极限情景:绳子弹簧等轻物瞬间加速度分析
瞬间加速度问题
3
D. 3 g
3
课后练习
1.如图所示,A、B两小球分别连在弹簧两端,B端用细线固定在倾 角为30°光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B 两球的加速度分别为 ( )
g
A.都等于 2
MA MB C. M B
•
g 2
和0
B. g 和 0
2
D.0和 M A M B • g
MB
2
2. 如图所示,木块A与B用一轻弹簧相连,
竖直放在木块C上,三者静置于地面上,
它们的质量之比是1∶2∶3.设所有接触
面都光滑,在沿水平方向抽出木块C的瞬
间,木块A和B的加速度分别是
aA= ,aB=
.
• 3.如图所示,弹簧S1的上端固定在天花板上, 下端连一小球A,球A与球B之间用线相连.球B
⑶轻绳的弹力如何突变? 由物体的受力和物体的运动状态决定 ⑷刚性杆、绳(线)或接触面都可以认为是一种不发生明显形变就
能产生弹力的物体,若剪断(或脱离)后,其中弹力立即消失,不 需要形变恢复时间,一般题目中所给杆、细线和接触面在不加 特殊说明时,均可按此模型来处理。
Ⅱ“弹簧”和“橡皮绳” :
(1)轻:其质量和重力均可视为等于零,同一弹簧两端及其 中间各点的弹力大小相等。 (2)弹簧既能承受拉力,也能承受压力;橡皮绳只能承受
解析 (1)因此时水平面对小球的弹力为零,小球在 绳没有断时受到绳的拉力FT和弹簧的弹力F作用而处 于平衡状态,依据平衡条件得
竖直方向有:FTcosθ=mg,水平方向有:FTsinθ=F 解得弹簧的弹力为:F=mgtanθ=10 N
(2)剪断绳后小球在竖直方向仍平衡,水平面支持力 平衡重力FN=mg 由牛顿第二定律得小球的加速度为 a= F F=N8 m/s2,方向向左.
瞬时加速度问题
C.g/4,竖直向下; D.g/4,竖直向上;
6.如图所示,一根轻弹簧竖直直立在水平面上,下端固定。在弹簧正上方有一个物块从高处自由下落到弹簧上端O,将弹簧压缩。当弹簧被压缩了x0时,物块的速度减小到零。从物块和弹簧接触开始到物块速度减小到零过程中,物块的加速度大小a随下降位移大小x变化的图象,可能是下图中的:【】
(3)求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度。
1.如图所示,小球A、B的质量分别为m和2m,用轻弹簧相连,然后用细线悬挂而静止,在剪断弹簧的瞬间,求A和B的加速度各为多少?
2.如图所示,木块A和B用一弹簧相连,竖直放在木板C上,三者静止于地面,它们的质量比是1:2:3,设所有接触面都是光滑的,当沿水平方向迅速抽出木块C的瞬时,A和B的加速度aA=,aB=。
A.22m/s2竖直向上B.22m/s2竖直向下
C.2m/s2竖直向上D.2m/s2竖直向下
【练习】:
1.如图所示,质量为M的框架放在水平地面上,一轻弹簧上端固定一个质量为m的小球,小球上下振动时,框架始终没有跳起.当框架对地面压力为零瞬间,小球的加速度大小为:【】
A.gB. gC.0D. g
2.如图所示,A、B两小球质量分别为MA和MB连在弹簧两端,B端用细线固定在倾角为30°的光滑斜面上,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度分别为:【】
【解决此类问题的基本方法】:
(1)分析原状态(给定状态)下物体的受力情况,求出各力大小(若物体处于平衡状态,则利用平衡条件;若处于加速状态则利用牛顿运动定律);
(2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力,发生在被撤去物接触面上的弹力都立即消失);
牛顿第二定律瞬时加速度问题
瞬时加速度问题1.求解思路:求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两类”模型(1)刚性绳(轻杆或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.典型例题分析1、如图所示,质量为0.2 kg的物体A静止在竖直的轻弹簧上,质量为0.6 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压,现突然将细线剪断,则剪断后瞬间A.B间的作用力大小为(g取10 m/s2)()A.0.5 N B.2.5 N C.0 N D.1.5 N【解析】剪断细线前,A、B间无压力,则弹簧的弹力F=m A g=0.2×10=2 N,剪断细线的瞬间,对整体分析,N=m B g-m B a=0.6×10 N-0.6×7.5 N=1.5 N.故选D项【答案】D2、如图所示,天花板上固定有一光滑的定滑轮,绕过定滑轮且不可伸长的轻质细绳左端悬挂一质量为M的铁块;右端悬挂有两质量均为m的铁块,上下两铁块用轻质细线连接,中间夹一轻质弹簧处于压缩状态,此时细线上的张力为2mg,最初系统处于静止状态.某瞬间将细线烧断,则左端铁块的加速度大小为( )A.14gB.13gC.23gD.13g 【解析】 根据题意,烧断细线前轻绳上的张力为2mg ,可得到M =2m ,以右下端的铁块为研究对象,根据平衡条件可知,细线烧断前弹簧的弹力为mg ,细线烧断前的瞬间,铁块M 与右端上面的铁块m 间轻绳的故C 项正确.【答案】 C3、“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳..质量为m 的小明如图所示静止悬挂时,两橡皮绳的拉力大小均恰为mg ,若此时小明右侧橡皮绳在腰间断裂,则小明此时( )A .加速度为零,速度为零B .加速度a =g ,沿原断裂橡皮绳的方向斜向下C .加速度a =g ,沿未断裂橡皮绳的方向斜向上D .加速度a =g ,方向竖直向下 解析 根据题述,腰间左右两侧的橡皮绳中弹力等于重力.若此时小明右侧橡皮绳在腰间断裂,则小明此时所受合力方向沿原断裂橡皮绳的方向斜向下,大小等于mg ,所以小明的加速度a =g ,沿原断裂橡皮绳的方向斜向下,B 项正确.答案B4、(多选)如图所示,A 、B 、C 三球质量分别为3m 、2m 、m ,轻质弹簧一端固定在斜面顶端、另一端与A 球相连,A 、B 间固定一个轻杆,B 、C 间由一轻质细线连接.