在定义域和对应法则都相等时,两个函数才相同.基本的函数定义域限制求解函数的定义域应注意:①分式的分母不为零;②偶次方根的被开方数大于或等于零:③对数的真数大于零,底数大于零且不等于1;④零次幂或负指数次幂的底数不为零;①定义域是指自变量的取值范围;②在同一对应法则∫下,括号内式子的范围相同;⑦对于实际问题中函数的定义域,还需根据实际意义再限制,从而得到实际问题函数的定义域.基本初等函数的值域①(0)y kx b k 的值域是R .④(0x y a a 且1)a 的值域是(0) ,.⑤log (0a y x a 且1)a 的值域是R.分段函数的应用分段函数问题往往需要进行分类讨论,根据分段函数在其定义域内每段的解析式不同,然后分别解决,即分段函数问题,分段解决.1.函数的单调性是对函数定义内的某个区间而言的。

【高考】高考数学易错题解题方法大全

【高考】高考数学易错题解题方法大全

【关键字】高考高考数学易错题解题方法大全(1)一.选择题【范例1】已知集合A={x|x=2n—l,n∈Z},B={x|x2一4x<0},则A∩B=()A.B.C.D.{1,2,3,4}答案:C【错解分析】此题容易错选为B,错误原因是对集合元素的误解。

【解题指导】集合A表示奇数集,集合B={1,2,3,4}.【练习1】已知集合,集合,则()A.B.C.D.【范例2】若A、B均是非空集合,则A∩B≠φ是AB的()A.充分不必要条件B.必要不充分条件C.充要条件D.即不充分也不必要条件答案:B【错解分析】考生常常会选择A,错误原因是混淆了充分性,与必要性。

【解题指导】考查目的:充要条件的判定。

【练习2】已知条件:,条件:,且是的充分不必要条件,则的取值范围可以是()A.;B.;C.;D.;【范例3】定义在R上的偶函数满足,且在[-1,0]上单调递增,设,,,则大小关系是()A.B.C.D.答案:D【错解分析】此题常见错误A、B,错误原因对这样的条件认识不充分,忽略了函数的周期性。

【解题指导】由可得,是周期为2 的函数。

利用周期性转化为[-1,0]的函数值,再利用单调性比较.【练习3】设函数f (x)是定义在R上的以5为周期的奇函数,若,,则的取值范围是()A.(-∞, 0)B.(0, 3)C.(0, +∞)D.(-∞, 0)∪(3, +∞)【范例4】的值为()A.-4 B..2 D.-2答案:D【错解分析】此题常见错误A、C,错误原因是对两倍角公式或对对数运算性质不熟悉。

【解题指导】结合对数的运算性质及两倍角公式解决.【练习4】式子值是()A.-4 B..2 D.-2【范例5】设是方程的解,且,则()A.4 B..7 D.8答案:C【错解分析】本题常见错误为D,错误原因没有考虑到函数y=8-x与y=lgx图像的结合。

【解题指导】考查零点的概念及学生的估算能力.【练习5】方程的实数根有( )个.A .0B ..2 D .3【范例6】已知∠AOB=lrad ,点Al ,A2,…在OA 上, B1,B2,…在OB 上,其中的每一个实线段和 虚线段氏均为1个单位,一个动点M 从O 点 出发,沿着实线段和以O 为圆心的圆弧匀速 运动,速度为l 单位/秒,则质点M 到达A10 点处所需要的时间为( ) 秒。

高考数学专题复习:易错题的常见错因和对策

高考数学专题复习:易错题的常见错因和对策

易错题的常见错因和对策一、常见的易错原因1.审题不细:学生考试时由于紧张,读题注意力不集中,审题不仔细,条件看错或读漏题中的内容;也有的遇到会做的题就兴奋做错:计算上的失误;粗心大意,如选择题知道A 却笔误选了B 等。

例1. 已知斜三棱柱的三视图如图所示,该斜三棱柱的体积为 2错因:没有注意到斜三棱柱,画不出立体图例2.棱长均为3三棱锥ABC S -,若空间一点P 满足SC z SB y SA x SP ++=)1(=++z y x ( A )A 、6B 、36C 、63 D 、1 错因:不会审题,默认边长为1例3.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积 481π 错因:审题不清 看成正四面体2.概念不清学生在学习的过程中对概念及性质的认识模糊不清导致的错误;忽视公式,定理,法则的使用条件而导致的错误;忽视隐含条件导致错误;认为的遗漏或随意添加条件导致的错误。

