(全国通用)2018年高考数学考点一遍过专题15三角恒等变换文

合集下载

2018版高考一轮数学文科:第20讲-简单的三角恒等变换ppt课件

2018版高考一轮数学文科:第20讲-简单的三角恒等变换ppt课件

RJA第20讲 PART 03简单的三角恒等变换教学参考│课前双基巩固│课堂考点探究│教师备用例题考试说明考情分析教 学 参 考考点考查方向考例考查热度三角函数式的化简三角函数式的化简2013·新课标全国卷Ⅱ6★☆☆三角函数式的求值给值求值、给值求角、给角求值2016·全国卷Ⅲ6★☆☆真题在线真题在线真题在线真题在线真题在线知识梳理课前双基巩固对点演练课前双基巩固课前双基巩固对点演练对点演练课前双基巩固对点演练课前双基巩固◆索引:忽视角的范围出错;用错公式出错.对点演练课前双基巩固对点演练课前双基巩固对点演练课前双基巩固课堂考点探究探究点一 三角函数式的化简课堂考点探究课堂考点探究课堂考点探究课堂考点探究课堂考点探究课堂考点探究探究点二 三角函数式的求值课堂考点探究考向1 给值求值课堂考点探究课堂考点探究课堂考点探究考向2 给角求值课堂考点探究课堂考点探究课堂考点探究考向3 给值求角课堂考点探究课堂考点探究课堂考点探究课堂考点探究探究点三 三角恒等变换的综合应用课堂考点探究课堂考点探究课堂考点探究课堂考点探究课堂考点探究课堂考点探究教师备用例题[备选理由]例1 是三角函数与基本不等式的综合问题,例2是三角函数定义与给值求角问题,例3是三角函数的综合问题.希望通过练习提高学生分析问题和解决问题的能力.教师备用例题教师备用例题教师备用例题教师备用例题。

2018高考数学3.6 简单的三角恒等变换

2018高考数学3.6 简单的三角恒等变换
2 1 cos 1 cos 2 .
(1)当α是第一象限角时, s in
(2)对任意角α, ta n
2
(
)
)
2

都成立.(
1 cos
(3)半角的正余弦公式实质就是将倍角的余弦公式逆求而得来 的.( )
x bcos x a
2
(4)公式 a s in 关.( )
x 4
(1)(必修4P142 T4(2)改编)函数y=2cos2
+1的最小正周期为
.
【解析】因为y=2·
1 cos 2
x 2
2π 1 2
+1=cos
=4π.
1 2
x+2,
所以函数的最小正周期T= 答案:4π
(2)(必修4 P143B组T2改编)若sin80°=m,则用含m的式子表示
cos5°=

θ φ 2

θφ 2
, 2 s in θ φ 2 s in θ φ 2 .
所以cosθ-cosφ=
【一题多解】解答本例(1),(2),还有其他方法吗? 解答本题(1),还可以从统一名称和式子的形式的变化入手进行化简 . 方法一:(从“名”入手,异名化同名) 原式=sin2α·sin2β+(1-sin2α)·cos2β=cos2β-sin2α(cos2β-sin2β)2 1 2 1 cos2α ·cos2β 2
等于(
A. 6 3
)
6 3 C . 3 3 D .- 3 3
α 2
B .-
【解析】选B.因为cos α= 1 ,α∈(π,2π),所以
3

(
π 2
,π),所以 c o s α = -

三角恒等变换-高考数学一题多解

三角恒等变换-高考数学一题多解

三角恒等变换-高考数学一题多解三角式的恒等变形是一种基本的数学技能,它的依据是三角变换公式和代数中代数式的恒等变换的一般方法,三角变换公式如:同角三角函数的基本关系式、两角和与差的公式、二倍角与半角公式、万能公式.积化和差与和差化积公式等,公式的数量较多,学习时要通过理解角的关系以及三角函数的关系揭示公式之间的内在联系、掌握公式的推导线索.要理解公式,注意公式的适用范围和符号的取舍,三角变换贵在灵活运用公式,掌握公式的逆用和各种变形的运用,以达到熟练、恰到好处地运用公式解决具体问题的目的.不同角的三角函数关系式使用起来与同角三角函数关系式最大的不同点是必须根据题目的题设条件与结论去确定所应用的公式,而选定公式的能力靠观察角度关系、熟悉公式特征来培养.已知条件和所要求的角之间不相同时,常看它们的和、差、倍的情况,定能找出角之间的关系.角的变换是三角变换技巧之一,转化思想是实施三角变换的主导思想,变换包括:函数名称变换、角的变换、“1”的代换、和积变换、幂的升降变换等,变换时必须熟悉公式,分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件.“恒等”这个词始终是三角变换的重点.三角恒等变换中的方法与技巧是必须掌握的解题能力.在三角恒等变换中较为重要的变换技巧如下.(1)函数名称的差异变换:①切割化弦,弦化切割;②异名化同名.(2)角的差异变换:①异角化同角;②拆角、配角技巧.(3)运算结构的差异变换:①升次降次;②分式通分;③无理化有理;④和(差)积互化.(4)常数的处理:特别注意“1”的代换.(5)引入辅助角的变换、角的分析与三角式的配凑.在解题过程中,不论运用什么变换技巧,基本原则是:把握方向,活用公式,注意目标,贵在“恒等”.真可谓:三角变换贵在活,变角变式变函数,恒等始终是重点,公式繁多方法多.【典例】(2022·新高考Ⅱ卷T6)角,αβ满足sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则()A.tan()1αβ+=B.tan()1αβ+=-C.tan()1αβ-= D.tan()1αβ-=-(一)直接法——由条件推结果【答案】D【解析】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-,即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=,即:()()sin cos 0αβαβ-+-=,所以()tan 1αβ-=-,故选:D(二)整体构造法——观察角与角的关系找共同点【答案】D【解析】根据sin()cos()αβαβ+++以及4πα+,可以利用辅助角公式,将4πα+当做一个整体,再进行合并,于是有如下解法:sin()cos()]44cos sin sin 444ππαβαβαβαβπππαβαβαβ+++=++++=++=+(()(()()cos sin 44ππαβαβ+=+()()sin cos cos sin =044ππαβαβ+-+(()即sin=04παβ+-()sin =sin cos cos sin ==0444πππαβαβαβαβαβ∴-+-+--+-()()()()()sin =cos αβαβαβ∴----()()即tan()=-1,故选D【点评】解题的关键当然是如何沟通条件和结论,一种思考是变形条件使之朝结论的目标靠拢,而条件的变形又是多种多样,但应始终抓住是恒等变形,条件式直接变形要始终抓住“恒等”,引进新元更要注意“恒等”.另一种思考是构造法,构造法也不是凭空而得,务必考虑与条件之间的等价关系.(三)特殊值排除法——做选择题的快速解法解法:设β=0则sinα+cosα=0,取=2πα,排除A ,C ;再取α=0则sinβ+cosβ=2sinβ,取β=4π,排除B ;选D.【点评】排除法是一种间接解法,也就是我们常说的筛选法、代入验证法,其实质就是舍弃不符合题目要求的选项,找到符合题意的正确结论.也即通过观察、分析或推理运算各项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论.具体操作起来,我们可以灵活应用,合理选取相应选项进行快速排除,【针对训练】(2022·浙江卷T13)1.若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.(2022·全国)2.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.3.化简:44661cos sin 1cos sin αααα----.4.求证:cos 1sin 1sin cos αααα+=-.5.设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=6.22sin 10cos 40sin10cos 40︒+︒+︒︒=_____________.7.已知π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,求2sin 22sin 1tan x x x+-的值.8.在△ABC 中,若cos cos A bB a=,则△ABC 的形状是________.9.cos15sin15cos15sin15︒-︒︒+︒的值是()A .-B .0C .D .310.在ABC 中,=4A π∠,边,,a b c 满足22212b a c -=,求tan C 的值.参考答案:1.1045【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β.【详解】[方法一]:利用辅助角公式处理∵2παβ+=,∴sin cos βα=,即3sin cos αα-=1010αα⎫-=⎪⎪⎭,令sin θ=cos 10θ=,()αθ-=22k k Z παθπ-=+∈,,即22k παθπ=++,∴sin sin 2cos 2k παθπθ⎛⎫=++= ⎪⎝⎭,则224cos 22cos 12sin 15ββα=-=-=.故答案为:10;45.[方法二]:直接用同角三角函数关系式解方程∵2παβ+=,∴sin cos βα=,即3sin cos αα-=又22sin cos 1αα+=,将cos 3sin αα=210sin 90αα-+=,解得sin α=,则224cos 22cos 12sin 15ββα=-=-=.故答案为:10;45.2.(I )3B π=;(II )13,22⎛⎤ ⎥ ⎝⎦【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I )[方法一]:余弦定理由2sin b A =,得22223sin 4a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc+-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=,即444222222220a b c a c a b b c +++--=,即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->,∴222a c b ac +-=,所以2221cos 22a cb B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤.由临界状态(不妨取2A π=)可知a cb+=而ABC 为锐角三角形,所以a cb+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++,222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭故cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 222A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin ,162A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,113sin ,6222A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.3.23.【分析】方法一:灵活利用平方关系及乘方公式化简即可.【详解】[方法一]:【最优解】“1”的代换化齐次式原式2224422366(cos sin )cos sin (cos sin )cos sin a ααααααα+--=+--2222222cos sin 23cos sin (cos sin )3αααααα⋅==+.[方法二]:公式降幂原式44661(cos sin )1(cos sin )a ααα-+=-+222222242241(cos sin )2cos sin 1(cos sin )(cos cos sin sin )αααααααααα⎡⎤-+-⋅⎣⎦=-+-⋅+2222222112cos sin 1(cos sin )3cos sin αααααα-+=⎡⎤-+-⋅⎣⎦22222cos sin 23cos sin 3a ααα⋅==⋅.[方法三]:降幂原式2242246(1cos )(1cos )sin (1cos )(1cos cos )sin ααααααα-+-=-++-2222244sin (1cos sin )sin (1cos cos sin )ααααααα+-=++-2222222cos 1cos (cos sin )(cos sin )αααααα=+++-22222cos 1cos cos sin a ααα=++-222cos 23cos 3αα==.【整体点评】方法一:根据22cos +sin =1αα化齐次式,简洁易算,是该题的最优解;方法二:根据22cos +sin =1αα以及平方和.立方和公式降幂,是化简求值的常用处理方法;方法三:根据平方差.立方差公式化简降幂,变形难度稍大.4.证明见解析【分析】方法一:式子左边分子分母同乘以cos α,再利用平方关系,变形分子即可得证.【详解】[方法一]:【最优解】左边=2cos cos (1sin )ααα-=21sin cos (1sin )ααα--=(1sin )(1sin )cos (1sin )αααα+--=1sin cos a α+=右边,等式成立.[方法二]:右边=(1sin )(1sin )cos (1sin )αααα+--=21sin cos (1sin )ααα--=2cos cos (1sin )ααα-=cos 1sin αα-=左边,等式成立.[方法三]:左边=2cos (1sin )cos ααα-,右边=(1sin )(1sin )(1sin )cos αααα+--=21sin (1sin )cos ααα--=2cos (1sin )cos ααα-,∴左边=右边,∴等式成立.[方法四]:∵cos 1sin αα--1sin cos a α+=2cos (1sin )(1sin )(1sin )cos ααααα-+--=22cos cos (1sin )cos αααα--=0.∴等式成立.[方法五]:左边=cos 1sin αα-=cos (1sin )(1sin )(1sin )αααα+-+=2cos (1sin )1sin ααα+-=1sin cos a α+=右边.[方法六]:∵(1-sin α)(1+sin α)=1-sin 2α=cos 2α,∴cos 1sin αα-=1sin cos aα+.[方法七]:若证cos 1sin αα-=1sin cos aα+成立,只需证cos α·cos α=(1-sin α)(1+sin α),即证cos 2α=1-sin 2α,此式成立,∴原等式cos 1sin αα-=1sin cos aα+成立.【整体点评】方法一:利用平方关系,从左边证到右边,是证明题的通性通法;方法二:利用平方关系,从右边证到左边;方法三:利用左边=中间,右边=中间证出;方法四:利用作差法证出;方法五:利用平方关系,从左边证到右边;方法六:根据平方关系变形证出;方法七:根据分析法证出.5.C【详解】[方法一]:sin 1sin ,sin cos cos cos sin cos cos αβαβααβαβ+=∴=+()sin sin 2παβα⎛⎫∴-= ⎪⎝⎭,,0,2222ππππαβα⎛⎫⎛⎫-∈--∈ ⎪ ⎪⎝⎭⎝⎭ ,222ππαβααβ∴-=-∴-=.故选:C.[方法二]:222cos sin cos sin 1sin 2222tan tan cos 24cos sin cos sin 2222ββββββπαβββββ⎛⎫++ ⎪+⎛⎫⎝⎭====+ ⎪⎝⎭- 又,,,22442242βπππβππααβ⎛⎫+∈∴=+∴-= ⎪⎝⎭.故选:C.[方法三]:由已知得,sin 1sin tan cos cos αβααβ+==,去分母得,sin cos cos cos sin αβααβ=+,所以sin cos cos sin cos ,sin()cos sin()2παβαβααβαα-=-==-,又因为22ππαβ-<-<,022ππα<-<,所以2παβα-=-,即22παβ-=,故选:C.考点:同角间的三角函数关系,两角和与差的正弦公式.6.34【分析】根据两角和的正弦余弦公式及同角三角函数的基本关系计算可得;【详解】[方法一]:因为40°=30°+10°,所以原式=22sin 10cos (3010)sin10cos(3010)++++22211sin 10sin10)sin10cos10sin 102222=+-+⋅- 2233(sin 10cos 10)44=+= .[方法二]:原式=1cos 201cos80sin10cos 4022-+++cos(5030)cos(5030)1sin10cos 402+--=++cos50cos30sin 50sin 30cos50cos30sin 50sin 301sin10cos 402---=++1sin 50sin 30sin10cos 40=-+ 1cos 40(sin 30sin10)=-- 1cos 40[sin(2010)sin(2010)]=-+-- 12cos 40cos 20sin10=-2cos 40cos 20sin10cos101cos10=-sin8013114cos1044=-=-= .[方法三]:换元法令10,40,sin a b cos a b ⎧=+⎨=-⎩得()()()()()11110401050302020,2221110401050302020,22a sin cos sin sin sin cos cos b sin cos sin sin cos sin sin ⎧=+=+==⎪⎪⎨⎪=-=-=-=⎪⎩则原式=222222333()()()()3cos 20sin 20444a b a b a b a b a b ++-++-=+=+=.[方法四]:设2222sin 10cos 40sin10cos 40,cos 10sin 40cos10sin 40x y =++=++ ,则1110401040250240,11180205040.222x y sin cos cos sin sin cos x y cos cos sin cos ⎧+=+++=+=+⎪⎨-=--=--=--⎪⎩所以322x =,故34x =.[方法五]:余弦定理由余弦定理,得2222cos a b ab C c +-=,又由正弦定理,得2sin sin sin a b cR A B C===,于是2222224sin 4sin 22sin 2sin cos 4sin R A R B R A R B C R C +-⋅⋅⋅=,得222sin sin 2sin sin cos sin A B A B C C +-=故22sin 10cos 40sin10cos 40++22sin 10sin 50sin10sin 50=++22sin 10sin 502sin10sin 50cos120=+-223sin 120)24=== .[方法六]:22sin 10cos 40sin10cos 40︒+︒+︒︒()()22sin 10cos 1030sin10cos 1030=︒+︒+︒+︒︒+︒2211sin 10sin10sin10cos10sin102222⎛⎫⎛⎫=︒+︒-︒+︒⨯︒-︒ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22223113sin 10cos 10sin 10sin 104424=︒+︒+︒-︒=故答案为:34.【点睛】本题考查同角三角函数的基本关系及两角和的正弦余弦公式的应用,属于中档题.7.2875-【分析】方法一:利用倍角公式和和差公式可得2π2sin cos sin sin 22sin 4π1tan cos 4x x x x x x x ⎛⎫+ ⎪+⎝⎭=-⎛⎫+ ⎪⎝⎭,然后利用条件可求出答案.【详解】[方法一]:根据已知角化简 22sin 22sin 2sin cos 2sin 1tan 1cos x x x x sin x x x x++=--2sin cos (cos sin )cos sin x x x x x x +=-π2sin cos sin()4πcos()4x x x x +=+π3cos()45x += ,177ππ124x <<,π4sin()45x ∴+=-,72sin cos 25x x ∴=.∴π2sin cos sin()284π75cos()4x x x x +=-+,∴2sin 22sin 281tan 75x x x +=--.[方法二]:直接展开求sin cos ,sin cos x x x x±()π3cos cos sin 425x x x ⎛⎫+=-= ⎪⎝⎭,得cos sin x x -=平方得2sin cos x x =725,()2732cos sin 12525x x +=+=, 177,124x ππ<<∴cos sin 0,cos sin x x x x +<+=,∴原式=cos sin 2sin cos cos sin x x x x x x +-=-2875.[方法三]:【最优解】逆用两角和的正切公式和二倍角公式因为π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,所以4sin 45x π⎛⎫+=- ⎪⎝⎭,即π4tan(43x +=-)原式=cos sin 1tan 2sin cos sin 2cos sin 1tan x x x x x x x x x ++=--=πsin2tan 4x x ⎛⎫+ ⎪⎝⎭,7sin2cos 212cos 2425x x x ππ⎛⎫⎛⎫=-+=-+= ⎪ ⎪⎝⎭⎝⎭,∴原式=2875-.[方法四]:整体法求cos x 因为π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,所以4sin 45x π⎛⎫+=- ⎪⎝⎭,cos cos cos cos sin sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,又 177124x ππ<<,所以sin x =,tan x =7,∴原式=-2875.【整体点评】方法一:将所求式化简成已知角的三角函数形式,整体代换求出;方法二:直接根据两角和的余弦公式展开以及平方关系求sin cos ,sin cos x x x x ±,化切为弦求出;方法三:逆用两角和的正切公式和二倍角公式求解最为简洁,是该题的最优解;方法四:利用整体思想以及同角三角函数基本关系求出sin ,cos ,tan x x x ,是该题的通性通法.8.等腰三角形或直角三角形【分析】由已知及余弦定理可得22222()()0a b c a b ---=,即可判断△ABC 的形状.【详解】[方法一]:由余弦定理,222222cos 2cos 2b c a A b bc a c b B aac+-==+-,化简得22222()()0a b c a b ---=,∴a b =或222c a b =+,∴△ABC 为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.[方法二]:由cos cos A b B a =可知cos 0A >,cos 0B >,即0,2A π⎛⎫∈ ⎪⎝⎭,0,2B π⎛⎫∈ ⎪⎝⎭,由正弦定理结合题意可得cos sin cos sin A B B A =,即11sin cos sin cos ,sin 2sin 222A AB B A B =∴=,据此有22A B =或22A B π+=,即A B =或2A B π+=.∴△ABC 为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.9.D【详解】[方法一]:()()15453045304530122224154530453045301222cos cos cos cos sin sin sin sin sin cos cos sin =-=++=+==-=-==则原式44=[方法二]:()1tan15tan45tan15tan4515tan301tan151tan45tan15--===-==++原式[方法三]:cos15sin150>>,令cos15sin15(0)cos15sin15t t-=>+,22222cos152sin15cos15sin151sin301cos152sin15cos15sin151sin3033t t-+-===∴=+++则.[方法四]:()()222cos15cos15sin15cos15sin15cos15sin152cos15cos15sin1512cos152sin15cos15cos301sin3022cos152sin15cos15cos301sin30--=++-+-===+++[方法五]:22222cos15sin15cos15sin15cos15sin15cos15sin15cos15sin15cos15sin15cos30cos15sin152sin15cos151sin303-+-=++-===+++()()()[方法六]:cos15sin15sin15cos15cos15sin15sin15cos151sin30sin302sin60sin602--=-=-++--==()故选D.10.tan2C=.【分析】方法一:由余弦定理及已知可得3c=,再根据正弦定理的边角关系、三角形内角性质及差角正弦公式得3sin2cos2sinC C C=+,即可求tan C.【详解】[方法一]:【最优解】利用正、余弦定理边化角因为22212b a c-=,2222cosb c a bc A+-=,所以232c=,即3c=,所以33sin sin()2cos 2sin 4C B C C C π==-=+,即tan 2C =.[方法二]:和差化积公式的应用由22212b a c -=得,2221sin sin sin 2B AC -=,即212sincos 2cos sin sin 22222B A B A B A B AC +-+-⨯=,即()21sin sin sin 2C B A C -=,因为0sin 1C <≤,所以()()2sin sin sin B A C A B -==+,即sin cos 3sin cos B A A B =,所以tan 3tan 3B A ==.()tan tan 13tan tan 21tan tan 13A B C A B A B ++=-+=-=-=--.【整体点评】方法一:利用正、余弦定理边化角,再根据消元思想即可解出,是该题的最优解;方法二:利用和差化积公式转化求值,需要较强的运算能力.。