倾角为θ=30°的光滑斜面固定在地面上,弹簧、轻杆与细线均平行于斜面,初始系统处于静止状态.已知重力加速度为g.将细线烧断的瞬间,下列说法正确的是( )A .A 、B 两个小球的加速度均沿斜面向上,大小均为g 10B .B 球的加速度为g 2,方向沿斜面向下C .A 、B 之间杆的拉力大小为mgD .A 、B 之间杆的拉力大小为1.2mg解析A、B项,烧断细线前,以A、B、C组成的系统为研究对象,系统静止,处于平衡状态,合力为零,则弹簧的弹力为F=(3m+2m+m)gsinθ=6mgsinθ.以C为研究对象知,细线的拉力为mgsinθ.烧断细线的瞬间,由于弹簧弹力不能突变,弹簧弹力不变,以A、B组成的系统为研究对象,由牛顿第二定律得:F-(3m+2m)gsinθ=(3m+2m)a AB.答案AD5、如图所示,弹簧p和细绳q的上端固定在天花板上,下端用小钩勾住质量为m的小球C,弹簧、细绳和小钩的质量均忽略不计.静止时p、q与竖直方向的夹角均为60°.下列判断正确的有()A.若p和球突然脱钩,则脱钩后瞬间q对球的拉力大小为mgB.若p和球突然脱钩,则脱钩后瞬间球的加速度大小为gC.若q和球突然脱钩,则脱钩后瞬间p对球的拉力大小为mgD.若q和球突然脱钩,则脱钩后瞬间球的加速度大小为g6、(多选)如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a 上的细线悬挂于固定点O,整个系统处于静止状态.现将细线剪断,将物块a的加速度的大小记为a1,S1和S2相对于原长的伸长分别记为Δl1和Δl2,重力加速度大小为g,在剪断的瞬间,()A.a1=3g B.a1=0 C.Δl1=2Δl2D.Δl1=Δl2[审题突破](1)剪断前,S1的弹力为________,S2的弹力为________,a物块所受合力为________;(2)剪断瞬间,两弹簧弹力________,物块a所受合力为________.[解析]设物体的质量为m,剪断细绳的瞬间,绳子的拉力消失,弹簧还没有来得及改变,所以剪断细绳的瞬间a受到重力和弹簧S1的拉力F T1,剪断前对bc和弹簧S2组成的整体分析可知F T1=2mg,故a受到的合=mg,根据胡克定律F=kΔx可得Δl1=2Δl2,C正确、D错误.[答案]AC7.如图所示,物块1、2 间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为aA .a 1=a 2=a 3=a 4=0B .a 1=a 2=a 3=a 4=gC .a 1=a 2=g ,a 3=0,a 4=m +M M gD .a 1=g ,a 2=m +M M g ,a 3=0,a 4=m +M M g解析:选C.在抽出木板的瞬间,物块1、2与刚性轻杆接触处的形变立即消失,受到的合力均等于各自重力,所以由牛顿第二定律知a 1=a 2=g ;而物块3、4间的轻弹簧的形变还来不及改变,此时弹簧对物块3向上1、四个质量均为m 的小球,分别用三条轻绳和一根轻弹簧连接,处于平衡状态,如图所示.现突然迅速剪断轻绳A1、B1,让小球下落,在剪断轻绳的瞬间,设小球1、2、3、4的加速度分别用a1、a2、a3和a4表示,则( )A .a 1=g ,a 2=g ,a 3=2g ,a 4=0B .a 1=0,a 2=2g ,a 3=0,a 4=2gC .a 1=g ,a 2=g ,a 3=g ,a 4=gD .a 1=0,a 2=2g ,a 3=g ,a 4=g2、(多选)在动摩擦因数μ=0.2的水平面上有一个质量为m =2 kg 的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,如图所示,此时小球处于静止平衡状态,且水平面对小球的弹力恰好为零.当剪断轻绳的瞬间,取g =10 m/s 2,以下说法正确的是( )A .此时轻弹簧的弹力大小为20 NB .小球的加速度大小为8 m/s 2,方向向左C .若剪断弹簧,则剪断的瞬间小球的加速度大小为10 m/s 2,方向向右D .若剪断弹簧,则剪断的瞬间小球的加速度为0答案ABD解析在剪断轻绳前,小球受重力、绳子的拉力以及弹簧的弹力处于平衡,根据共点力平衡得,弹簧的弹力:F=mgtan45°=20×1=20 N,故A项正确;在剪断轻绳的瞬间,弹簧的弹力仍然为20 N,小球此时受重力、支持力、弹簧弹力和摩擦力四个力作用;小球所受的最大静摩擦力为:f=μmg=0.2×20 N=4 N,根据牛顿第二定律得小球的加速度为:a=(F-f)/m=8 m/s2;合力方向向左,所以向左加速.故B项正确;剪断弹簧的瞬间,轻绳对小球的拉力瞬间为零,此时小球所受的合力为零,则小球的加速度为零,故C项错误,D项正确.3、如图所示,质量为m的小球用水平轻弹簧系住,并用倾角为30°的光滑木板AB托住,小球恰好处于静止状态.当木板AB突然向下撤离的瞬间,小球的加速度大小为( )A.0 B.g C.g D.g。
1牛顿第二定律瞬时性问题
瞬时性问题【模型解析】(1)刚性绳(或接触面):一种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,弹力立即改变或消失,不需要形变恢复时间,一般题目中所给的细线、轻杆和接触面在不加特殊说明时,均可按此模型处理.(2)弹簧(或橡皮绳):当弹簧的两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生突变,所以在瞬时问题中,其弹力的大小认为是不变的,即此时弹簧的弹力不突变.【典型例题】例1.如图,物体A、B用轻质细线2相连,然后用细线1悬挂在天花板上,求剪断轻细线1的瞬间两个物体的加速度a1、a2大小分别为()A.g,0B.g,g C.0,g D.2g,g例1题图例2题图例3题图例2.如图所示,吊篮P悬挂在天花板上,与吊篮质量相等的物体Q被固定在吊篮中的轻弹簧托住,当悬挂吊篮的细绳烧断瞬间,吊蓝P和物体Q的加速度大小是()A.a P=a Q=g B.a P=2g,a Q=0C.a P=g,a Q=2g D.a P=2g,a Q=g例3.如图所示,物块1、2间用刚性轻质杆连接,物块3、4间用轻质弹簧相连,物块1、3质量为m,2、4质量为M,两个系统均置于水平放置的光滑木板上,并处于静止状态.现将两木板沿水平方向突然抽出,设抽出后的瞬间,物块1、2、3、4的加速度大小分别为a1、a2、a3、a4.重力加速度大小为g,则有()A.a1=a2=a3=a4=0B. a1=a2=a3=a4=gC.a1=a2=g,a3=0,a4=m+MM g D.a1=g,a2=m+MM g,a3=0,a4=m+MM g例4.细绳拴一个质量为m的小球,小球用固定在墙上的水平弹簧支撑,小球与弹簧不粘连.平衡时细绳与竖直方向的夹角为53°,如图所示.以下说法正确的是(已知cos 53°=0.6,sin 53°=0.8)()A .小球静止时弹簧的弹力大小为35mg B .小球静止时细绳的拉力大小为35mg C .细线烧断瞬间小球的加速度立即为gD .细线烧断瞬间小球的加速度立即为53g 【课后练习】 (5.7.10.12为多选,其余为单选).1.如图所示,竖直放置在水平面上的轻质弹簧上放着质量为3kg 的物体A ,处于静止状态。
