怎样区别轻绳、轻杆、轻弹簧PPT演示文稿

合集下载

高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析

高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析

高中物理必考模型:轻绳、轻弹簧、轻杆联系与区别全解析轻绳特点轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

轻杆特点轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

轻弹簧特点轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

特别提醒:橡皮筋与轻弹簧极为相似,只是橡皮筋不能被压缩静止或匀速运动例1、如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件可知,绳子对小球的弹力为F=mg,方向是沿着绳子向上。

若将轻绳换成轻弹簧,其结果是一样的。

例2、如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图所示。

则可知杆对小球的弹力为F=mg,方向与重力的方向相反即竖直向上。

注意:在这里杆对小球的作用力方向不是沿着杆的方向。

以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。

怎样区别轻绳、轻杆、轻弹簧

怎样区别轻绳、轻杆、轻弹簧
A、有可能N处于拉伸状态而 处于压缩状态 、有可能 处于拉伸状态而 处于拉伸状态而M处于压缩状态 B、有可能 处于压缩状态而 处于拉伸状态 处于压缩状态而M处于拉伸状态 、有可能N处于压缩状态而 C、有可能 处于不伸不缩状态而 处于拉伸 状 处于不伸不缩状态而M处于拉伸 、有可能N处于不伸不缩状态而 态 D、有可能 处于拉伸状态而 处于不伸不缩状态 处于拉伸状态而M处于不伸不缩状态 、有可能N处于拉伸状态而
一、三种模型的相同点
(1)轻绳、轻杆和轻弹簧的“轻”,指的是质量可 )轻绳、轻杆和轻弹簧的“ 以忽略,重力不计. 以忽略,重力不计 (2)他们对物体的作用力都是弹力,属于接触力、 )他们对物体的作用力都是弹力,属于接触力、 被动力。 被动力。 (3)各处的受力一般认为相同 )各处的受力一般认为相同. (4)都可以连接物体。 )都可以连接物体。
A、由位置A到位置 重力做功为 、由位置 到位置 重力做功为mgh, 到位置B重力做功为 C、由位置A到位置 小球克服弹力做功为 、由位置 到位置 小球克服弹力做功为mgh 到位置B小球克服弹力做功为
1 B、由位置 到位置 重力势能减少 mv2 到位置B重力势能减少 、由位置A到位置 2
1 D、小球到达位置 时弹簧的弹性势能为 时弹簧的弹性势能为mgh、小球到达位置B时弹簧的弹性势能为 2 mv2
(2)轻绳弹力的方向总是指向绳收缩的方向;轻杆弹力 )轻绳弹力的方向总是指向绳收缩的方向; 的方向由运动状态决定; 的方向由运动状态决定;轻弹簧弹力的方向总是沿 弹簧指向反抗形变的方向。 弹簧指向反抗形变的方向。 所示, 例3、如图 所示,小车顶端悬挂 、如图3所示 一个小球,当小车以加速度a做 一个小球,当小车以加速度 做 匀变速运动时, 匀变速运动时,悬线与竖直方 向成某一固定角θ, 向成某一固定角 ,若小球质量 为m,求悬线对小球的拉力。 ,求悬线对小球的拉力。

高中物理中“轻绳”、“轻杆”和“轻弹簧”问题的分析

高中物理中“轻绳”、“轻杆”和“轻弹簧”问题的分析

高中物理中“轻绳”、“轻杆”和“轻弹簧”的问题分析中学阶段常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。

但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,下面对这三种模型的特点及区别应用作一些简单的讨论和分析。

一、三个模型的正确理解1. 轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。

②内部张力大小处处相等,且与运动状态无关。

③轻绳的弹力大小可发生突变。

2. 轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力〔力的方向不一定沿着杆的方向〕;②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。

3. 轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。

其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变〔除弹簧被剪断外〕;④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中k 为弹簧的劲度系数,x为弹簧的伸长量或缩短量。

二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1. 轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。

【例1】如图1所示,轻绳一端系着质量为m的小球,另一端系在固定于小车上一直杆AB的上端;试求当小车以a的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图2所示,小球受两个力作用:重力mg和绳对小球弹力T。