2018年全国各地高考数学试题及解答分类汇编大全(08 三角函数 三角恒等变换)

2018年全国各地高考数学试题及解答分类汇编大全(08 三角函数  三角恒等变换)

2018年全国各地高考数学试题及解答分类汇编大全 (08三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,»AB ,»CD,»EF ,¼GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边,若tan cos sin ααα<<,则P 所在的圆弧是( )A .»AB B .»CDC .»EFD .¼GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( ) (A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( ) (A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减(C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦,则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z ,即()ππ4π4πk x k k -≤≤+∈Z ,令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由()022,4k x k k π+π≤+≤π+π∈Z 得()322,44k x k k ππ-+π≤≤+π∈Z ,因此[]π3π,,44a a ⎡⎤-⊂-⎢⎥⎣⎦,π,4a a a ∴-<-≥-,3π4a ≤,π04a ∴<≤,从而a 的最大值为π4,故选A .7.(2018全国新课标Ⅲ文、理)若1sin 3α=,则cos2α=( ) A .89B .79C .79-D .89-7.答案:B解答:227cos 212sin 199αα=-=-=.故选B.8.(2018全国新课标Ⅲ文)函数2tan ()1tan xf x x=+的最小正周期为( ) A .4π B .2π C .πD .2π8.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C.二、填空1.(2018北京理)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.1.【答案】23【解析】()π4f x f ⎛⎫≤ ⎪⎝⎭Q 对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,()ππ2π46k k ω∴-=∈Z ,()283k k ω∴=+∈Z ,0ω>Q ,∴当0k =时,ω取最小值为23.2.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .2.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.3.(2018全国新课标Ⅰ文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15BCD .13.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan α=;当tan α=时,可得1a =,2b =,即a =,b =a b -=tan α=时,仍有此结果.4.(2018全国新课标Ⅰ理)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4.答案: 解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x=,即22c o s c o s10x x +-=,∴1c o s 2x =或cos 1x =-.∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π=∴5()3f π=.()3f π=,(0)(2)0f f π==,()0f π= ∴()f x最小值为5.(2018全国新课标Ⅱ文)已知5π1tan()45α-=,则tan α=__________. 5.【答案】32【解析】5tan tan5tan 114tan 541tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪π+⎝⎭+⋅,解方程得3tan 2α=.6.(2018全国新课标Ⅱ理)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.6.【答案】12-【解析】sin cos 1αβ+=Q ,cos sin 0αβ+=,()()221sin cos 1αα∴-+-=,1sin 2α∴=,1cos 2β=,因此()22111111sin sin cos cos sin cos 1sin 1224442αβαβαβαα+=+=⨯-=-+=-+=-.7.(2018全国新课标Ⅲ理)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.7.答案:3解答:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.三、解答题1.(2018北京文)已知函数()2sin cos f x x x x =+. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.1.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.2. (2018上海)设常数a R ∈,函数f x ()22?asin x cos x =+(1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。

2018年全国各地高考数学试题及解答分类大全(三角函数 三角恒等变换)

2018年全国各地高考数学试题及解答分类大全(三角函数  三角恒等变换)