牛顿第二定律之瞬时性问题
牛顿第二定律之瞬时性问题智慧物理【总结】一、瞬时性问题1.牛顿第二定律的表达式为:F 合= 。
加速度由物体所受 决定,。
加速度的方向与物体所受 的方向一致;当物体所受合外力发生突变时,加速度也随着发生 ,而物体运动的速度 发生突变。
2.两种模型的区别(1)轻绳、轻杆和接触面:不发生明显形变就能产生弹力,剪断或脱离后,不需要时间恢复形变,原有弹力立即消失或 ,即会发生突变。
(2)轻弹簧、蹦床和橡皮条:当轻弹簧两端与物体相连(即两端为固定端)时,由于物体有惯性,弹簧的长度不会发生 ,所以在瞬时问题中,其弹力大小认为是 的,即此时弹簧弹力不突变。
二、解题思路1.分析瞬时变化前物体的受力情况;2.分析瞬时变化后哪些力变化或消失;3.求出变化后物体所受合力,根据牛顿第二定律列方程;4.求瞬时加速度。
【专题练习】一、填空题1.如图所示,A B 、两小球用细线连接,C D 、两小球用轻弹簧连接,双手分别提起A C 、两球,使四个小球均在空中处于静止状态,双手同时释放A C 、瞬间(空气阻力不计,重力加速度为g ),小球B 的加速度大小为____________,小球D 的加速度大小为____________。
2.如图所示,两系统均处于静止状态,绳和弹簧质量不计。
重力加速度为g ,则剪断OA 、OC 上端绳的瞬时,物体A 、B 、C 、D 的瞬时加速度分别为:a A=______a B=______ac =______a D=______3.如图甲、乙所示,图中细线均不可伸长,两小球均处于平衡状态且质量相同.如果突然把两水平细线剪断,剪断瞬间小球A的加速度的大小为________,方向为________;小球B 的加速度的大小为________,方向为________;图甲中倾斜细线OA与图乙中弹簧的拉力之比为________(θ、重力加速度g已知).4.如图所示,质量为m的小球用一根细线和一根轻弹簧悬挂起来,小球静止时,细线水平,而弹簧与竖直成θ角。
「高中物理」瞬时加速度判断中绳与弹簧的力学特征
「高中物理」瞬时加速度判断中绳与弹簧的力学特征
基础知识
瞬时加速度判断
(1)牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果———产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
当物体所受到的合外力发生变化时,它的加速度随即也要发生变化,F=ma 对运动过程的每一瞬间成立,加速度与力是同一时刻的对应量,即同时产生、同时变化、同时消失。
(2)中学物理中的“绳”和“线”,一般都是理想化模型,具有如下几个特性:
①轻,即绳(或线)的质量和重力均可视为零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等。
②软,即绳(或线)只能受拉力,不能承受压力(因绳能弯曲)。
由此特点可知,绳与其他物体相互作用力的方向是沿着绳子且背离受力物体的方向。
③不可伸长:即无论绳子所受拉力多大,绳子的长度不变。
由此特点知,绳子中的张力可以突变。
(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:
①轻:即弹簧(或橡皮绳)的质量和重力均可视为零。
由此特点
可知,同一弹簧的两端及其中间各点的弹力大小相等。
②弹簧既能受拉力,也能受压力(沿弹簧的轴线);橡皮绳只能受拉力,不能承受压力(因橡皮绳能弯曲)。
③由于弹簧和橡皮绳受力时,其形变较大,发生形变需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
但是,当弹簧和橡皮绳被剪断时,它们所受的弹力立即消失。
牛顿第二定律(求解瞬时加速度)
F=kΔ x,其中k为弹簧的劲度系数,Δ x为弹簧的伸长量或缩
短量。
二、对牛顿第二定律F合=ma的理解
2、瞬时性:
物体在某一时刻的加速度与该时刻的合外力有关.
《导与练》P51 典例1 《导与练》P51 针对训练1
温故知新
模型1:轻绳 轻绳也称细线,它的质量可忽略不计;轻绳是软的;同 时它的劲度系数非常大,可认为在受外力作用时它的形变极 微小,看作不可伸长. 其弹力的主要特征: ①不能承受压力,不能产生侧向力,只能产生沿绳收缩 方向的拉力. ②绳上任何一个横截面两边相互作用的拉力叫做“张 力”,因此轻绳只有两端受力时,任何一个横截面上的张力 大小都等于绳的任意一端所受拉力的大小,即同一轻绳张力 处处相等,且与运动状态无关. ③轻绳的弹力大小可发生突变.
模型3:轻弹簧
轻弹簧的质量可忽略不计,可以被压缩或拉伸。
其弹力的主要特征是: ①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力; ②轻弹簧各处受力大小相等,且与弹簧形变的方向相反; ③轻弹簧产生的弹力是连续变化的,不能发生突变,只能
渐变(除弹簧被剪断外);
④在弹性限度内,弹力的大小与弹簧的形变量成正比,即
高一物理
牛顿第二定律
—— 求解瞬时加速度
模型2:轻杆
轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数
非常大,可认为在受外力作用时形变极微小,看作不可伸 长或压缩. 其弹力的主要特征是: ①轻杆既可产生压力、也可产生拉力,且能产生侧向
力(力的方向不一定沿着杆的方向);
②轻杆各处受力大小相等,且与运动状态无关; ③轻杆的弹力可发生突变.