高中物理 圆周运动中的轻绳、轻杆和轻弹簧

高中物理 圆周运动中的轻绳、轻杆和轻弹簧

圆周运动中的轻绳、轻杆和轻弹簧圆周运动中常涉及到“轻绳”、“轻杆”和“轻弹簧”模型,“轻绳”“轻杆”及“轻弹簧”是由各种实际情况中的绳、杆和弹簧抽象出来的理想物理模型.作为这一类模型,一般情况下,“轻”往往是(相对其他物体来说)指其质量可以忽略,所受重力可以忽略,而绳和杆则往往是其形体在同一直线上,且其长度不发生变化,而弹簧可以伸长也可以被压缩.由此导致这类模型在圆周运动中具有其特有的关系。

一、轻绳对物体只能产生沿绳收缩方向的拉力【例1】如图1所示,一摆长为L的单摆,摆球的质量为m,要使摆球能在竖直平面内做完整的圆周运动,那么摆球在最底点的速度v0至少要多大?解析小球在最高点的受力情况如图1所示,由牛顿第二定律得mg+T=mv2/L,由于m、L一定,所以小球在最高点的速度v越小,此时绳中拉力T就越小,当T=0时,小球具有不脱离轨的最小速度,因此当v0最小时,在最高点有mg=mv2/L,从最底点到最高点,小球机械能守恒,有(1/2)mv02=2mgL+(1/2)mv2,由以上各式联立解得v0的最小值为v0=.【总结】由于轻绳只能有拉力作用,因此只有当v0≥才能使小球做完整的圆周运动.它的这种规律与竖直平面内放置一半径为L的轨道,小球在内轨做完整的圆周运动情况类似.二、轻杆对物体既可以有拉力也可以有支撑力【例2】在例1中,将轻绳换成轻杆,要使摆球能在竖直平面内做完整的圆周运动,在最底点小球的速度v0至少要多大?解析如图2所示,小球在最高点既可以受到轻杆的拉力,又可以受到轻杆的支撑力,所以小球在最高点的合外力最小可以为零.因此,小球在最高点的速度最小且不脱离轨道,此速度可以为零.而小球在最高点的速度值v=则是小球在最高点受到轻杆对它弹力方向变化的临界值.即v<时,轻杆对它有向上的支撑力;v=时,轻杆对它无作用力;v>时,轻杆对它有向下的拉力.从最底点到最高点,由机械能守恒定律得(1/2)mv02=2mgL,解得v0=.【总结】由于轻杆对物体的作用既可以是拉力,又可以是支撑力,则物体在竖直平面内做完整的圆周运动,在最底点的速度只要大于即可.它的这种规律与竖直平面内放置圆管,小球在圆管内做完整的圆周运动相类似.如图3所示.三、轻弹簧对物体既可以有拉力,也可以有支持力,但长度随力的变化而变化例3有原长为L0的轻弹簧,劲度系数为k,一端系一质量为m的物体,另一端固定图1图2图3图4在转盘上的O点,如图4所示.物块随同转盘一起以角速度ω转动,物块与转盘间的最大静摩擦力为fm,求物块在转盘上的位置范围.【解析】由题意知,物块与转盘间有最大静摩擦力fm,当物块转动半径最小时,设为r1,此时弹簧被压缩的量为L0-r1,对物块而言,受有指向圆心的最大静摩擦力fm及弹簧的弹力F,且F=k(L0-r1),则fm-k(L0-r1)=mr1ω2,解得r1=(fm-kL0)/(mω2-k).当物块转动半径最大时,设为r2,此时弹簧的伸长量为(r2-L0),对物块而言,受有指向圆心的弹簧的弹力F及最大静摩擦力fm,且F=k(r2-L0),则k(r2-L0)-fm=mr2ω2,解得r2=(fm+kL0)/(k-mω2).所以物块所处的位置为(fm-kL0)/(mω2-k)≤r≤(fm+kL0)/(k-mω2).由以上分析可看出,在具体问题中,要注意分清轻绳、轻杆和轻弹簧的区别,现列表如下进行比较:类别特性作用力效果作用力方向形体在同一直线上的变化具体体现轻绳只能是拉力只能沿绳方向不变化轻杆既可以是拉力又可以是支撑力沿杆方向不变化轻弹簧既可以是拉力又可以是“推”力沿弹簧方向变化。

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较轻绳、轻杆、轻弹簧作为中学物理最常见的三种典型的理想化力学模型, 在各类题目中都会出现,有必要将它们的特点归类,供同学们学习时参考。