2018年全国各地高考数学试题及解答分类大全 (三角函数 三角恒等变换)一、选择题1.(2018北京文)在平面坐标系中,AB ,CD ,EF ,GH 是圆221x y +=上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边, 若tan cos sin ααα<<,则P 所在的圆弧是( ) A .AB B .CD C .EF D .GH 1.【答案】C【解析】由下图可得,有向线段OM 为余弦线,有向 线段MP 为正弦线,有向线段AT 为正切线.2.(2018天津文)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数( )(A )在区间[,]44ππ- 上单调递增 (B )在区间[,0]4π上单调递减(C )在区间[,]42ππ上单调递增(D )在区间[,]2ππ 上单调递减2.【答案】A【解析】由函数sin 25y x π⎛⎫=+ ⎪⎝⎭的图象平移变换的性质可知:将sin 25y x π⎛⎫=+ ⎪⎝⎭的图象向右平移10π个单位长度之后的解析式为:sin 2sin 2105y x x ⎡ππ⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦.则函数的单调递增区间满足:()22222k x k k πππ-≤≤π+∈Z , 即()44k x k k πππ-≤≤π+∈Z , 令0k =可得函数的一个单调递增区间为,44ππ⎡⎤-⎢⎥⎣⎦,选项A 正确,B 错误;函数的单调递减区间满足:()322222k x k k πππ+≤≤π+∈Z ,即()344k x k k πππ+≤≤π+∈Z ,令0k =可得函数的一个单调递减区间为3,44ππ⎡⎤⎢⎥⎣⎦,选项C ,D 错误;故选A .3.(2018天津理)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数 ( )(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增(D)在区间3[,2]2ππ上单调递减3.【答案】A【解析】由函数图象平移变换的性质可知:将πsin 25y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π10个单位长度之后的解析式为:sin 2sin210ππ5y x x ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦, 则函数的单调递增区间满足:()2π22π2ππ2k x k k -≤≤+∈Z , 即()ππ4π4πk x k k -≤≤+∈Z , 令1k =可得一个单调递增区间为3π5π,44⎡⎤⎢⎥⎣⎦,函数的单调递减区间满足:()3π2π22π2π2k x k k +≤≤+∈Z ,即()3πππ4π4k x k k +≤≤+∈Z ,令1k =可得一个单调递减区间为5π7π,44⎡⎤⎢⎥⎣⎦,故选A .4.(2018全国新课标Ⅰ文)已知函数()222cos sin 2f x x x =-+,则( )A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为44、答案:B解答:222()2cos (1cos )23cos 1f x x x x =--+=+, ∴最小正周期为π,最大值为4.5.(2018全国新课标Ⅱ文)若()cos sin f x x x =-在[0,]a 是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π5.【答案】C【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由0224k x k π+π≤+≤π+π,()k ∈Z得32244k x k ππ-+π≤≤+π,()k ∈Z ,因此[]30,,44a ππ⎡⎤⊂-⎢⎥⎣⎦,04a 3π∴<≤,从而a 的最大值为43π,故选C .6.(2018全国新课标Ⅱ理)若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是( )A .π4B .π2C .3π4D .π6.【答案】A【解析】因为()cos sin 4f x x x x π⎛⎫=-=+ ⎪⎝⎭,所以由()022,4k x k k π+π≤+≤π+π∈Z 得()322,44k x k k ππ-+π≤≤+π∈Z ,因此[]π3π,,44a a ⎡⎤-⊂-⎢⎥⎣⎦,π,4a a a ∴-<-≥-,3π4a ≤,π04a ∴<≤,从而a 的最大值为π4,故选A .7.(2018全国新课标Ⅲ文、理)若1sin 3α=,则cos2α=( ) A .89B .79C .79-D .89-7.答案:B解答:227cos 212sin 199αα=-=-=.故选B.8.(2018全国新课标Ⅲ文)函数2tan ()1tan xf x x=+的最小正周期为( )A .4π B .2π C .πD .2π8.答案:C解答:22222sin tan sin cos 1cos ()sin cos sin 2sin 1tan sin cos 21cos xx x x x f x x x x x x x x x=====+++,∴()f x 的周期22T ππ==.故选C.二、填空1.(2018北京理)设函数f (x )=πcos()(0)6x ωω->,若π()()4f x f ≤对任意的实数x 都成立,则ω的最小值为__________.1.【答案】23【解析】()π4f x f ⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,所以π4f ⎛⎫⎪⎝⎭取最大值,()ππ2π46k k ω∴-=∈Z ,()283k k ω∴=+∈Z ,0ω>,∴当0k =时,ω取最小值为23.2.(2018江苏)已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .2.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.3.(2018全国新课标Ⅰ文)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -=( )A .15B C D .13.答案:B解答:由22cos22cos 13αα=-=可得222225cos 1cos 6sin cos tan 1ααααα===++,化简可得tan 5α=±;当tan 5α=时,可得15a =,25b =,即5a =,5b =,此时5a b -=;当tan 5α=-时,仍有此结果.4.(2018全国新课标Ⅰ理)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.4.答案: 解答:∵()2sin sin 2f x x x =+,∴()f x 最小正周期为2T π=,∴2'()2(cos cos 2)2(2cos cos 1)f x x x x x =+=+-,令'()0f x =,即22cos cos 10x x +-=,∴1cos 2x =或cos 1x =-.∴当1cos 2=,为函数的极小值点,即3x π=或53x π=,当cos 1,x =-x π=∴5()3f π=.()3f π=,(0)(2)0f f π==,()0f π=∴()f x 最小值为5.(2018全国新课标Ⅱ文)已知5π1tan()45α-=,则tan α=__________.5.【答案】32【解析】5tan tan5tan 114tan 541tan 51tan tan 4αααααπ-π-⎛⎫-=== ⎪π+⎝⎭+⋅,解方程得3tan 2α=.6.(2018全国新课标Ⅱ理)已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.6.【答案】12-【解析】sin cos 1αβ+=,cos sin 0αβ+=,()()221sin cos 1αα∴-+-=,1sin 2α∴=,1cos 2β=,因此()22111111sin sin cos cos sin cos 1sin 1224442αβαβαβαα+=+=⨯-=-+=-+=-.7.(2018全国新课标Ⅲ理)函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________.7.答案:3解答:由()cos(3)06f x x π=+=,有3()62x k k Z πππ+=+∈,解得39k x ππ=+,由039k πππ≤+≤得k 可取0,1,2,∴()cos(3)6f x x π=+在[0,]π上有3个零点.三、解答题1.(2018北京文)已知函数()2sin cos f x x x x =+. (1)求()f x 的最小正周期;(2)若()f x 在区间3m π⎡⎤-⎢⎥⎣⎦,上的最大值为32,求m 的最小值.1.【答案】(1)π;(2)π3.【解析】(1)()1cos 211122cos 2sin 222262x f x x x x x -π⎛⎫=+=-+=-+ ⎪⎝⎭,所以()f x 的最小正周期为2ππ2T ==.(2)由(1)知()π1sin 262f x x ⎛⎫=-+ ⎪⎝⎭,因为π3x m ⎡⎤∈-⎢⎥⎣⎦,,所以π5ππ22666x m ⎡⎤-∈--⎢⎥⎣⎦,. 要使得()f x 在π3m ⎡⎤-⎢⎥⎣⎦,上的最大值为32,即πsin 26x ⎛⎫- ⎪⎝⎭在3m π⎡⎤-⎢⎥⎣⎦,上的最大值为1.所以ππ262m -≥,即π3m ≥.所以m 的最小值为π3.2. (2018上海)设常数a R ∈,函数f x ()22?asin x cos x =+(1)若f x ()为偶函数,求a 的值; (2)若4f π〔〕31=,求方程12f x =()ππ-[,]上的解。

2018届高考数学二轮复习专题五三角恒等变换与解三角形课件文

2018届高考数学二轮复习专题五三角恒等变换与解三角形课件文

解析:由于tan 20°+msin 20°=
3,所以m=
3-tan 20° sin 20°

3scions2200°°c-oss2in0°20°=2
3 2 cos
20°-12sin
1
20°
2sin 40°
=4sinsi6n0°4-0°20°=4.
答案:4
正、余弦定理解三角形及其应用
[师生共研·悟通] 1.正弦定理及其变形 在△ABC中,sina A=sinb B=sinc C=2R(R为△ABC的外接圆 半径). 变形:a=2Rsin A,sin A=2aR,a∶b∶c=sin A∶sin B∶ sin C等. 2.余弦定理及其变形 在△ABC中,a2=b2+c2-2bccos A. 变形:b2+c2-a2=2bccos A,cos A=b2+2cb2c-a2.
[典例] (1)(2017·全国卷Ⅱ)△ABC 的内角 A,B,C 的对 边分别为 a,b,c,若 2bcos B=acos C+ccos A,则 B=________.
[解析] 法一:由2bcos B=acos C+ccos A及正弦定 理,得
2sin Bcos B=sin Acos C+sin Ccos A =sin(A+C)=sin B>0, 因此cos B=12. 又0<B<π,所以B=π3.
3.如图,为了估测某塔的高度,在同一水 平面的A,B两点处进行测量,在点A处 测得塔顶C在西偏北20°的方向上,仰角 为60°;在点B处测得塔顶C在东偏北40° 的方向上,仰角为30°.若A,B两点相距130 m,则塔的高 度CD=________m.
解析:设CD=h,则AD= h3,BD= 3h, 在△ADB中,∠ADB=180°-20°-40°=120°, ∴由余弦定理AB2=BD2+AD2-2BD·AD·cos 120°, 可得1302=3h2+h32-2· 3h·h3·-12, 解得h=10 39,故塔的高度为10 39 m. 答案:10 39