瞬时问题绳、弹簧.
N
M 1 2 N
mg k1x1
静止时有 k1x1=k2x2+mg
拔去M 拔去N k2x2+mg=12m k1x1-mg=ma
k2x2 mg
∴ a = 2m/s2 方向向上
◆如图10所示,一根轻弹簧上端固定,下端悬挂 一质量为 m0 的平盘,盘中有一物体 A 质量为 m 。 当盘静止时,弹簧的长度比其自然长度伸长了 L , 今向下拉盘使弹簧再伸长△ L 后停止,然后松手 放开,设弹簧一直处在弹性限度的,则刚松手时 盘对物体A的支持力等于:
99年上海高考解 (1)若上面的弹簧压缩有压力, k 2 x2 则下面的弹簧也压缩,受力如图示: M 1 静止时有 k2x2= k1x1+mg
拔去M
拔去N
k2x2 - mg=12m
k1x1+ mg=ma 2
k1x1
∴ a = 22m/s2 方向向下 (2)若下面的弹簧伸长有拉力, 则 上面的弹簧也伸长,受力如图示:
L A...1 m g L
L B..1 m m0 g L
t C.. mg L
A
L D.. ( m m0 ) g L
连接,在F1=10N,F2=6N,F3=4N三个力作用下,
静止不动,问:绳上拉力大小?。若MA=2kg, MB=4kg,则突然撤去F2的瞬间,AB两个球的 加速度多大?绳上拉力多大?
F3
F2 A B F1
俯视图
★如图所示,mA:mB;mc=1;2;3,所有 接触面光滑,当迅速抽出C的瞬间,球A与 B的加速度是多少?(重力加速度用g表示)
O
A
B
例★ 5 如图所示,A、B、C质量均为m,且
静止,现剪断轻绳OO`,那麽A、B、C 的加速度为多少?
剪断细绳瞬间力的分析
剪断细绳瞬间力的分析
1 当剪断弹簧的瞬间,弹簧的弹力还保持不变,所以B仍然处于平衡状态,其加速度为0. 对A来说,绳子的拉力没有了,受力自然不平衡,绳子断之前绳子的拉力为(Ma+Mb)*g*sina。
所以绳子刚断时A受的合力也为(Ma+Mb)*g*sina,所以A的加速度为(Ma+Mb)*g*sina/Ma
2剪断弹簧的时候,A球由于绳子的原因,还是出于静止加速度为0。
B球为
g*sina
3 绳子具有突变的能力,剪断上端细线后,A和B将一起向下运动,加速一样大都是(Ma+Mb)*g*sina/(Ma+Mb)
剪断下端细线后,A仍保持静止加速度为0 B将下滑,加速度为Mb*g*sina/Mb =g*sina
2, 剪断绳子瞬间,求A,B的加速度A质量为m1 B质量为m2 重力加速度为g 解:
剪断绳子前:
弹簧的弹力Fk=m1g
B受到地板的支持力F1=m1g+m2g
剪断绳子后瞬间:
弹簧来不及发生形变,因此弹簧的弹力不变。
A受到的重力和弹簧的弹力Fk相等,因此加速度为0
B与地板脱离接触,地板对B的支持力变为0
B受到的合力向下,F2=m1g+m2g
加速度a=F2/m2=(1+m1/m2)g。
轻绳连接体中的加速度问题
体 c的速度 达最 大 =V… 时 , 体 A、 。 物 B的加 速度
并 不等 于零 , 而是
a VC C S ̄ O 0 = — — — = —— — 一 >0
m ax
— — — — 一
, J
即物 体 A、 B加速度 为零 时 , 物体 C减速 下降 , 其受 力
根 据机 械能 守恒 定律 , 有
加速度 由两 部分 构成 , 部分 是 沿绳 子方 向的加 一 速度 a , 另一部 分是 引起 的沿绳 方 向的 向心加 速
度. 以 所
a Bi : aA
4
相 关资料 析与解 : 体 c释放 后 加 速 下 降 , 物 而
一 _ — 一 雩~ 一 _ 。
一
间的 ( 物体 A、2 。时 , ,A、 C同时受 力 平衡 其 ㈩ 夹 角为 B则加 速上 升体当连 接物体 C的两 细线, 加 j J 10 三物 B、
mg・
: mg + m。H : mg - — 4 -
—
—
—
() 9
由式 ( )知 , 对 A的作用力 在逐渐 减小 , 仍大 于 9 绳 但 【 2 如 图 4所示 , 例 】 物体 A、 C的质量 均为 B、 /, T 物体 C到两轻质 定滑轮 D、 / , E的水平距 离 均为 L . 初 始时刻两 滑轮 间 的细线水 平 , 物体 A、 C均 处于 B、 静止 状态. 不计细 线 及任 何 阻 力 , 细线 不 可伸 长. 且
c
大值. 么 , 体 A、 C在 运 动 过 程 中何 时速 度 最 那 物 B、
大呢 ?