.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:(1)轻:即绳(或线)的质量或重力可以视为等于零。

由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;例1.如图1所示,PQ 是固定的水平导轨,两端 小定滑轮,物体A 、B 用轻绳连结,绕过定滑轮, 轮的摩擦,系统处于静止时,a =37°,片53°,10N,A 重20N, A 与水平导轨间摩擦因数=0.2 ,的摩擦力()A •大小为4N ,方向向左B •大小为4N ,方向向右C .大小为2N ,方向向左D .大小为2N解析:要分析A 物体所受摩擦力,必须确定两绳子 的拉力情况。

因为两绳均为轻绳,且滑轮摩擦不计, 绳子两端及其中间各点的张力大小相等,只要对 B 受力分析即可知道绳子拉力大小情况。

如图2所示,B 受重力、两绳拉力F ,、F 2而平衡, 的平衡知识即平行四边形法则可知:F ,=G B S in : =6N , F ,=G B cos 〉=8N 。

再以 A 物体为研 象 ,如图可知,A 物体所受摩擦力为f =F 2 -F^8N -6N =2N ,方向向左。

本题 C 选项符合题意。

(2)软:即绳(或线)只能受拉力,不能承受压力。

由此特点可知:绳(或线)与其他物体的相 互间作用力的方向总是沿着绳子。

注意轻绳“拉紧”和“伸直”的区别:“拉紧”的轻绳,一定而“伸直”的轻绳,还没有发生形变,没有张力。

例2■物体A 质量为m ,用两根轻绳B 、C 连接到墙上,在物体 一个力F ,如图所示,二=60,要使两绳都能伸直,求 小范围。

解析:我们先假设拉力F 较小,则绳C 将松弛,绳B 将有两个 不计滑 若B 重 则A 受因此 物体由力究对 拉紧,因有张力,A 上施加力F 的大图此,拉力F 的最小值F min ,出现在绳C 恰好伸直无弹力,而绳B 张紧时。

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较

轻绳、轻杆、轻弹簧三种模型之比较一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。

它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。

(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。

2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。

(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。

3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。

(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。

二. 三种模型的主要区别1.静止或匀速直线运动时例1.如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。

图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。

由平衡条件可知,绳子对小球的弹力为F mg=,方向是沿着绳子向上。

若将轻绳换成轻弹簧,其结果是一样的。

例2.如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。

当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。

图2解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图3所示。

则可知杆对小球的弹力为F mg=,方向与重力的方向相反即竖直向上。

图3注意:在这里杆对小球的作用力方向不是沿着杆的方向。

绳模型和杆模型ppt课件

绳模型和杆模型ppt课件
要使盒子在最高点时盒子与小球之间恰好无作用力, 则该盒子做匀速圆周运动的周期为多少?
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
[思路点拨] 解答本题时应注意: 1小球在最高点的合力等于向心力。 2通过最高点的临界
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
考点4 圆周运动的两种重要模型 (轻绳模型和轻杆模型)

细杆绳外来自轨双轨
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
B
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程
4. 在“水流星”表演中,杯子在竖直平面做
圆周运动,在最高点时,杯口朝下,但杯中水
却不会流下来,为什么?
对杯中水:mg
FN
v2 m
r
FN
当v gr 时,FN = 0
(一)轻绳模型
A)特点:小球在竖直平面内做圆周运 v 动时,物体不能被支持就, 即不受竖直向上的支持力
思考:小球过最高点的最小速度是多少
?
v2
最高点: T mg m
r
临界状态:T=0 mg mV02
r
B)能否通过最高点的临界条件
V0 rg
mg
T
o
病原体侵入机体,消弱机体防御机能 ,破坏 机体内 环境的 相对稳 定性, 且在一 定部位 生长繁 殖,引 起不同 程度的 病理生 理过程