高考数学热点:三角恒等变换

高考数学热点:三角恒等变换

高考数学热点:简单的三角恒等变换【考点梳理】1、两角和与差的三角函数公式sin()sin cos cos sin αβαβαβ+=+sin()sin cos cos sin αβαβαβ−=−cos()cos cos sin sin αβαβαβ+=−cos()cos cos sin sin αβαβαβ−=+tan tan tan()1tan tan αβαβαβ−−=+ tan tan tan()1tan tan αβαβαβ++=− 2、二倍角公式sin 22sin cos ααα= 22cos2cos sin ααα=− 2cos22cos 1αα=−2cos212sin αα=− 22tan tan 21tan ααα=−3、辅助角公式sin cos )a x b x x ϕ±=±(其中tan b aϕ=) 4、降幂公式21cos2cos 2αα+=21cos2sin 2αα−=【典型题型讲解】 考点一:两角和与差公式【典例例题】例1.(2022·广东汕头·高三期末)已知πsin (,π)2αα=∈,则cos()6πα−=( )A .-1B .0C .12D【答案】B 【详解】∵πsin (,π)22αα=∈,∴2π3α=,故ππcos()cos 0.62α−== 故选:B例2.(2022·广东湛江·一模)已知4cos 5α=,02πα<<,则sin 4πα⎛⎫+= ⎪⎝⎭( )ABC.D.【答案】B 【详解】由4cos 5α=,02πα<<,得3sin 5α=,所以34sin 422252510πααα⎛⎫+=+=⨯+= ⎪⎝⎭,故选:B.例3.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−, 整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B【方法技巧与总结】1.三角函数式化简的方法:化简三角函数式常见方法有弦切互化,异名化同名,异角化同角,降幂与升幂等.2.给值求值:解题的关键在于“变角”,把待求三角函数值的角用含已知角的式子表示出来,求解时要注意对角的范围的讨论. 【变式训练】 1.已知5π1tan()45−=α,则tan =α__________. 【答案】32【解析】本题主要考查三角恒等变换,考查考生的运算求解能力.5πtan tan5πtan 114tan 5π41tan 51tan tan 4ααααα−−⎛⎫−=== ⎪+⎝⎭+⋅,解方程得3tan 2=α.故答案为32. 2.(2022·广东韶关·一模)若()()1sin 0,,tan 22ππαααβ⎛⎫−=∈+= ⎪⎝⎭,则tan β=__________. 【答案】17【详解】因为()sin 0,2ππαα⎛⎫−=∈ ⎪⎝⎭,所以sin α=,所以cos α=,所以sin 1tan cos 3ααα==. ()()()11tan tan 123tan tan .111tan tan 7123αβαβαβααβα−+−=+−===⎡⎤⎣⎦+++⨯又 故答案为:173.(2022·全国·高考真题)若sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则( )A .()tan 1αβ−=B .()tan 1αβ+=C .()tan 1αβ−=−D .()tan 1αβ+=−【答案】C 【详解】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++−=−, 即:sin cos cos sin cos cos sin sin 0αβαβαβαβ−++=, 即:()()sin cos 0αβαβ−+−=, 所以()tan 1αβ−=−, 故选:C 4.已知sin α=()cos αβ−=304πα<<,304πβ<<,则sin β=( )A.35BC.35D.35【答案】A 【解析】易知()()sin sin βααβ=−−,利用角的范围和同角三角函数关系可求得cos α和()sin αβ−,分别在()sin 5αβ−=和5−两种情况下,利用两角和差正弦公式求得sin β,结合β的范围可确定最终结果. 【详解】2sin 72α=<且304πα<<,04πα∴<<,5cos 7α∴==.又304πβ<<,344ππαβ∴−<−<,()sin 5αβ∴−=±.当()sin 5αβ−=时,()()()()sin sin sin cos cos sin βααβααβααβ=−−=−−−57==304πβ<<,sin 0β∴>,sin β∴=当()sin αβ−=sin β.综上所述:sin β= 故选:A .5.已知sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,则()sin 60α︒+的值为( )A .13B .13−C .23D .23−【答案】A 【解析】根据题意得到sin 152α⎛⎫︒−= ⎪⎝⎭进而得到26cos 1529α⎛⎫︒−= ⎪⎝⎭,()1cos 303α︒−=,从而有()()()sin 60sin 9030cos 30ααα⎡⎤︒+=︒−︒−=︒−⎣⎦.【详解】∵sin 15tan 2102α⎛⎫︒−=︒ ⎪⎝⎭,∴()sin 15tan 210tan 18030tan302α⎛⎫︒−=︒=︒+︒=︒= ⎪⎝⎭,则226cos 151sin 15229αα⎛⎫⎛⎫︒−=−︒−= ⎪ ⎪⎝⎭⎝⎭,()221cos 30cos 15sin 15223ααα⎛⎫⎛⎫︒−=︒−−︒−= ⎪ ⎪⎝⎭⎝⎭,∴()()sin 60sin 9030αα⎡⎤︒+=︒−︒−⎣⎦ ()1cos 303α=︒−=,故选A.考点二:二倍角公式【典例例题】例1.(2022·广东中山·高三期末)若2sin 3α=,则cos2α=___________. 【答案】19【分析】根据余弦的二倍角公式即可计算.【详解】2221cos212sin 1239αα⎛⎫=−=−⨯= ⎪⎝⎭.故答案为:19.例2.(2022·广东清远·高三期末)已知tan 2α=,则sin cos 44sin 2⎛⎫⎛⎫−+ ⎪ ⎪⎝⎭⎝⎭=ππααα________. 答案】18−【详解】1sin cos (sin cos )(cos sin )442sin 22sin cos ⎛⎫⎛⎫−+−− ⎪ ⎪⎝⎭⎝⎭=ππααααααααα222sin cos 2sin cos tan 12tan 14sin cos 4tan 8−−+−−+===−ααααααααα.故答案为:18−例3.若cos 0,,tan 222sin παααα⎛⎫∈= ⎪−⎝⎭,则tan α=( )ABCD【答案】A 【详解】cos tan 22sin ααα=−2sin 22sin cos cos tan 2cos 212sin 2sin αααααααα∴===−−,0,2πα⎛⎫∈ ⎪⎝⎭,cos 0α∴≠,22sin 112sin 2sin ααα∴=−−,解得1sin 4α=, cos 4α∴=sin tan cos 15ααα∴==. 故选:A.【方法技巧与总结】三角恒等变换的基本思路:找差异,化同角(名),化简求值.三角恒等变换的关键在于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系. 【变式训练】1.(2022·广东汕头·一模)已知0,2πθ⎛⎫∈ ⎪⎝⎭,2tan tan 43πθθ⎛⎫+=− ⎪⎝⎭,则sin cos2sin cos θθθθ=+( ) A .12−B .35C .3D .53−【答案】.B【详解】由(0,)2πθ∈,得tan 0θ>,又2tan()tan 43πθθ+=−,得tan tan24tan 31tan tan 4πθθπθ+=−−⋅,即tan 12tan 1tan 3θθθ+=−−,整理,得tan 3θ=或1tan 2θ=−(舍去),所以sin 3cos θθ=,又22sin cos 1θθ+=,(0,)2πθ∈,解得sin cos θθ=, 故22sin cos 2sin (cos sin )sin (sin cos )(cos sin )sin cos sin cos sin cos θθθθθθθθθθθθθθθθ−+−==+++3sin (cos sin )5θθθ=−==−. 故选:B2.(2022·广东韶关·二模)已知 1sin cos 5αα+=,则()2tan 12sin sin 2πααα++=+( )A .17524−B .17524C .2524−D .2524【答案】.C【详解】由题知1sin cos 5αα+=,有242sin cos 25αα=−,所以()2tan 12sin sin 2πααα+++()tan 12sin sin cos αααα+=+()sin cos 1cos 2sin sin cos αααααα+=⨯+1252sin cos 24αα==−, 故选:C .3.(2022·广东佛山·二模)已知sin πα43⎛⎫−= ⎪⎝⎭,则sin 2α=___________.【答案】59【详解】sin sin 443ππαα⎛⎫⎛⎫−=−−=⎪ ⎪⎝⎭⎝⎭所以sin 4πα⎛⎫−= ⎪⎝⎭所以225sin 2cos 2cos 212sin 122449πππαααα⎛⎡⎤⎛⎫⎛⎫⎛⎫=−=−=−−=−⨯= ⎪ ⎪ ⎪⎢⎥ ⎝⎭⎝⎭⎝⎭⎣⎦⎝⎭ 故答案为:594.(2022·广东肇庆·二模)若sin cos 5θθ+=−,则sin 2θ=______. 【答案】45【详解】∵sin cos θθ+= ∴()29sin cos 12sin cos 5θθθθ+=+=, 所以4sin 22sin cos 5θθθ==. 故答案为:45.5.(2022·广东深圳·二模)已知tan 3α=,则cos 2=α__________. 【答案】45−【详解】解:由题意可知:2214cos 22cos 121tan 15ααα=−=⨯−=−+ .6.若3sin 5α=−,且3ππ,2α⎛⎫∈ ⎪⎝⎭,则1tan21tan2αα−=+( )A .12B .12−C .2D .−2【答案】D 【详解】3sin 2sincos225ααα==−,故2222sincos2tan32225sin cos tan 1222αααααα==−++, 可解得1tan23α=−或tan 32α=−,又3ππ,2α⎛⎫∈ ⎪⎝⎭,故tan 32α=−,故1tan 221tan2αα−=−+, 故选:D7.已知1sin 64x π⎛⎫−= ⎪⎝⎭,则cos 23x π⎛⎫−= ⎪⎝⎭( )A .78−B .78C.4−D.4【答案】B 【详解】因为sin sin 66x x ππ⎛⎫⎛⎫−=−− ⎪ ⎪⎝⎭⎝⎭,所以1sin 64x π⎛⎫−=− ⎪⎝⎭,2217cos 2cos 212sin 1236648x x x πππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=−−= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.故选:B.8.已知,22ππα⎛⎫∈− ⎪⎝⎭,且1cos 42πα⎛⎫−= ⎪⎝⎭,则cos2α=( )A. B. C .12D【答案】D 【详解】 因为22ππα−<<,所以3444πππα−<−< 又1cos 42πα⎛⎫−= ⎪⎝⎭,所以43ππα−=−,所以12πα=−所以cos 2cos cos 66ππα⎛⎫=−==⎪⎝⎭故选:D9.已知1sin 35πα⎛⎫+= ⎪⎝⎭,则cos 23πα⎛⎫−= ⎪⎝⎭( )A .2325B .2325−C D .5−【答案】B 【详解】因为1sin cos cos 3665πππααα⎛⎫⎛⎫⎛⎫+=−=−= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以22123cos 2cos22cos 121366525πππααα⎛⎫⎛⎫⎛⎫⎛⎫−=−=−−=⨯−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:B .10.已知()3sin 455α︒+=,45135α︒<<︒,则cos 2=α( )A .2425B .2425−C .725D .725−【答案】B 【详解】解:因为45135α︒<<︒,所以9045180α︒<+︒<︒,又()3sin 455α︒+=,所以()4cos 455α︒+==−,所以()()()3424sin 2452sin 45cos 4525525ααα⎛⎫︒+=︒+︒+=⨯⨯−=− ⎪⎝⎭。

2018年高考理科数学考纲解读与题型示例 (6)三角恒等变换与解三角形

2018年高考理科数学考纲解读与题型示例  (6)三角恒等变换与解三角形

2018年高考理科数学考纲解读与题型示例 (6) 三角恒等变换与解三角形【2018年高考考纲解读】 高考对本内容的考查主要有:(1)两角和(差)的正弦、余弦及正切是C 级要求,二倍角的正弦、余弦及正切是B 级要求,应用时要适当选择公式,灵活应用.(2)正弦定理、余弦定理及其应用,要求是B 级,能够应用定理实现三角形中边和角的转化,以及应用定理解决实际问题.试题类型一般是填空题,同时在解答题中与三角函数、向量等综合考查,构成中档题. 【重点、难点剖析】1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin 2α=2sin αcos α.(2)cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan 2α=2tan α1-tan 2α.3.正弦定理a sin A =b sin B =csin C=2R (2R 为△ABC 外接圆的直径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C .sin A =a 2R ,sin B =b 2R ,sin C =c2R.a ∶b ∶c =sin A ∶sin B ∶sin C .4.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.5.三角形面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .6.三角恒等变换的基本思路(1)“化异为同”,“切化弦”,“1”的代换是三角恒等变换的常用技巧.如1=cos 2θ+sin 2θ=tan 45°等.“化异为同”是指“化异名为同名”,“化异次为同次”,“化异角为同角”.(2)角的变换是三角变换的核心,如β=(α+β)-α,2α=(α+β)+(α-β),α+β2=⎝ ⎛⎭⎪⎫α-β2-⎝ ⎛⎭⎪⎫α2-β等.7.解三角形的四种类型及求解方法 (1)已知两角及一边,利用正弦定理求解.(2)已知两边及一边的对角,利用正弦定理或余弦定理求解,解的情况可能不唯一. (3)已知两边及其夹角,利用余弦定理求解. (4)已知三边,利用余弦定理求解. 8.利用解三角形的知识解决实际问题的思路把实际问题中的要素归入到一个或几个相互关联的三角形中,通过解这样的三角形即可求出实际问题的答案.注意要检验解出的结果是否具有实际意义,对结果进行取舍,从而得出正确结果. 【题型示例】题型1、三角变换及应用【例1】【2017山东,理9】在C ∆AB 中,角A ,B ,C 的对边分别为a ,b ,c .若C ∆AB 为锐角三角形,且满足()sin 12cosC 2sin cosC cos sinC B +=A +A ,则下列等式成立的是 (A )2a b = (B )2b a = (C )2A =B (D )2B =A 【答案】A【解析】sin()2sin cos 2sin cos cos sin A C B C A C A C ++=+ 所以2sin cos sin cos 2sin sin 2B C A C B A b a =⇒=⇒=,选A.【变式探究】(1)(2016²高考全国乙卷)已知θ是第四象限角,且sin ⎝ ⎛⎭⎪⎫θ+π4=35,则tan ⎝ ⎛⎭⎪⎫θ-π4=________.解析:基本法:将θ-π4转化为⎝ ⎛⎭⎪⎫θ+π4-π2.由题意知sin ⎝ ⎛⎭⎪⎫θ+π4=35,θ是第四象限角,所以cos ⎝ ⎛⎭⎪⎫θ+π4>0,所以cos ⎝⎛⎭⎪⎫θ+π4=1-sin 2⎝⎛⎭⎪⎫θ+π4=45.tan ⎝ ⎛⎭⎪⎫θ-π4=tan ⎝ ⎛⎭⎪⎫θ+π4-π2=-1tan ⎝ ⎛⎭⎪⎫θ+π4=-cos ⎝⎛⎭⎪⎫θ+π4sin ⎝ ⎛⎭⎪⎫θ+π4=-4535=-43.答案:-43∴∠B =π2-α,∴tan B =43,∴tan B =-43.答案:-43(2)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>0解析:基本法:由tan α>0得α是第一或第三象限角,若α是第三象限角,则A ,B 错;由sin 2α=2sin αcos α知sin 2α>0,C 正确;α取π3时,cos 2α=2cos 2α-1=2³⎝ ⎛⎭⎪⎫122-1=-12<0,D 错.故选C.速解法:∵tan α=sin αcos α>0,即sin αcos α>0,∴sin 2α=2sin αcos α>0,故选C. 答案:C【举一反三】 (2015²新课标全国Ⅰ,2)sin 20°cos 10°-cos 160°sin 10°=( )A .-32B.32C .-12D.12解析 sin 20°cos 10°-cos 160°sin 10°=sin 20°cos 10°+cos 20°sin 10°=sin 30°=12. 答案 D【变式探究】(2015²四川,12)sin 15°+sin 75°的值是________.解析 sin 15°+sin 75°=sin 15°+cos 15°=2sin(15°+45°)=2sin 60°=62. 答案62【举一反三】(2015²江苏,8)已知tan α=-2,tan(α+β)=17,则tan β的值为________.解析 ∵tan α=-2,∴tan(α+β)=tan α+tan β1-tan αtan β=-2+tan β1+2tan β=17,解得tan β=3.答案 3【变式探究】(1)(2014²新课标全国卷Ⅰ)设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝ ⎛⎭⎪⎫0,π2,且tan α=1+sin βcos β,则( )A .3α-β=π2B .2α-β=π2C .3α+β=π2D .2α+β=π2(2)(2014²山西)若锐角α满足2sin α+23cos α=3,则tan ⎝ ⎛⎭⎪⎫2α+2π3的值是( )A .-37B .-377C .37D.377【解析】(1)解法一:由tan α=1+sin βcos β,得sin αcos α=1+sin βcos β, 即sin αcos β=cos α+cos αsin β,∴sin(α-β)=cos α=sin ⎝ ⎛⎭⎪⎫π2-α.∵α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎝⎛⎭⎪⎫0,π2,∴α-β∈⎝ ⎛⎭⎪⎫-π2,π2,π2-α∈⎝⎛⎭⎪⎫0,π2,∴由sin(α-β)=sin ⎝ ⎛⎭⎪⎫π2-α,得α-β=π2-α, ∴2α-β=π2,故选B.解法二:tan α=1+sin βcos β=1+cos ⎝⎛⎭⎪⎫π2-βsin ⎝ ⎛⎭⎪⎫π2-β=2cos 2⎝⎛⎭⎪⎫π4-β22sin ⎝ ⎛⎭⎪⎫π4-β2cos ⎝ ⎛⎭⎪⎫π4-β2=cot ⎝ ⎛⎭⎪⎫π4-β2=tan ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π4-β2=tan ⎝ ⎛⎭⎪⎫π4+β2,∴α=k π+⎝ ⎛⎭⎪⎫π4+β2,k ∈Z .∴2α-β=2k π+π2,k ∈Z .当k =0时,满足2α-β=π2,故选B.【感悟提升】(1)此类问题的着眼点是“一角、二名、三结构”,即一看角的差异,二看名称的差异,三看结构形式的差异,然后多角度使用三角公式求解.(2)对于三角函数中角的求值问题,关键在于“变角”,将“目标角”变换成“已知角”.若角所在象限没有确定,则应分情况讨论,要注意三角公式的正用、逆用、变形运用,掌握其结构特征,还要注意拆角、拼角等技巧的运用.(3)求三角函数的化简求值问题的一般思路:“五遇六想一引”,即遇正切,想化弦;遇多元,想消元;遇差异,想联系;遇高次,想降次;遇特角,想求值;想消元,引辅角.【变式探究】(2015²广东,11)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________.解析 因为sin B =12且B ∈(0,π),所以B =π6或B =5π6.又C =π6,所以B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =b sin B ,即3sin 2π3=bsinπ6,解得b =1. 答案 1考点2、正、余弦定理的应用【例2】【2017课标II ,理17】ABC ∆的内角A B C 、、所对的边分别为,,a b c ,已知()2sin 8sin 2BA C +=, (1)求cosB ;(2)若6a c +=,ABC ∆的面积为2,求b 。