由以上 各 式解得
=
( )定量讨 论 2 1 )理 论分 析
高中物理专题牛顿第二定律的理解要点瞬时性
例 2. 如图所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别 用销钉 M、N 固定于杆上,小球处于静止状态,设拔去销钉 M 瞬间,小球加速度的大小为 12m/s2。若 不拔去销钉 M 而拔去销钉 N 瞬间,小球的加速度可能是( )
A. 22m/s2,竖直向上
B. 22m/s2,竖直向下
牛顿第二定律的理解要点——瞬时性
考点分析
瞬时性:F=ma 是对运动过程中每一瞬间成立的,某一时刻的加速度的大小总跟那一时刻的合外力 大小成正比,即有力的作用就有加速度产生,外力停止作用,加速度随即消失,在恒定外力的作用 下物体具有恒定加速度。外力随着时间而改变,加速度也随着时间改变。
两个重要模型: 1.钢性绳(或接触面):认为是一种不发生明显形变就可产生弹力的物体,若剪断(或脱离)后,其弹 力立即消失,不需要形变恢复时间,一般题目中所给的细线和接触面在不加特殊说明时,均可按此 模型处理。 2.弹簧(或橡皮绳):此种物体的特点是受拉力或压力要发生明显的形变,形变量大,形变恢复需要 较长时间,当弹簧两端均与物体相连时,因物体的位移不能发生突变,所以弹簧的形变不能发生突 变,即弹力不能发生突变;若弹簧某端与物体突然断开连接,则轻弹簧的弹力可以突变。
B.A 的加速度等于 g
乙
C.B 的加速度为零
D.B 的加速度为 g
5:如图所示,两个质量分别为 m1=2 kg、m2=3 kg 的物体置于光滑的水平面上,中间用轻质弹簧秤连接. 两个大小分别为 F1=30 N、F2=20 N 的水平拉力分别作用在 m1、m2 上,则( ) A.弹簧秤的示数是 10 N B.弹簧秤的示数是 26 N C.在突然撤去 F2 的瞬间,弹簧秤的示数不变 D.在突然撤去 F1 的瞬间,m1 的加速度不变
瞬时问题绳弹簧
绳、弹簧、皮筋问题
共同点:1、都是质量可忽略的理想化模型
2、都会发生形变产生弹力
3、同一时刻内部弹力处处相同,与 运动状态无关。
不同点:弹簧 :既可承受拉力,又可承受压 力,施力和受力方向沿弹簧的轴向,形变量 较大,弹力不可突变,但当弹簧被剪断后弹 力立即消失。
皮筋 :只产生拉力,不承受压力,形变量较大, 弹力不可突变,但当皮筋被剪断后弹力立即消失。
★ 99年上海高考: 竖直光滑杆上套有一个小球和 两根弹簧,两弹簧的一端各 与小球相连,另一端分别
用销钉M N固定于杆上,小球处于静止状态.若拔去销
钉M的瞬间,小球的加速度大小为12m/s2,若不拔去销
钉M而拔去销钉N的瞬间, ,小球的加速度可能为(取
g=10m/s2)
( BC )
M
A. 22m/s2,方向竖直向上
绳 :只产生拉力,不承受压力,绳发生微小形
变,弹力可以突变; 绳剪断后, 瞬间产生瞬间消失; 绳未断时,绳的拉力可突变变为下一个状态所
需要的力
典型例题 例6
★如图所示,小球静止,当剪断水 平绳瞬间,小球加速度大小、方向 如何?
θ
例7★如图所示,小球静止,当剪断弹
簧瞬间,小球加速度大小、方向如 何?
A...1 Lmg L
B..1LLmm0g
C.. t mg LAFra bibliotekD..LL(mm0)g
2 N
k1x1 mg
(2)若下面的弹簧伸长有拉力, 则
上面的弹簧也伸长,受力如图示:
M
静止时有 k1x1=k2x2+mg
1
拔去M k2x2+mg=12m 拔去N k1x1-mg=ma ∴ a = 2m/s2 方向向上
尝试使用分解法解决绳牵连模型中加速度问题
尝试使用分解法解决绳牵连模型中加速度问题尝试使用分解法解决绳牵连模型中加速度问题引言:绳牵连模型是物理力学中常见的问题,它通过一根绳子将两个物体连接起来,其中一个物体受到外力作用,我们需要求解另一个物体的运动情况。
在这个模型中,加速度的计算是一个重要的问题。
本文将介绍如何使用分解法来解决绳牵连模型中的加速度问题,通过分解问题,我们能够更好地理解并解决这类问题。
第一部分:绳牵连模型的基本原理及问题描述在绳牵连模型中,我们通常有两个物体,一个作为主体,受到外力作用,另一个受到牵引力的作用。
我们需要求解受牵引物体的运动情况。
具体问题描述如下:一个质量为m1的物体通过一根不可伸长、质量可忽略不计的绳子与另一个质量为m2的物体相连接。
我们知道主体物体受到外力F的作用,求解受牵引物体的加速度a2。
第二部分:分解法的基本原理分解法是解决绳牵连模型中解决加速度问题的常用方法之一。
其基本思想是将绳子的拉力和牵引力分解为两个方向上的力,然后应用牛顿第二定律进行计算。
在这个过程中,我们需要按照一定的规则进行力的分解,然后根据物体之间的约束关系,建立方程并求解。
第三部分:应用分解法求解加速度问题的步骤1. 初步分析:仔细读题,理解问题中给出的所有信息,注意所给物体的质量、牵引力和外力的方向。
2. 绘制力的示意图:根据题目描述,绘制力的示意图,标注所给的各个力的方向和大小。
3. 力的分解:根据问题的要求,将绳子的拉力和牵引力进行分解,得到垂直方向和水平方向上的力。
4. 建立坐标系:根据问题的具体情况,建立合适的坐标系,确定正方向。
5. 求解:根据分解后的力和牛顿第二定律,建立方程并求解受牵引物体的加速度a2。
第四部分:具体示例分析假设主体物体受到的外力F向右,绳子与水平方向的夹角为θ。
将牵引力T和绳子的拉力T0分解为垂直方向和水平方向上的力T1和T2。
根据牛顿第二定律可得以下方程:在x轴上:m1a1 = T2 - F + T0cosθ在y轴上:T1 - T0sinθ - m1g = 0结合以上两个方程,我们可以求解出受牵引物体的加速度a2。
分解法解决绳牵连模型中加速度问题的尝试
分解法解决绳牵连模型中加速度问题的尝试在绳牵连模型中,常常会涉及到加速度的计算问题,特别是当绳的质量不能忽略不计时,直接应用牛顿第二定律求解加速度会变得困难。