物理高考复习第二章 相互作用—力PPT课件

物理高考复习第二章 相互作用—力PPT课件

置B水平向右缓慢地移动到D,最后把重物卸在某一个位置。则
关于轻绳上的拉力大小变化情况,下列说法正确的是( A )
A.吊钩从C向B移动过程中,轻绳上的拉力不变
图4
B.吊钩从B向D移动过程中,轻绳上的拉力变小
C.吊钩从C向B移动过程中,轻绳上的拉力变大
D.吊钩从B向D移动过程中,轻绳上的拉力不变
解析 由C到B时,两绳夹角不变,由滑轮受力平衡知,绳子拉力不变,由B
围物体分隔开来分析的方法
到 D 时,两绳夹角 θ 增大,由滑轮受力平衡得 2FTcos θ2=mg,绳子拉力变大, 故A正确。
本章核心素养提升
本章核心素养提升
创新设计
【例4】 (2019·山西太原调研)如图5所示,轻绳OA一端固定
在天花板上,另一端系一光滑的圆环,一根系着物体的轻
绳穿过圆环后,另一端固定在墙上B点,且OB处于水平。
INNOVATIVE DESIGN
章末核心素养提升
第二章 相互作用——力
本章核心素养提升
一、物理建模能力的培养
1.轻杆、轻绳和轻弹簧的模型问题 轻杆
模型图示
轻绳
创新设计
轻弹簧
本章核心素养提升
本章核心素养提升
创新设计
既可伸长,也可压
形变
柔软,只能发生微小形
只能发生微小形变
缩,各处弹力大小
特点
变,各处张力大小相等
本章核心素养提升
本章核心素养提升
【例2】 (2020·广东惠州市第一中学综合测试)如图2所示,
小球A置于固定在水平面上的光滑半圆柱体上,小球B用
水平轻弹簧拉着系于竖直板上,两小球A、B通过光滑滑
轮O用轻质细线相连,两球均处于静止状态,已知B球质

共点力平衡条件的应用“轻绳”、“轻杆”与“轻弹簧” “活结”与“死结” “活动杆”与“固定杆

共点力平衡条件的应用“轻绳”、“轻杆”与“轻弹簧” “活结”与“死结” “活动杆”与“固定杆

模型3:轻弹簧 轻弹簧的质量可忽略不计,可以被压缩或拉伸。 其弹力的主要特征是: ①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力; ②轻弹簧各处受力大小相等,且与弹簧形变的方向相反; ③轻弹簧产生的弹力是连续变化的,不能发生突变,只能 渐变(除弹簧被剪断外); ④在弹性限度内,弹力的大小与弹簧的形变量成正比,即 F=kΔx,其中k为弹簧的劲度系数,Δx为弹簧的伸长量或缩 短量。
由于杆AB不可转动(即是“固 定杆”),所以杆所受弹力的方向 不一定沿杆AB方向.由于B点处是 滑轮,它只是改变绳中力的方向, 并未改变力的大小,滑轮两侧绳 上的拉力大小均是100 N,夹角为 120°,故滑轮受绳子作用力即是 两拉力的合力。
总结: 1.什么是活结,什么是死结? 2.什么是活动杆,什么是固定杆? 2.它们各有什么特点?
②绳上任何一个横截面两边相互作用的拉力叫做“张 力”,因此轻绳只有两端受力时,任何一个横截面上的张力 大小都等于绳的任意一端所受拉力的大小,即同一轻绳张力 处处相等,且与运动状态无关.
③轻绳的弹力大小可发生突变.
模型2:轻杆 轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数 非常大,可认为在受外力作用时形变极微小,看作不可伸 长或压缩. 其弹力的主要特征是: ①轻杆既可产生压力、也可产生拉力,且能产生侧向 力(力的方向不一定沿着杆的方向); ②轻杆各处受力大小相等,且与运动状态无关; ③轻杆的弹力可发生突变.
分析:
TC mg 50N
TB cos mg
TA A
mg 50
TB cos
62.5N 0.8
TA TB sin 62.5 0.6 37.5N
B TB θ θ O
mg
例2.轻绳AB一段固定于A点,另一端自由。在绳中某处O点 打结系另一轻绳OC,下挂一质量为m的物体。现保持O点的 位置不变,在OB段由水平方向缓慢转到竖直方向的过程中, 拉力F和绳OA的张力变化?