三角恒等变换高三数学一轮复习考点突破课件

三角恒等变换高三数学一轮复习考点突破课件
题目:已知a=sinθ,b=cosθ,求a^2-b^2的值 答案:-1 答案:-1
题目:已知a=cosθ,b=sinθ,求a^2-b^2的值 答案:-1 答案:-1
06 总结与建议
总结三角恒等变换的重要知识点和考点
三角恒等变换的应用实例和 解题技巧
三角恒等变换在高考中的常 见题型和考点分析Biblioteka 三角恒等变换的公式和推导 过程
三角恒等变换高三数 学一轮复习考点突破
,a click to unlimited possibilities
汇报人:
目录 /目录
01
点击此处添加 目录标题
04
三角恒等变换 的考点解析
02
三角恒等变换 的基本概念
05
三角恒等变换 的实战演练
03
三角恒等变换 的解题方法
06
总结与建议
01 添加章节标题
三角恒等变换的公式
正弦定理:sin(A+B) = sinAcosB + cosAsinB
余弦定理:cos(A+B) = cosAcosB - sinAsinB
正切定理:tan(A+B) = (tanA+tanB)/(1-tanAtanB)
正弦、余弦、正切的和差公式:sin(A-B) = sinAcosB - cosAsinB, cos(A-B) = cosAcosB + sinAsinB, tan(A-B) = (tanAtanB)/(1+tanAtanB)
02
三角恒等变换的基本概 念
三角恒等变换的定义
基本概念:三角恒等变换是指在三角函数中,通过恒等变换将一种三角函数转化为另 一种三角函数的过程。
主要类型:包括正弦、余弦、正切、余切等基本三角函数的恒等变换。

2018年高考数学(人教文科)总复习配套课件:4.6三角恒等变换

2018年高考数学(人教文科)总复习配套课件:4.6三角恒等变换
sin10°cos10°
√3sin10°-cos10°
解析:由题意可知,r=|OP|=√5,sin α= ,cos α= , 则 cos2α+sin 2α=cos2α+2sin αcos α =
2 2 1 2 +2× × √5 √5 √5
1 √5
2 √5
= + = .
4 54 5Fra bibliotek8 5
专题四
知识梳理
考点自测
4.6
三角恒等变换
考情概览备考定向 必备知识预案自诊 必备知识预案自诊 关键能力学案突破
������
������
=
-cos θ
.
2sin2cos2+2cos2 2 sin2-cos2
������
������
������
sin2 2-cos2 2 cos2
������
������
4cos2 2
������
=
-cos2· cos������
������ cos2
.
������ 0<2
因为 0<θ<π,所以 所以 cos2>0,
专题四
知识梳理
考点自测
4.6
三角恒等变换
考情概览备考定向 必备知识预案自诊 必备知识预案自诊 关键能力学案突破
-3-
与半角有关的公式 ������ 1+cos α=2cos22; 1-cos α=2sin2 ;
������ 2 ������ ������ 2 1+sin α= sin 2 + cos 2 ; ������ ������ 2 1-sin α= sin 2 -cos 2 ; ������ 2tan2

年高考数学一轮总复习三角恒等变换的证明与综合运用题解析

年高考数学一轮总复习三角恒等变换的证明与综合运用题解析

年高考数学一轮总复习三角恒等变换的证明与综合运用题解析三角恒等变换是高中数学学科中的重要内容,它是通过对三角函数中等式关系的变换和推导,来解决问题和证明定理的方法之一。

在高考数学中,三角恒等变换经常被用来解决各种类型的综合运用题。

本文将对三角恒等变换的证明与综合运用题进行解析。

一、三角恒等变换的基本形式三角恒等变换是指将一个三角函数的表达式转化为另一个等价的三角函数的表达式,或者将一个三角函数的等式变换为另一个等价的三角函数的等式。

根据等式的关系,三角恒等变换可以分为以下几种基本形式:1. 三角函数的平方和差恒等变换:\[ \sin^2 \theta + \cos^2 \theta = 1 \]\[ \sin^2 \theta - \cos^2 \theta = \sin^2 \theta - (1 - \sin^2 \theta) = 2\sin^2 \theta - 1 \]\[ \cos^2 \theta - \sin^2 \theta = \cos^2 \theta - (1 - \cos^2 \theta) =2\cos^2 \theta - 1 \]2. 三角函数的倍角恒等变换:\[ \sin 2\theta = 2\sin \theta \cos \theta \]\[ \cos 2\theta = \cos^2 \theta - \sin^2 \theta \]\[ \tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta} \]3. 三角函数的半角恒等变换:\[ \sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}} \]\[ \cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}} \]\[ \tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \]二、三角恒等变换的证明三角恒等变换的证明通常需要运用基本的三角函数定义和三角函数的性质,以及一些代数化简的方法。