为了解决这个问题,我们尝试采用分解法。
具体来说,我们将绳子分解为若干个小段,每段长度足够短,可以认为其质量可以忽略不计。
然后考虑每段绳子上的拉力和重力对其进行加速度的影响。
由于每段绳子的质量很小,可以认为其加速度近似相同,并且与整个绳子的加速度相等(即绳子在运动过程中没有拉伸或收缩)。
通过对每段绳子上的拉力和重力分别进行分解,可以得到每段绳子上的水平和竖直方向的受力。
然后根据牛顿第二定律,在水平和竖直方向上分别列出受力平衡方程,解得每段绳子上的加速度。
最后,将每段绳子上的加速度加权平均,即可得到整个绳子的加速度。
分解法的优点是能够处理复杂的绳牵连问题,特别是当绳的质量不可以忽略不计时。
同时,该方法也可以应用到其他类似的问题中,例如弹簧振动模型等。
- 1 -。
模型 轻绳、轻弹簧的瞬时性问题(解析版)
模型轻绳、轻弹簧的瞬时性问题学校:_________班级:___________姓名:_____________模型概述1.两种模型的特点(1)刚性绳(或接触面)模型:这种不发生明显形变就能产生弹力的物体,剪断(或脱离)后,形变恢复几乎不需要时间,故认为弹力可以立即改变或消失.(2)弹簧(或橡皮绳)模型:此种物体的特点是形变量大,形变恢复需要较长时间,在瞬时问题中,在弹簧(或橡皮绳)的自由端连接有物体时其弹力的大小不能突变,往往可以看成是瞬间不变的.2.解决此类问题的基本思路(1)分析原状态(给定状态)下物体的受力情况,明确各力大小.(2)分析当状态变化时(烧断细线、剪断弹簧、抽出木板、撤去某个力等),哪些力变化,哪些力不变,哪些力消失(被剪断的绳、弹簧中的弹力、发生在被撤去物体接触面上的弹力都立即消失).(3)求物体在状态变化后所受的合外力,利用牛顿第二定律,求出瞬时加速度.典题攻破1.轻绳、轻弹簧的瞬时性问题1.(23-24高一上·山东淄博·期末)如图所示,物块A、B和C的质量相同,A和B之间用细绳相连,B和C之间用轻弹簧相连,通过系在A上的细绳悬挂于固定点O,整个系统处于静止状态。
现将A、B 间的细绳剪断,重力加速度大小为g,在剪断瞬间()A.物块A的加速度大小为2gB.物块B的加速度大小为2gC.物块C的加速度大小为gD.O、A间细绳的拉力大小为零【答案】B【详解】AD.现将A、B间的细绳剪断,剪断后,A处于静止状态,O、A间细绳的拉力大小为T OA=mg故AD错误;BC.A、B间的细绳剪断前,以C为对象,根据受力平衡可知,弹簧弹力大小为=mgF弹将A、B间的细绳剪断,弹簧弹力保持不变,C的受力不变,C的加速度为0;以B为对象,根据牛顿第二定律可得a B=F弹+mgm=2g故B正确,C错误。
故选B。
2.(23-24高一下·云南玉溪·阶段练习)(多选)如图所示,吊篮A、物体B、物体C的质量均为m,B和C分别固定在竖直弹簧两端,弹簧的质量不计。
2.轻弹簧弹力作用的瞬时性问题
2.轻弹簧的弹力瞬时性问题一知能掌握(一)轻弹簧弹力大小变化特点1.弹簧的弹力属于接触力。
弹簧两端必须都与其它物体接触才可能有弹力,如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
2.弹簧的弹力大小只能渐变,不能突变。
弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx 与形变量x 成正比。
伸缩形变形变较大,且不能忽略不计。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(二)与弹簧相连物体的瞬时加速度求解方法此类问题的关键是:弹簧的弹力不会瞬间变。
1.由物体所处的运动状态求出弹簧的弹力;2.去掉某一个力后(通常是剪断绳子)的瞬间,认为弹簧的弹力不变化,求出物体受到的合力;3.由牛顿第二定律列方程求解。
二探索提升【典例1】如图所示,质量分别为m A 和m B 的A 、B 两球用轻弹簧连接,A 球用细线悬挂起来,两球均处于静止状态.如果将悬挂A 球的细线剪断,则剪断瞬间A 、B 两球的加速度各是多少?思路点拨: 解答本题的基本思路为:(1)悬挂A 球的细线剪断前A 球和B 球的受力情况;(2)剪断细线瞬间有哪些力发生了变化;(3)剪断细线后A 球和B 球的受力情况;(4)根据牛顿第二定律列方程求解.【答案】 a A =(m B +m A )g m A,方向竖直向下 a B =0 【解析】 由于轻弹簧两端连着小球,小球要发生一段位移,需要一定时间,故剪断细线瞬间,弹簧的弹力与剪断前相同.先分析剪断细线前A 球和B 球的受力情况,如图所示,A 球受到重力m A g 、弹簧的弹力F 1和细线的拉力F 2,B 球受到重力m B g 、弹簧的弹力F ′1,且F ′1=F 1=m B g剪断细线瞬间,F 2消失,但弹簧尚未收缩,仍保持原来的形变,即F 1、F ′1不变,故B球所受的力不变,所以此时a B =0,而A 球的加速度为a A =F 1+m A g m A =(m B +m A )g m A,方向竖直向下.【典例2】质量分别为m 和2m 的小球P 、Q 用细线相连,P 用轻弹簧悬挂在天花板下,开始系统处于静止。
关于瞬时加速度应注意的几个问题