例4.R c b a ∈,,.则“c b a ,,成等比数列”是“ac b =”的 DA .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 错因:默认c b a ,,成等比数列与ac b =2等价,忽视0与负数例5..设直线012:1=--my x l ,01)1(:2=+--y x m l .则“2=m ”是“21//l l ”的( C )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件错因:重合与平行的关系例6. 已知条件p :34k =,条件q :直线()21y k x =++与圆224x y +=相切,则p 是q 的( C ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件错因:忽视直线()21y k x =++隐含条件,混淆斜率不存在3.不会迁移学生在解题的过程中缺乏 “举一反三”的能力,学过的知识,变一个说法或者换一个情景就又不会了,这说明学生的学习迁移能力较弱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解题指导】 ∵

∴点A的轨迹是以C(2
2)为圆心
为半径的圆. 过原点O作此圆的切线
切点分别为M
N
连结CM、CN(∠MOB<∠NOB)
则向量与的夹角范围是〈〉. ∵
∴知
但.

故〈〉
【练习12】如图
在正方形中
已知
为的中点
若为正方形内(含边界)任意一点
则的最大值是 .
练习题参考答案:
1.C 2.C 3.B 4.D 5.D 6.C 7. 8.
9.2 10. 4
11. m=0
n=1 12. 4
13. 解:(1)设这二次函数
现在此工厂只有煤360吨
电力200 kw
劳力300个
在这种条件下应生产甲、乙两种产品各多少千克
才能获得最大经济效益?
【错解分析】对于线性规划的题目
首先要认真审题
列出约束条件
及目标函数
这是本题的重点及难点
解:设此工厂应生产甲、乙两种产品x kg、y kg
利用z万元
则依题意可得约束条件:

【练习5】复数的值是( )
A. B. C.4 D.-4
【范例6】从2006名学生中选取50名组成参观团
若采用以下方法选取:先用简单随机抽样从2006名学生中剔除6名
再从2000名学生中随机抽取50名. 则其中学生甲被剔除和被选取的概率分别是 ( )
答案:9
【错解分析】此题主要考查学生对均值不等式的应用
及指数的四则运算
一定要牢记这些公式
【解题指导】.
【练习10】已知且则最大值为 .
【范例11】函数满足条件,则的值为 .
答案:6
【错解分析】此题主要考查二次函数的性质
主要易错在不能很好的应用性质解题
答案: A
【错解分析】此题容易错选为D
错误原因是对棱锥的体积公式记忆不牢
【解题指导】将展开图还原为立体图
再确定上面棱锥的高
【练习1】一个圆锥的底面圆半径为
高为
则这个圆锥的侧面积为( )
A. B. C. D.
【范例2】设是展开式的中间项
若在区间上恒成立
则实数的取值范围是( )
A. B. C. D.
答案:D
【错解分析】此题容易错选为C
错误原因是对恒成立问题理解不透
注意区别不等式有解与恒成立:
; ;

【解题指导】∵
∴在区间上恒成立
则球心到盒底的距离为 cm.
答案:10
【错解分析】此题容易错填11
错误原因是空间想象能力不到位
【解题指导】作出截面图再分析每个量的关系.
【练习7】设是球表面上的四个点
两两垂直

则球的表面积为 .
【范例8】已知直线的充要条件是= .
三.解答题
【范例13】已知数列{}的前项和,
(1)求数列的通项公式;
(2)设,且
求.
【错解分析】(1)在求通项公式时容易漏掉对n=1的验证
(2)在裂项相消求数列的和时
务必细心
解:(1)∵Sn=n2+2n ∴当时
当n=1时
a1=S1=3
,满足上式.

由已知得:
角为锐角
可得:由正弦定理得:.
法2:由得:
由余弦定理知:
即:

15. 解:设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z元,那么 ,而z=0.28x+0.9y
如右图所示,作出以上不等式组
乙种产品24千克
才能获得最大经济效益.
【练习15】某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5kg,其中动物饲料不能少于谷物饲料的.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50000kg,问饲料怎样混合,才使成本最低.
(1)求角B的度数;
(2)若B为锐角
求边的长.
【范例15】某工厂制造甲、乙两种产品
已知制造甲产品1 kg要用煤9吨
电力4 kw
劳力(按工作日计算)3个;制造乙产品1 kg要用煤4吨
电力5 kw
劳力10个.又知制成甲产品1 kg可获利7万元
制成乙产品1 kg可获利12万元
A. B. C. D.
答案:C
【错解分析】此题容易错选为B
错误原因是对抽样的基本原则理解不透
【解题指导】法(一)学生甲被剔除的概率则学生甲不被剔除的概率为,所以甲被选取的概率故选C.
法(二)每位同学被抽到
和被剔除的概率是相等的
所以学生甲被剔除的概率甲被选取的概率
由于
得.
又因为点的图像上
所以