2018年高考数学总复习(十八)三角恒等变换的3个考查点——化简、求值和应用

2018年高考数学总复习(十八)三角恒等变换的3个考查点——化简、求值和应用

高考达标检测(十八)三角恒等变换的3个考查点——化简、求值和应用 一、选择题1.(2016·全国丙卷)若tan θ=-13,则cos 2θ=( )A .-45B .-15C.15D.45解析:选D ∵cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ, 又∵tan θ=-13,∴cos 2θ=1-191+19=45.2.已知tan ⎝ ⎛⎭⎪⎫α+π4=12,且-π2<α<0,则2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4等于( ) A .-255 B .-3510C .-31010D.255解析:选A 由tan ⎝⎛⎭⎪⎫α+π4=tan α+11-tan α=12, 得tan α=-13.又-π2<α<0,所以sin α=-1010. 故2sin 2α+sin 2αcos ⎝ ⎛⎭⎪⎫α-π4=2sin αsin α+cos α22sin α+cos α=22sin α=-255. 3.(2017·温州测试)已知sin x +3cos x =65,则cos ⎝ ⎛⎭⎪⎫π6-x =( ) A .-35B.35C .-45D.45解析:选B ∵sin x +3cos x =2⎝ ⎛⎭⎪⎫12sin x +32cos x=2⎝⎛⎭⎪⎫sin π6sin x +cos π6cos x =2cos ⎝ ⎛⎭⎪⎫π6-x =65, ∴cos ⎝ ⎛⎭⎪⎫π6-x =35.4.(2017·东北三省模拟)已知sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α,则cos 2α=( )A .1B .-1 C.12D .0解析:选D ∵sin ⎝ ⎛⎭⎪⎫π6-α=cos ⎝ ⎛⎭⎪⎫π6+α, ∴12cos α-32sin α=32cos α-12sin α, 即⎝ ⎛⎭⎪⎫12-32sin α=-⎝ ⎛⎭⎪⎫12-32cos α, ∴tan α=sin αcos α=-1,∴cos 2α=cos 2α-sin 2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2αtan 2α+1=0. 5.(2017·南宁调研)若θ∈[0,π],cos θ=34,则tan θ2=( )A.7B.17C .7D.77解析:选D 法一:因为θ∈[0,π],所以θ2∈⎣⎢⎡⎦⎥⎤0,π2,所以cosθ2=cos θ+12=144, 所以sinθ2=24,所以tan θ2=77,故选D. 法二:由题意得sin θ=74,所以tan θ=73.因为θ∈[0,π],所以θ2∈⎣⎢⎡⎦⎥⎤0,π2,所以由tan θ=2tanθ21-tan 2 θ2=73,解得tan θ2=77或tan θ2=-7(舍去),故选D.6.(2017·吉林大学附中检测)若α∈⎝ ⎛⎭⎪⎫π2,π,且3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α,则sin2α的值为( )A .-356 B .-16C .-3518D .-1718解析:选D ∵3cos 2α=sin ⎝ ⎛⎭⎪⎫π4-α, ∴3(cos 2α-sin 2α)=22(sin α-cos α), 易知sin α≠cos α,故cos α+sin α=-26, 两边平方得1+sin 2α=118,解得sin 2α=-1718,故选D.7.(2017·贵阳监测)已知sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435,则sin ⎝ ⎛⎭⎪⎫α+7π6的值是( )A .-235B.235C.45D .-45解析:选D sin ⎝ ⎛⎭⎪⎫π3+α+sin α=435⇒sin π3cos α+cos π3sin α+sin α=435⇒32sin α+32cos α=435⇒32sin α+12cos α=45,故sin ⎝ ⎛⎭⎪⎫α+7π6=sin αcos 7π6+cos αsin 7π6=-⎝ ⎛⎭⎪⎫32sin α+12cos α=-45.8.(2016·长沙模拟)在△ABC 中,若3(tan B +tan C )=tan B ·tan C -1,则sin 2A =( )A .-12B.12C .-32D.32解析:选D 由两角和的正切公式知tan B +tan C =tan(B +C )(1-tan B ·tan C ),所以3(tan B +tan C )=tan B ·tan C -1=3tan(B +C )(1-tan B ·tan C ),所以tan(B +C )=-33,所以tan A =33,又A ∈(0,π),所以A =π6,所以sin 2A =32,故选D. 二、填空题9.化简:sin 50°(1+3tan 10°)=________. 解析:sin 50°(1+3tan 10°) =sin 50°⎝ ⎛⎭⎪⎫1+3·sin 10°cos 10°=sin 50°·cos 10°+3sin 10°cos 10°=sin 50°·2⎝ ⎛⎭⎪⎫12cos 10°+32sin 10°cos 10°=2sin 50°·cos 50°cos 10°=sin 100°cos 10°=cos 10°cos 10°=1.答案:110.(2016·浙江高考)已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.解析:∵2cos 2x +sin 2x =1+cos 2x +sin 2x =1+2sin ⎝ ⎛⎭⎪⎫2x +π4,∴1+2sin ⎝⎛⎭⎪⎫2x +π4=A sin(ωx +φ)+b , ∴A =2,b =1. 答案: 2 111.(2017·东北三省四市联考)已知tan(3π-x )=2,则2cos 2x2-sin x -1sin x +cos x =________.解析:由诱导公式得tan(3π-x )=-tan x =2, 即tan x =-2,故2cos 2x2-sin x -1sin x +cos x =cos x -sin x sin x +cos x =1-tan xtan x +1=-3.答案:-312.(2017·珠海六校联考)已知tan(α+β)=25,tan β=13,则tan ⎝ ⎛⎭⎪⎫α+π4的值为________.解析:∵tan(α+β)=25,tan β=13,∴tan α=tan[(α+β)-β] =tan α+β-tan β1+tan α+β·tan β=25-131+25×13=117,tan ⎝⎛⎭⎪⎫α+π4=1+tan α1-tan α=1+1171-117=98.答案:98三、解答题13.已知函数f (x )=sin x -3cos x +2,记函数f (x )的最小正周期为β,向量a =(2, cos α),b =⎝ ⎛⎭⎪⎫1,tan ⎝⎛⎭⎪⎫α+β2,0<α<π4,且a·b =73. (1)求f (x )在区间⎣⎢⎡⎦⎥⎤2π3,4π3上的最值;(2)求2cos 2α-sin [2α+β]cos α-sin α的值.解:(1)f (x )=sin x -3cos x +2=2sin ⎝⎛⎭⎪⎫x -π3+2, ∵x ∈⎣⎢⎡⎦⎥⎤2π3,4π3,∴x -π3∈⎣⎢⎡⎦⎥⎤π3,π,∴f (x )的最大值是4,最小值是2. (2)由题意知β=2π,∴a·b =2+cos αtan(α+π)=2+sin α=73,∴sin α=13,∴2cos 2α-sin [2α+β]cos α-sin α=2cos 2α-sin 2αcos α-sin α=2cos α=21-sin 2α=423.14.(2017·台州模拟)已知实数x 0,x 0+π2是函数f (x )=2cos 2ωx +sin ⎝⎛⎭⎪⎫2ωx -π6(ω>0)的相邻的两个零点.(1)求ω的值;(2)设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若f (A )=32且b tan B +ctan C =2atan A,试判断△ABC 的形状,并说明理由. 解:(1)f (x )=1+cos 2ωx +32sin 2ωx -12cos 2ωx =32sin 2ωx +12cos 2ωx +1 =sin ⎝⎛⎭⎪⎫2ωx +π6+1, 由题意得T =π, ∴2π2ω=π,即ω=1. (2)由(1)得f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6+1, ∴f (A )=sin ⎝⎛⎭⎪⎫2A +π6+1=32, 即sin ⎝⎛⎭⎪⎫2A +π6=12. ∵0<A <π,∴π6<2A +π6<13π6, ∴2A +π6=5π6,即A =π3. 由b tan B+ctan C=2a tan A ,得b cos B sin B +c cos C sin C =2a cos Asin A, 所以cos B +cos C =2cos A =1, 又因为B +C =2π3,所以cos B +cos ⎝ ⎛⎭⎪⎫2π3-B =cos B -12cos B +32sin B =sin ⎝⎛⎭⎪⎫B +π6=1,所以B=C=π3.综上,△ABC是等边三角形.。

2018年高考数学按章节分类汇编(人教A必修四):第三章三角恒等变换

2018年高考数学按章节分类汇编(人教A必修四):第三章三角恒等变换
2
x x x 1 sin cos . 2 2 2 2
3 2 ,求 sin 2 的值. 10
2. (2018 年高考(湖南文) )已知函数 f ( x ) A sin( x )( x R, 0, 0 (Ⅰ)求函数 f(x)的解析式; (Ⅱ)求函数 g ( x ) f ( x
6. (2018 年高考(江西文) )若 9 . (2018 年高考(山东理) )若 , , sin 2 = 8 4 2






3 7
,则 sin


A.
3 5
B.
4 5
C.
7 4
D.
3 4
( )
10. (2018 年高考(湖南理) )函数 f(x)=sinx-cos(x+
3 . (2018 年高考(陕西文) )设向量 a =(1. cos )与 b =(-1, 2 cos )垂直,则 cos 2 等于 A


2 2
B
1 2
C.0
D.-1
4 . (2018 年高考(辽宁文) )已知 sin cos A. 1 B.
2 , (0,π),则 sin 2 = ( 2 2
2018 年高考数学按章节分类汇编(人教 A 必修四) 第三章三角恒等变换
一、选择题 (2018 年高考(重庆文) ) 1 .
sin 47 sin17 cos 30 cos17 1 2
C.


A.
3 2
B.
1 2
2
D.
3 2

2 . (2018 年高考(重庆理) )设 tan , tan 是方程 x 3x 2 0 的两个根,则 tan( ) 的值为 ( A . 3 B. 1 C.1 D.3

2018年高考数学热门考点与解题技巧:考点11-三角函数的恒等变换(含解析)

2018年高考数学热门考点与解题技巧:考点11-三角函数的恒等变换(含解析)

题型1 同角求值例1.(2016全国丙理5)若3tan 4α=,则2cos 2sin 2αα+=( ). A.6425 B.4825 C.1 D.1625【解题技巧】本题考查三角恒等变换,齐次化切. 变式1.(2013四川理13)设sin 2sin αα=-,π,π2α⎛⎫∈ ⎪⎝⎭,则tan 2α的值是____________. 解析:sin 22sin cos sin αααα==-,因为π,π2α⎛⎫∈⎪⎝⎭,所以1cos 2α=-,23πα=,所以4tan 2tan3πα==. 题型2 公式运用例2(2015全国1)sin 20cos10cos160sin10-=( )A .. 12- D .12解析 原式sin 20cos10cos 20sin10=+=1sin 302=.故选D .变式1.(2016四川理11)22ππcossin 88-= . 解析 由倍角得22πππcos sin cos 28842-=⨯=变式2.(2015四川理)sin15sin 75+的值是 _____________. 解析 依据题意可得:sin15sin 75+=sin15cos15+=645)+=. 题型3 化简求值例3.(2015江苏)已知tan 2α=-,()1tan 7αβ+=,则tan β的值为 .解法三:()tan tan αβαβ=+-()()tan tan 1tan tan αββαββ+-=++⋅1tan 7211tan 7ββ-==-+,故tan 3β=. 变式1.(2016全国甲理9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=( ). A.725 B.15C.15-D.725-解析 因为π3cos 45α⎛⎫-=⎪⎝⎭,)3cos sin 5αα+=,所以cos sin αα+181+sin 225α=,即7sin 225α=.故选D .变式1.(2016全国甲理9)若π3cos 45α⎛⎫-= ⎪⎝⎭,则sin 2α=( ). A.725 B.15C.15- D.725-解析 因为π3cos 45α⎛⎫-= ⎪⎝⎭,)3cos sin 5αα+=, 所以cos sin αα+ 1871+sin2sin22525αα=⇒=.故选D .题型4 三角恒等变换与三角函数的值域例4.(2015天津)已知函数()22πsin sin 6f x x x ⎛⎫=--⎪⎝⎭,x ∈R . (1)求()f x 最小正周期;(2)求()f x 在区间ππ,34⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 分析 (1) 利用两角和与差的正余弦公式及二倍角的正余弦公式化简函数的解析式,由三角函数性质可求最小正周期;(2)先写出函数的单调区间,即可求函数的最大值与最小值.(2)解法一:因为()f x 在区间ππ36⎡⎤--⎢⎥⎣⎦,上是减函数,在区间ππ64⎡⎤-⎢⎥⎣⎦,上是增函数, π134f ⎛⎫-=- ⎪⎝⎭,π162f ⎛⎫-=- ⎪⎝⎭,π4f ⎛⎫=⎪⎝⎭()f x 在区间ππ34⎡⎤-⎢⎥⎣⎦,上的最大值是4,最小值是12-.解法二:由ππ34x -剟,得2ππ232x -剟,5πππ2663x --剟,π1sin 262x ⎛⎫-- ⎪⎝⎭剟, ()12f x -剟当π6x =-时,()f x 取得最小值1-,当π4x =时,()f x【高考真题链接】1.(2017北京理12)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,()cos αβ-=___________.解析 由题作出图形,如图所示,1sin 3α=,则cos α=,由于α与β关于y 轴对称,则()1sin sin 3βα=π-=,cos 3β=-,故()117cos 339αβ⎛-=+⨯=- ⎝⎭.2.. (2013全国新课标卷理15) 设θ为第二象限的角,若π1tan 42θ⎛⎫+= ⎪⎝⎭,则s i n c o s θθ+= .3.(2015重庆)若πtan 2tan 5α=,则3πcos 10πsin 5αα⎛⎫- ⎪⎝⎭=⎛⎫- ⎪⎝⎭( ).A. 1B. 2C. 3D. 44.(17江苏05)若π1tan 46α⎛⎫-= ⎪⎝⎭,则tan α= . 解析 解法一(角的关系):tan tan 44ααππ⎛⎫=-+ ⎪⎝⎭7tan 1746551tan 64ααπ⎛⎫-+ ⎪⎝⎭===π⎛⎫-- ⎪⎝⎭.故填75. 解法二(直接化简):πtan 11tan 41tan 6ααα-⎛⎫-== ⎪+⎝⎭,所以7tan 5α=.故填75. 5.(2017全国2理14)函数()23sin 0,42f x x x x ⎛π⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是 .解析()2233πsin 1cos 0442f x x x x x x ⎛⎫⎡⎤=+-=-+-∈ ⎪⎢⎥⎣⎦⎝⎭,,令cos x t =且[]01t ∈,,214y t =-++21t ⎛=-+ ⎝⎭,当t =,即6x π=时,()f x 取最大值为1.6.(2017浙江理18)已知函数()()22sin cos cos f x x x x x x =--∈R . (1)求23f π⎛⎫⎪⎝⎭的值;(2)求()f x 的最小正周期及单调递增区间.7.(2015北京)已知函数()2cos 222x x x f x =-.(1)求()f x 的最小正周期; (2)求()f x 在区间[]π,0-的最小值.解析 (1)()1cos cos 222x x x f x x x -=-==πsin 4x ⎛⎫+ ⎪⎝⎭,函数()f x 的最小正周期2πT =.(2)当π0x -剎?时,3πππ444x -+剟,π1sin 42x ⎛⎫-+ ⎪⎝⎭剟,函数()f x 在区间[]π,0-的最小值为12--.。