关于“瞬时加速度”应注意的几个问题在高中物理中,求瞬时加速度问题是一个比较重要的知识点, 教师都把其列为一个专题来处理.一、高中物理中涉及到的弹簧和绳, 均为“轻质弹簧”(没有质量的理想化模型) 和“刚性绳”(受力但无形变的理想化模型. 后文中的“弹簧”和“绳子”均指“轻质弹簧”和“刚性绳”) . 首先要清楚二者在情况突然变化时的相同与不同之处;二者相同之处为:当二者其中一端解除限制(例如从一端剪断) 时,力都突变为零;二者不同之处为:当二者两端均有限制而力发生变化时,弹簧的弹力不会突变,而刚性绳的力将会突变.例如 在图1、图2中小球1m 、2m 原来均静止. 现如果均从图中B 处剪断,则图1中的弹簧和图2中的下段绳子的拉力均立即突变为零.如果均从图中A 处剪断, 则图1中的弹簧的弹力不能突变为零, 而图2中的下段绳子的拉力在剪断瞬间就立即突变为零.二、要讲清楚“瞬时”的特点.对于力而言, 在开始变化的这一瞬间,能突变的力可以突变(例如图2 中当从B 处剪断时下段绳子的拉力) , 而不能突变的力将和未变化前相同, 即这一瞬时这个力还未来得及改变(例如图1中的弹簧的弹力在A 处剪断瞬间和未剪断前一样等于g m 2) . 加速度和力一样,当物体的合力突变时, 加速度也将突变; 而当物体的合力未变化时, 加速度也将不发生变化. 对于速度而言, 是不能突变的, 开始变化的这一瞬时将和未变化前一样.三、虽然我们所求的为刚开始这一瞬时的情况, 但有时我们需要研究物体此后的运动情况再反过来判断这一瞬时的情况, 这一点很重要.如图1,当从A 处剪断后,1m 、2m 在下落过程中,弹簧要缩短, 即1m 、2m 之间距离要变小,而二者初速均为零, 所以我们说在A 处剪断瞬间,二者的加速度肯定是不同的. 如图2,当从A 处剪断后,1m 、2m 在下落过程中,二者之间的距离是不变的(这是实际情况) , 即二者相对静止,则应用整体法可得整体加速度为重力加速度g,则由每一个物体加速度为g 可以判断出在B 处剪断这一瞬时,绳子的拉力立即突变为零,则由此可以判断在这一瞬时,1m 、2m 均只受重力,加速度均为g. 例1 如图3,绳子水平, 弹簧与竖直方向成角,小球静止,求从图中A 处剪断瞬间小球的加速度是多少?解析:当从A 处剪断瞬时,开始我们无法判断绳子的拉力是否突变. 但我们知道小球以后将作部分圆周运动. 在A 处剪断瞬时,小球的位置(也即未剪断前小球的位置) 就是部分圆周运动的初始位置, 那么在此位置我们就按圆周运动来处理:假设绳子有拉力为T,绳长为L,小球的质量为m,则由向心力公式可知L mv T 2=,而由于此时小球的速度还未来得及变化仍为零,所以得出0=T ,这一瞬时绳子拉力突变为零,速度为零,小球只受重力,加速度g a =.例2 如图4,开始弹簧水平, 绳子与竖直方向成α角,小球静止. 求当从图中A 处剪断瞬间,小球的加速度为多少?解析: 许多学生在答这一题时,都得出αtan g a =的错误结论. 原因是这些学生误认为绳子的拉力在这一瞬时和未剪断前一样没变, 而实际上绳子的拉力已经突变了. 当从A 处剪断后,小球此后将做部分圆周运动, 剪断这一瞬时小球的位置应是部分圆周运动的初始位置, 所以这时我们把这个位置按圆周运动来处理. 设小球质量为m, 绳长为L. 在此位置对小球进行受力分析(如图5) , 可知小球只受重力和绳子的拉力. 将重力沿切向和法向分别分解为αsin 1mg F =和αcos 2mg F =. 由向心力公式可知:Lmv F T 22=-,而由于剪断这一瞬间,小球的速度仍为零,所以2F T =,所以小球的合力只等于ma mg F ==αsin 1, 所以正确答案应是:从A 处剪断这一瞬时αsin g a =,方向为图中1F 的方向.以上这三个例子, 我们都应用了先分析“瞬时”以后的运动情况再反过来判断这一“瞬时”的情况,从而得出正确的结论.瞬时加速度的解题规律分类解析瞬时加速度问题是牛顿第二定律的一个重要应用,是比较复杂的问题之一,只有注意总结其题型分类和解题策略才能百战百胜.1 系统静止类的瞬时加速度问题1. 1 弹簧类问题 如右图,注意弹簧发生形变需要时间,瞬时不能变化,弹力不变.解题策略 弹簧没有伸缩、无形变; 系统原来静止,则细线被剪断瞬间,物体(与细线相连的) 所受合外力等于剪断前的细线拉力.规律1 原来静止系统在细线被剪断瞬间,远离细线且和弹簧相连物体加速度为0.规律2 原来静止的系统在细线被剪断瞬间,和细线且和弹簧相连的物体,其加速度等于剪断前细线上拉力FT 除以该物体质量.例1 如右图,竖直光滑杆上套有1 个小球和2 根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态. 设拔去销钉M 瞬间, 小球加速度为212-⋅s m ,在不拔去销钉M 而拔去N 瞬间,小球加速度可能( )(210-⋅=s m g ) .A.222-⋅s m ,方向竖直向上;B.222-⋅s m ,方向竖直向下;C.22-⋅s m ,方向竖直向上;D.22-⋅s m ,方向竖直向下解析 拔去销钉M 瞬间小球加速度大小为212-⋅s m ,则小球加速度方向可能有2种情况:向上或向下(设小球质量为m ).(1) (加速度向上) 根据规律2知: 拔去M 瞬间小球的合外力等于弹簧2在剪断前的弹力、方向向下; 根据剪断前小球平衡可得,弹簧1的弹力为)22(2-⋅⋅s m m 、方向向上;再根据规律2得:拔去销钉N 瞬间加速度为222-⋅s m 、方向向下,故选项B 正确;(2) (加速度向下) 同理可得:拔去销钉N 瞬间加速度大小为22-⋅s m 、方向向上,故本题正确答案为B 、C.1.2 细线类问题(如右图) 认为细线形变不需要时间,所以细线上的弹力迅速变化.解题策略 不必去管剪断细线前细线上的受力,只需根据细线被剪断以后系统的运动规律来进行分析求解即可.例2 质量为m 的箱子C ,顶部悬挂质量也为m 的小球B ,B 的下方通过一轻弹簧与质量为m 的球A 相连,箱子用轻线21o o 悬于天花板上而处于平衡状态, 如右图所示. 现剪断轻线21o o ,则在剪断的瞬间小球A 、B 和箱子C 的加速度各为多大?解析 由规律1知球A 加速度0=A a .箱子在剪断轻线21o o 后小球B和C 以共同加速度下落,受力为mg 2和弹簧拉力T F ,故2/32/)2(g mg F mg a a T C B =+==例3 如右图所示, 3 个可视为质点的金属小球A 、B 、C ,质量分别为m 、2m 、3m ,B 球带负电、电荷量为Q ,A 、C 不带电,不可伸长的绝缘细线将3球相连,悬挂于O 点. 3 球均处于竖直向上的场强为E 的匀强电场中.