物理人教版(2019)必修第一册3.5共点力的平衡专题:多力平衡问题中的轻绳轻杆模型(14张ppt)

物理人教版(2019)必修第一册3.5共点力的平衡专题:多力平衡问题中的轻绳轻杆模型(14张ppt)
恰好能沿倾角为θ的 斜面匀速下滑,那么要将木块沿斜面匀速向上推, 必须加多大的水平推力F。
轻绳、轻杆模型
活绳
常见形式:绳子通过光滑滑轮 特点:受力点可以自由移动 两段绳子弹力大小相等 绳子对滑轮的作用力为角平分线方向
死绳
常见形式:绳结 特点:受力点不能移动 几段绳子上弹力大小未必相等
(1)图甲、乙中细绳OA的拉力各是多大? 2mg mg
(2)图甲中轻杆中的弹力是多大? 3mg (3)图乙中轻杆对滑轮的作用力是多大? mg
例1 小王同学在家卫生大扫除时用拖把拖地,
依靠拖把对地面的摩擦力来清扫污渍。如
图所示,他沿推杆方向对拖把施加40 N的
推力,且推杆与水平方向的夹角θ=37°时,
刚好可以匀速推动拖把。已知拖把质量为1 kg,g取10 m/s2,sin 37°=0.6,
cos 37°=0.8,求:
(1)拖地时地面对拖把的支持力;34 N,方向竖直向上
对于物体受三个以上的力处 于平衡状态的问题求解较方 便
总结
用正交分解法解决平衡问题的一般步骤. ①对物体受力分析. ②建立直角坐标系:使尽可能多的力落在x、y轴上,这样需要分解的力 比较少,计算方便. ③当物体处于平衡状态时,根据共点力平衡的条件,x轴、y轴上合力均 为0,列式(Fx=0,Fy=0)求解.
活杆
常见形式:铰链 特点:杆的一端可以自由转动 弹力一定沿杆
死杆
特点:杆一端固定在地上,不能转动 弹力未必沿杆,看其他力合力
例4 (多选)一重为4 N的球固定在支杆B的上端,今用一段绳子水平拉球,
使杆发生弯曲,已知绳的拉力为3 N,则AB杆对球的作用力( BD )
A.大小为7 N B.大小为5 N C.方向与水平方向成53°角斜向右下方 D.方向与水平方向成53°角斜向左上方

【推荐PPT】专题物理弹簧和细绳连接体问题文档

【推荐PPT】专题物理弹簧和细绳连接体问题文档

在光滑水平面上,有一质量为的小球与水平轻弹簧和与水平成θ=300的轻绳的一端相连,小球静止且水平面对小球的弹力恰好为零。
F弹A
1其D、.中都细F是1绳剪为质烧弹量断断簧可瞬的细忽间弹略小力绳的球,理的瞬F想加2为化速间细模度绳型立,的即拉B变力为。球g 受力如图所示:其中F弹A=mg
A
B
(已知cos 53°=,sin 53°=0.
解题思路: 直接对小球进行受力分析→正交分解求FT1和FT2的大小
解析:m的受力情况及直角坐标系的建立如图所
示(这样建立只需分解一个力),注意到ay=0,则有
FT1sinθ-FT2=ma,
FT1cosθ-mg=0
mg
解得FT1= cos , FT2=mgtanθ-ma.
答案
FT1=
mg
cos
FT2=mgtanθ-ma
M 1
C.2m/s2, 方向竖直向上 D.2m/s2, 方向竖直向下 解题思路:根据弹簧的可能伸缩情况进行受力分析 →结合胡克定律列式求解合力
2 N
→由合力利用牛二求加速度
解析:(1)若上面的弹簧压缩有压力,则下面的弹簧也压缩,受力如图示:
静止时有 k2x2= k1x1+mg
拔去M
k2x2 - mg=12m
例题1 如图所示,两个小球A和B质量均为m,中间用弹簧相连并用细绳悬挂于天花板下, 当剪断细绳的瞬间,A与B的瞬时加速度为多少?
由G平A衡 =解条m件g题得:故F思2Fco合路sA53=:°=mm剪gg,断所F2以s细ian 5A绳3=°=F时F合1 A间/,m=根g 据绳和弹簧特点对小球进行受力分析
(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新