(全国通用)2018年高考数学 考点一遍过 专题16 三角恒等变换(含解析)理

(全国通用)2018年高考数学 考点一遍过 专题16 三角恒等变换(含解析)理

考点16 三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).一、两角和与差的三角函数公式 1.两角和与差的正弦、余弦、正切公式(1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+ (2)()C αβ+:cos()cos cos sin sin αβαβαβ+=- (3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+ (4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ- (5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z2.二倍角公式(1)2S α:sin2α=2sin cos αα(2)2C α:cos2α=2222cos sin 12sin 2cos 1αααα-=-=-(3)2T α:tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且3.公式的常用变形(1)tan tan tan()(1tan tan )αβαβαβ±=±;tan tan tan tan tan tan 11tan()tan()αβαβαβαβαβ+-=-=-+-(2)降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=;1sin cos sin 22ααα= (3)升幂公式:21cos 22cos αα+=;21cos 22sin αα-=;21sin 2(sin cos )ααα+=+;21sin 2(sin cos )ααα-=-(4)辅助角公式:sin cos a x b x +)x ϕ=+,其中cos ϕϕ==tan baϕ=二、简单的三角恒等变换 1.半角公式(1)sin2α=(2)cos2α=(3)tan2α=sin 1cos 1cos sin αααα-==+【注】此公式不用死记硬背,可由二倍角公式推导而来,如下图:2.公式的常见变形(和差化积、积化和差公式) (1)积化和差公式:1cos cos [cos()cos()]2αβαβαβ=++-;1sin sin [cos()cos()]2αβαβαβ=-+--;1sin cos [sin()sin()]2αβαβαβ=++-;1cos sin [sin()sin()]2αβαβαβ=+--.(2)和差化积公式:sin sin 2sincos22αβαβαβ+-+=;sin sin 2cos sin22αβαβαβ+--=; cos cos 2cos cos22αβαβαβ+-+=; cos cos 2sin sin22αβαβαβ+--=-.考向一 三角函数式的化简1.化简原则(1)一看角之间的差别与联系,把角进行合理的拆分,正确使用公式; (2)二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;(3)三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等. 2.化简要求(1)使三角函数式的项数最少、次数最低、角与函数名称的种类最少;(2)式子中的分母尽量不含根号.3.化简方法(1)切化弦;(2)异名化同名;(3)异角化同角;(4)降幂或升幂.典例1 化简:ππsin sin33ππcos cos33αααα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭=.【答案】【方法技巧】(1)三角化简的常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.学.(2)三角化简的标准:三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.(3)在化简时要注意角的取值范围.1________.考向二三角函数的求值问题1.给角求值给角求值中一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察会发现非特殊角与特殊角之间总有一定的关系.解题时,要利用观察得到的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数,从而得解. 2.给值求值已知三角函数值,求其他三角函数式的值的一般思路: (1)先化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手). (3)将已知条件代入所求式子,化简求值. 3.给值求角通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.(2)已知正、余弦函数值,则选正弦或余弦函数.若角的范围是π(0,)2,则选正、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为ππ(,)22-,则选正弦较好. 4.常见的角的变换 (1)已知角表示未知角 例如:()()ααββ=+-=,()()()()2,2ααβαββαβαβ=++-=+--,(2)αβαβα+=++,(2)αβαβα-=-+,22αβαβα+-=+,22αβαββ+-=-.(2)互余与互补关系 例如:π3π()()π44αα++-=,πππ()()362αα++-=. (3)非特殊角转化为特殊角例如:15°=45°−30°,75°=45°+30°.典例2 cos15cos30cos105sin30︒︒+︒︒的值是A B C .12D .1【答案】A【名师点睛】把所求式子中的角105°变为90°+15°,利用诱导公式cos (90°+α)=−sin α化简后,再利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可求出值.“给角求值”,一般给出的角都是非特殊角,观察发现题中的角与特殊角都有着一定的关系,如和或差为特殊角,必要时运用诱导公式.2A .1-B .2C .12D .1典例3 已知tan(α−β)=,tan β=−,且α,β∈(0,π),则2α−β=A .π4B .π4- C .3π4-D .π4或3π4- 【答案】C又α∈(0,π),所以0<α<.又<β<π,所以−π<2α−β<0,所以2α−β=−.故选C.【名师点睛】在解决给值求角问题时,不仅要注意已经明确给出的有关角的范围,还要结合有关角的三角函数值尽可能地缩小角的范围.302βαπ<<<. (1)求α2tan 的值. (2)求β的值.典例4 已知324βαπ<<<π,12cos()13αβ-=,3sin(),5αβ+=-则sin 2α=A BC D【答案】B【名师点睛】解给值求值型问题的一般思路是:先看公式中的量,哪些是已知的,哪些是待求的,再利用已知条件结合同角三角函数的基本关系求出待求值,注意根据角的象限确定符号. 这类求值问题关键在于结合条件和结论中的角,合理拆、配角.4.已知角α,β均为锐角,且3cos5α=,tan(α−β)=,则tanβ=A. B.C. D.3考向三三角恒等变换的综合应用1.与三角函数的图象及性质相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的形式.(2)利用公式2π(0)Tωω=>求周期.(3)根据自变量的范围确定ωx+φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的单调区间.2.与向量相结合的综合问题三角恒等变换与向量的综合问题是高考经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,往往是两向量平行或垂直的计算,即令a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,a∥b⇔x1y2=x2y1,a⊥b⇔x1x2+y1y2=0,把向量形式化为坐标运算后,接下来的运算仍然是三角函数的恒等变换以及三角函数、解三角形等知识的运用.3.与解三角形相结合的综合问题(1)利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解;(2)利用正、余弦定理把边的关系化成角的关系再用三角恒等变换化简求解.【注】此类题中的角是在三角形中,每个角范围限制在(0,π)内,如果是锐角三角形,则需要限制各个角均在π(0,)2内.角的范围在解题中至关重要,做题时要特别注意.典例5 设函数f(x)=sin2ωx−sin ωx cosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.(1)求ω的值;(2)求f(x)在区间π,]上的最大值和最小值.【答案】(1)1;(2)f(x)在区间π,]上的最大值和最小值分别为,−1.【解析】(1)f (x )=sin 2ωx −sin ωx cos ωx =·sin 2ωx =cos2ωx −sin 2ωx =−sin(2ωx −).因为图象的一个对称中心到最近的对称轴的距离为,且ω>0,所以=4×,因此ω=1.(2)由(1)知f (x )=−sin(2x −).当π≤x ≤时,≤2x −≤.所以−≤sin(2x −)≤1.因此−1≤f (x )≤.故f (x )在区间π,]上的最大值和最小值分别为,−1.5.已知向量a =1cos ,2x ⎛⎫-⎪⎝⎭,b x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.1.cos9π·cos 29π ·cos 23()9π-= A .−18B .−116 C .116D .182.已知1sin cos 5αα-=-,则的值为A .1225B .2425-C .2425D .1225-3.已知锐角,αβ满足,则αβ+的值为ACD 4.设,,且,则A .B .C .D .5.已知向量a =(sin(),1)6απ+,b =(4,4cos α),若a ⊥b ,则sin 4()3απ+=A .4-B .14-C .4D .146,则sin β= A .0C7A B CD 8.已知α为锐角,若,则sin α=ABC D 9.若()()sin 603cos 90θθ+︒=︒-,则tan θ=__________.10.在斜三角形ABC 中,tan tan tan tan 1A B A B ++=,则C ∠=_____________.11.已知函数,若为函数()f x 的一个零点,则0cos2x =__________.12(1)求sin2β的值;(213.已知函数.(1)求的最小正周期和最值;(2)设是第一象限角,且求的值.1.(2016年高考新课标Ⅱ卷)若cos(4π−α)=53,则sin 2α= A .725B .15C .−15D .−7252.(2016年高考新课标Ⅲ卷)若3tan 4α=,则2cos 2sin 2αα+= A .6425B .4825C .1D .16253.(2017年高考北京卷)在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________. 4.(2017年高考江苏卷)若π1tan(),46α-=则tan α=___________.5.(2016年高考四川卷)cos 2π8–sin 2π8= . 6.(2016年高考浙江卷)已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =______,b =________.1.【答案】−2sin42.【答案】C【解析】由()sin47sin 3017sin30cos17sin17cos30︒=︒+︒=︒︒+︒︒知,原式3.【答案】(1(2【解析】(1)由1cos ,072ααπ=<<(2)由0βαπ<<<,得0.2αβπ<-<由)(βααβ--=得)](cos[cos βααβ--=.3βπ∴=4.【答案】D5.【答案】(1)π;(2)f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.【解析】f (x )=1cos ,2x ⎛⎫-⎪⎝⎭x ,cos 2x )cos x sin x −12cos 2x=2sin 2x −12cos 2x =ππcossin 2sin cos 266x x -=πsin 26x ⎛⎫-⎪⎝⎭. (1)f (x )的最小正周期为2π2ππ2T ω===,即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴ππ5π2666x -≤-≤.由正弦函数的性质,当ππ262x -=,即π3x =时,f (x )取得最大值1. 当ππ266x -=-,即x =0时,f (0)=12-,当π52π66x -=,即π2x =时,π122f ⎛⎫= ⎪⎝⎭, ∴f (x )的最小值为12-. 因此,f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.1.【答案】A2.【答案】C 【解析】由题意得,两边同时平方得故选C. 3.【答案】B【解析】因为锐角,αβ,所以因为()0,παβ+∈,所以 B. 4.【答案】B【解析】根据三角函数的基本关系可 得,,因为,,所以,所以(舍)或,得,故选B.5.【答案】B6.【答案】B,0⨯=,不合题意,舍去;,525=,应选B. 7.【答案】DD. 8.【答案】C【解析】∵α为锐角且 则,故本题选C.9.10.【解析】在ABC△ 中,tan tan tan tan 1A B A B ++⋅=,则t a n t a n 1A B A B+=-⋅0πC <<11.【答案】3512.【答案】(1(2【解析】(1(2【名师点睛】在三角化简求值类题目中,常常考“给值求值”的问题,遇见这类题目一般的方法是配凑角:即将要求的式子通过配凑,得到与已知角的关系,进而用两角和与差的公式展开求值即可.13.【答案】(1)的最小正周期是,最大值为,最小值为;(2).【解析】(1).的最小正周期是,最大值为,最小值为. (2),则,即,又为第一象限的角,则,.1.【答案】D【解析】2237cos22cos12144525αα⎡π⎤π⎛⎫⎛⎫⎛⎫-=--=⨯-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,又cos2cos2sin242ααα⎡π⎤π⎛⎫⎡⎤-=-=⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,所以7sin225α=-,故选D.【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示:(1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.2.【答案】A【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.3.【答案】79- 【解析】因为α和β关于y 轴对称,所以π2π,k k αβ+=+∈Z ,那么1sin sin 3βα==,cos cos αβ=-=(或cos cos βα=-=), 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=-. 【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则π2π,k k αβ+=+∈Z ,若α与β的终边关于x 轴对称,则2π,k k αβ+=∈Z ,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .4.【答案】75【解析】11tan()tan 7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角.5.【答案】2【名师点睛】本题也可以看作来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题都是通过三角函数公式把一般的三角函数求值转化为特殊角的三角函数求值而得解.6.,1【解析】22cos sin 2)14x x x π+=++,所以 1.A b ==【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos2sin 21x x ++,进而对照()sin Αx b ωϕ++可得Α和b 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点15三角恒等变换1.两角和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)会用两角差的余弦公式推导出两角差的正弦、正切公式.(3)会用两角差的余弦公式推导出两角和的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式,了解它们的内在联系. 2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但不要求记忆).一、两角和与差的三角函数公式 1.