(2)由(1)得知

因此
要使
必须且仅须满足

所以满足要求的最小正整数为10.
14. 解:(1)由4sinB · sin2+ cos2B = 1 +得:
或.
(2)法1:为锐角
【解题指导】求圆锥曲线的离心率值或范围时
就是寻求含齐次方程或不等式
同时注意. 找全的几个关系
(1)(2)
(3)
将(2)式平方可得所以
所以
【练习9】若双曲线-=1的渐近线与方程为的圆相切
则此双曲线的离心率为 .
【范例10】点在直线上
则最小值为 .
【范例4】方程在[0
1]上有实数根
则m的最大值是( )
A.0 B.-2 C. D. 1
答案:A
【错解分析】此题容易错选为B
错误原因是不能利用导数准确地求最值
【解题指导】转化为求函数在[0
1]上的最值问题.
【练习4】已知函数
若直线对任意的都不是曲线的切线
【练习6】在抽查产品的尺寸过程中
将尺寸分成若干组
是其中的一组
抽查出的个体在该组上的频率为m
该组上的直方图的高为h
则=( )
A.hm B. C. D.
二.填空题
【范例7】已知一个棱长为6cm的正方体塑料盒子(无上盖)
上口放着一个半径为5cm的钢球

求的值.
【错解分析】在利用降幂公式两倍角公式时
本身化简就繁琐
所以仔细是非常重要的
解:(1)=.

得.
∴函数的单调增区间为 .
(2)由
得.∴.


即或.∵
∴.
【练习14】在△ABC中
依次是角所对的边
且4sinB·sin2(+)+cos2B=1+.
(2)∵, ∴


【练习13】已知二次函数的图像经过坐标原点
其导函数为数列{}的前n项和为
点均在函数的图像上.
(1)求数列{}的通项公式;
(2)设
的前项和
求使得对所有都成立的最小正整数.
【范例14】已知函数.
(1)求函数的单调增区间;
(2)已知
【解题指导】(一)对称轴所以.
(二)对称轴所以
【练习11】已知二次函数满足

若在区间上的值域是
则=
= .
【范例12】已知向量
=()
则向量与的夹角范围为 .
答案:
【错解分析】此题主要错在不能认识到点A的轨迹是一个圆.
利润目标函数为z=7x+12y.
作出不等式组所表示的平面区域
即可行域(如下图).
作直线l:7x+12y=0
把直线l向右上方平移至l1位置时
直线l经过可行域上的点M时
此时z=7x+12y取最24).
答:应生产甲种产品20千克
答案:
【错解分析】此题容易错填为-1
3
主要是没有注意到两直线重合的情况
【解题指导】的充要条件是且.
【练习8】已知平面向量

则 .
【范例9】已知双曲线的左、右焦点分别为是双曲线上一点
且,则双曲线的离心率是 .
答案:
【错解分析】此题容易漏掉圆锥曲线定义在解题中的应用
本人精心整理的文档,文档来自网络
本人仅收藏整理
如有错误
还请自己查证!
高考数学易错题解题方法大全(2)
一.选择题
【范例1】已知一个凸多面体共有9个面
所有棱长均为1
其平面展开图如右图所示
则该凸多面体的体积( )
A. B. 1 C. D.
则的取值范围为( )
A. B. C. D.
【范例5】已知
则=( )
A.10 B.8 C.6 D.
答案:A
【错解分析】此题容易错选为C
错误原因是对复数的代数形式化简不到位
【解题指导】∴
答案:C
【错解分析】此题容易错选为A
错误原因是没有看清蚂蚁在三角形区域内随机爬行
而不是在三边上爬
【解题指导】考查几何概型的计算
满足条件部分的面积与三角形面积之比.
【练习3】设在区间[0
5]上随机的取值
则方程有实根的概率为( )
A. B. C. D. 1
所表示的平面区域,即可行域.
作一组平行直线0.28x+0.9y =t,
相关文档
最新文档