轻杆轻绳轻弹簧模型PPT教案

轻杆轻绳轻弹簧模型PPT教案
轻杆轻绳轻弹簧模型
1.形变特点 同一根绳、杆和弹簧各处 弹力大小处处相等
➢ (1)轻杆:不可伸长和压缩。 ➢ (2)轻绳:柔软、不可伸长,绳上各处的张
力大小相等。 ➢ (3)轻弹簧:既可被拉伸,也可被压缩,弹
簧各处弹力大小均相等。
第1页/共8页
2.方向特点
轻杆上的弹力方向需要 通过平衡条件或牛顿第
二定律的确定
➢ (1)轻杆产生的弹力不一定沿杆 的方向,可以是任意方向。
➢ (2)轻绳产生的弹力只能沿绳并 指向绳收缩的方向。
➢ (3)轻弹簧产生的弹力只能沿弹 簧的轴线方向,与弹簧发生形 变的方向相反第2页。/共8页
3.作用效果特点
这是这两类模
型的显著区别
➢ (1)轻绳只能提供拉力。

➢ (2)轻杆、轻弹簧既可以提供拉力,又可以 提供推力。
第5页/共8页
[解析] 本题考查轻绳、轻杆、轻弹簧力的方向及大
小态的的特受点力,特解 点题。时以要小结球合为题研意究及对小象球,处受重于力力平分和衡析弹状如簧弹力的 图所示,小球受四个力的作用:重力合、力轻方绳的向拉恰好与轻绳 力作、用轻力弹的簧方的 向拉和力大、小轻不杆能的确作定用,力重,力其、方中弹向轻簧在杆的一的弹条直线上
力二者的合力的大小为F= G2 F12 =15 N
设F与竖直方向夹角为α, sin α=F1/F=3/5, 则α=37° 即方向与竖直方向成37°角斜向下,这个力与 轻绳的拉力恰好在同一条直线上。根据物体平 衡的条件可知,轻杆对小球的作用力大小为5 N ,方向与竖直方向成37°角斜向上。
轻杆的弹力与其他三个 力的合力等大反向
第6页/共8页
ห้องสมุดไป่ตู้
[建模启示]

整合 轻绳、轻杆、轻弹簧

整合 轻绳、轻杆、轻弹簧

轻绳、轻杆、轻弹簧三种模型的特点及其应用在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。

一.三种模型的特点1.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:①轻:即绳(或线)的质量或重力可以视为等于零。

由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;②软:即绳(或线)只能受拉力,不能承受压力。

由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。

由此特点可知:绳(或线)中的张力可以突变。

2.轻杆具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。

由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。

3.轻弹簧中学物理中的轻弹簧,也是理想化的模型。

具有以下几个特征:①轻:即弹簧的质量和重力可以视为等于零。

由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。

二.三种模型的应用例1.如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。

此类问题应注意两种模型的建立。

先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。

可知,F mg 2=,F F mg mg 122=+='。

剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。

浅析“轻绳”、“轻杆”和“轻弹簧”

浅析“轻绳”、“轻杆”和“轻弹簧”
中学教 学 参 考
复 习指 津
浅 析“ 绳" “ 轻 、 轻杆 ’ 轻 弹 簧" ’ 和“
广西 百 色凌 云县 中学 (3 1 0 黄宏 标 53 0 )
中学阶段 常 涉及 到 “ 绳” “ 杆” “ 弹 簧” 轻 、轻 和 轻 模 型, 这三种模 型都是 由各种 实际情 况 中的绳 、 杆和 弹簧 抽象出来的理想化物理模型. 但它们 的成因和特性 并不 完全相同 , 由此导致这类模 型在实 际应 用 中有很 多学生 混 淆 出 错 , 者 拟 对 这 三 种 模 型 的特 点 及 区 别 应 用 作 一 笔 些简单的讨论. 下面结合例题分析它们的区别及应用 : 轻 绳对 物 体 只 能 产 生 沿 绳 收 缩 方 向 的 拉 力 , 而 轻杆对物体 的弹 力不一定沿杆的方向 【 1 如 图 1 示 , 绳 一 端 系 着 质 量 为 的小 例 】 所 轻 球 , 一 端 系 在 固定 于小 车 上 一 直 杆 A_的上 端 ; 求 当 另 B 试 小车以加速度 “水平 向左做匀加速 运动时 , 求轻绳 对小 球 作 用 力 的 大 小 和方 向.
与重力 同 向; O 当 ≤
与重 力 反 向 , 选 项 C正 确 , 故 D
ZH ONGX J A UE I OXUE C ANKA O
解 题 方 法与技 巧
利 用 知 识 迁 移 巧 解 电 功 率 计 算