两角和与差的正弦、余弦、正切公式(1)()C αβ-:cos()αβ-=cos cos sin sin αβαβ+ (2)()C αβ+:cos()cos cos sin sin αβαβαβ+=- (3)()S αβ+:sin()αβ+=sin cos cos sin αβαβ+ (4)()S αβ-:sin()αβ-=sin cos cos sin αβαβ- (5)()T αβ+:tan()αβ+=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ++≠+∈-Z(6)()T αβ-:tan()αβ-=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ--≠+∈+Z2.二倍角公式(1)2S α:sin 2α=2sin cos αα(2)2C α:cos 2α=2222cos sin 12sin 2cos 1αααα-=-=-(3)2T α:tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且3.公式的常用变形(1)tan tan tan()(1tan tan )αβαβαβ±=± ;tan tan tan tan tan tan 11tan()tan()αβαβαβαβαβ+-=-=-+-(2)降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=;1sin cos sin 22ααα= (3)升幂公式:21cos 22cos αα+=;21cos 22sin αα-=;21sin 2(sin cos )ααα+=+;21sin 2(sin cos )ααα-=-(4)辅助角公式:sin cos a x b x +)x ϕ=+,其中cos ϕϕ==,tan b aϕ=二、简单的三角恒等变换 1.半角公式(1)sin2α=(2)cos2α=(3)tan2α=sin 1cos 1cos sin αααα-==+【注】此公式不用死记硬背,可由二倍角公式推导而来,如下图:2.公式的常见变形(和差化积、积化和差公式) (1)积化和差公式:1cos cos [cos()cos()]2αβαβαβ=++-;1sin sin [cos()cos()]2αβαβαβ=-+--;1sin cos [sin()sin()]2αβαβαβ=++-;1cos sin [sin()sin()]2αβαβαβ=+--.(2)和差化积公式:sin sin 2sincos22αβαβαβ+-+=;sin sin 2cos sin 22αβαβαβ+--=;cos cos 2cos cos 22αβαβαβ+-+=;cos cos 2sin sin 22αβαβαβ+--=-.考向一三角函数式的化简1.化简原则(1)一看角之间的差别与联系,把角进行合理的拆分,正确使用公式; (2)二看函数名称之间的差异,确定使用的公式,常见的有“切化弦”;(3)三看结构特征,找到变形的方向,常见的有“遇到分式要通分”,“遇到根式一般要升幂”等.2.化简要求(1)使三角函数式的项数最少、次数最低、角与函数名称的种类最少;(2)式子中的分母尽量不含根号.3.化简方法(1)切化弦;(2)异名化同名;(3)异角化同角;(4)降幂或升幂.典例1 化简:ππsin sin33ππcos cos33αααα⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++-⎪ ⎪⎝⎭⎝⎭=.【答案】【解析】原式=π2sin cos3π2cos cos3αα=tan.【方法技巧】(1)三角化简的常用方法:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化.(2)三角化简的标准:三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.(3)在化简时要注意角的取值范围.1________.考向二三角函数的求值问题1.给角求值给角求值中一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察会发现非特殊角与特殊角之间总有一定的关系.解题时,要利用观察得到的关系,结合公式将非特殊角的三角函数转化为特殊角的三角函数,从而得解. 2.给值求值已知三角函数值,求其他三角函数式的值的一般思路: (1)先化简所求式子.(2)观察已知条件与所求式子之间的联系(从三角函数名及角入手). (3)将已知条件代入所求式子,化简求值. 3.给值求角通过求角的某种三角函数值来求角,在选取函数时,有以下原则: (1)已知正切函数值,则选正切函数.(2)已知正、余弦函数值,则选正弦或余弦函数.若角的范围是π(0,)2,则选正、余弦皆可;若角的范围是(0,π),则选余弦较好;若角的范围为ππ(,)22-,则选正弦较好. 4.常见的角的变换 (1)已知角表示未知角 例如:()()ααββ=+-=,()()()()2,2ααβαββαβαβ=++-=+--,(2)αβαβα+=++,(2)αβαβα-=-+,22αβαβα+-=+,22αβαββ+-=-.(2)互余与互补关系 例如:π3π()()π44αα++-=,πππ()()362αα++-=. (3)非特殊角转化为特殊角例如:15°=45°−30°,75°=45°+30°.典例2 cos15cos30cos105sin 30︒︒+︒︒的值是A .2BC.12D.1【答案】A【名师点睛】把所求式子中的角105°变为90°+15°,利用诱导公式cos(90°+α)=−sinα化简后,再利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可求出值.“给角求值”,一般给出的角都是非特殊角,观察发现题中的角与特殊角都有着一定的关系,如和或差为特殊角,必要时运用诱导公式.2A.1-BC.12D.1典例3已知tan(α−β)=,tan β=−,且α,β∈(0,π),则2α−β=A.π4B.π4-C.3π4-D.π4或3π4-【答案】C又α∈(0,π),所以0<α<.又<β<π,所以−π<2α−β<0,所以2α−β=−.故选C.【名师点睛】在解决给值求角问题时,不仅要注意已经明确给出的有关角的范围,还要结合有关角的三角函数值尽可能地缩小角的范围.302βαπ<<<. (1)求α2tan 的值. (2)求β的值.典例4 已知324βαπ<<<π,12cos()13αβ-=,3sin(),5αβ+=-则sin 2α=ABCD【答案】B【名师点睛】解给值求值型问题的一般思路是:先看公式中的量,哪些是已知的,哪些是待求的,再利用已知条件结合同角三角函数的基本关系求出待求值,注意根据角的象限确定符号. 这类求值问题关键在于结合条件和结论中的角,合理拆、配角.4.已知角α,β均为锐角,且3cos5α=,tan(α−β)=,则tanβ=A. B.C. D.3考向三三角恒等变换的综合应用1.与三角函数的图象及性质相结合的综合问题(1)利用三角恒等变换及辅助角公式把三角函数关系式转化成y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的形式.(2)利用公式2π(0)Tωω=>求周期.(3)根据自变量的范围确定ωx+φ的范围,根据相应的正弦曲线或余弦曲线求值域或最值,另外求最值时,根据所给关系式的特点,也可换元转化为二次函数的最值.(4)根据正、余弦函数的单调区间列不等式求函数y=A sin(ωx+φ)+t或y=A cos(ωx+φ)+t的单调区间.2.与向量相结合的综合问题三角恒等变换与向量的综合问题是高考经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,往往是两向量平行或垂直的计算,即令a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2,a∥b⇔x1y2=x2y1,a⊥b⇔x1x2+y1y2=0,把向量形式化为坐标运算后,接下来的运算仍然是三角函数的恒等变换以及三角函数、解三角形等知识的运用.3.与解三角形相结合的综合问题(1)利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解;(2)利用正、余弦定理把边的关系化成角的关系再用三角恒等变换化简求解.【注】此类题中的角是在三角形中,每个角范围限制在(0,π)内,如果是锐角三角形,则需要限制各个角均在π(0,)2内.角的范围在解题中至关重要,做题时要特别注意.典例5 设函数f(x)=sin2ωx−sin ωx cosωx(ω>0),且y=f(x)图象的一个对称中心到最近的对称轴的距离为.(1)求ω的值;(2)求f(x)在区间上的最大值和最小值.【答案】(1)1;(2)f(x)在区间上的最大值和最小值分别为,−1.因为图象的一个对称中心到最近的对称轴的距离为,且ω>0,所以=4×,因此ω=1.(2)由(1)知f(x)=−sin(2x−).当π≤x≤时,≤2x−≤.所以−≤sin(2x−)≤1.因此−1≤f(x)≤.故f(x)在区间上的最大值和最小值分别为,−1.5.已知向量a =1cos ,2x ⎛⎫- ⎪⎝⎭,b x ,cos 2x ),x ∈R ,设函数f (x )=a ·b . (1)求f (x )的最小正周期;(2)求f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值和最小值.1.cos9π·cos 29π ·cos 23()9π-= A .−18 B .−116C .116D .182.已知1sin cos 5αα-=-,则的值为A .1225B .2425-C .2425D .1225-3.已知锐角,αβ满足sin αβ==,则αβ+的值为ABCD 4.设,,且,则A .B .C .D .5.已知向量a =(sin(),1)6απ+,b =(4,4cos α,若a ⊥b ,则sin 4()3απ+=A .B .14-C D .1463sin 5α=,()4cos 5αβ+=-,则sin β= A .0 B .2425C .1625D .2425或16257.已知1sin23α=,A .13- B .13 C .23-D .238.已知αsin α=AB .1213C D 9.若()()sin 603cos 90θθ+︒=︒-,则tan θ=__________.10.在斜三角形ABC 中,tan tan tan tan 1A B A B ++=,则C ∠=_____________.11.已知函数,若()f x 的一个零点,则0cos2x =__________.12()4sin 5αβ+=. (1)求sin2β的值;(213.已知函数.(1)求的最小正周期和最值;(2)设是第一象限角,且求的值.1.(2017年高考新课标Ⅲ卷)已知4sin cos3αα-=,则sin2α=A.79-B.29-C.29D.792.(2017年高考山东卷)已知3cos4x=,则cos2x=A.14-B.14C .18-D .183.(2016·高考新课标Ⅲ文)若tan 13θ=,则cos 2θ= A .45- B .15-C .15D .454.(2017年高考新课标Ⅱ卷)函数()2cos sin f x x x =+的最大值为.5.(2017年高考江苏卷)若π1tan(),46α-=则tan α=. 6.(2017年高考新课标Ⅰ卷)已知π(0)2a ∈,,tan α=2,则πcos ()4α-=.7.(2016年高考新课标I 卷)已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)=.8.(2016年高考浙江卷)已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =_______,b =_______.1.【答案】−2sin42.【答案】C【解析】由()sin47sin 3017sin30cos17sin17cos30︒=︒+︒=︒︒+︒︒知,原式=sin30cos171cos172︒︒=︒,故填12.3.【答案】(1)tan 2α=;(2【解析】(1)由1cos ,072ααπ=<<(2)由02βαπ<<<,得0.2αβπ<-<由)(βααβ--=得)](cos[cos βααβ--=.3βπ∴=4.【答案】D5.【答案】(1)π;(2)f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.【解析】f (x )=1cos ,2x ⎛⎫- ⎪⎝⎭x ,cos 2x )x sin x −12cos 2x=2sin 2x −12cos 2x=ππcossin 2sin cos 266x x - =πsin 26x ⎛⎫-⎪⎝⎭. (1)f (x )的最小正周期为2π2ππ2T ω===,即函数f (x )的最小正周期为π.(2)∵0≤x ≤π2,∴ππ5π2666x -≤-≤.由正弦函数的性质,当ππ262x -=,即π3x =时,f (x )取得最大值1. 当ππ266x -=-,即x =0时,f (0)=12-,当π52π66x -=,即π2x =时,π122f ⎛⎫= ⎪⎝⎭, ∴f (x )的最小值为12-. 因此,f (x )在π0,2⎡⎤⎢⎥⎣⎦上的最大值是1,最小值是12-.1.【答案】A2.【答案】C 【解析】由题意得,两边同时平方得故选C.3.【答案】B【解析】因为锐角,αβ,所以cos αβ==,因此()cos cos cos sin sin 2αβαβαβ+=-==, 因为()0,παβ+∈,所以π4αβ+=,选B. 4.【答案】B5.【答案】B【解析】∵a ⊥b ,∴a ·b =4sin()6απ++4cos α−=2sin α+6cos αsin()3απ+, ∴1sin()=34απ+,∴41sin()sin().334ααππ+=-+=- 6.【答案】B,0⨯=,不合题意,舍去;,4i5α525=,应选B. 7.【答案】DD. 8.【答案】C【解析】∵α则,故本题选C.9.【解析】由题设可得1sin 3sin 2θθθ+=,即5sin tan θθθ=⇒=,应10.11.【解析】由,化简可得此时:12.【答案】(1)79-;(2.【解析】(1(2()cos 0αβ+<,()4sin 5αβ+=,()3cos 5αβ+=-, 所以iβ314535⎛⎫=-⨯+=⎪⎝⎭. 【名师点睛】在三角化简求值类题目中,常常考“给值求值”的问题,遇见这类题目一般的方法是配凑角:即将要求的式子通过配凑,得到与已知角的关系,进而用两角和与差的公式展开求值即可. 13.【答案】(1)的最小正周期是,最大值为,最小值为;(2).,则,即, 又为第一象限的角,则,.1.【答案】A【解析】()2sin cos 17sin 22sin cos 19ααααα--===--.所以选A.【名师点睛】应用三角公式解决问题的三个变换角度:(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用或变用公式”、“通分或约分”、“分解与组合”、“配方与平方”等. 2.【答案】D【名师点睛】(1)三角函数式的化简与求值要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)三角函数式化简与求值要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点. 3.【答案】D【解析】2222222211()cos sin 1tan 43cos 21cos sin 1tan 51()3θθθθθθθ---====+++.故选D. 【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系. 4.【解析】()f x ≤=【名师点睛】通过配角公式把三角函数化为sin()y A x B ωϕ=++的形式再借助三角函数图象研究性质,解题时注意观察角、函数名、结构等特征.一般可利用|sin cos |a x b x +≤求最值.5.【答案】75【解析】11tan()tan7644tan tan[()]14451tan()tan 1446ααααππ+-+ππ=-+===ππ---.故答案为75. 【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.一般有如下两种思路:①适当变换已知式,进而求得待求式的值;②变换待求式,便于将已知式的值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,进而确定角. 6.【名师点睛】三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.7.【答案】43- 【解析】由题意,π3π4sin(),cos(),4545θθ+=+=ππ3sin coscos sin ,445ππ4cos cos sin sin ,445θθθθ⎧+=⎪⎪∴⎨⎪-=⎪⎩解得sin cos θθ⎧=⎪⎪⎨⎪=⎪⎩ 所以1tan 7θ=-,1π1tan tan π474tan().π1431tan tan 1147θθθ----===-+-⨯【名师点睛】三角函数求值,若涉及开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.8.1【解析】22cos sin21cos2sin2)14x x x x x π+=++++,所以 1.A b =【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos 2sin 21x x ++,进而对照()sin Αx b ωϕ++可得Α和b 的值.。

相关文档
最新文档