将OA 剪断瞬间,A 、B 、C 球的加速度分别为( ) .解析 因为小球B 受到向下的电场力QE ,则OA 剪断瞬间,球A 、B 以大于g 的共同加速度运动,而C 做自由落体运动,则:g a C =;QE g m QE mg a a B A +=+==33. 2 系统加速运动类问题2.1 弹簧类问题 注意系统加速时,细线剪断瞬间和细线相连的物体所受合外力不再等于剪断前细线拉力.解题策略 首先根据剪断前求得弹簧上的弹力(大小和方向) ,其次分析剪断后物体的受力,然后根据牛顿第二定律求解.规律3 匀变速运动系统在细线剪断瞬间,远离细线且和弹簧相连物体加速度不变. 例4 如右图,质量分别为A m 、B m 的物体A 和B 之间用一轻弹簧相连,再用细线 连接到箱顶上,它们以加速度)(g a a <向下做匀加速运动.若A B m m 2=,求细线被剪断瞬间A 、B 的加速度.解析 由规律3知细线被剪断的瞬间a a B =.细线被剪断前(设弹簧弹力为F) ,对B 有a m F g m B B =-,解得)(a g m F B -=.细线被剪断瞬间弹力没变,则对A 有A A A a m g m F =+解得:a g a A 23-=2.2 细线类问题 只需根据细线被剪断后系统的运动变化规律来进行分析求解即可.例5 如右图所示, 2个质量分别为A m 和A m 的物体A 和B 用细线连接到箱顶上, 以加速度a 向上做匀加速运动. 求A 和B 在细线1被剪断瞬间的加速度A a 和B a .解析 细线1 被剪断之后,它们将做竖直上抛运动,所以细线1被剪断瞬间的加速度g a a B A ==.思考 若细线2被剪断,求A 、B 加速度.分析 细线2被剪断后,A 静止、B 自由落体运动,则0=A a 、g a B =. 训练题例1、传送带以恒定的速率 运动,已知它与水平面成 ,如图所示,,将一个小物体无初速度地放在 P 点,小物体与传送带间的动摩擦因数为,问当皮带逆时针转动时,小物体运动到 Q 点的时间为多少?解析:当物体刚放在传送带上时,物体的速度速度传送带的速度,物体所受的滑动摩擦力方向沿斜面向下,加速度为:滑行时间:滑行距离:当物体与传送带的速度相同时,由于重力的作用物体继续加速,物体的速度大于传送带的速度,摩擦力的方向变为沿斜面向上,加速度为:因为:又: 解得:所以,小物体从 P 点运动到 Q 点的时间:例2 如图所示,竖直放置的U 形导轨宽为L ,上端串有电阻R (其余导体部分的电阻都忽略不计)。
利用牛顿第二定律求加速度(单个,连接体,弹簧等)
1、质量为m的物体在水平面上滑动,水平面的摩擦系数为μ,求物体的加速度,(重力加速度为g)2、质量为m的物体在固定的光滑斜面上滑动,求物体的加速度,(重力加速度为g)拓展(1)质量为m的物体在固定的粗糙斜面上向上滑动,斜面的摩擦系数为μ,求物体的加速度,拓展(2)质量为m的物体在固定的粗糙斜面上向下滑动,斜面的摩擦系数为μ,求物体的加速度,3、行驶的汽车中用细线悬挂一小球,小球的质量为m,此时细线与竖直方向的夹角为θ,求汽车的加速度,(重力加速度为g)4、光滑的斜面上放置一小球,小球相对斜面静止,整体向右运动,求斜面的加速度,(重力加速度为g)5、物体放置在水平面上受到恒力F向右运动,F与水平方向成θ斜向右上,地面的摩擦系数为μ,求物体的加速度,(重力加速度为g)拓展:若恒力F斜向右下,求物体的加速度,(重力加速度为g)6、质量为m的人随电梯匀加速上行,加速度为a,求:(1)画出人的受力分析图(2)人受到的F N 和F f1、物体A、B的质量分别是m A、m B,在恒力F作用下向右运动,(1)水平面光滑。
求物体A、B的加速度和物体A、B间的相互作用力(2)水平面面的摩擦系数为μ。
求物体A、B的加速度和物体A、B间的相互作用力2、物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下向右运动,(1)水平面光滑。
求物体A、B的加速度和物体A、B间的相互作用力(2)水平面面的摩擦系数为μ。
求物体A、B的加速度和物体A、B间的相互作用力3、斜面上物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下运动,(1)斜面光滑。
求物体A、B的加速度和物体A、B间的相互作用力(2)斜面的摩擦系数为μ。
求物体A、B的加速度和物体A、B间的相互作用力4、物体A、B的质量分别是m A、m B,中间用一细线连接,在恒力F作用下向上运动,求物体A、B的加速度和物体A、B间的相互作用力5、把以上细线换成弹簧或细杆,会怎样?最终结论:F FF如图:不计滑轮摩擦,求车的加速度和细线拉力?如图:不计滑轮摩擦,求m1的加速度和细线拉力?如图:不计滑轮摩擦,m1>m2求m1的加速度和细线拉力?6、“T”型物体倒立在地面上,质量为M,质量为m的小环套在上面向下滑动,滑动的加速度为a,求地面的支持力拓展:上面问题中,若“T”型物体对地面的压力为零,求环的加速度大小和方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的物体系于长度分别为L、L
的弹簧结果又如何?
将绳OB换为长度为L
2
的弹簧,结果又如何?
剪断前后张力变化情况。
本题该弹簧如何?一弹簧秤的秤盘质量m
1
=1.5kg,盘内放一质量为
10.5kg的物体P,弹簧质量不计,其劲度系数为800N/m,P施加一个竖直向上的力F=40N,使
止现在撤去计算一瞬间受支持力变化
止。
现在撤去F,计算瞬间P受支持力变化。
(g=10m/s2)
°的光滑木板
为30的光滑木板AB托住,小球恰好处于静止状态,
当木板突然向下撤离的瞬间,小球的加速度为___。
M m绸带
αα
如图,滑轮不计质量,不计摩擦,A,B绳子质量都
A上部的绳子,则B加速度多大?
(2)剪断A下部的绳子,则B加速度多大?。