可见轻绳对小球 的作用 力大 小随着 加速 度 n的改
变 而改 变 , 它 的方 向一 定 是 在 绳 子 的 方 向上 . 但
【 2 如 图 3 示 , 车 上 固 例 】 所 小 定一 弯 折 硬 杆 AB C 端 固 定 一 质 C, 量 为 的小 球 , : 问 () 1 当小车向左匀速直线运动时, A B 杆 对小球作用力 的大 小和方 向. C () ( ) 小 车 以 加 速 度 水 平 向 2当 左做匀加速直线运 动时 , C杆对小 B 球作用力 的大小和方 向. 解析 : 以小 球 为研 究 对 象 进行 受 力分 析 , 球 受 两 个 力 作 用 : 力 m 小 重 g
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、三种模型的相同点
(1)轻绳、轻杆和轻弹簧的“轻”,指的是质量可 以忽略,重力不计. (2)他们对物体的作用力都是弹力,属于接触力、 被动力。
(3)各处的受力一般认为相同.
(4)都可以连接物体。
二、三种模型的不同点
(1)轻 绳 只 能 产 生 拉 力,轻 杆、 轻弹簧能产生拉力和压力
例1:图1中,a、b、c为三个物块,M、N为两 个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连 接如图所示并处于平衡状态,则( AD )
A、a处为拉力,b处为拉力; B、 a处为拉力,b处为推力; C、 a处为推力,b处为拉力; D、 a处为推力,b处为推力;
(2)轻绳弹力的方向总是指向绳收缩的方向;轻杆弹力 的方向由运动状态决定;轻弹簧弹力的方向总是沿 弹簧指向反抗形变的方向。 例3、如图3所示,小车顶端悬挂 一个小球,当小车以加速度a做 匀变速运动时,悬线与竖直方 向成某一固定角θ,若小球质量 为m,求悬线对小球的拉力。
例4、如图4所示,小车上固定一弯折硬杆ABC,杆 的C端固定一质量为m的小球,已知θ恒定,当小 D 车水平向左做匀加速直线运动时, BC杆对小球的 作用力方向( ) A、一定沿杆向上 B、一定竖直向上 C、可能水平向上 D、随加速度a的改变而改变
• 例5如图5所示,小圆环重G,固定的大环半 径为R,轻弹簧原长为L(L<2R),其劲度系 数为K,接触光滑,求小环静止时,弹簧与 竖直方向的夹角。
A、由位置A到位置B重力做功为mgh,
B、由位置A到位置B重力势能减少
1 mv2 2 C、由位置A到位置B小球克服弹力做功为mgh 1 D、小球到达位置B时弹簧的弹性势能为mgh2 mv2
图8
作业:第一单元力、物体的平衡 第 一讲三种常见性质力 五年高考A组B 组;三年模拟A组B组。
例7、如图7所示,质量为1kg的小球 用长0.8m,不可伸长的细线悬挂于 固定点O。现将小球沿圆周拉至右 上方距最低点1.2m高处后放手。求 小球运动到最低点时细线的张力。
A
O
h
C 图7
例8、如图8所示,质量为m的小球固定于轻质弹簧的一 端,弹簧的另一端固定于O点,将小球拉至A处,弹簧恰 A 、D 好无形变。由静止释放小球,它运动到O 点正下方的 B点 时,速度为v ,AB之间的高度差为h,则( )
A、有可能N处于拉伸状态而M处于压缩状态 B、有可能N处于压缩状态而M处于拉伸状态 C、有可能N处于不伸不缩状态而M处于拉伸 状 态D、有可能N处于拉伸状态而M处于不伸不缩状态
例2、如图所示,细杆的一端与小球相连,另一端可绕过O 点的水平轴自由转动,现给小球一个初速度,使它做圆周运 动,图中a、b分别表示小球运动的最低点和最高点,则杆对 A、B 球的作用力可能是( )
θ
· O
图5
(3)轻绳、轻杆的弹力可以突变,弹簧的弹力不 能突变。 例6、如图6所示,一质量为m的物 体系于长度分别为l1、l2的两根 细线上, l1的一端悬挂在天花 板上,与竖直方向夹角为θ , l2水平拉直,物体处于平衡状态, 现将l2线剪断,求剪断瞬间物体 的加速度。 图6
(4)在运动中,轻绳可以松弛;轻杆长度不 改变; 弹簧可以伸长或缩短。
相关文档
最新文档